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Abstract: Various moments of the hadronic spectral functions have been employed in

the determination of the strong coupling αs from tau decays. In this work we study the

behaviour of their perturbative series under different assumptions for the large-order be-

haviour of the Adler function, extending previous work on the tau hadronic width. We

find that the moments can be divided into a small number of classes, whose characteris-

tics depend only on generic features of the moment weight function and Adler function

series. Some moments that are commonly employed in αs analyses from τ decays should

be avoided because of their perturbative instability. This conclusion is corroborated by a

simplified αs extraction from individual moments. Furthermore, under reasonable assump-

tions for the higher-order behaviour of the perturbative series, fixed-order perturbation

theory (FOPT) provides the preferred framework for the renormalization group improve-

ment of all moments that show good perturbative behaviour. Finally, we provide further

evidence for the plausibility of the description of the Adler function in terms of a small

number of leading renormalon singularities.
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1 Introduction

The precise determination of fundamental parameters of the Standard Model (SM) provides

one of the most important tests of its internal consistency. In the strong sector, the QCD

coupling αs plays a prominent role and much effort has been devoted to its extraction from

various observables. The determination from τ decays is important, since it provides an

accurate extraction at low energies, close to the limit of validity of perturbative QCD.

The general framework for the determination of αs from the ratio

Rτ =
Γ [τ− → ντhadrons(γ)]

Γ [τ− → ντe−ν̄e(γ)]
= 3.6280± 0.0094 [1] (1.1)

was developed about 20 years ago [2]. Theoretically, Rτ can be expressed as a weighted

integral of the measured hadronic spectral functions that runs over the hadronic invariant

mass squared s of the hadronic final state from threshold up to m2
τ . The relevant weight

function, wτ (x), is obtained from the kinematics of the decay. However, the use of QCD at
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very low energies is impractical. Therefore, one resorts to a finite-energy sum rule (FESR)

where the theoretical counter-part of Rτ is evaluated as a contour integral in the complex-

energy plane with |s| = m2
τ . A particularity of this observable is that non-perturbative

effects, although small, cannot be neglected. The perturbative QCD result must be supple-

mented with power corrections organised in an operator product expansion (OPE). With

the data from the ALEPH [3–5] and OPAL [6] collaborations, as well as progress on the

theory side, the precision on αs(mτ ) is impressive: the advocated uncertainties that two

decades ago were around 11% [2], are now of the order of 2.5% [5] for the most opti-

mistic analysis. However, the results obtained by different groups are sometimes barely

compatible, which suggests that the details of the different analyses need to be scrutinised.

In the theoretical description two ingredients are needed. The first of them is the

perturbative QCD contribution, the second are the non-perturbative effects. At present,

two theoretical obstacles obstruct progress on the theory side. First, the renormalisation

group improvement of the perturbative series remains controversial — we return to this

subject below. Second, the treatment of non-perturbative effects (encoded in the OPE)

in some of the existent analyses was shown to be inconsistent [7]. A possible solution to

this problem, proposed in [7–9], is the inclusion of the so-called duality violations (DVs)

in the analysis framework. These are related to the fact that the OPE fails to describe the

spectral functions near the Minkowski axis, where resonance effects may become important

and local quark-hadron duality is violated. In the past, the standard assumption was that

DVs could be disregarded due to the kinematical suppression of contributions from this

problematic region. Progress in modelling DVs [10–16] made it possible to include them in

the αs analyses without reliance on external input [8, 9], and to test the above assumption.

In the present work we focus on the perturbative contribution. One of the main

sources of uncertainty in the theory of hadronic τ decays is the renormalisation group

(RG) improvement of the perturbative series. The most widely employed prescriptions

are fixed-order perturbation theory (FOPT, see for instance ref. [17, 18]) and contour-

improved perturbation theory (CIPT) [19, 20]. Employing these prescriptions at a finite

order in perturbation theory leads to differing values for αs. The inclusion of the recently

computed α4
s correction [21] to Rτ rendered the discrepancy between FOPT and CIPT

even more pronounced. Since then, several works have dealt with the RG improvement of

the series [18, 22–26]. A difficulty common to all these works is that conclusions in favour

of FOPT or CIPT (or a third prescription) depend on implicit or explicit assumptions

on the yet unknown higher order coefficients of the Adler function. In particular, the

aim of ref. [18] was to construct a plausible model for the perturbative series in higher

orders incorporating only general features of the leading renormalon singularities of the

Borel-transformed Adler function. This should be sufficient to describe the perturbative

coefficients at intermediate and high orders, augmented by some polynomial terms to take

care of the first few coefficients which are not yet dominated by (pre-)asymptotic behaviour.

After matching of the model to the known coefficients of the Adler function in QCD, the

main conclusion of ref. [18] was that FOPT is to be preferred over CIPT, since at order α4
s

and in the region of its smallest terms, FOPT provides a closer approach to the resummed

series than CIPT.
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How general is this conclusion? A short-coming of ref. [18] and other recent works

(with the exception of ref. [24]) is that the analysis was done solely for the kinematical

weight wτ . This is not entirely satisfactory because the αs determinations employ — and

often require — several different weight functions, if only to extract αs together with the

non-perturbative condensates and DV parameters from the same self-consistent analysis.

In fact, any analytic weight function wi(x) gives rise to a valid FESR, and different wi(x)

emphasise different energy regions of the experimental data and different contributions of

the theoretical description. In the analyses of αs found in the literature, several different

moments have been used. The enhancement or the suppression of condensates and DV

contributions have been the guiding principle in choosing these moments. Still, little at-

tention has been devoted to the moment dependence of the convergence properties of the

perturbative series and we aim to fill this gap here. In the present paper we therefore

pursue the FOPT/CIPT comparison using the methods of ref. [18], and ask whether the

preference for one or the other depends on specific features of the weight function, or the

assumptions on the Adler function coefficients; whether the kinematic weight is special, or

all moments are alike.

The outline is as follows. After setting up the necessary notation, we study how

the convergence properties of the perturbative expansion depend on the choice of the

weight function that defines the moment. We try, as much as possible, to remain model

independent by making use not only of the reference model of ref. [18], but also employing

an extreme case where CIPT is, by construction, preferred over FOPT for the kinematical

weight function. We show that with respect to convergence properties and the FOPT/CIPT

comparison the moments can be divided into several classes, whose global features are

manifestations of simple properties of the weight functions and assumptions on the Adler

function series. We conclude that certain weight functions should be more suitable for αs
analyses than others. We then study the robustness of the model proposed in ref. [18] in

the light of the criticism presented in ref. [24] and provide further plausibility arguments

in favour of the adopted procedure. Finally, in the last section we study the consistency

between the moments by performing simplified αs determinations from single-moment fits.

2 Theoretical framework

The total decay rate of the τ lepton into hadrons, eq. (1.1), can be separated experimentally

into three components: the vector, Rτ,V , and axial-vector, Rτ,A, arising from the decays

into light quarks through the (ūd)-quark current, and contributions with net strangeness,

Rτ,S , from the (ūs)-quark current. Hence

Rτ = Rτ,V +Rτ,A +Rτ,S . (2.1)

In determinations of αs, the focus is on the non-strange contributions, because power

corrections are largest in the strange sector, while they are suppressed by the light u- and

d-quark masses for Rτ,V and Rτ,A. For this reason, in the following we restrict ourselves

to the two latter channels.
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The ratios Rτ,V/A can be expressed in terms of integrals of the spectral functions

Im Π
(1)
V/A and Im Π

(0)
V/A as

Rτ,V/A = 12πSEW|Vud|2
m2
τ∫

0

ds

m2
τ

(
1− s

m2
τ

)2[(
1 + 2

s

m2
τ

)
Im Π

(1)
V/A(s) + Im Π

(0)
V/A(s)

]
. (2.2)

In the last equation, SEW is an electroweak correction [27–29], and Vud is the quark-

mixing matrix element [30]. Theoretically, the relevant two-point functions whose spectral

functions enter eq. (2.2) are

Πµν
V/A(p) ≡ i

∫
dx eipx 〈Ω|T{JµV/A(x) JνV/A(0)†}|Ω〉 , (2.3)

with |Ω〉 being the physical vacuum, and the V and A currents are JµV/A(x) = (ūγµ(γ5)d)(x).

These correlators assume the standard decomposition into transversal and longitudinal

components which was employed in writing eq. (2.2).

One then makes use of the fact that the exact correlation functions are analytic in the

complex s-plane except for a cut along the real axis. This property allows one to write

eq. (2.2) as a counter-clockwise contour integral along the circle |s| = s0

RwiV/A(s0) = 6πi SEW|Vud|2
∮

|s|=s0

ds

s0
wi (s)

[
Π

(1+0)
V/A (s) +

2s

(s0 + 2s)
Π

(0)
V/A(s)

]
. (2.4)

In writing the last equation we have performed two generalisations. First, we are using

a generalised analytic weight function wi(s), second, the integral is performed up to an

arbitrary energy s0 ≤ m2
τ . In the notation of eq. (2.4), the particular case of eq. (2.2)

corresponds to RwτV/A(m2
τ ) with s0 = m2

τ and

wτ (s) =

(
1− s

m2
τ

)2(
1 + 2

s

m2
τ

)
. (2.5)

For large enough s, the contributions to Π(J)(s) can be organised in an operator prod-

uct expansion: a series of local gauge-invariant operators of increasing dimensions times

the appropriate inverse powers of s. In this framework, the purely perturbative part in

the chiral limit can be associated with the dimension-zero operator, whereas dimension-2

contributions arise from the quark mass corrections.1 The first non-trivial operators arise

at dimension 4, namely, the quark and gluon condensates. The OPE is expected to be well

behaved along the contour |s| = s0 (for s0 sufficiently large) except close to the positive

real axis. Therefore, in the general case, RwiV/A(s0) obtains a contribution from corrections

due to the break-down of the OPE close to real s > 0. This term is the aforementioned

DV contribution. Weight functions wi(s) that contain one or more zeros at s = s0, such as

the kinematical wτ in eq. (2.5), tend to suppress the contribution of DVs.

