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covariant Hořava-Lifshitz gravity without the projectability condition are consistent with

all current cosmological observations.

Keywords: Cosmology of Theories beyond the SM, Models of Quantum Gravity, Gauge

Symmetry

ArXiv ePrint: 1208.2491

c© SISSA 2013 doi:10.1007/JHEP01(2013)138

mailto:zhut05@gmail.com
mailto:yongqing_huang@baylor.edu
mailto:anzhong_wang@baylor.edu
http://arxiv.org/abs/1208.2491
http://dx.doi.org/10.1007/JHEP01(2013)138


J
H
E
P
0
1
(
2
0
1
3
)
1
3
8

Contents

1 Introduction 1
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1 Introduction

Recently, Hořava formulated a theory of quantum gravity, whose scaling at short distances

exhibits a strong anisotropy between space and time [1–3],

x → b−1x, t→ b−zt. (1.1)

In order for the theory to be power-counting renormalizable, in (3 + 1)-dimensions the

critical exponent z needs to be z ≥ 3 [1–6]. The gauge symmetry of the theory now is

broken from the general covariance, δxµ = −δxµ(t, x) (µ = 0, 1, 2, 3), down to the foliation-

preserving diffeomorphisms Diff(M, F),

δt = −f(t), δxi = −ζi(t,x). (1.2)

Abandoning the general covariance gives rise to a proliferation of independently coupling

constants [7–9], which could potentially limit the prediction powers of the theory. To

reduce the number of these constants, Hořava imposed two conditions, the projectability

and detailed balance [1–3]. The former assumes that the lapse function N in the Arnowitt-

Deser-Misner (ADM) decompositions [10] is a function of t only,

N = N(t), (1.3)
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while the latter assumes that gravitational potential LV can be obtained from a superpo-

tential Wg that is defined on the three-spatial hypersurfaces t = Constant. With these

conditions, the number of independently coupling constants reduces to 5 [1–3].

However, with the detailed balance condition, the Newtonian limit does not exist [11],

and a scalar field in the UV is not stable [12]. Thus, it is generally believed that this

condition should be abandoned [13–19]. But, due to several remarkable features [20], Bor-

zou, Lin and Wang recently studied it in detail, and found that the scalar field can be

stabilized in both regimes, UV and IR, if the detailed balance condition is allowed to be

broken softly [21].

On the other hand, giving up the detailed balance condition, but still keeping the pro-

jectability one, the number of the independent coupling constants can also be significantly

reduced. In fact, together with the assumptions of the parity and time-reflection symme-

try, it can be reduced from more than 70 to 11 [22, 23] (See also [24]). However, in this

model the Minkowski spacetime is not stable [22, 23, 25],1 although the de Sitter space-

time is [31, 32]. In addition, such a theory also faces the strong coupling problem [32–36].2

Note that both of these two problems are closely related to the existence of a spin-0 gravi-

ton [26–29], because of the foliation-preserving diffeomorphisms.3 Another problem related

to the presence of this spin-0 graviton is the difference of its speed from that of the spin-2

graviton. Since they are not related by any symmetry, it poses a great challenge for any

attempt to restore Lorentz symmetry at low energies where it has been well tested exper-

imentally. In particular, one needs a mechanism to ensure that in those energy scales all

species of matter and gravity have the same effective speed and light cones.

To overcome the above mentioned problems, recently, together with Shu and Wu, two

of the present authors proposed a model without the projectability condition, but assuming

that: (a) the detailed balance condition is softly broken; and (b) the symmetry of theory

is enlarged to included a local U(1) symmetry [42, 43],4

U(1)⋉Diff(M, F). (1.4)

1In the literature, the ghost problem was often mentioned [26–29]. But, by restricting the cou-

pling constant λ to the regions λ ≥ 1 or λ < 1/3, this problem is solved (at least in the classical

level) [1–3, 22, 23, 25, 30]. In addtion, when λ ∈ (1/3, 1), the instability problem disappears. There-

fore, one of these two problems can be always avoided by properly choosing λ. In this paper, we choose

λ ≥ 1, so the ghost problem does not exist.
2It should be noted that strong coupling is not a real problem, but an indication that the linear pertur-

bations involved are broken down, and nonlinear effects are needed to be taken into account. If the theory is

consistent with observations, after those nonlinear effects are taken into account, it still represents a viable

theory. One example is the massive gravity [37–39]. In the content of the Hořava-Lifshitz theory with the

projectability condition, such effects were also studied in both spherically symmetric static spacetimes [29]

and cosmological models [32, 40, 41], and found that the spin-0 gravitons decouple after nonlinear effects

are taken into account. As a result, the relativistic limits indeed exist.
3Since the foliation-preserving diffeomorphisms (1.2) is also assumed in the version without the pro-

jectability condition [7, 8], the spin-0 graviton exists there, too.
4The enlarged symmetry was first introduced by Hořava and Melby-Thompson (HMT) in the case with

the projectability condition and λ = 1 [44], and was soon generalized to the case with any λ [47], where

λ is a coupling constant, which characterizes the deviation from general relativity (GR) in the IR. In such

a setup, the spin-0 gravitons are eliminated, and the degree of the freedom of the gravitional sector is the

same as that in GR [44–49]. In this model, cosmology and spherically symmetric spacetimes were also

studied in, respectively, [50] and [51–56].
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The detailed balance condition considerably reduces the number of independently coupling

constants, in addition to the desired features mentioned above, while allowing it to be

softly breaking yields a healthy IR limit. On the other hand, the presence of the local

U(1) symmetry eliminates the existence of the spin-0 graviton, whereby all the problems

related to it, including instability, strong coupling, and different speeds, are now all out of

questions [42, 43]. The enlarged symmetry (1.4) is realized by intruding a U(1) gauge field

A, and a Newtonian prepotential ϕ, the same as those in the case with the projectability

condition [44], where under the U(1) transformations, A and ϕ transform as,

δαA = α̇−N i∇iα, δαϕ = −α, (1.5)

where α denotes the U(1) generator, α̇ ≡ dα/dt, N i is the shift vector in the ADM decom-

positions, and ∇i the covariant derivative with respet to the 3-metric gij , defined on the

hypersurfaces t = Constant. A remarkable feature of this model is that the lapse function

N depends on both t and x, and the model has the same freedom (only spin-2 gravitons

exist) as that in GR.

