
J
H
E
P
0
1
(
2
0
1
3
)
1
0
7

Published for SISSA by Springer

Received: July 14, 2012

Accepted: December 12, 2012

Published: January 15, 2013

Bi-local construction of Sp(2N)/dS higher spin

correspondence

Diptarka Das,a Sumit R. Das,a Antal Jevickib and Qibin Yeb

aDepartment of Physics and Astronomy, University of Kentucky,

505 Rose St, Lexington, KY 40506, U.S.A.
bDepartment of Physics, Brown University,

182 Hope St, Providence, RI 02912, U.S.A.

E-mail: diptarka.das@uky.edu, das@pa.uky.edu, antal jevicki@brown.edu,

qibin ye@brown.edu

Abstract: We derive a collective field theory of the singlet sector of the Sp(2N) sigma

model. Interestingly the Hamiltonian for the bilocal collective field is the same as that of

the O(N) model. However, the large-N saddle points of the two models differ by a sign.
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and higher spin fields in AdS, we argue that a natural interpretation of this theory is

by a double analytic continuation, leading to the dS/CFT correspondence proposed by

Anninos, Hartman and Strominger. The bi-local construction gives a map into the bulk

of de Sitter space-time. Its geometric pseudospin-representation provides a framework for

quantization and definition of the Hilbert space. We argue that this is consistent with finite

N Grassmannian constraints, establishing the bi-local representation as a nonperturbative

framework for quantization of Higher Spin Gravity in de Sitter space.
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1 Introduction and summary

The proposed duality [1] of the singlet sector of the O(N) vector model in three space-

time dimensions and Vasiliev’s higher spin gauge theory in AdS4 [2] has received a definite

verification [3, 4] and has also thrown valuable light on the origins of holography. Since

the field theory is solvable in the large-N limit, one might hope that there is an explicit

derivation of the higher spin gauge theory from the vector model, thus providing an explicit

understanding of the emergence of the holographic direction. Indeed, the singlet sector of

the O(N) model can be expressed in terms of a Hamiltonian for the bi-local collective

field, σ(~x, ~y) = φi(~x)φi(~y) where φi(~x), i = 1 · · ·N is the O(N) vector field. In [6] it was

proposed that Vasiliev’s fields are in fact components of σ(~x, ~y). The precise connection

between the bi-local and HS bulk fields was written explicitly in the light cone frame [7–

9]: the correspondence in general involves a nonlocal transformation corresponding to a

canonical transformation in phase space.1 This provides a direct understanding of the

emergence of a holographic direction from the large-N degrees of freedom, in a way similar

to the well known example of the c = 1 Matrix model [11]. In both these models, the large-

N degrees of freedom gave rise to an additional dimension which had to be interpreted as

a spatial dimension.2

In contrast to AdS/CFT correspondence, any dS/CFT correspondence [15, 16] involves

an emergent holographic direction which is timelike. It is then of interest to understand

1See also reference [10].
2Other instances of emergence of dimensions from large-N degrees of freedom, e.g. Eguchi-Kawai mod-

els [12], Matrix Theory [13, 14] also lead to spatial directions in Lorentzian signature or Euclidean theories.
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how a timelike dimension is generated from large-N degrees of freedom. Recently, Anninos,

Hartman and Strominger [17] put forward a conjecture that the euclidean Sp(2N) vector

model in three dimensions is dual to Vasiliev higher spin theory in four dimensional de Sitter

space.

In this work we construct a collective field theory of the Lorentzian Sp(2N) model

which captures the singlet state dynamics of the Sp(2N) vector model. Using the results

of [6] and [7] we then argue that a natural interpretation of the resulting action is by double

analytic continuation which makes the emergent direction time-like, relating this to higher

spin theory in dS4, in a way reminiscent of the way the Louiville mode in worldsheet string

theory has to be interpreted as a time beyond critical dimensions [18]. Our map establishes

the bi-local theory as the bulk space-time representation of de Sitter higher spin gravity.

The bilocal collective field is a composite of two Grassmann variables and therefore

might not appear to be a genuine bosonic field. In particular for finite N a sufficiently large

power of the field operator vanishes, reflecting its Grassmannian origin.3 This is further

reflected on the size of its Hilbert space. The bulk theory cannot be a usual bosonic theory

defined on dS space, though it may be regarded as such in a perturbative 1/N expansion.