The different components of RwiV/A can be collected in the following expression

RwiV/A(s0) =
Nc

2
SEW |Vud|2

[
δtree
wi + δ(0)

wi (s0) +
∑
D≥2

δ
(D)
wi,V/A

(s0) + δDV
wi,V/A

(s0)

]
. (2.6)

1In the case at hand, namely u and d quarks only, the dimension-2 corrections are tiny.
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In the last equation, δtree
wi and δ

(0)
wi are the perturbative terms,2 of which δ

(0)
wi contains the

αs corrections. Since δtree
wi and δ

(0)
wi do not depend on the flavour, in the chiral limit they are

the same for vector and axial-vector correlators, and correspond to the perturbative series

for the correlator Π
(1+0)
V/A (s). The contributions from the quark masses, as well as that of

the operators with D > 2, are encoded in the terms δ
(D)
wi,V/A

, while the DV contributions

are represented by δDV
wi,V/A

. In this work we are interested in the convergence properties of

the purely perturbative corrections, and thus our focus is on δ
(0)
wi .

The correlator Π(1+0) is not RG invariant and contains scale- and scheme-dependent

contributions. However, the Cauchy integral in eq. (2.4) is insensitive to all s-independent

terms in the correlators. Without loss of generality, one can work with a renormalisation

invariant quantity, known as the Adler function, and defined through

D(1+0)(s) ≡ − s d

ds
Π(1+0)(s) . (2.7)

Using partial integration, and performing the substitution x = s/s0, one can write

δ(0)
wi = − 2πi

∮
|x|=1

dx

x
Wi(x)D

(1+0)
pert (s0x) , (2.8)

where “pert” denotes the perturbative part of the Adler function in the chiral limit and

the weight function Wi(x) is obtained from wi(x) by the integral Wi(x) = 2
∫ 1
x dz wi(z).

In full generality, the perturbative Adler function admits the following expansion:

D
(1+0)
pert (s) =

Nc

12π2

∞∑
n=0

anµ

n+1∑
k=1

k cn,k L
k−1 , L ≡ log

−s
µ2

, (2.9)

with aµ ≡ a(µ2) ≡ αs(µ)/π, µ is the renormalisation scale, and Nc the number of colours.

Imposing the RG invariance of the above equation, one may consider as independent only

the coefficients cn,1. The other coefficients cn,k, with k = 2, 3, . . . , n + 1, can be obtained

in terms of the cn,1 and β-function coefficients.3 (Explicit expressions for some of the

coefficients cn,k can be found in eq. (2.11) of ref. [18].) At Nc = Nf = 3 the numerical

values of the known coefficients cn,1 are

c0,1 = c1,1 = 1 , c2,1 = 1.640 , c3,1 = 6.371 [31, 32] , c4,1 = 49.076 [21] . (2.10)

Fully analytic results for the coefficients can be found in ref. [21]. Based on a geometrical

growth of the terms in the perturbative expansion of δ
(0)
wτ , in ref. [18] the estimate

c5,1 ≈ 283 (2.11)

was put forward for the next term in the series. This estimate was corroborated by the

model introduced in ref. [18] and we will also employ it in our work.

2Henceforth, we omit the s0 dependence in the terms of the r.h.s. of eq. (2.6).
3We follow the convention of ref. [18], i.e. β(aµ) ≡ µdaµ/dµ =

∑
k=1 βka

k+1
µ . The first coefficient is then

β1 = 11Nc/6 −Nf/3.
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Inserting the general expansion of the Adler function, eq. (2.9), into the expression for

δ
(0)
wi , eq. (2.8), yields

δ(0)
wi =

∞∑
n=1

n∑
k=1

k cn,k
1

2πi

∮
|x|=1

dx

x
Wi(x) logk−1

(
−s0x

µ2

)
anµ . (2.12)

Since the Adler function satisfies a homogeneous RG equation, the above expression for

δ
(0)
wi is µ-independent. One has the freedom of setting the scale µ in a convenient way.

The fixed-order prescription corresponds to µ2 = s0. In this case, the coupling is

calculated at a fixed scale and can be taken outside the integral. However, the logarithms

remain to be integrated along the contour. The result can be cast into

δ
(0)
FO,wi

=

∞∑
n=1

a(s0)n
n∑
k=1

k cn,k J
FO,wi
k−1 , (2.13)

where the integrals are given by

JFO,wi
n ≡ 1

2πi

∮
|x|=1

dx

x
Wi(x) logn(−x) . (2.14)

For polynomial moments, these integrals can be performed analytically. Explicit expres-

sions for the particular case of the kinematic weight function can be found in ref. [18].

In contour-improved perturbation theory [19, 20], the logarithms that remain in the

FO prescription are summed with the choice µ2 = −s0x before calculating the contour

integral. This procedure implies that the contour integrals have to be performed over the

running αs in the complex plane

δ
(0)
CI,wi

=

∞∑
n=1

cn,1 J
CI,wi
n (s0) , (2.15)

where the integrals, that can only be computed numerically, are given by

JCI,wi
n (s0) ≡ 1

2πi

∮
|x|=1

dx

x
Wi(x) an(−s0x) . (2.16)

CIPT resums the running of the QCD coupling along the contour of integration. Conse-

quently, at each order n, only the coefficient cn,1 enters the expression.

3 Models for the Adler function

In order to discuss the behaviour of the perturbative expansion of the spectral moments

and to compare FO to CI perturbation theory, we need an ansatz for the coefficients cn,1 of

the Adler function, which is the dynamical input common to all moments, beyond n = 4.

In this section we introduce the models for the series that we use later on. A caveat needs

to be spelled out at this point. Going beyond the exactly known coefficients cn,1 requires

– 6 –
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assumptions, usually based on some form of regularity of the series, which might simply

be wrong. The series might have outliers at some order, and we will never know. The best

we can do is to state the assumptions clearly, to provide supporting arguments where they

exist, and to explore the consequences. Two diverging assumptions may be distinguished:

• The high-order coefficients cn,1 beyond n = 4 are not important, and can be neglected.

The RG improvement still generates a non-trivial series expansion of the spectral

moments to all orders through the dependence of cn,k with k > 1 on the known cn,1.

In a sense this is the assumption underlying CIPT, which assumes that the running

coupling terms are dominant and therefore should be summed.

• The high-order coefficients cn,1 beyond n = 4 are essential, since they diverge factori-

ally for large n, thus overcoming the geometric growth of the running coupling terms.

Since some knowledge exists on the general structure of this divergence (reviewed in

ref. [33]), this information can and should be included.

The two main models that we discuss in this section can be viewed as representatives of

these assumptions. In addition we also briefly review the result in the large-β0 approxima-

tion,4 which, since it is based on a well-defined formal limit (Nf → −∞) of QCD, provides

a useful toy model to which we shall return in section 5. In the context of tau decays, this

toy model has been studied in refs. [34, 35].

We start by giving a number of definitions and establishing the notation. We define a

new function D̂(s) related to the Adler function by

12π2

Nc
D

(1+0)
V (s) ≡ 1 + D̂(s) ≡ 1 +

∞∑
n=0

rn αs(
√
s)n+1 . (3.1)

The coefficients cn,1 of D
(1+0)
V are related to those of D̂(s) by cn,1 = πnrn−1. The Borel

transform of the above series is defined by

B[D̂](t) ≡
∞∑
n=0

rn
tn

n!
. (3.2)

One can then define the Borel integral of the series as (α positive)

D̂(α) ≡
∞∫

0

dt e−t/αB[D̂](t) , (3.3)

which has the same series expansion in α as D̂(s) has in αs(
√
s). The last integral, D̂(α), if

it exists, gives the Borel sum of the original divergent series eq. (3.1). An important point

in the case of the Adler function is that B[D̂](t) contains singularities on the positive real

axis which forces one to adopt a procedure to define the integral D̂(α). The choice of the

procedure introduces an ambiguity. We discuss this point in more detail below.

4For historical reasons, we speak about the “large-β0” approximation, although in the notation employed

in this work, the leading coefficient of the β-function is termed β1.
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3.1 Large-β0 model

In the context of the large-β0 approximation, it has been shown by resumming bubble-chain

diagrams that the Borel-transformed Adler function has infrared (IR) and ultraviolet (UV)

renormalon poles at positive and negative integer values of the variable u = β1t/(2π),

respectively [36, 37]. (Except at the value u = 1.) The IR renormalon poles are related to

the power corrections in the OPE, while the leading UV renormalon dictates the large-order

behaviour of the series. (For a review see ref. [33]).

The main result of refs. [36, 37] is that in the large-β0 approximation the Borel trans-

formed Adler function can be written as [37]

B[D̂](u) =
32

3π

e−Cu

(2− u)

∞∑
k=2

(−1)kk

[k2 − (1− u)2]2
, (3.4)

where the constant C is scheme dependent and cancels the scheme dependence of αs in

eq. (3.3), such that D̂(s) is scheme independent. (In the MS-scheme C = −5/3.) In large-

β0, all the UV renormalon poles at u = −1,−2, . . ., are double poles, as are all the IR poles

at u = 3, 4, . . .. The only exception is the IR pole at u = 2, which is simple. This follows

from the fact that the operator αsGG has no anomalous dimension in the large-Nf limit.