The Hořava-Lifshitz (HL) theory modifies GR in strong gravitational regimes. There-

fore, a natural application of it is the early universe. In this paper, we shall study inflation

of a single scalar field in the setup of [42, 43], by paying particular attention on two im-

portant issues: (i) the consistency of the theory with cosmological observations; and (ii)

its distinguishable signatures from other theories of gravity, including GR. Specifically, the

paper is organized as follows. In section 2, we present a brief review of the general covariant

Hořava-Lifshitz gravity without the projectability condition, while in section 3, we study

the linear scalar perturbations, and discuss their gauge choices and gauge-invariants. After

working out explicitly the general equations for the cosmological linear scalar perturba-

tions in a flat FRW universe without specifying to a particular gauge, we derive the master

equation (3.37) for the scalar perturbations in the specific gauge (3.23). In section 4, we

first define the initial vacuum state of the scalar perturbation as the one that minimizes

the energy of the ground state, and then calculate the power spectrum and index of the

comoving curvature perturbation. Finally, in section 5 we present our main conclusions.

It should be noted that linear perturbations of the Friedmann-Robertson-Walker

(FRW) universe in the non-projectable HL theory without the enlarged symmetry (1.4)

has been studied by several authors [57–61]. Due to the presence of the spin-0 graviton

modes, they are quite different from the ones presented here. In particular, because of the

coupling of this mode to matter fields, a master equation does not exist [62].

In addition, in the current setup, the coupling constant Λg, defined explicitly in eq. (2.2)

below, has to vanish, although quantum mechanically it is expected to be subjected to

radiative corrections. It is still an open question whether Λg = 0 is the low energy fixed

pointed or not, as the corresponding RG flow of the theory has not been worked out, yet.

2 General covariant Hořava-Lifshitz gravity without projectability

In this section, we shall give a very brief introduction to the general covariant HL gravity

with the enlarged symmetry (1.4) but without the projectability condition. For detail, we

– 3 –
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refer readers to [42, 43]. The total action of the theory can be written as,

S = ζ2
∫
dtd3x

√
gN

(
LK − LV + LA + Lϕ +

1

ζ2
LM
)
, (2.1)

where g = det(gij), and

LK = KijK
ij − λK2,

LA =
A

N

(
2Λg −R

)
,

Lϕ = ϕGij
(
2Kij +∇i∇jϕ+ ai∇jϕ

)
+ (1− λ)

[(
∆ϕ+ ai∇iϕ

)2
+ 2
(
∆ϕ+ ai∇iϕ

)
K
]

+
1

3
Ĝijlk

[
4 (∇i∇jϕ) a(k∇l)ϕ+ 5

(
a(i∇j)ϕ

)
a(k∇l)ϕ+ 2

(
∇(iϕ

)
aj)(k∇l)ϕ

+6Kija(l∇k)ϕ
]
. (2.2)

Here ∆ ≡ gij∇i∇j , and Λg is a coupling constant. The Ricci and Riemann tensors Rij and

Ri jkl all refer to the 3-metric gij , with Rij = Rkikj and

Kij ≡ 1

2N
(−ġij +∇iNj +∇jNi) ,

Gij ≡ Rij −
1

2
gijR+ Λggij . (2.3)

LM is the Lagrangian of matter fields.

When the projectability condition is abandoned, it gives rise to a proliferation of a

large number of independently coupling constant [7–9]. Following Horava, the detailed

balance condition is generalized to [42, 43],

L(V,D) =
(
Eij Ai

)(Gijkl 0

0 −gij

)(
Ekl
Aj

)
, (2.4)

where Gijkl denotes the generalized De Witt metric, defined as Gijkl = 1
2

(
gikgjl + gilgjk

)
−

λgijgkl, and Eij and Ai are given by

Eij =
1√
g

δWg

δgij
, Ai =

1√
g

δWa

δai
. (2.5)

The super-potentials Wg and Wa are constructed as

Wg =
1

w2

∫

Σ
ω3(Γ) + µ

∫
d3x

√
g
(
R− 2Λ

)
,

Wa =

∫
d3x

√
g

1∑

n=0

Bnai∆nai, (2.6)

where ω3(Γ) denotes the gravitational 3-dimensional Chern-Simons term, w, µ, Λ and Bn
are arbitrary constants. However, to have a healthy infrared limit, the detailed balance
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condition is allowed to be broken softly, by adding all the low dimensional operators, so

that the potential finally takes the form [42, 43],

LV = γ0ζ
2 −

(
β0aia

i − γ1R
)
+

1

ζ2

(
γ2R

2 + γ3RijR
ij
)

+
1

ζ2

[
β1
(
aia

i
)2
+β2

(
ai i
)2
+β3

(
aia

i
)
aj j+β4a

ijaij+β5
(
aia

i
)
R+β6aiajR

ij+β7Ra
i
i

]

+
1

ζ4

[
γ5CijC

ij + β8
(
∆ai

)2 ]
, (2.7)

where all the coefficients, βn and γn, are dimensionless and arbitrary, except for the ones

of the sixth-order derivative terms, γ5 and β8, which must satisfy the conditions,

γ5 > 0, β8 < 0, (2.8)

in order for the theory to be unitary in the UV. Cij denotes the Cotton tensor, defined by

Cij =
eikl√
g
∇k

(
Rjl −

1

4
Rδjl

)
, (2.9)

with e123 = 1. Using the Bianchi identities, one can show that CijC
ij can be written in

terms of the five independent sixth-order derivative terms in the form

CijC
ij =

1

2
R3 − 5

2
RRijR

ij + 3RijR
j
kR

k
i +

3

8
R∆R+ (∇iRjk)

(
∇iRjk

)
+∇kG

k, (2.10)

where

Gk =
1

2
Rjk∇jR−Rij∇jRik − 3

8
R∇kR. (2.11)

To be consistent with observations in the IR, we assume that

ζ2 =
1

16πG
, γ1 = −1, (2.12)

where G denotes the Newtonian constant, and

Λ ≡ 1

2
ζ2γ0, (2.13)

is the cosmological constant.