The implementation of the Grassmann origin of the Hilbert space will be given a central

attention in the present work. For this we will describe a geometric (pseudo-spin) version

of the collective theory which will be seen to incorporate these effects. For dS/CFT, this

implies that the true number of degrees of freedom in the dual higher spin theory in dS is

in this framework reduced from what is seen perturbatively (with G = R2
dS/N being the

coupling constant squared). The issue of the size of the Hilbert space is of central relevance

for possible accounting of entropy of de Sitter space. For pure Gravity in de Sitter space,

it has argued that the Entropy being S = A/4G with a finite area of the horizon requires a

finite dimensional Hilbert space [20–22]. Interesting quantum mechanical models have been

proposed [21, 23–25] to account for this. But apparent conflicts between a finite entropy

of de Sitter space with the usual formulations of dS/CFT have been discussed for example

in [26, 27]. In the present case of dS/CFT we are dealing with N-component quantum field

theory with d=3 dimensional space so clearly the number of degrees of freedom must be

infinite. Consequently the question of Entropy remains open and is an interesting topic for

further investigations.

2 The Sp(2N) vector model

The Sp(2N) vector model in d spacetime dimensions is defined by the action

S = i

∫

dtdd−1x
[

{∂tφi
1∂tφ

i
2 −∇φi

1∇φi
2} − V (iφi

1φ
i
2)
]

(2.1)

where φi
1, φ

i
2 with i = 1 · · ·N are N pairs of Grassmann fields. This is of course a model

of ghosts.

In this section we will quantize this model following [28, 29] and [30]. In this quan-

tization, the fields φi
1 and φi

2 are hermitian operators, while the canonically conjugate

3This property of higher spin currents has been already recognized in [19].
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momenta

P i
1 = i∂tφ

i
2 , P i

2 = −i∂tφ
i
1 (2.2)

are anti-hermitian. The Hamiltonian H is hermitian

H = i

∫

dd−1x
[

P i
2P

i
1 +∇φi

1∇φi
2 + V (iφi

1φ
i
2)
]

(2.3)

The (equal time) canonical anticommutation relations are

{φa
i (~x), P

b
j (~y)} = −iδijδ

abδd−1(~x− ~x′)

{φi
a(~x), φ

j
b(~y)} = {P i

a(~x), P
j
b (~y)} = 0 , (a, b = 1, 2) (2.4)

with all other anticommutators vanishing. With these anticommutators the equations of

motion for the corresponding Heisenberg picture operators

∂2
t φ

i
a −∇2φi

a + V ′ = 0 (2.5)

follow. The operator relations (2.4) allow a representation of the operators as follows

φa
i (~x) → φa

i (~x) , P a
i → −i

δ

δφa
i (~x)

(2.6)

where φi
a are now Grassmann fields.

For the free theory, the solution to the equation of motion is

φi
a(~x, t) =

∫

dd−1k

(2π)d−1
√

2|k|
[

αi
a(
~k)e−i(|k|t−~k·~x) + αi†

a (
~k)ei(|k|t−

~k·~x)
]

(2.7)

and the operators αi
a satisfy

{αi
1(
~k), α†j

2 (~k′)} = iδijδ(~k − ~k′) , {α†i
1 (
~k), αj

2(
~k′)} = −iδijδ(~k − ~k′) (2.8)

with all the other anticommutators vanishing. The Hamiltonian is given by

H = i

∫

[d~k] |~k|
[

α1(~k)
†α2(~k)− α2(~k)

†α1(~k)
]

(2.9)

The basic commutators lead to

[H,αi
a(k)] = −kαi

a(k) , [H,αi†
a ] = kαi†

a (k) (2.10)

To discuss the quantization of the free theory it is useful to review the quantization of the

Sp(2N) oscillator, following [30].4 The Hamiltonian is

H = i

(

− ∂2

∂φi
2∂φ

i
1

+ k2φi
1φ

i
2

)

(2.11)

4Note that our notation is different from that of [30].
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where φi
1, φ

i
2 are N pairs of Grassmann numbers. Because of the Grassmann nature of the

variables the spectrum of the theory is bounded both from below and from above. The

oscillators are defined by (in the Schrodinger picture)

φi
a =

1√
2k

[

αi
a + αi†

a

]

(2.12)

while the momenta are

P i
a = ǫab

√

k

2
(αi

b − αi†
b ) (2.13)