The absence of an IR renormalon pole at u = 1 stems from the fact that no dimension-2

operator contributes to the OPE. The coefficients cn,1 in this case can be obtained from

eq. (3.4) by expanding in u and performing the Borel integral term by term. The first

12 coefficients can be found in table 1 of ref. [18]. An interesting feature of the large-β0

result, in apparent coincidence with the full QCD series (2.10), is that the asymptotically

dominant sign-alternation from the UV pole at u = −1 is delayed in the conventionally

adopted MS-scheme. In intermediate orders the series coefficients are governed by the

fixed-sign contributions from the u = 2 pole, whose residue is a factor e−3C larger.

3.2 Reference model

In full QCD we do not have the equivalent of eq. (3.4). On the other hand, the structure

of the OPE and general RG arguments allow one to determine the position and strength

of the singularities, which evolve from poles into branch cuts [18, 38, 39], though not their

residues. In general, the IR and UV singularities are described by the following structures

B[D̂IR
p ](u) ≡

dIR
p

(p− u)1+γ̃

[
1 + b̃1(p− u) + b̃2(p− u)2 + · · ·

]
,

B[D̂UV
p ](u) ≡

dUV
p

(p+ u)1+γ̄

[
1 + b̄1(p+ u) + b̄2(p+ u)2 + · · ·

]
, (3.5)

where the constants γ̃, b̃i, γ̄, and b̄i of a pole at p depend on anomalous dimensions of

operators in the OPE as well as β-function coefficients (the explicit expressions are given

in section 5 of ref. [18]). When performing the integral (3.3) one needs to circumvent the

IR singularities along the real axis. A prescription to define the integral is needed which

introduces an ambiguity in the Borel resummed result. The ambiguity is expected to be

cancelled by exponentially small terms in αs or, due to the running of the coupling, by

– 8 –
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power corrections. The treatment of the Borel integral in the presence of these singularities

is discussed in appendix A of [18].

The model for the Adler function constructed in ref. [18] (henceforth called reference

model, or simply RM) is based on the assumption that it makes sense to merge the ex-

actly known low-order behaviour to the leading and sub-leading asymptotics generated

by singularities of the Borel transform. Since the known coefficients do not display the

asymptotic sign alternating pattern, the leading, first UV singularity should be sufficient.

On the other hand, if the intermediate orders are governed by fixed-sign behaviour, at least

the first two IR renormalon singularities should be included in the model. Based on these

considerations, the ansatz reads

B[D̂](u) = B[D̂UV
1 ](u) +B[D̂IR

2 ](u) +B[D̂IR
3 ](u) + dPO

0 + dPO
1 u , (3.6)

where the renormalon singularities are described by the formulae of eq. (3.5).

This ansatz is then matched to the known coefficients of the Adler function in QCD as

follows. First, the known coefficients c3,1, c4,1, and the estimated coefficient c5,1, are used to

fix the residua of the three renormalon singularities. The polynomial terms are then fixed

in order to reproduce the lowest order coefficients c1,1 and c1,2. The resulting parameters

are given in eq. (6.2) of [18] and the first line of table 3 in section 5, and take “reasonable”

values. One is then in a position to perform the Borel integration in order to ascribe

a resummed value to the asymptotic Adler function series. The higher-order coefficients

cn,1 can be derived and the behaviour of FOPT and CIPT series can be compared to the

resummed one.

The main conclusion of ref. [18] is that under the above assumptions FOPT is clearly

preferred over CIPT for wτ . The CIPT series displays a faster convergence but fails to

give a good approximation to the Borel resummed result in the sense of an asymptotic

series. From FOPT, on the other hand, it is possible to extract a good approximation to

the Borel resummed value in spite of the slower convergence of the series. The reason for

this observation can be traced back to cancellations that are missed by the CIPT series.

To understand this we rewrite δ
(0)
FO,wi

of eq. (2.13) as

δ
(0)
FO,wi

=
∞∑
n=1

[
cn,1δ

tree
wi + g[wi]

n

]
a(s0)n , (3.7)

with

g[wi]
n =

n∑
k=2

k cn,kJ
FO,wi
k−1 . (3.8)

The cn,1 series is simply the Adler function series multiplied by δtree
wi , while the contour

integration of the running coupling effects is fully contained in the g
[wi]
n series. In eq. (3.7)

the tree-level contribution arises because JFO,wi
0 = Wi(0) = δtree

wi . FOPT treats the cn,1

and the g
[wi]
n series on an equal footing. Comparing this decomposition with the CIPT

result, eq. (2.15), one observes that in CIPT the g
[wi]
n series is resummed to all orders

while the cn,1 series is used only up to a finite order n. An important model-independent
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Reference model Alternative model

n cn g
[wτ ]
n (cn + g

[wτ ]
n )/cn cn g

[wτ ]
n (cn + g

[wτ ]
n )/cn

4 49.1 78.0 2.59 49.1 78.0 2.59

5 283 307.8 2.09 283 307.8 2.09

6 3275.4 −807.3 0.75 2148.3 −807.3 0.62

7 18, 758 −10, 398 0.45 11, 801 −34, 489 −1.92

8 388, 442 −329, 054 0.15 150, 508 −592, 196 −2.93

9 919, 121 −232, 718 0.75 215, 264 −5.1× 106 −22.8

10 8.4× 107 −7.3× 107 0.12 2.4× 107 −6.4× 107 −1.69

Table 1. Cancellations between the cn and the g
[wτ ]
n series for orders 4 ≤ n ≤ 10 for the kinematical

moment, wτ , in the reference model and in the alternative model, eqs. (3.6) and (3.9).

feature of the QCD series, which follows from the OPE and the form of the moment weight

function, is that there are large cancellations of n! divergences between the cn,1 and g
[wi]
n

series. These cancellations are particularly strong when the series is dominated by the

u = 2 singularity, and for the kinematic weight.5 In such a scenario, it is mandatory

to combine cn,1 and g
[wi]
n order by order in n, lest the cancellations do not take place.

Since CIPT treats the orders incoherently, it misses the cancellations and runs into the

sign alternating asymptotic regime earlier. In FOPT, on the other hand, the cancellations

suppress the divergence and allow FOPT to approach the Borel result. In table 1, we show

as an example the cancellations in the case of the kinematical moment wτ . However, note

that they are not imposed in the RM. Rather, the matching procedure to the QCD series

gives the expected weight to the leading IR pole. If the residue of the IR pole u = 2 had

turned out to be tiny, this would have made the cancellations almost non-existent.

3.3 Alternative model

To make this feature clearer, we can artificially suppress the leading IR pole. Let us

consider a model for the Borel transformed Adler function where the IR singularity at

u = 2 is removed and another at u = 4 is added:

B[D̂](u) = B[D̂UV
1 ](u) +B[D̂IR

3 ](u) +B[D̂IR
4 ](u) + dPO

0 + dPO
1 u . (3.9)

In this model, the aforementioned cancellations do not take place by construction. We

refer to this model as the alternative model (AM). An analogous matching procedure can

be carried out yielding the following values for the parameters:

dIR
3 = 66.18 , dIR

4 = −289.71 , dUV
1 = −5.21× 10−3 ,

dPO
0 = 2.15 , dPO

1 = 4.01× 10−1 .
(3.10)

5In large-β0 this is shown analytically for wτ in ref. [18]. An important point discussed in the next

section is the moment dependence of the cancellations.
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Here, as we show in the sequel, CIPT is able to approach the Borel resummed result while

FOPT exhibits oscillations around this value. Table 1 shows that the cancellations between

the cn and g
[wi]
n series no longer take place in this model. The table also shows a slower

growth of the cn,1 in this model, and a dominance of the gn terms up to n = 10, which

therefore realises a situation where running coupling effects are dominant. We use this

model as an example where CIPT is, by construction, superior to FOPT, at least for the

kinematical weight. This provides a way to assess a possible model dependence in our

conclusions. Nevertheless, we emphasise that we find it unlikely that the Adler function in

QCD behaves as the AM, since there is no known mechanism that would naturally suppress

the u = 2 singularity.

4 Moment analysis

The determination of αs and condensates from the analysis of τ hadronic spectral functions

is based on sum rules obtained by equating eqs. (2.2) and (2.4). In the former, to perform

the integral along the real axis, the experimental spectral functions are used. In eq. (2.4),

the theoretical description of the correlators is employed in the contour integration. An

important aspect of these sum rules is that one still has the freedom of choosing any

analytic weight function wi(x), as well as any point s0 ≤ m2
τ (as long as s0 is large enough

for the OPE and the perturbative expansion to make sense). On the experimental side, it

is obvious that a given weight function enhances the regions of the spectrum where it has

peaks. On the theory side, the relative contributions of the different δ’s in eq. (2.6) are

strongly dependent on the choice of wi(x). For example, as already mentioned, moments

of functions wi with zeros at s = s0 suppress δDV
wi . These are known in the literature under

the name pinched moments. A monomial term of the type xk in wi, on the other hand,

implies the monomial xk+1 in Wi defined after eq. (2.8), which enhances (or, rather, does

not suppress) the contribution of the condensate of dimension D = 2(k + 1) as well as the

factorial divergence from the IR renormalon singularity at u = k + 1. Let us analyse, as

an illustrative example, the kinematical moment

wτ = (1− x)2(1 + 2x) = 1− 3x2 + 2x3. (4.1)

It receives its larger contributions from δtree
wτ , δ

(0)
wτ , δ

(6)
wτ , and δ

(8)
wτ . The first two arise mainly

from the 1 in wτ , whereas δ
(6)
wτ and δ

(8)
wτ arise from the terms −3x2 and 2x3, respectively.