It should be noted that it is still not clear whether the detailed balance condition

remains after quantum effects are taken into account [1–3, 26–28], despite the fact that

it has several desirable features [20, 21], and helps to reduce the number of independent

constants significantly. Without such a condition, the total number of independent coupling

constants are about 100 [7–9, 42].

Variations of the total action (2.1) with respect to N, N i, A, ϕ and gij yield, re-

spectively, the Hamiltonian, momentum, A-, and ϕ-constraints, and dynamical equations,

which are given explicitly in [43]. From those equations, one can see clearly that the

mathematical structure of the theory is completely different from the one without the

U(1) symmetry [7, 8].

In addition, assuming the translation symmetry of the action (1.4), one obtains the

conservation laws of energy and momentum [43]. However, because of the reduced symme-

try, δt = f(t), the energy is conserved only globally, in contrast to that of GR.

– 5 –
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3 Inflation of a single scalar field

Inflation in the projectable case with the enlarged symmetry (1.4) has been studied recently

in [50], and in this section we shall closely follow it, although the two setups have completely

different mathematical as well as physical structures, as to be shown below.

A scalar field in the current setup is described by

Sχ =

∫
dtd3x

√
gNLM , (3.1)

where

LM = L(A,ϕ)
χ + L(0)

χ ,

L(A,ϕ)
χ =

A−A
N

[
c1(χ)∆χ+ c2(χ)(∇χ)2

]
+
f

2
[(∇kϕ)(∇kχ)]

2

− f

N
(χ̇−N i∇iχ)(∇kϕ)(∇kχ), (3.2)

L(0)
χ =

f

2N2
(χ̇−N i∇iχ)

2 − V , (3.3)

and

V = V (χ) +

(
1

2
+ V1(χ)

)
(∇χ)2 + V2(χ)P2

1

+V3(χ)P3
1 + V4(χ)P2 + V5(χ)(∇χ)2P2 + V6P1P2, (3.4)

A ≡ −ϕ̇+N i∇iϕ+
1

2
N(∇iϕ)(∇iϕ),

Pn ≡ ∆nχ, V6 ≡ −σ23, (3.5)

where σ3 is a constant. The coefficient f in (3.1) is a function of λ only, subjected to the

requirements: (i) the scalar field must be ghost-free in all the energy scales, including the

UV and IR; (ii) in the IR limit, the scalar field has a well-defined velocity, which should

be equal or very closed to its relativistic value; and (iii) the stability condition in the IR

requires f(λ) > 0 [21, 43]. Usually, one chooses f = 1. In this paper, we shall leave this

possibility open. To study the inflationary model of such a scalar field, we first consider

the slow-roll conditions in the FRW background.

3.1 Slow-roll inflation

We consider a general FRW space-time,

ds2 = a2(η)(−dη2 + γijdx
idxj), (3.6)

where

γij =
δij

(1 + kr2/4)2
, (3.7)

– 6 –
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and k = 0,±1. Then, it can be shown that the A- and ϕ- constraints yield [43],

H
a

(
Λg −

k

a2

)
= −8πG

3
Ĵϕ, (3.8)

k

a2
− Λg

3
=

4πGĴA
3

, (3.9)

where H = (da/dη)/a ≡ a′/a, and

Ĵϕ ≡ −δLM
δϕ

= 0,

ĴA ≡ 2
δ(NLM )

δA
= 0, (3.10)

as one can see from eqs. (3.2)–(3.5) when only the FRW background is considered. Then,

from eqs. (3.8) and (3.9) we find that

k = 0 = Λg. (3.11)

That is, the FRW universe is necessarily flat in the current setup for the scalar field χ,

given by eq. (3.1). It is interesting to note that in such a setup, the coupling constant Λg
has to vanish, although quantum mechanically it is expected to be subjected to radiative

corrections. It is still an open question whether Λg = 0 is the low energy fixed pointed or

not, as the corresponding RG flow of the theory has not been worked out, yet. Since we

assume that inflation occurred in the regime H ≪ M∗ [See the discussions given below],

where H is the Hubble constant during the inflation epoch, andM∗ the suppression energy

scale of the high-order derivative terms [43], in the rest of the paper it is sufficient for us

to consider that eq. (3.11) holds classically.

On the other hand, from the dynamical equations, we find that

H2 =
8πG̃a2

3

(
1

2
χ̂′2 + Ṽ (χ̂)

)
, (3.12)

2H′ +H2 = 8πGa2
(
1

2
χ̂′2 − Ṽ (χ̂)

)
, (3.13)

where χ̂ = χ̂(η) denotes the background scalar field, and

G̃ ≡ 2fG

3λ− 1
, Ṽ (χ̂) ≡ V (χ̂)

f(λ)
. (3.14)

Note that in writing the above equations, we had set the cosmological constant Λ = 0. On

the other hand, the Klein-Gordon equation in the flat FRW background reads,

χ̂′′ + 2Hχ̂′ + a2Ṽ,χ = 0. (3.15)

eqs. (3.12), (3.13), and (3.15) are identical to these given in GR [64], if one identifies G̃

and Ṽ to the Newtonian constant and scalar potential, respectively. As a result, all the

– 7 –
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conditions for inflationary models obtained in GR are equally applicable to the current

case, as long as the background is concerned. In particular, the slow-roll conditions,

ǫ̃V , |η̃V | ≪ 1, (3.16)

need to be imposed here, too, in order to get enough e-fold and solve all the problems

encountered in GR, where

ǫ̃V ≡
M̃2

pl

2

(
Ṽ ′

Ṽ

)2

=
3λ− 1

2f
ǫV ,

η̃V ≡ M̃2
pl

(
Ṽ ′′

Ṽ

)
=

3λ− 1

2f
ηV , (3.17)

with M̃2
pl ≡ 1/(8πG̃), and ǫV and ηV are the ones defined in GR [65]. However, due to the

presence of high-order spatial derivatives, the perturbations will be dramatically different,

as to be shown below.