The ground state |0〉 and the highest state |2N〉 are then given by the conditions

αi
a|0〉 = 0 , αi†

a |2N〉 = 0 (2.14)

with the wavefunctions

Ψ0 = exp[−ikφi
1φ

i
2] , Ψ2N = exp[ikφi

1φ
i
2] (2.15)

and the energy spectrum is given by

En = k[n−N ] , n = 0, 1, · · · , 2N (2.16)

Finally, the Feynman correlator of the Grassmann coordinates may be easily seen to be

〈0|T [φi
1(t)φ

j
2(t

′)]|0〉 = iδij

2k
e−ik|t−t′| (2.17)

Extension of these results to the free field theory is straight forward: for each momentum
~k, we have a fock space with a finite number of states.

3 Collective field theory for the Sp(2N) model

In the representation (2.6) a general wavefunctional is given by Ψ[φi
a(~x), t]. Our aim is

to obtain a description of the singlet sector of the theory, i.e. wavefunctionals which are

invariant under the Sp(2N) rotations of the fields φi
a(~x). All the invariants in field space

are functions of the bilocal collective fields

ρ(~x, ~y) ≡ iǫabφi
a(~x)φ

i
b(~y) (3.1)

We have defined this collective field to be hermitian (which is why there is a i in the

definition). Clearly ρ(~x, ~y) = ρ(~y, ~x). The aim now is to rewrite the theory in terms of

a Hamiltonian which is a functional of ρ(~x, ~y) and its canonical conjugate −i δ
δρ(~x,~y) which

acts on wavefunctionals which are functionals of ρ(~x, ~y).

It is important to remember that ρ(~x, ~y) is not a genuine bosonic field. This will have

important consequences at finite N . In a perturbative expansion in 1/N , however, there is

no problem [31] in treating ρ(~x, ~y) as a bosonic field.

Before dealing with the Sp(2N) field theory, it is useful to review some aspects of the

collective theory for the usual O(N) model, starting with the O(N) oscillator.

– 4 –
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3.1 Collective fields for the O(N) theory

In this section we review the bi-local collective field theory construction for the O(N) field

theory, starting with the O(N) oscillator. This has a Hamiltonian

H =
1

2
[P iP i + k2XiXi] (3.2)

The collective variable is the square of the radial coordinate σ = XiXi and the Jacobian

for transformation from Xi to σ and the angles is

J(σ) =
1

2
tσ(N−2)/2ΩN−1 (3.3)

where ΩN−1 is the volume of unit SN−1. The idea is to find the Hamiltonain H(σ, ∂
∂σ )

which acts on wavefunctions [J(σ)]1/2Ψ(σ). The key observation of [5] is that this can also

be obtained by requiring that H(σ, ∂
∂σ ) acting on wavefunctions [J(σ)]1/2Ψ(σ) is hermitian

with the trivial measure dσ. This determines both the Jacobian and the Hamiltonian and

the technique generalizes to higher dimensional field theory. The final result is well known,

Hcoll = −2
∂

∂σ
σ

∂

∂σ
+

(N − 2)2

8σ
+

1

2
k2σ (3.4)

The large-N expansion then proceeds as usual by expanding around the saddle point so-

lution σ0 which minimizes the potential,5

σ2
0 =

N2

4k2
(3.5)

Clearly, we have to choose the positive sign since in this case σ is a positive real quantity,

σ0 =
N

2k
(3.6)

which reproduces the coincident time two point function 〈0|Xi(t)Xi(t)|0〉 and the cor-

rect ground state energy, E0 = N
2 k. The subleading contributions are then obtained by

expanding around the saddle point,

σ = σ0 +

√

2N

k
η , Πσ =

√

k

2N
πη (3.7)

The quadratic part of the Hamiltonian becomes

H(2) =
1

2
[π2

η + 4k2η2] (3.8)

This leads to the excitation spectrum to O(1), En = 2nk with n = 0, 1, · · · ,∞. The

Hamiltonian of course contains all powers of η. Terms with even number of the fluctuations

(πη, η) come with odd factors of σ0. This fact will play a key role in the following.