The double zero at x = 1 suppresses δDV
wτ , while the absence of other monomial terms

suppresses the condensates with D = 4 as well as with D ≥ 10. (The mass corrections,

δ
(2)
wτ , are negligible due to the smallness of the quark masses.)

In order to extract αs, a number of condensates, and the DV parameters from the

data sets one needs more than one observable. It has become standard to use a set of

several weight functions wi in order to perform a combined fit to their — not statistically

independent — moments. In table 2 we collect the weight functions investigated in this

work. Most of them have been employed in at least one of the recent analyses of hadronic

τ spectral functions. In this table, the first five rows are the building blocks for the other

polynomial weight functions. The second set are pinched weight-functions that contain
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i wi(x) δtree
wi refs.

1 1 2 [8, 9]

2 x 1 —

3 x2 2/3 —

4 x3 1/2 —

5 x4 2/5 —

6 1− x 1 —

7 1− x2 4/3 [8, 9]

8 1− x3 3/2 [8, 9]

9 1− 3x
2 + x3

2 3/4 [7]

10 (1− x)2 2/3 [7]

11 (1− x)3 1/2 —

12 (1− x)2(1 + 2x) 1 wτ

13 (1− x)3(1 + 2x) 7/10 [5]

14 (1− x)2x 1/6 [7]

15 (1− x)3x(1 + 2x) 1/6 [5]

16 (1− x)3x2(1 + 2x) 13/210 [5]

17 (1− x)3x3(1 + 2x) 1/35 [5]

Table 2. Weight functions investigated in this analysis, together with the corresponding δtreewi . In

the last column, we give the reference to recent works that employed the given weight function in

analyses of τ decay data. The kinematical weight function wτ was used many times throughout the

literature and we refrain from quoting all the works that employed it.

a 1 followed by powers of x. The third block contains pinched weight-functions that do

not have the 1 and start directly with some power of x. The idea behind the moments

that were used in the existent analyses was mainly the enhancement or the suppression of

condensates and DV contributions. In combined fits to sets of moments (e.g. refs. [5–9]),

the final value of αs receives contributions from the perturbative terms of all moments

employed. Therefore, in order to achieve a trustworthy determination of the coupling, it is

desirable to understand the convergence properties of the perturbative component for all

the moments employed in the αs analysis.

In the remainder of this section we study the behaviour of the term δ
(0)
wi (m2

τ ), for the

moments of table 2 in FOPT and CIPT, given by eqs. (2.13) and (2.15) respectively. In

doing so, we employ for the coefficient c5,1 the estimate of eq. (2.11). Regarding higher

orders, two scenarios are considered: the reference model of ref. [18], given in eq. (3.6), and

the alternative model of eq. (3.9), which provides an example case where CIPT is better

than FOPT for the kinematical weight. In plots for the perturbative series we display the

results for both models side by side to facilitate the comparison. The respective Borel
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resummed values are also shown, together with the Borel ambiguity. Since both models

are matched to the first five coefficients, their results for CIPT and FOPT are identical by

construction up to the fifth order.

In our analysis, it becomes clear that one can group the 17 different δ
(0)
wi into four

classes: the monomial terms, the pinched-weights with a “1” in the weight function, pinched

weights without a “1”, and all moments that contain the term x, which form a separate

category. We analyse these classes in the remainder of this section.

4.1 Building blocks: the monomial terms

Since the weight functions employed are all polynomial, it is instrumental to start the

analysis with the monomial terms given in the first 5 entries of table 2.

The first of them, the constant w1 = 1, is quite particular. On the experimental side

this moment gives the same weight to the whole spectrum. On the theory side, it obtains

very little contribution from condensates, since no powers of x appear, picking up only the

logarithmic contributions in the Wilson coefficients of the OPE.6 The behaviour of δ
(0)
w1 for

FOPT and CIPT is shown in figure 1(a) for the reference model, and in figure 1(b) for the

alternative model. A feature that can be observed in FO is a rapid growth in the first few

terms, followed by a decrease in the value of δ
(0)
w1 . In lower orders, the series overshoots the

Borel summed values for both models. Later, FOPT oscillates around the Borel sum. The

amplitude of the oscillations are much smaller in the RM, and from order n = 5 the series

can be considered a good approximation to the true result in the sense of an asymptotic

series. The smaller oscillations in the RM model are due to the previously mentioned

cancellations among the cn and the g
[w1]
n series. CIPT is more stable in both cases, but it

fails to give a good approximation to the Borel resummed value of the RM. In the case of

the alternative model, CIPT is able to approach the true value, as expected. The smallness

of the ambiguity of the Borel integral due to the poles on the integration contour (indicated

by the horizontal shaded band in the figures) in these cases can be understood since the

moment receives only small logarithmic contributions from the condensates in the OPE

(for lack of powers of x). Accordingly, the ambiguities of the IR poles are also small.7

The behaviour of δ
(0)
wi for the monomials w3 = x2, w4 = x3, w5 = x4 is qualitatively

very similar. Therefore, we display only the representative case of x2 in figures 1(e) and 1(f)

for the RM and AM, respectively, which highlights these similarities. We note that the

values of δ
(0)
wi are 4 to 6 times smaller than the ones for w1. This plays an important role

in the case of moments with pinching. Finally, w3 is maximally sensitive to the Borel

ambiguity of the IR singularity at u = 3, present in both models. However, the residue in

the case of the RM is about 5 times smaller than in the AM, which explains the different

magnitudes of the shaded bands in the two plots.

The behaviour of the monomial w2 = x is exceptional, as shown in figure 1(c) for

the reference model, and in figure 1(d) for the alternative model. One can separate the

6This is precisely the reason why this moment is central to the analysis of refs. [8, 9], where one wants

to extract the DVs from data.
7They would be zero if the poles were simple. Since we include the four-loop structure for the renormalon

singularities, they are small, but non-zero. See appendix A of ref. [18] for the explicit formulae.
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Figure 1. δ
(0)
wi for w1 = 1, w2 = x, and w3 = x2, as a function of the order up to which the

perturbative series are summed for FOPT (black) and CIPT (gray). The horizontal bands give the

Borel resummed result. The left-hand figures are for the RM of ref. [18], the right-hand ones are

for the alternative model of eq. (3.9). We use αs(mτ ) = 0.3186.

behaviour in two parts. In the first terms, the FOPT series again grows rapidly and then

decreases. This is a common feature in the other monomials as well. For higher orders, in

the RM, FOPT never reaches a plateau: δ
(0)
w2 exhibits “run-away” behaviour and decreases

monotonically from the 3rd order. The FOPT series shows no sign of stabilisation around

the true value, though it develops an inflection point close to the Borel sum. The sign of
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the run-away behaviour (negative) is correlated with the sign of the x monomial (positive).

For the alternative model, FOPT still oscillates around the true value. CIPT, on the other

hand, is rather stable until the onset of asymptoticity, and provides a good approximation

in both models. The results in this prescription are within the Borel resummed values for

the RM, given the larger ambiguity in this case. The larger ambiguity stems from the fact

that the moment is maximally sensitive to the gluon condensate contribution. This gives a

larger contribution from the ambiguity of the IR singularity at u = 2, which is (artificially)

absent in the AM.

From this discussion of monomial moments we can already extract a few

important observations:

• In the AM CIPT always provides the better approximation. This seems to be a

generic feature of the AM, not restricted to the kinematical weight.

• In the reference model, the monomial w2 = x is problematic for FOPT due to run-

away behaviour, which is correlated with the large d = 4 condensate contribution to

this moment.

• For the other monomials low-order approximations in both FOPT and CIPT are

problematic in the RM case. However, while FOPT converges to the Borel sum for

n >∼ 5, CIPT never reaches it. This is similar to the behaviour found in ref. [18] for

the kinematical weight.

In the following, we discuss the remaining moments w6 to w17 which are composed of the

monomial terms. Their behaviour can essentially be understood as a linear combination of

what has been discussed in this section.

4.2 Pinched weights with a “1”

We now turn our attention to moments with pinching and start with moments that contain

a term “1” in the weight function and that do not have a linear term x. In table 2, these

moments are w7, w8, wτ . For all these moments, the term 1 sets the scale and the higher

powers only introduce corrections to this leading result. Since they are pinched moments,

they always have at least one negative term. This leads, in general, to a stabilisation of

FOPT in both models.

In the case of FOPT for the RM, the monomials in wτ and w7 conspire to give an

excellent cancellation of the initial overshooting, leading to a series that approaches the

Borel sum very fast. The cancellations between cnδ
tree
wi and g

[wi]
n then make FOPT rather

stable after approaching the true value. This can be observed in the results for the RM

given in figures 2(a), 2(c), and 2(e). The results for w8 = 1−x3 resemble more the ones for

w1 = 1 since the corrections due to x3 are quite small. CIPT, on the other hand, misses

the cancellations and never approaches the Borel resummed values. We also observe that

the CIPT series enters the sign alternating regime earlier than FOPT. The corresponding

results for the AM are shown in figures 2(b), 2(d), and 2(f). As foreseen, here CIPT tends

to give a better approximation to the resummed series. Albeit more stable than in the case

of the monomials, FOPT still displays oscillations around the Borel sum.
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(a) wτ = (1 − x)2(1 + 2x), reference model
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Figure 2. δ
(0)
wi for wτ , w7, and w8, as a function of the order up to which the perturbative series

are summed for FOPT (black) and CIPT (gray). The horizontal bands give the Borel resummed

result. The left-hand figures are for the RM of ref. [18], the right-hand ones are for the alternative

model of eq. (3.9). We use αs(mτ ) = 0.3186.