3.2 Gauge freedom and invariants

The linear scalar perturbations are given by

δN = aφ, δNi = a2∂iB, δgij = −2a2(ψδij − ∂i∂jE),

A = Â+ δA, ϕ = ϕ̂+ δϕ, χ = χ̂+ δχ, (3.18)

where Â and ϕ̂ denote the background fields of A and ϕ, and are functions of η only. Under

the gauge transformations (1.2), the scalar perturbations transform as

φ̃ = φ−Hξ0 − ξ0
′
, ψ̃ = ψ +Hξ0,

B̃ = B + ξ0 − ξ′, Ẽ = E − ξ,

δ̃ϕ = δϕ− ξ0ϕ̂′, δ̃A = δA− ξ0Â′ − ξ0
′
Â, (3.19)

where f = −ξ0(η), ζi = −ξ,i(η, x). Under the U(1) gauge transformations, on the other

hand, we find that

φ̃ = φ, Ẽ = E, ψ̃ = ψ, B̃ = B − ǫ

a
,

δ̃ϕ = δϕ+ ǫ, δ̃A = δA− ǫ′, (3.20)

where ǫ = −α(η, x). Then, the gauge transformations of the whole group U(1) ⋉

Diff(M, F) will be the linear combination of the above two. Out of the six unknowns,

(φ,B, ψ,E, δA, δϕ), one can construct four gauge-invariant quantities,

γ = ∆φ,

Φ = φ− 1

a− ϕ̂′

(
aσ − δϕ

)′ − 1
(
a− ϕ̂′

)2
(
ϕ̂′′ −Hϕ̂′

)(
aσ − δϕ

)
,

Ψ = ψ +
H

a− ϕ̂′

(
aσ − δϕ

)
,

Γ = δA+

[
a
(
δϕ− ϕ̂′σ

)
− Â

(
aσ − δϕ

)

a− ϕ̂′

]′
, (3.21)
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which is different from the projectable case, in which only three of gauge-invariants ex-

ist [46], because the projectability condition requires φ = φ(η), which can be eliminated

by the gauge transformation f = −ξ0(η). But, now since φ = φ(t, x), this becomes impos-

sible. Thus, from above discussions and the gauge transformations (3.19) and (3.20), one

can choose the following four different gauges,

(i) B = 0, δϕ = 0; (ii) B = 0, δA = 0;

(iii) E = 0, δϕ = 0; (iv) E = 0, δA = 0. (3.22)

The field equations for the linear scalar perturbations without specifying to any gauge

are presented in appendix A.

3.3 Equations of linear perturbations

In this subsection, we consider the cosmological perturbations with the gauge,

ϕ̂(η) = 0, E = 0 = δϕ. (3.23)

Then, eqs. (A.7)–(A.12) can be cast in the following forms,

3λ− 1

2
H
[
3ψ′ + 3φH+ ∂2B

]
− ℘∂2ψ +

1

2
ð∂2φ

= −4πGa2
[
fχ̂′

a2
(
δχ′ − χ̂′φ

)
+
V4
a4
∂4δχ+ V ′δχ

]
, (3.24)

∂2ψ = 4πGc1∂
2δχ, (3.25)

∂2
[
(1− λ)(3ψ′ + ∂2B) + 2Hψ + (1− 3λ)Hφ

]

= 8πG
[(
c′1χ̂

′ + c1H− fχ̂′
)
∂2δχ+ c1∂

2δχ′
]
, (3.26)

∂2
[
(3λ− 1)(ψ′ + φH) + (λ− 1)∂2B

]
= 8πGfχ̂′∂2δχ, (3.27)

− σ′ − 2Hσ − ψ − α1∂
2ψ + ℘φ +

Âψ − δA

a
= 0, (3.28)

ψ′′ +H(φ′ + 2ψ′) + (H2 + 2H′)φ+
λ− 1

3λ− 1
∂2
[
ψ + α1∂

2ψ − ℘φ− Âψ − δA

a

]

=
8πGa2

3λ− 1

[
fχ̂′

a2
(δχ′ − χ̂′φ)− V ′δχ

]
. (3.29)

The Klein-Gordon equation (A.13) now reads

fδχ′′ + 2Hfδχ′ − fχ̂′(∂2B)− 2Hfχ̂′φ− fχ̂′′φ− fχ̂′φ′ + a2V ′′δχ

−2

(
1

2
+ V1 −

V2 + v′4
a2

∂2 − V6
a4
∂4
)
(∂2δχ)

−3fχ̂′ψ′ − 2(c′1 − c2)
Â

a
(∂2δχ)− c1∂

2

(
δA

a

)
+ a2V ′φ+ V4(∂

4φ) = 0. (3.30)

On the other hand, the comoving curvature perturbation, defined by

R = ψ +
H
χ̄′
δχ, (3.31)
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is gauge-invariant even in the current setup. Then, with the help of its definition, and from

eqs. (3.24), (3.25), (3.27), and (3.28), we can express ψ, B and δA in terms of δχ, and then

submit them into eq. (A.1), we obtain the second order action in terms of R,

S(2) =
1

2

∫
dηd3xa2h2

[
R′e0R′ +Re1R

]
, (3.32)