5To see why the saddle point approximation is valid, rescale σ → Nσ and Πσ →
1
N
Πσ so that there is

an overall factor of N in front of the potential energy term. We will, however, stick to the unrescaled fields.
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In the following it will be necessary to consider wavefunctions. It follows directly

from (3.2) that the ground state wavefunction is given by (up to a normalization which is

not important for our purposes)

Ψ0(X
i) = exp

[

− k

2
σ

]

∼ exp

[

−
√

Nk

2
η

]

(3.9)

where we have expanded σ as in (3.7), used (3.6) and ignored an overall constant. We should

get the same result from the collective theory. Recalling that the collective wavefunction

is related to the original wavefunction by a Jacobian factor, the ground state wavefunction

follows from (3.8)

Ψ′
0(η) = [J(σ)]−

1
2 exp[−kη2] (3.10)

The presence of the Jacobian is crucial in obtaining agreement with (3.9) [32]. Expanding

the argument in the Jacobian in powers of η according to (3.7) it is easy to see that the

quadratic term in η coming from the Jacobian exactly cancels the explicit quadratic term

in (3.10) and the linear term in η is in exact agreement with (3.9). The expression (3.10)

of course contain all powers of η once exponentiated — these should also cancel once one

takes into account the cubic and higher terms in the collective Hamiltonian as well as finite

N corrections which we have ignored to begin with. The above formalism can be easily

generalized to an additional invariant potential, since the latter would be a function of σ.

The collective theory for O(N) field theory can be constructed along identical lines. We

reproduce the relevant formulae from [5] which are direct generalizations of the formulae

for the oscillator. The O(N) model has the Hamiltonian

H =
1

2

∫

dd−1x

[

− δ2

δφi(~x)δφi(~x)
+∇φi(~x)∇φi(~x) + U [φi(~x)φi(~x)]

]

(3.11)

The singlet sector Hamiltonian in terms of the bi-local collective field σ(~x, ~y) = φi(~x)φi(~y)

and its canonically conjugate momentum Πσ(~x, ~y) is, to leading order in 1/N6

H
O(N)
coll = 2Tr

[

(ΠσσΠσ) +
N2

16
σ−1

]

− 1

2

∫

d~x∇2
xσ(~x, ~y)|~y=~x + U

(

σ(~x, ~x)
)

(3.12)

where the spatial coordinates are treated as matrix indices.

So far our considerations are valid for an arbitrary interaction potential U . Let us now

restrict ourselves to the free theory, U = 0 to discuss the large-N solution explicitly. In

momentum space the saddle point solution is

σ(~k1,~k2) =
N

2|~k1|
δ(~k1 − ~k2) (3.13)

Once again we have chosen the positive sign in the solution of the saddle point equation, and

the saddle point value of the collective field agrees with the two point correlation function

6To subleading order there are singular terms which are crucial for reproducing the correct 1/N contri-

butions.
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of the basic vector field, which should be positive. The 1/N expansion is generated in a

fashion identical to the single oscillator,

σ(~k1,~k2) = σ0(~k1,~k2)+

( |~k1||~k2|
N(|~k1|+|~k2|)

)− 1
2

η(~k1,~k2) , Πσ =

( |~k1||~k2|
N(|~k1|+|~k2|)

)

1
2

πη(~k1,~k2)

(3.14)

the quadratic piece becomes

H(2) =
1

2

∫

d~k1 d~k2
[

πη(~k1,~k2)πη(~k1, ~k2) + (|~k1|+ |~k2|)2η(~k1,~k2)η(~k1,~k2)
]

(3.15)

so that the energy spectrum is given by

E(~k1,~k2) = |~k1|+ |~k2| (3.16)

as it should be. It is easy to check that the unequal time two point function of the

fluctuations reproduces the connected part of the two point function of the full collective

field as calculated from the free field theory. A nontrivial U can be reinstated easily (see

e.g. the treatment of the (~φ2)2 model in [6], which discusses the RG flow to the nontrivial

IR fixed point).

3.2 Collective theory for the Sp(2N) oscillator

Since there is a representation of the field operator and the conjugate momentum operator

of the Sp(2N) theory in terms of Grassmann fields, (2.6), it is clear that the derivation of

the collective field theory of the Sp(2N) model closely parallels that of the O(N) theory.

In this subsection we consider the Sp(2N) oscillator. The Hamiltonian is given by (2.11).