There are many other possible moments, not shown in table 2, that display a very

similar behaviour. We have investigated the family w(x; a) = 1 + ax2 − (a + 1)x3 for

several different values of a with results rather similar to the ones discussed above. Other

moments that do not start with the unity, but with another constant of the same order
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such as w(x) = 2
3(1− x)2(1 + x)(1 + x+ 4x2) also give qualitatively similar results. Thus,

the main observation for this class is that

• pinched-moment weights with a “1” but no linear term all behave similar to the

kinematic weight wτ , favouring FOPT over CIPT for the reference model and vice

versa for the alternative model. In each case the perturbative expansion in low orders

approaches the Borel sum rather quickly.

4.3 Pinched weights without a “1”

The next class of moments that we analyse here are moments with pinching but that do

neither contain a constant term nor one linear in x. As examples for this group we employ

w16 and w17 of table 2; two of the triply-pinched moments used by ALEPH and OPAL [3–6].

In ALEPH’s notation, these moments are part of a family denoted by w(1,k), and read

w(1,k) = (1− x)3xk(1 + 2x) = xk − xk+1 − 3xk+2 + 5xk+3 − 2xk+4 . (4.2)

In table 2 we have w13 = w(1,0), w15 = w(1,1), w16 = w(1,2), and w17 = w(1,3). Besides

the “1” in w13, both the first two also contain a linear term in x and will be discussed in

the next section. From table 2 we see that the pinched weights without a “1” have very

small δtree
wi but O(1) coefficients of the monomials. This enhances the relative importance

of power corrections.

We consider first the case of w16 in the RM, shown in figure 3(a). As expected,

δ
(0)
w16 is tiny, almost 50 times smaller than the corresponding correction for w1 = 1. The

combination of powers of x does not improve the behaviour of FOPT that overshoots

largely the Borel sum in the first few orders. It eventually approaches the Borel result for

higher orders, just before the onset of asymptoticity. The bad behaviour of CIPT already

observed for the monomials is amplified and the CIPT series goes astray. The situation in

the AM is somewhat improved, but mainly due to the large Borel ambiguity associated with

the IR pole at u = 2, see figure 3(b). Again, FOPT displays large oscillations around the

Borel result, whereas CIPT grows monotonically away from the resummed result before the

sign-alternating asymptotic behaviour sets in. As seen in figure 3(c), for FOPT in the RM,

the perturbative contribution to the moment of w17 has a behaviour qualitatively similar

to w16, though for higher orders it is slightly more stable. Also CIPT approaches the Borel

sum before the series becomes asymptotic after the 9th order. In the AM, figure 3(d),

both, FOPT and CIPT fail to approach the Borel sum, FOPT once more displaying large

oscillations.8 We therefore conclude:

8A possible criticism against our analysis of w17 within the reference model could regard the lack of an

IR singularity at u = 4. Since the moment starts with x3 it is maximally sensitive to D = 8 contributions

in the OPE, which corresponds to the ambiguity of the IR renormalon at u = 4. We investigated this issue

by considering a model where one adds an IR renormalon at u = 4 and leaves only a constant dPO
0 in the

model. (This model is briefly discussed on page 24 of ref. [18].) After performing the matching, the residue

of the renormalon at u = 4 turns out to be small (dIR4 = 5.64) and the changes in the other parameters

negligible. The additional Borel ambiguity arising from u = 4 is also small. Therefore, the result shown in

figure 3(c) is not altered in any significant way, which corroborates the assumption that the singularities at

u = 2 and u = 3 are the dominant ones.
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(d) w17 = (1 − x)3x3(1 + 2x), alternative model

Figure 3. δ
(0)
wi for w16 and w17, as a function of the order up to which the perturbative series

are summed for FOPT (black) and CIPT (gray) are summed. The horizontal bands give the Borel

resummed result. The left-hand figures are for the RM of ref. [18], the right-hand ones are for the

alternative model of eq. (3.9). We use αs(mτ ) = 0.3186.

• The perturbative expansions for this class of moments tends to be unreliable in both

FOPT and CIPT, and independent of the model for the unknown higher-order coef-

ficients.

• Pinched moments without a “1” are sensitive to condensates, but the poor pertur-

bative approximations render condensate determinations from these moments unre-

liable. This conclusion appears to be largely model-independent.

4.4 Moments containing a term x

We have relegated to this section the analysis of weight functions containing the monomial

x. This choice is based on the observation that the behaviour of these moments, which

are maximally sensitive to the D = 4 correction in the OPE, is qualitatively different in

the RM of ref. [18]. This was shown for the monomial above and here we discuss pinched

weights containing this term. There are several of them in table 2: w6, w9, w10, w11, w13,

w14, and w15. Again, they display very similar qualitative behaviours and it suffices to

expose in detail only three representative examples.
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Figure 4. δ
(0)
wi for w6, w13, and w15, as a function of the order up to which the perturbative series

are summed for FOPT (black) and CIPT (gray). The horizontal bands give the Borel resummed

result. The left-hand figures are for the RM of ref. [18], the right-hand ones are for the alternative

model of eq. (3.9). We use αs(mτ ) = 0.3186.

We start with the simple case of w6 = 1−x, figure 4(a). The term 1 sets the scale, but

now, since the perturbative series for the monomial w2 = x decreases monotonically, the

perturbative series for w6, whose linear coefficient has negative sign, grows monotonically.

The result for FOPT crosses the Borel resummed value around the 7th order where it also
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has an inflection point. CIPT can only approach the Borel sum shortly before it becomes

asymptotic around the 9th order. The situation is very similar when higher orders of x are

added to the weight function. In figure 4(c), the moment w13 is displayed as a representative

example. (It corresponds to w(1,0) in ALEPH’s notation [3–5] of eq. (4.2)). This weight

starts with 1 − x followed by higher-order terms in x. Qualitatively, the only difference

now is that CIPT never comes close to the Borel sum. The picture changes in the case of

w15 (or w(1,1)) since the term 1 is missing. As figure 4(e) shows, this case is more similar

to the monomial x itself, though the higher powers in x soften the behaviour. For CIPT,

the situation is not much different either, but it only approximately represents the Borel

sum at low orders.

For the alternative model which does not contain the renormalon singularity at u = 2,

the first two moments w6 and w13, figures 4(b) and 4(d), are similar to what was observed

in the case of pinched moments with the term 1. Now, however, CIPT approaches the

Borel results less fast in the case of w6, and not at all in the case of w13. FOPT in both

cases displays oscillations around the true value. The last case, that of w15 shown in

figure 4(f), is less satisfactory. As was the case for other moments from weight functions

starting with a power of x, the values of δ
(0)
w15 are small. While CIPT misses the Borel

sum completely, FOPT only approaches it around the 10th order. We summarise our

observations as:

• Weights without a “1” are again unreliable in FOPT and CIPT, and in both models,

especially at intermediate orders.

• In the RM, FOPT exhibits run-away behaviour and CIPT may not approach the re-

summed result. Overall, the perturbative expansion does not behave as well as for mo-

ments without a linear term, which is related to the sizeable D = 4 power correction.

• In the AM there is no clear preference for one of the two methods.

4.5 Main lessons from the moment analysis

While we already summarised our main observations for each class of weight functions, we

collect again here the most important points.

Some of the pinched-moments (with the “1”, without the “x”) display a particularly

fast convergence of FOPT towards the Borel resummed values, especially the moments wτ
and w7, as shown in figures 2(a) and 2(c). On the contrary, in Borel models that contain a

u = 2 pole residue of natural size, CIPT generally does not approach the Borel sum before

the divergence of the series sets in. This is different in the alternative model, where the

u = 2 pole is artificially suppressed, and it coincides with the main findings of ref. [18].

Thus, if the reference model is adopted as the most plausible one (as we would do), one

again arrives at the conclusion that FOPT provides a better approximation than CIPT,

also at order n = 4, 5.

The investigation of moments also reveals that the qualitative behaviour of their per-

turbative expansion depends only on a few features of the moment and the model of the
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Adler function. As concerns the model, we have already emphasised the crucial question

of the size of the residue of the u = 2 singularity that corresponds to the D = 4 power

correction, which motivated the choice of the AM.

As concerns the moment function itself, an important observation is that moments

that start with high powers of x, such as w15 and w16, employed by the ALEPH and OPAL

collaborations, have a bad behaviour of the perturbative series. For these moments, neither

FOPT nor CIPT are able to provide a decent approximation to the Borel resummed values

in the first few orders. Also, these moments have a very small value of δ
(0)
wi , with large

relative Borel ambiguities, which makes the reliable separation of power corrections from

the uncertain perturbative approximation problematic. Therefore, these moments are not

an optimal choice for an αs analysis. (This has already been pointed out in ref. [7].)

Finally, for moments that contain a linear term x, the reference model, or others that

include an IR pole at u = 2, both FOPT and CIPT behave badly. In the case of FOPT,

the series is quite unstable, which results in large errors due to the truncation of the series,

producing unstable results for αs. (This was noticed — in practice — in the exploratory

fits of ref. [40], and it is the reason why, in refs. [8, 9], moments with the term x were not

considered.) The situation of CIPT for these moments is also unsatisfactory because the

series are unstable and/or do not approach the Borel resummed result. This suggests that

moments with a linear term x should also be avoided in αs determinations.

5 Validation of the reference model

In the previous section we learnt that for moments with good perturbative convergence the

comparison of FOPT and CIPT leads to the same conclusion as for the inclusive hadronic

tau width studied in ref. [18]. Hence, the crucial factor in deciding whether FOPT or

CIPT should be the method of choice remains the plausibility of the reference ansatz for

the Adler function (favouring FOPT) as compared to, e.g., the alternative model (favouring

CIPT). In addition to the general arguments for the reference model reviewed in section 3,

we discuss in this section two further checks, one inspired by ref. [24], which support the

plausibility of the ansatz and results of ref. [18].