where

h≡
(
4πGc1 +

H
˙̄χ

)−1

=
δχ

R ,

e0 ≡ f +
4πGc21
|c2ψ|

− 4ζ2d21
d0

,

e1 ≡−a2V ′′ + 4πGa2V ′c1

(
c′1
f |c2ψ|

− 1

|c2ψ|
+ 3

)
+

8πGfχ̂′2

λ− 1
(f − c′1)−

4πGc1c
′′
1χ̂

′2

|c2ψ|

+

[
1+2V1+ 2

Â

a
(c′1−c2)− 4πGc21

(
1− Â

a

)]
∂2− 2

(
V2+V

′
4

a2
+ 2πGc21α1

)
∂4− 2V6

a4
∂6

−4ζ2d22
d0

+
8ζ2Hd1d2

d0
+ 4ζ2

(
d1d2
d0

)′

−
(
h′′

h

)
e0 −

(
h′

h

)
(e′0 + 2He0), (3.33)

with

c2ψ ≡ λ− 1

1− 3λ
,

d0 ≡
(
3λ− 1

λ− 1

)
H2 + 4πGfχ̂′2 − 1

2
ð∂2,

d1 ≡ 4πG

[
fχ̂′ −

(
3λ− 1

λ− 1

)
c1H

]
,

d2 ≡ 4πG

[
a2V ′ +

(
3λ− 1

λ− 1

)
(fχ̂′ − c′1χ̂

′H) +
V4
a2
∂4 − c1℘∂

2

]
. (3.34)

From the above expressions, it can be shown that eq. (3.24) can be cast in the form,

d0φ = d1δχ
′ + d2δχ. (3.35)

Introducing the variables,

v ≡ zR, z2 ≡ a2h2e0, (3.36)

from eq. (3.32) one obtains the equation of mode function vk in the momentum space,

which reads

v′′k + β2(η, k)vk = 0, (3.37)

where

β2(η, k) = −
(
z′′

z
+
e1
e0

)

∂i→iki

= ω2(η, k) +m2
eff, (3.38)
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and the exact expressions of β2(η, k), ω2(η, k), and meff are given in appendix B. It is re-

markable to note that with the U(1) symmetry, a master equation (3.37) exists, in contrast

to the case without it [62]. This is closely related to the fact that the U(1) symmetry

eliminates the spin-0 graviton, and the resulted theory enjoys the same degree of freedom

as that of GR.

4 Power spectrum and index

To calculate the power spectrum of the linear scalar perturbations with slow-roll approxi-

mations, as one usually does in GR, we should first choose a specific vacuum state of the

quantum field at initial time ηi (the initial conditions) and solve the linearized equation of

motion. Then, using both the initial conditions the solution is uniquely determined, from

which we calculate the power spectrum and index.

However, due to the complexity of the function β2(η, k) defined in eq. (3.38), the

analysis becomes very much involved mathematically. In the following we follow [66, 67].

First, we notice that, at the beginning of the inflationary period, the physical wavelengths

of comoving scales which correspond to present large-scale structure of the Universe are

usually much smaller than the corresponding Hubble length. This means that at the early

stage of inflation the high order spatial derivative terms of the theory are dominant. In

this case, a natural choice of the initial state is the one that minimizes the energy of the

field at the initial moment ηi [66, 67],

vk(ηi) =
1√

2β(ηi, k)
,

v′k(ηi) = ±i
√
β(ηi, k)

2
. (4.1)

Then, with the slow roll approximations, one has

β2(ηi, k) ≃ γ2η4k6, (4.2)

where

γ2 ≡ −2(1− 4ǫV )V6H
4

f + 4πGc21/|c2ψ|
≃ (1− 4ǫV )

(
H

M⋆

)4

c2s. (4.3)

In the above expression, cs is defined by (4.11) and M⋆ ≤ Mpl. For the field to be stable

in the UV, the condition V6 < 0 has to be satisfied, which in the following will be assumed

to be always the case.

Secondly, as can be seen from (B.1), the expression of β2(η, k) is too complicated to

solve the corresponding equation of motion analytically. Following [66, 67], we divide the

momentum space into three regions:

• Region I, in which we have kphy > M⋆, and the k6 term of β2(η, k) dominates;

• Rgion II, in which we haveM⋆ > kphy > H/cs, and the k2 term in β2(η, k) dominates;

• Region III, in which we have kphy < H/cs, and the meff term dominates,
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In the following, we will solve the equation of motion (3.37) in each of these three regions,

separately, and then using the matching conditions on the boundaries to connect the inte-

gration constants obtained in each of the three regions. In particular, the coefficients of the

two fundamental solutions in Region I are fixed by the initial conditions (4.1). Then, we

perform the matching of vk and v′k at the transitions between region I and region II, which

occurs at time η1, and between regions II and III, which occurs at time η2, to obtain the

coefficients of the two fundamental solutions in region III, from which the power spectrum

and index can be calculated.

4.1 Region I

In Region I, the equation of motion for the mode function vk reduces to

v′′k + γ2η4k6vk = 0, (4.4)

which has the general solution,

vIk(η) = A1|η|1/2Jν(z) +A2|η|1/2J−ν(z), (4.5)

where Jν(z) denotes the usual Bessel function, with ν = 1/6 and z = γ|η|3k3/3. The

coefficients A1 and A2 are to be determined by the initial conditions (4.1) at ηi, i.e.,

A1Jν(zi) +A2J−ν(zi) = vk(ηi)|ηi|−1/2,

−A1Jν−1(zi) +A2J1−ν(zi) =
v′k(ηi)|ηi|1/2

3zi
. (4.6)

Using the Wronskian relation J−ν(z)Jν−1(z) + J1−ν(z)Jν(z) = 2 sin[νπ]/(πz), we find that

A1 = πzivk(ηi)|ηi|−1/2[J1−ν(zi)∓ iJ−ν(zi)],

A2 = πzivk(ηi)|ηi|−1/2[Jν−1(zi)± iJν(zi)]. (4.7)

Since zi ≫ 1, by introducing two new functions,

x(η) ≡ z(η) +
νπ

2
− π

4
, y(η) ≡ z(η)− νπ

2
− π

4
, (4.8)

and using the asymptotic forms of the Bessel function for large arguments, we find

A1 ≃ ∓i
√
2πzivk(ηi)|ηi|−1/2e±ixi ,

A2 ≃ ±i
√
2πzivk(ηi)|ηi|−1/2e±iyi . (4.9)