The collective variable is

ρ = iǫabφi
aφ

i
b (3.17)

The fully connected correlators of this collective variable have a simple relationship with

those of the O(2N) harmonic oscillator,

〈ρ(t1)ρ(t2) · · · ρ(tn)〉connSp(2N) = −〈σ(t1)σ(t2) · · ·σ(tn)〉connSO(2N) (3.18)

This result follows from (2.17) and the application of Wick’s theorem for Grassmann vari-

ables.

The collective variable ρ is a Grassmann even variable — it is not an usual bosonic

variable. This key fact is intimately related to the finite number of states of the Sp(2N)

oscillator. In this section we will show that in a 1/N expansion we can nevertheless proceed,

defering a proper discussion of this point to a later section.

The Hamiltonian for the collective theory is obtained by the same method used to

obtain the collective theory in the bosonic case, with various negative sign coming from

the Grassmann nature of the variables. Using the chain rule and taking care of negative

signs coming because of Grassmann numbers, one gets the Jacobian J ′(ρ) (determined by

requiring the hermicity of J−1/2HJ1/2)

J ′(ρ) = A′ ρ−(N+1) (3.19)

– 7 –
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where A′ is a constant. The negative power of ρ of course reflects the Grassmann nature of

the variables.7 Despite this difference, the final collective Hamiltonian is in fact identical

to the O(2N) oscillator collective Hamiltonian

H
Sp(2N)
coll = −2

∂

∂ρ
ρ
∂

∂ρ
+

N2

2ρ
+

1

2
k2ρ (3.20)

This leads to the same saddle point equation, and the solutions satisfy the same equation

as (3.5) with N → 2N .

In the O(2N) oscillator, we had to choose the positive sign, since σ is by definition a

real positive variable. In this case, there is no reason for ρ to be positive. In fact we need

to choose the negative sign, since (3.18) requires that the one point function of ρ must be

the negative of the one point function of σ.

ρ0 = −N

k
(3.21)

It is interesting that the singlet sectors of the O(2N) and Sp(2N) models are described by

two different solutions of the same collective theory.

The leading order ground state energy is the Hamiltonian evaluated on the saddle

point,

Egs = −Nk (3.22)

in agreement with (2.16). The fluctuation Hamiltonian is obtained as usual by expanding

ρ = ρ0 +

√

4N

k
ξ , Πρ =

√

k

4N
πξ (3.23)

The quadratic Hamiltonian is now negative, essentially because of the negative sign in the

saddle point,

H
(2)
ξ = −1

2

[

π2
ξ + 4k2ξ2

]

(3.24)

A standard quantization of this theory leads to a spectrum which is unbounded from below.

We will now argue that we need to quantize this theory rather differently, in a way similar

to the treatment of [33]. This involves defining annihilation and creation operators aξ, a
†
ξ

ξ =
1√
4k

[

aξ + a†ξ
]

, πξ = i
√
k
[

aξ − a†ξ
]

(3.25)

which now satisfy

[

aξ, a
†
ξ

]

= −1 ,
[

H, aξ
]

= −2kaξ ,
[

H, a†ξ
]

= 2ka†ξ (3.26)

Because of the negative sign of the first commutator in (3.26) a standard quantization

will lead to a highest energy state annihilated by a†ξ, and then the action of powers of aξ
leads to an infinite tower of states with lower and lower energies. The highest state has

7This ρ dependence of the Jacobian follows from a direct calculation J ′(ρ) =
∫
dφi

1dφ
i
2δ(ρ − iφi

1φ
i
2) =

∫
dλeiλρ

∫
dφi

1dφ
i
2 e−iλφi

1
φi

2 ∼ ρ−(N+1).

– 8 –
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a normalizable wavefunction of the standard form e−kξ2 (Note that the expression for πξ
has a negative sign compared to the usual harmonic oscillator.) It is easy to see that this

standard quantization does not reproduce the correct two-point function of the Sp(2N)

theory, does not lead to the correct spectrum (2.16) and, as shown below, does not lead to

the correct wavefunction.