5.1 Adding a u2 polynomial term

In ref. [18], the known higher-order coefficients, plus an estimate for c5,1, are used to fix the

residua of the renormalon poles, while the first two polynomial terms are obtained by also

fitting the coefficients c1,1 and c2,1. It is assumed, therefore, that the renormalons dominate

at intermediate (and higher) perturbative orders. However, the fact that dPO
1 is small in

the reference model of [18], indicates that c2,1 is already well saturated by the renormalon

poles. The procedure has been criticised in ref. [24], where the authors argue that the

truncation of the polynomial terms at linear order is arbitrary. They propose to add a u2

term to the polynomial and study the behaviour of those models when the coefficient dPO
2

is fixed to six different values: dPO
2 = −1, −0.5, 0, 0.25, 0.5, 1. For the value dPO

2 = 0, the

RM is recovered.
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dIR
2 dIR

3 dUV
1 dPO

0 dPO
1 dPO

2 (fixed)

RM [18] 3.16 −13.5 −1.56× 10−2 0.78 7.66× 10−3 0

+u2 [24] −1.50 149.7 −5.90× 10−2 10.68 3.85 1

−u2 [24] 7.82 −176.8 2.79× 10−2 −9.12 −3.83 −1

Table 3. Parameter values of three models for the physical Adler function. “RM” represents the

central reference model of ref. [18]. The models denoted by “±u2” are those discussed in ref. [24]

where the polynomial coefficient dPO
2 is taken to be ±1.

The inclusion of a fixed u2 term in the modelling of the Borel transform of the Adler

function has consequences for the residua of the renormalon poles. They have to adjust to

the existence of this term which contributes to c3,1, which leads to abnormally high values

for the residue of the IR pole at u = 3, see table 3. Consequently, large cancellations

among the contributions of the IR poles at u = 2 and u = 3 arise. In the two extreme

cases studied in [24] , dPO
2 = ±1, the residue of the pole at u = 3 changes by factors of

−11 and 13 with respect to the RM of [18], for dPO
2 = +1 and dPO

2 = −1 respectively.

Furthermore, fixing the u2 term also forces a break-down of the renormalon dominance

of the coefficients c2,1 and c3,1. This is apparent from the values of the other polynomial

terms. In the extreme cases dPO
2 = ±1, the module of the coefficient dPO

0 is more than

10 times larger than in the RM. The next coefficient, dPO
1 , is also much larger, more than

100 times the one found in [18]. The values for the residua and the polynomial terms for

the RM and for the extreme cases dPO
2 = ±1 are given in table 3. Finally, the coefficient

dPO
2 and the u = 2 residue dIR

2 share an almost linear relation, such that dIR
2 vanishes for

dPO
2 = 0.678. This particular case constitutes another model for which CIPT generally

better approximates the Borel sum for δ
(0)
wi .

The inspection of the Adler function D̂(s) on the complex circle s = m2
τeiφ sheds further

light on the plausibility of the models considered here. It is expected that the perturbative

expansion breaks down in the vicinity of the physical, Minkowskian axis (φ ∼ 0 or φ ∼ 2π),

but that it should work well in the Euclidean region φ ∼ π. The behaviour of Re[D̂(φ)]

along the complex contour is displayed in figure 5, of which the upper plot corresponds

to FOPT and the lower to CIPT. The dotted, dot-dashed and double-dot-dashed curves

are the 3rd, 4th and 5th order purely perturbative results respectively. The thick solid

line corresponds to the Borel sum of the reference model. An analogous plot was already

shown as figure 9 in appendix B of [18]. In addition, we now also display the additional

models with dPO
2 = 1 (short-dashed line) and dPO

2 = −1 (long-dashed line). Furthermore,

the shaded area indicates the 5th order PT result when the coefficient c5,1 is varied in the

range c5,1 = 283± 283.

The following observations can be made on the basis of figure 5. For an asymptotic

expansion, the last included term should provide an approximate error estimate for the full

sum. Though this is strictly true only for sign-alternating asymptotic series, we expect the

estimate not to be wildly violated. Employing the shaded area as such an error estimate, it

is seen that in the Euclidean, φ ∼ π, the RM of [18] lies rather close to this region. On the
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Figure 5. Real part of the Adler function D̂(s) on the complex circle s = m2
τe
iφ. Borel sums

are displayed for the RM (solid line), dPO
2 = 1 (short-dashed line) and dPO

2 = −1 (long-dashed

line). The dotted, dot-dashed and double-dot-dashed lines correspond to 3rd, 4th and 5th order

of perturbation theory. Finally, the shaded area indicates the 5th order PT result while varying

c5,1 = 283± 283. The upper plot shows FOPT and the lower CIPT. We employ αs(mτ ) = 0.3186.

other hand, the models with dPO
2 = ±1, even in the Euclidean domain where PT should

work well, lie far from 5th order perturbation theory. Furthermore, moving away from

the Euclidean axis, strong oscillations in Re[D̂(φ)] are found in those models. It seems

rather unlikely to us that QCD behaves in this way. Turning the argument around and

investigating which values of dPO
2 would yield models compatible with the shaded area, we

roughly obtain the range −0.55 < dPO
2 < 0.

To summarise, there are two arguments in favour of the procedure adopted in ref. [18]

for the treatment of the polynomial terms in the ansatz of eq. (3.6). First, the fact that

dPO
1 turns out to be so small in the central model fit, together with the observed hierarchy
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dPO
0 � dPO

1 , which leads to a renormalon dominance of the coefficients at orders as low

as α2
s. Second, the unnaturalness of the Adler function shape along the circle when O(1)

values of |dPO
2 | are imposed in the extended model suggested in ref. [24] that seems to

obstruct duality even in the Euclidean region.

5.2 Matching in the large-β0 limit

Another check whether a simple ansatz such as eq. (3.6) can work can be derived from the

large-β0 limit. As discussed in section 3, an analytic result for the Borel-transformed Adler

function is available in this limit, eq. (3.4), and hence the exact perturbative coefficients

cn,1 are known to all orders [36, 37]. Here, we propose to emulate the matching procedure

performed in QCD in the context of the large-β0 approximation. That is, we make a simple

ansatz similar to the RM and fit the parameters of this ansatz to the low-order cn,1 in the

large-β0 approximation. We then compare the so-obtained model for the higher-order terms

to the exactly known ones.

In order to implement the matching procedure in the case of the large-β0 limit, we

adapt the reference model to the present case by using simple and double poles (instead of

branch cuts) for the renormalon singularities. In the spirit of eq. (3.6), the new model can

then be written as

B[D̂](u) =
dIR

2

2− u
+

dIR
3

(3− u)1+γ3
+

dUV
1

(1 + u)2
+ dPO

0 + dPO
1 u+ dPO

2 u2. (5.1)

When emulating the procedure of ref. [18], we set the term dPO
2 = 0. In large-β0, the IR

pole at u = 3 is a double pole and therefore γ3 = 1. We simulate our ignorance of the

structure of this pole in full QCD by taking either γ3 = 0 or γ3 = 1. From eq. (5.1), by

changing γ3 and the assumptions about dPO
2 , we define five different models and perform

the matching to the first coefficients of the exact large-β0 Adler function. The models

will be denoted by the values of these parameters as M(γ3; dPO
2 ). In the remainder of this

section the characteristics of these models are discussed, the matching is described, and we

compare with the exact large-β0 limit.

We begin by performing the matching treating the term dPO
2 as suggested in ref. [18],

which is equivalent to setting dPO
2 = 0. Furthermore we employ γ3 = 1, which gives a

double pole for the IR singularity at u = 3, in agreement with the exact result eq. (3.4).

This model is referred to as M(1; 0). The renormalon residua are fixed to the coefficients

c3,1, c4,1, and c5,1; the two polynomial terms are found by enforcing the true large-β0 values

of c1,1 and c2,1. The results of this model are shown in the second row of table 4. As in the

full QCD case, the value of dPO
1 turns out to be small, and significantly smaller then dPO

0 ,

indicating the renormalon dominance at intermediate orders. Furthermore, the residua

of the renormalon poles are in the ball-park of the true results, although they have to

compensate for the lack of higher order poles.

Since the purpose of the model introduced in ref. [18] was to decide upon the best way

to perform the RG improvement of the series, it is legitimate to ask if the description of

higher orders is successful in the present case. This can now be unambiguously tested by

comparing the higher order coefficients predicted by the fitted Adler function with the exact
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dIR
2 dIR

3 dUV
1 dPO

0 dPO
1 dPO

2

large-β0 17.84 −10.49 6.68× 10−2 · · · · · · · · ·

M(1; 0) 16.53 −45.79 4.10× 10−2 −2.90 −0.44 0 (fixed)

M(0, 0) 8.34 −18.43 4.46× 10−2 2.25 0.27 0 (fixed)

M(1; free) 18.85 −55.02 3.92× 10−2 −3.03 −0.34 5.79× 10−2

M(1, 1) 56.54 −205.27 9.76× 10−3 −5.15 1.31 1 (fixed)

M(1,−1) −23.46 113.67 7.23× 10−2 −6.52× 10−1 −2.19 −1 (fixed)

Table 4. Residues of poles and polynomial parameters of the models discussed in the text. The

first row gives the exact result in the large-β0 approximation. The models are defined by the values

of γ3 and dPO
2 in eq. (5.1) and denoted by M(γ3; dPO

2 ).

c6,1 c7,1 c8,1 c9,1 c10,1 c11,1

large-β0 −1.99× 103 9.86× 104 −1.08× 106 2.78× 107 −5.39× 108 1.40× 1010

M(1; 0) −2.46× 103 1.08× 105 −1.30× 106 3.28× 107 −6.68× 108 1.74× 1010

M(0; 0) −3.53× 103 1.08× 105 −1.51× 106 3.46× 107 −7.38× 108 1.87× 1010

M(1; free) input 1.07× 105 −1.21× 106 3.17× 107 −6.35× 108 1.67× 1010

M(1; 1) 5.69× 103 8.54× 104 2.74× 105 1.39× 107 −9.09× 107 4.95× 109

M(1;−1) −1.06× 104 1.30× 105 −2.88× 106 5.17× 107 −1.25× 109 2.98× 1010

Table 5. Higher-order coefficients from the five models described in the text compared with the

exact large-β0 results. Models are defined by the values of γ3 and dPO
2 in eq. (5.1) as M(γ3; dPO

2 ).

results in large-β0. Numerically, this comparison is shown in table 5. Graphically, FOPT,

CIPT, and the resummed results for the model are shown in figure 6(b) (for wτ ), whereas

the equivalent plot for the exact large-β0 results is given in figure 6(a). The qualitative

agreement of the results of table 5, together with the striking similarities of figures 6(a)

and 6(b), demonstrate that — in spite of the simplifications of the model with respect

to the exact results — the model reproduces faithfully the FOPT and CIPT series up to

higher orders, as well as the Borel resummed value.