4.2 Region II

In Region II, the dispersion relation is approximatively to be linear, thus the equation of

motion reduces to

v′′k + c2sk
2vk = 0, (4.10)

with

c2s ≡
1 + 2V1 + 2Ā(c′1 − c2)− 4πGc21

(
1− Ā− 2

β0

)

f + 4πGc21/|c2ψ|
. (4.11)
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Therefore, the solution can be expressed as

vIIk (η) = B1e
icskη +B2e

−icskη. (4.12)

The coefficients B1 and B2 are to be determined by matching of vk and v
′
k at the transitions

time η1 between regions I and II, which yield

B1e
icskη1 =

A1|η1|1/2
2

[
Jν(z1)−

3z1|η1|−1

icsk
Jν−1(z1)

]

+
A2|η1|1/2

2

[
J−ν(z1) +

3z1|η1|−1

icsk
J1−ν(z1)

]
,

B2e
−icskη1 =

A1|η1|1/2
2

[
Jν(z1) +

3z1|η1|−1

icsk
Jν−1(z1)

]

+
A2|η1|1/2

2

[
J−ν(z1)−

3z1|η1|−1

icsk
J1−ν(z1)

]
. (4.13)

For z1 ≫ 1, we obtain

B1 ≃ A1|η1|1/2e−icskη1√
2πz1

[
cos y1 +

3z1
icsk|η1|

sin y1

]

+
A2|η1|1/2e−icskη1√

2πz1

[
cosx1 +

3z1
icsk|η1|

sinx1

]
,

B2 ≃ A1|η1|1/2eicskη1√
2πz1

[
cos y1 −

3z1
icsk|η1|

sin y1

]

+
A2|η1|1/2eicskη1√

2πz1

[
cosx1 −

3z1
icsk|η1|

sinx1

]
, (4.14)

where A1 and A2 are given by eq. (4.9) and the transitions time η1 is given by

|η1| =
1 + ǫV
H

M⋆

k
. (4.15)

4.3 Region III and the power spectrum

In Region III, the equation of motion reads

v′′k +m2
effvk = 0, (4.16)

where m2
eff is the effective mass term and is given by eq. (B.4). Then, the solution can be

simply expressed as

vIIIk (η) ≃ C|η| 1−
√
9−4w

2 , (4.17)

where w = 3ηV /f + 9(2|c2ψ| − 1)ǫV , and the coefficient C can be determined by matching

vk and v′k at csk = aH, which gives

C =
(
B1e

icskη2 +B2e
−icskη2

)
|η2|

−1+
√
9−4w

2 . (4.18)
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Set Then the power spectrum of comoving curvature perturbation R can be calculated,

and is given by

k3

2π2
PR =

(
H

2π

)2(1 + 2ǫV
c3sh

2e0

)
|cskη|−2w/3 . (4.19)

Setting the slow roll parameters to zero exactly, the power spectrum given above can be

put in the simple form,

k3

2π2
PR =

(
H

2π

)2( 1

c3sh
2e0

)

cskη→0

, (4.20)

here

e0|cskη→0 = f +
4πGc21
|c2ψ|

{
1− 1

1/|c2ψ|+ 1
2β0

}
. (4.21)

We can see from above that the scale-invariance of the spectrum is maintained in our

theory. In the relativistic limit (c1 = c2 = β0 = Ā = V1 = 0, λ = 1 = f), the power

spectrum reduces to the well known result obtained in GR.

The spectrum index can be calculated as

nR − 1 = 2ηV − 6ǫV +∆nR1 +∆nR2, (4.22)

where the modification of the index is

2ηV − 6ǫV +∆nR1 ≡ −2

3
w, (4.23)

which comes from the effective mass term meft, and

∆nR2 ≡ −d ln e0
d ln k

, (4.24)

which represent the contributions from higher curvature terms in e0. To estimate the effect

from higher curvature terms on the index, let us first define

δ ≡
2|c2ψ|

β0|c2ψ|+ 2
, MA ≡ Mpl

|β2 + β4|1/2
, MB ≡ Mpl

|β8|1/4
. (4.25)

Then, e0 can be expressed as

e0 = f +
4πGc21
|c2ψ|

− 4πGc21
1 + 1

2β0|c2ψ|
1

1− δǫ1|cskη|2 − δǫ22|cskη|4
, (4.26)

where

ǫ1 =
H2

M2
A

, ǫ2 =
H2

M2
B

. (4.27)
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Usually, the introduced scales MA and MB are much greater than H when inflation just

starts, i.e., ǫ1,2 ≪ 1. For the sake of simplicity, we assume that c1 ≃ c2 ≃ M⋆ [50]. Then,

we have

d ln e0
d ln k

≃ − 1

e0(1 +
1
2β0|c2ψ|)

(
M⋆

Mpl

)2

(δǫ1 + 2δǫ21 + 2δǫ22). (4.28)

Two comments are in order. First, it appears that the nonlinear dispersion relation

β2(η, k) has insignificant contributions to the standard spectrum k3PGR
R . This is consistent

with the results obtained in refs. [68, 69], when two conditions are satisfied. The first one

is the adiabaticity that is satisfied for the mode propagation before horizon crossing, i.e.,

C ≡ |β′(η, k)/β2η, k| ≪ 1. As shown in refs. [68, 69], only when this condition is violated,

can the nonlinear dispersion relation have significant contributions to the spectrum. In

this paper, we assumed that the adiabatic condition C ≪ 1 is always satisfied before

horizon crossing. The second condition is that β2(η, k) is approximately linear in region

II, thus when we evaluate the power spectrum at horizon crossing, all the high order

derivative terms are neglected. More accurately, one can expand k3/β3(η, k) in order of

ǫHL in the form,

k3

β3(η, k)

∣∣∣∣
β(η3,k)=aH

≃ 1

c3s
(1 + a1ǫHL + a2ǫ

2
HL + . . . ), (4.29)

where ǫHL ≃ H2/M⋆, and MA ≃ MB ≃ M⋆. Thus, the power spectrum which contains

contributions from β2(η, k) can be expressed as

k3

2π2
PR =

(
H

2π

)2( 1

c3sh
2e0

)
(1 + a1ǫHL + a2ǫ

2
HL + . . . ). (4.30)

Second, for the spectrum index acquires corrections from both the effective mass term

meff and 1/e0. As shown in (4.28), corrections from 1/e0 are of order ǫHL. From the first

term R′e0(η, ∂
2n)R′ in the second order action (3.32), one can see that these corrections

come from the mixture of spatial derivative and time derivative of the comoving curvature

perturbations. And more interesting, such mixture is a consequence of the fact that the

lapse function φ is a function of both η and x, i.e., without the projectability condition.

Thus, such corrections to the spectrum index presents a distinguishable signature of the

model from the version with the projecttability condition.

5 Conclusions and discussions

In this paper, we have studied inflation driven by a single scalar field in the general covariant

Hořava-Lifshitz gravity without projectability condition, formulated in [42, 43]. Because of

the enlarged symmetry (1.4), the gauge invariants for cosmological perturbations are dif-

ferent from those given in GR. They are also different from those given in general covariant

Hořava-Lifshitz theory with projectability conditions. By using the gauge transformations

for perturbations, we have constructed all the four gauge invariants, given by eq. (3.21).
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The most general cosmological linear perturbation equations have been derived without

specifying any gauge, and presented in appendix A. By using these equations, we have

shown that a master equation for the mode function of the scalar perturbations exists, in

contrast to the case without the U(1) symmetry [62]. Following the method developed in

ref. [66, 67], we have first divided the momentum space into three different regions, and

then solved the equation of motion in each of the three regions, separately. With the initial

conditions that the vacuum state minimizes the energy of the field, we have determined

the coefficients of the solutions by matching the solutions and its time derivative at the

initial time and transition times on the boundaries of the three regions.

With these solutions, we have also calculated the power spectra and spectrum index

of the scalar perturbations in the slow-roll approximations. Comparing with the standard

results obtained in GR, the power spectrum and index acquire tiny corrections from the

theory, as the adiabatic condition holds in the case considered here. Remarkably, partly of

corrections are of the consequence of the non-projectability condition, i.e., N = N(t, x). In

the relativistic limit, the spectrum and index reduce to the standard results given in GR.

It is also true that the scale invariance of the comoving curvature perturbation remains

almost the same as that given in GR, although the initial conditions chosen here are very

different from those in GR. Thus, the general covariant Hořava-Lifshitz gravity without

the projectability condition is consistent with all current observations.
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A Cosmological perturbations

In this section, we shall consider the linear perturbations given by eq. (3.18) in a flat FRW

universe, k=0. Then, it can be shown that the action to second-order of (φ,B, ψ,E, δA, δϕ)

takes the form,

S(2) = ζ2
∫
dηd3x

[
δ2(

√
gNLK)− δ2(

√
gNLV )

+δ2(
√
gNLA) + δ2(

√
gNLϕ) +

δ2(
√
gNLχ)
ζ2

]
, (A.1)

where

δ2(
√
gNLK) = (1− 3λ)a2

[
6H(φ+ ψ)ψ′ + 3ψ′2 + 3H2φ2 +

9

2
H2ψ2 + 9H2φψ

−2H(φ+ ψ)(∂2σ)− 2ψ′(∂2σ)− 2Hψ′(∂2E)− 2H(∂2E)(∂2σ)

−2Hψ(∂2B)− 2H(∂2E)(∂2B)− 3H2(φ+ ψ)(∂2E)− 3

2
H2(∂2E)2

]

+(1− λ)a2(∂2σ)2, (A.2)
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δ2(
√
gNLV ) = a4Λ

[
− 6φψ + 2(φ− ψ)(∂2E) + 3ψ2 − (∂2E)2

]

+a2
[
2ψ(∂2ψ) + 2α1ψ(∂

4ψ) + φ(ð∂2φ)− 4φ(℘∂2ψ)
]
, (A.3)

δ2(
√
gNLA) = a4Λg

[
2δA

a

(
−3ψ + ∂2E

)
+
Â

a

(
3ψ2 − 2ψ∂2E − (∂2E)2

) ]

+2a2
[Â
a
ψ∂2ψ − 2δA

a
∂2ψ

]
, (A.4)

δ2(
√
gNLϕ) = 2a3Λg

[
ϕ̂

[
ψ(∂2B) + (∂2E)(∂2B) + ψ(∂2σ)− 3ψψ′ + ψ′(∂2E)

+(∂2E)(∂2σ)− 9

2
Hψ2 + 3Hψ(∂2E) +

3

2
H(∂2E)2

]

+δϕ
[
3ψ′ − ∂2σ + 3H(3ψ − ∂2E)

]]
+ a2Λgδϕ(∂

2δϕ)

+a
[
− 2ϕ̂[Hψ(∂2ψ) + 2ψ′(∂2ψ)] + 4H(ψ − φ)(∂2δϕ)

]

+2a(1− λ)
[
3Hφ(∂2δϕ) + 3ψ′(∂2δϕ)− (∂2δϕ)(∂2σ)

]

+(1− λ)(∂2δϕ)2,

δ2(
√
gNLχ) =

a2f

2

[
δχ′2 + 2χ̂′δχ(∂2B)− 4χ̂′φδχ′ + 3χ̂′2φ2

]
− 1

2
a4V ′′δχ2

+

(
1

2
+ V1

)
a2δχ(∂2χ)− (V2 + V ′

4)δχ(∂
4δχ)− V6

a2
δχ(∂6δχ)

+a(Â+ ϕ̂′)(c′1 − c2)δχ(∂
2δχ) + ac1(δA+ δϕ′)(∂2δχ) + afχ̂′δϕ(∂2χ)

+(φ− 3ψ + ∂2E)
[
a2f(χ̂′δχ′ − φχ̂′2)− a4V ′δχ

]
− V4φ(∂

4δχ)