In the previous model, the parameter γ3 was fixed to the true value of the large-β0 limit.

Let us investigate the consequences of a wrong choice for γ3. For full QCD this is a relevant

open issue as several operators contribute at D = 6, and the general renormalon structure

has not yet been established. We define a new model that differs from the previous one

only by having a simple pole at u = 3, thus γ3 = 0. Accordingly, we denote this model by

M(0; 0). Performing the matching, we find the results of the 3rd row of table 4. The choice

γ3 = 0 enforces a number of adjustments in the parameters of the model with respect to

the case where γ3 = 1. The residue of the pole at u = 2 changes and is less well reproduced

than in the previous case. The polynomial terms are different, but the hierarchy between

the terms is still preserved. In particular, inspection of the third row of table 5, together
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Figure 6. Values of δ
(0)
wτ (m2

τ ) as a function of the order n up to which the perturbative series has

been summed for FOPT (black) and CIPT (gray). Horizontal gray lines give the Borel resummed

result and the bands give the estimated ambiguity. In (a) one sees the result from the exact large-β0
limit. In (b)-(f), we show results from models matched to the first few coefficients of the large-β0
Adler function (see text). Models are defined by the values of γ3 and dPO

2 in eq. (5.1) as M(γ3; dPO
2 ).

For consistency with large-β0, we perform the αs running at one loop. We use αs(m
2
τ ) = 0.3186.

with figure 6(c) shows that the higher-order behaviour of FOPT and CIPT continues to

resemble very much the exact result. In agreement with figure 6(a), FOPT approaches

the Borel resummed value better than CIPT. Still, one must admit that there is a shift
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in the Borel resummed value of ∼ 5%, which is beyond the ambiguity of the exact result

(∼ 1%). Nevertheless, the conclusions about FOPT versus CIPT — and the superiority of

the former — remain intact.

We now investigate the question of adding a term dPO
2 u2 in eq. (5.1). Since all co-

efficients cn,1 of the Adler function are available in the large-β0 approximation, we have

the freedom to include the coefficient c6,1 in the matching. This allows us to keep the six

parameters of the model free, including dPO
2 , and then follow a strategy similar to the one

above (we use γ3 = 1). This model is termed M(1; free). We employ the coefficients c4,1,

c5,1, and c6,1 to fix the residua of the renormalon poles, while the polynomial terms are

fixed by c3,1, c2,1, and c1,1. The results after matching are found in the third row of table 4.

The inclusion of the free parameter dPO
2 preserves the hierarchy dPO

0 � dPO
1 � dPO

2 , indi-

cating the renormalon dominance at intermediate and higher orders. This is in agreement

with what was found before, where we kept dPO
2 = 0 fixed. Table 5 and Fig 6(d) show that

the quality of the description of higher orders remains impressive when we introduce the

term dPO
2 keeping it free and using the procedure of ref. [18] to fix it.

Let us turn now to the consequences of having a fixed parameter dPO
2 . To make contact

with ref. [24], we study the two cases dPO
2 ± 1 (again γ3 = 1). These configurations are

denoted M(1,±1). In table 4, one sees some issues that emanate from this choice. The

hierarchy of the polynomial terms is broken and, what is more, the values of the residua

of the IR renormalon poles are very different from the exact ones. We observe large values

of the residua, leading to strong cancellations between the contributions of the different

IR poles, a feature that was already observed in full QCD. What is then the most faithful

description of the higher orders? Table 5 demonstrates that the description with fixed

dPO
2 ∼ O(1) is very poor. The large-order coefficients are badly reproduced; even the sign

is wrong in two of them. figures 6(e) and 6(f) show that the perturbative series goes astray,

and the Borel resummed results are very different from the exact one shown in figure 6(a).

This exercise shows that the model is incompatible with a u2 term whose coefficient is

of order unity. In real QCD, only four coefficients of the Adler function are known exactly.

In such a scenario, it seems that the best strategy is to keep dPO
2 = 0, since we learn in

large-β0 that fixing this parameter to an arbitrary value is not a better option. A final

comment is in order. Figure 6 shows results for the kinematic moment wτ only. We have

studied all moments displayed in table 2 also for large-β0 and the conclusions regarding

the quality of the description are not altered in other cases.

6 Consequences for the determination of αs

Based on the perturbative behaviour of the Adler function under two different assumptions

for the higher-order coefficients, we argued in section 4 that some weight functions are more

suitable for an αs analysis from hadronic τ decays than others. The aim of this section is to

corroborate these findings comparing the predicted moments with experimental values. We

want to check the internal consistency of the predictions from different moments and study

the uncertainties associated with them once all the contributions are taken into account

(power corrections and duality violations). Rather than comparing moment predictions
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with data for some given value of αs, we perform this consistency check by determining

the values of αs from each individual moment. The spread of αs values and uncertainties

then provides the desired information. We emphasize that the aim of this exercise is not a

precise determination of the strong coupling.

We consider FESRs for the weight-functions of table 2. In the notation introduced in

eq. (2.6), we study the moments RwiV+A(m2
τ ), relying on external input for the power correc-

tions and for DVs. A more comprehensive analysis should include more than one moment

and treat consistently all the ingredients of the theoretical description: the perturbative

series, power corrections, and duality violations. In such an analysis, an involved non-linear

multi-parameter fit taking into account all correlations is unavoidable (see e.g. [8, 9]). Here

our error bars in αs are smaller than the ones of a self-consistent analysis due to the fact

that we do not perform a multi-parameter fit.

The different theoretical components in the computation of the moments are treated

as follows. As discussed in section 2, the perturbative FO and CI series are summed up to

order α5
s using c5,1 = 283. The uncertainty due to the truncation of the series is estimated

by either taking c5,1 = 0 or c5,1 = 566. A third αs value is obtained from the Borel

resummed results of the reference model.

The power corrections in the OPE are taken as an external input. Corrections due to

dimension 4, 6, and 8 are considered. (The mass corrections, D = 2, are also taken into

account although they can safely be neglected due to the smallness of the quark masses.)

For D = 4, we use the gluon condensate value 〈aG2〉 = (0.012±0.012) GeV4, and include in

the coefficient function the known αs corrections with their logarithms [41]. At dimenstion

six, the main contributions arise from the four-quark condensates, since the coefficient of the

three-gluon condensate vanishes at leading order and all terms proportional to quark masses

can safely be neglected. One usually resorts to the vacuum saturation approximation to

write these contributions in terms of squares of the quark condensate [44], introducing the

parameter ρV+A to account for deviations from this assumption. The D = 6 corrections

are then proportional to ρV+A〈q̄q〉2. In our estimates we use ρV+A = 2 ± 1 [18] and

〈q̄q〉(mτ ) = −(272 ± 15 MeV)3 [45]. A crude estimate of D = 8 is included adding the a

term C8,V+A/s
4 to the Adler function. To evaluate the impact of this contribution we use

C8,V+A = (0 ± 5) · 10−3. Our estimates for D = 6 and 8 agree, within uncertainties, with

the results of the fits of ref. [9].

A phenomenological estimate of the longitudinal contribution from scalar and pseu-

doscalar correlators is included in the spirit of refs. [42, 43]. The weight-function depen-

dence of the non-perturbative corrections make some of the moments quite insensitive to

the details of the non-perturbative contributions. However, for other weight-functions, this

is not the case and the final αs values depend heavily on the non-perturbative input.

Finally, the contribution from DVs to the moments is computed using the results of

ref. [9]. The corresponding term takes the form

δDV
wi,V/A

(s0) = − 8π2

∫ ∞
s0

ds

s0
wi(s) ρ

DV
V/A(s) , (6.1)
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where the DV part of the spectral functions, ρDV
V/A(s), is parametrised as [15]

ρDV
V/A(s) = exp

(
−δV/A − γV/As

)
sin
(
αV/A + βV/As

)
. (6.2)

The eight parameters for the description of DVs are taken from the results of a fit to V

and A using updated OPAL data shown in table V of ref. [9] (we take the FOPT fit with

smin = 1.5 GeV2). Their correlations are employed in the Monte Carlo estimate of the error

induced by DVs. Note, however, that within our simplified αs determination in which DVs

and power corrections are not determined self-consistently, the precise DV parameters are

not important for the following. Within other errors, the DV term (6.1) has a negligible

impact on αs from the moments discussed below.