+

(
a2f

2
χ̂′2 − a4V

)[
3

2
ψ2− ψ(∂2E)− 1

2
(∂2E)2+ φ(−3ψ + ∂2E)

]
. (A.5)

In writing the above expressions, we have used the following definitions

σ ≡ E′ −B,

α1 ≡ 8γ2 + 3γ3
a2ζ2

,

ð ≡ β0 +
β2 + β4
a2ζ2

∂2 − β8
a4ζ4

∂4,

℘ ≡ 1− β7
a2ζ2

∂2. (A.6)

Then Variation of the action (A.1) with respect to φ , ψ, B, E, δA, and δϕ yield,

respectively

3λ− 1

2
H
[
3ψ′ + 3φH− ∂2σ +

1

a
∂2δϕ

]
− ℘∂2ψ +

1

2
ð∂2φ

= −4πGa2
[
fχ̂′

a2
(
δχ′ − χ̂′φ

)
+
V4
a4
∂4δχ+ V ′δχ

]
, (A.7)
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∂2ψ = 4πGc1∂
2δχ, (A.8)

∂2
[
(1− λ)

(
3ψ′ − ∂2σ +

∂2δϕ

a

)
+ 2Hψ + (1− 3λ)Hφ

]

= 8πG
[(
c′1χ̂

′ + c1H− fχ̂′
)
∂2δχ+ c1∂

2δχ′
]
, (A.9)

∂2

[
(3λ− 1)(ψ′ + φH)− (λ− 1)

(
∂2σ − ∂2δϕ

a

)]
= 8πGfχ̂′∂2δχ, (A.10)

−σ′ − 2Hσ − ψ − α1∂
2ψ + ℘φ+

Âψ − δA+ ϕ̂′ψ +Hδϕ
a

= 0, (A.11)

ψ′′ +H(φ′ + 2ψ′) + (H2 + 2H′)φ

+
λ− 1

3λ− 1
∂2
[
ψ + α1∂

2ψ − ℘φ− Âψ − δA+ ϕ̂′ψ + 2Hδϕ+ δϕ′

a

]

=
8πGa2

3λ− 1

[
fχ̂′

a2
(δχ′ − χ̂′φ)− V ′δχ

]
, (A.12)

and variation with respect to δχ, one can get the linear Klein-Gordon equation

fδχ′′ + 2Hfδχ′ + fχ̂′(∂2σ)− 2Hfχ̂′φ− fχ̂′′φ− fχ̂′φ′ + a2V ′′δχ

−2

(
1

2
+ V1 −

V2 + v′4
a2

∂2 − V6
a4
∂4
)
(∂2δχ)− 3fχ̂′ψ′ − 2(c′1−c2)

Â+ϕ̂′

a
(∂2δχ)

−c1∂2
(
δA+δϕ′

a

)
−fχ̂′∂2

(
δϕ

a

)
+ a2V ′φ+ V4(∂

4φ) = 0. (A.13)

B β2(η, k), ω2(η, k), and meff(η)

The functions β2(η, k), ω2(η, k), and meff, defined in eq. (3.38) are given by,

β2 =−H2 −H′ −He′0(k)

e0(k)
− 1

2

e′′0(k)

e0(k)
+

1

4

(
e′0(k)

e0(k)

)2

− 1

e0(k)

{
4πGa2V ′c1

(
c′1
f |c2ψ|

− 1

|c2ψ|
+3

)
− a2V ′′ +

8πGfχ̂′2

λ−1
(f− c′1)−

4πGc1c
′′
1χ̂

′2

|c2ψ|

−
[
1 + 2V1 + 2

(
Â

a

)
(c′1 − c2)− 4πGc21

(
1− Â

a

)]
k2

−2

(
V2 + V ′

4

a2
+ 2πGc21α1

)
k4 +

2V6
a4

k6

−4ζ2
d22(k)

d0(k)
+ 8ζ2Hd1d2(k)

d0(k)
+ 4ζ2

(
d1d2(k)

d0(k)

)′
}
, (B.1)

m2
eff = β2(η, 0), (B.2)
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where

ω2(η, k) ≡ β2(η, k)−m2
eff(η),

e0(k) = f +
4πGc21
|c2ψ|

− 4ζ2
d21

d0(k)
,

d0(k) =
H2

|c2ψ|
+ 4πGfχ̂′2 +

1

2
β0k

2 − β2 + β4
2a2ζ2

k4 − β8
2a4ζ4

k6

d2(k) = 4πG

[
a2V ′ +

(fχ̂′ − c′1χ̂
′)H

|c2ψ|
+
V4
a2
k4 + c1k

2 +
c1β7
a2ζ2

k4

]
. (B.3)

Upto first-order of the slow-roll parameters, the mass meff can be simplified to

m2
eff ≃ −2− 3ηV + 3ǫV

η2
− 1

η2

[
3

(
1− 1

f

)
ηV +

12

3λ− 1
ǫV

]
. (B.4)
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Phys. Rev. D 81 (2010) 044008 [arXiv:0911.1814] [INSPIRE].

[18] E. Kiritsis, Spherically symmetric solutions in modified Hořava-Lifshitz gravity,
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field in Hořava-Lifshitz gravity, JCAP 05 (2011) 006 [arXiv:1103.4366] [INSPIRE].

[22] T.P. Sotiriou, M. Visser and S. Weinfurtner, Phenomenologically viable Lorentz-violating

quantum gravity, Phys. Rev. Lett. 102 (2009) 251601 [arXiv:0904.4464] [INSPIRE].

[23] T.P. Sotiriou, M. Visser and S. Weinfurtner, Quantum gravity without Lorentz invariance,

JHEP 10 (2009) 033 [arXiv:0905.2798] [INSPIRE].

[24] E. Kiritsis and G. Kofinas, Hořava-Lifshitz cosmology, Nucl. Phys. B 821 (2009) 467

[arXiv:0904.1334] [INSPIRE].

[25] A. Wang and R. Maartens, Linear perturbations of cosmological models in the
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