The experimental counterparts of the moments RwiV+A(m2
τ ) are obtained performing a

discretised version of the integral given in eq. (2.2), where the spectral functions are the

ones from the ALEPH collaboration after the 2008 update performed in ref. [5]. It is known

that in this data set contributions to the correlations due to the unfolding procedure were

inadvertently omitted [40]. At present, in a precise determination of αs, the safest option

is to turn to an updated version of the OPAL data [6, 9]. Nevertheless, for our exploratory

purposes, this omission is harmless and would only alter the experimental error bars, that

are potentially underestimated.

In figure 7, we display results of this simplified αs analysis for 13 of the weight func-

tions of table 2, and using FOPT, CIPT, and the Borel sum within the RM. (We do not

show results for the monomials w2 to w5.) The inner error bars give the experimental

errors, while the external error bars include the theoretical error as well. The relative size

of the experimental uncertainties depends strongly on the moment considered. This is

understandable since the spectral functions have larger relative uncertainties in the higher-

energy part. Moments that emphasise this region (or that do not suppress it) such as

w1(x) = 1 are penalised and have significantly larger uncertainties. In general, pinched

moments suppress the edge of the spectrum and have smaller relative uncertainties.

We consider several sources of theoretical errors in αs. The first one is the truncation

of perturbation theory, which is estimated by varying the coefficient c5,1 = 283 ± 283.

Another source of theoretical error is the residual renormalisation-scale dependence. To

estimate this uncertainty, we re-express the FO series in terms of a different scale µ2,

rather than using a(m2
τ ), and vary this scale. The residual dependence is estimated in

CIPT in a similar fashion by setting the scale to µ2 = −ξ2s0x in eq. (2.12). This generates

additional logarithms that must be taken into account in δ
(0)
CI,wi

. In the Borel resummed

model, this scale/model uncertainty is also estimated by taking µ2 = ξ2m2
τ , determining

a(ξmτ ), and evolving the result back to µ = mτ . In all cases, the scale is varied in the

interval 0.5m2
τ ≤ µ2 ≤ 1.5m2

τ . The uncertainty due to D = 4 contributions is estimated

varying the gluon condensate in the interval 〈aG2〉 = (0.012± 0.012) GeV4. Uncertainties

from D = 6 and D = 8 are computed from the propagation of the error on the quantities

ρV+A, 〈q̄q〉, and C8,V+A. Finally, the uncertainty due to the DV term is estimated from a

Monte Carlo sample of parameters generated according to the results found in table V of

ref. [9]. The outer error bars in figure 7 contain the sum in quadrature of all these errors

together with the experimental uncertainty.
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Figure 7. Results of αs(mτ ) from V +A sum rules constructed with the weight functions of table 2

and using the 2008 version of ALEPH data [5]. The absence of a point means that no reasonable

value of αs was found. Inner error bars give solely the experimental error; outer bars include the

theory error as well. In the lower shaded band we show explicitly the constant term and the term

proportional to x for the weight functions (when present). All the moments are pinched except for

w1. The world average of αs is that of the PDG [46]: αs(mτ ) = 0.3186± 0.0056.

Let us turn now to an analysis of the results shown in figure 7. A first important point

is that for the moments considered ideal in the study of δ
(0)
wi , namely, w7, w8, and wτ , we

obtain an αs value compatible with the world average within our simplified analysis. The

results from FOPT and the reference model are particularly close to the world average,

while CIPT lies about two sigma away. This is a consequence of the fact that δ
(0)
wi dominates

these moments, and the FOPT perturbative series shows a good behaviour. They are

quite insensitive to the the power corrections and DVs and, accordingly, have relatively

small theoretical uncertainties. Their experimental uncertainties are smaller than in other

moments due to the suppression of the edge of the spectral functions.

The situation is radically different for w14, w15, and w17 for which neither FOPT nor

CIPT were able to give a reasonable value of αs. The Borel resummed result from the

reference model of ref. [18] does not yield any acceptable value for αs for w16 and w17

either. For w14 and w15 abnormally high values with huge uncertainties are obtained. This

is a manifestation of the bad convergence properties observed for the family of moments

w(1,k), defined in eq. (4.2) and used e.g. in refs. [3–6], combined with the fact that these

moments receive very large contributions from power corrections (of the order of 50% for

w17). Note that with the present treatment of power corrections the theoretical error of

these moments is by far dominated by perturbative (scale and c5,1 variations) uncertainties.

This corroborates the conclusion of section 4, namely, that these moments are not the
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optimal choice for an αs analysis from τ decays. For w16, FOPT and CIPT yield a value of

αs with large errors dominated by power corrections of dimension 6 and 8 with a sizeable

contribution from the perturbative series. The result in FOPT is particularly unstable,

leading to larger uncertainties.

The scenario for the moments that contain an x term and the unity lies in between

the previous two. Moments like w6 and also w13 still yield reasonable values of αs. On the

other hand, moments like w9, w10, w11 give lower values of αs. This can be understood

since for these moments the D = 4 correction is increasingly important, due to the higher

coefficients of the x term. In our estimate, these D = 4 corrections are positive which

leads to lower values of αs. This is not the case in w13 due to the D = 6 and D = 8

contributions arising from the terms −3x2 + 5x3 in the weight function, that compensate

the D = 4 corrections. Since these moments are more sensitive to D = 4, they exhibit

larger theoretical uncertainties arising predominantly from δ
(4)
wi,V/A

.

Finally, from w1 = 1, a value of αs compatible with the world average is also obtained.

This moment has a much larger experimental uncertainty due to the lack of pinching and

the corresponding higher contribution from the edge of the spectrum.

A general observation is that the size of the discrepancy between FO and CI also

depends strongly on the moment. Moments such as w9, w10, and w11 tend to minimise

the discrepancy while the kinematical moment wτ , and to some extent w7 = 1 − x2 and

w8 = 1 − x3, tend to maximise this difference. We have seen that FOPT is a better

approximation to the Borel resummed results in the reference model; therefore, αs values

from FOPT are systematically closer to the Borel resummed ones than CIPT values.

7 Conclusions

In the first part of this work, we have analysed the moment dependent features of the per-

turbative expansion of the Adler function needed in the theoretical description of hadronic

τ decays. A systematic study of this moment dependence is important since it serves as a

guide for future analyses of αs, and provides further insight on the question whether FOPT

or CIPT is a better framework for αs extractions. To analyse the higher order behaviour

of the series we employed two models. The first is the reference model of ref. [18], which

gives — we believe — a plausible representation of the QCD Adler function. In this model,

FOPT is the prescription that gives the best approximation to the Borel resummed results.

In order to assess possible model dependencies in our conclusions, we have also employed

a model where the IR pole at u = 2, which is the most important one for the perturbative

behaviour in intermediate orders, is artificially suppressed; this description favours CIPT.

The behaviour of δ
(0)
wi for a large collection of moments can then be divided into a small

number of classes. The general behaviour of the perturbative series can be traced back

to the singularities of the Borel transformed Adler function and to simple features of the

weight-functions.

We have shown that some moments have better perturbative properties than others.

Our conclusions are based on the inspection of the perturbative series and on a simplified

αs extraction from each one of the moments. In particular, polynomial pinched weight-
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functions that contain the unity and do not contain a term proportional to x are found to be

optimal. This is due to the good behaviour of the perturbative series in these cases, where

at least one of the methods, FOPT or CIPT, provides a good approximation to the Borel

resummed results. Another positive feature of these moments is the small contamination

by power corrections and DVs. We have shown that some of the moments used in the

literature, such as the family of moments w(1,k) [see eq. (4.2)], employed e.g. by ALEPH

and OPAL [3, 5, 6], are perturbatively unstable and do not provide good approximations

to the Borel resummed results of the models investigated. In the best of the cases, FOPT

is capable of approaching the Borel results only at higher orders that are not available

in the real QCD case. In addition, the ambiguity introduced by the power corrections

is of the same order as the perturbative contribution, rendering the extraction of αs and

condensates from these moments unreliable (similar observations were made in ref. [7]).

Moments that contain an x term lie in between the two latter groups. In the reference

model, where the contribution of the leading IR pole is significant, they display run-away

behaviour in the perturbative series, which engenders larger uncertainties and potential

instabilities in αs results. The contribution from D = 4 in the OPE can also be quite

sizeable depending on the coefficient of the x term in the weight function. This makes

the use of these moments for determinations of αs and condensates somewhat problematic,

although the evidence against their use is less compelling than in the case of moments with

only higher powers of x.

Overall, regarding the FOPT/CIPT comparison, the moment analysis confirms the

conclusions drawn from the inclusive tau hadronic width [18] in the following sense: when-

ever perturbatively well-behaved moments are considered, FOPT shows better behaviour

in the reference model that is believed to incorporate the main known features of large-

order behaviour in QCD. CIPT underestimates the resummed value and therefore leads to

systematically larger αs values.

In section 5, we have provided further evidence to the plausibility of the reference model

suggested in ref. [18]. The matching procedure with the first two terms of a polynomial in

u in eq. (3.6) was justified based on the behaviour of the Adler function on the complex

plane and on comparisons with the large-β0 limit. This limit provides a laboratory for

renormalon models, since the exact result to all orders is known. We have shown that

models containing solely the leading singularities capture the general features of the exact

result surprisingly accurately. What is more, the use of these models is sufficient to decide

upon the best prescription for the RG improvement of the perturbative series. It therefore

appears that the reference model is solid and survives criticisms raised in the literature.
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[13] O. Catà, M. Golterman and S. Peris, Duality violations and spectral sum rules, JHEP 08

(2005) 076 [hep-ph/0506004] [INSPIRE].
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