All this happens because ρ and hence ξ is not really a bosonic variable, and this allows

other possibilities. Consider now a state |0〉ξ which is annihilated by the annihilation

operator aξ. This leads to a wavefunction exp[kξ2], which is inadmissible if ξ is really a

bosonic variable since it would be non-normalizable. However the true integration is over

the Grassmann partons of these collective fields, and in terms of Grassmann integration

this wavefunction is perfectly fine. This is in fact the state which has to be identified with

the ground state of the Sp(2N) oscillator. Including the factor of the Jacobian, the full

wavefunction is (at large N)

Ψ′
0ξ[ξ] = [J ′(ρ)]−1/2 exp[kξ2] =

[

− N

k
+ 2

√

N

k
ξ

]N/2

exp[kξ2] (3.27)

Expanding the Jacobian factor in powers of ξ one now sees that the term which is quadratic

in ξ cancels exactly, leaving with

Ψ′
0ξ[ξ] = exp

[

−
√
Nkξ +O(ξ3)

]

(3.28)

This is easily seen to exactly agree with Ψ0 in (2.15)

Ψ0 ∼ exp

[

− 1

2
kρ

]

∼ exp
[

−
√
Nkξ

]

(3.29)

up to a constant. Once again we need to take into account the interaction terms in the col-

lective Hamiltonian to check that the O(ξ3) terms cancel. It can be easily verified that the

propagator of fluctuations ξ will now be negative of the usual harmonic oscillator propaga-

tor. Furthermore the action of a†ξ now generates a tower of states with the energies (2.16)

— except that the integer n is not bounded by N .

The fact that we get an unbounded (from above) spectrum from the collective theory

is not a surprise. This is an expansion around N = ∞ and at N = ∞ the spectrum of

Sp(2N) is also unbounded. At finite N a change of variables to ρ is not useful because

of the constraints coming from the Grassmann origin of ρ. Nevertheless, even in the

1/N expansion, the Grassmann origin allows us to consider wavefunctions which would be

otherwise considered inadmissible.

The negative propagator ensures that the relationship (3.18) is satisfied for the 2 point

functions. Once this choice is made, the relationship (3.18) holds for all m-point functions

to the leading order in the large-N limit. As commented earlier, a term with even number

of πξ or ξ would have an odd number of factors of ρ0. Therefore a n-point vertex in the

theory will differ from the corresponding n-point vertex of the O(N) theory by a factor of

(−1)n+1. The connected correlator which appears in (3.18) is the sum of all connected tree

diagrams with n external legs. The collective theory gives us the following Feynman rules
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Figure 1. Connected tree level correlators of the collective theory.

1. Every propagator contributes to a negative sign.

2. A p point vertex has a factor of (−1)p+1

We now argue that these rules ensure the validity of the basic relation (3.17). We do it by

the following simple diagrammatic method summarized in figure 1.

Consider first the simplest diagram for a n-point function, graph A, which is a star

graph. The net sign of the diagram is (−1)n+1 × (−1)n = −1, where the first factor is

from the vertex a0 and the second one from the number of lines. Now we proceed to

construct all other tree level diagrams from A, by pulling ‘r’ lines resulting in graph B,

which now has vertices, a1 and b1 joined by a new line. It is easy to see, that the sign

of graph A is not changed by this operation. The net sign of graph B is (−1)(n−r+1)+1 ×
(−1)(r+1)+1 × (−1)(n+1) = −1, where the 3 factors are from a1, b1 and the number of

lines respectively. In graph C we repeat this method for the substar diagrams until we

exhaust all possibilities. It is easy to see that the sign stays invariant. Assigning a sign α

to the blob, we first find the net sign of the left diagram in graph C. It turns out to be,

α×(−1)(k+1)+1×(−1)k+1 = −α. After the “pulling” operation we get α×(−1)(k−r+2)+1×
(−1)(r+1)+1× (−1)k+1+1 = −α. Thus it is proved that in every move the sign is preserved.

This proves the relationship (3.18) for all correlation functions.

3.3 Sp(2N) correlators

Our discussion of the bosonic O(N) collective field theory shows that the Sp(2N) collective

field theory in momentum space is a straightforward generalization. In this subsection we

discuss the relevant features of the collective theory for the free Sp(2N) model.

The collective Hamiltonian is again exactly the same as in the O(N) theory, given

by (3.12) with σ → ρ. Since the connected correlators of the collective fields satisfy

〈ρ(~k1, ~k′1, t1)ρ(~k2, ~k′2, t2) · · · ρ(~kn,~k′n, tn)〉connSp(2N)

= −〈σ(~k1,~k′1, t1)σ(~k2,~k′2, t2) · · ·σ(~kn, ~k′n, tn)〉connSO(2N) (3.30)
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we now need to choose the negative saddle point,

ρ0(~k,~k
′, t) = −N

|~k|
δ(~k − ~k′) (3.31)

The fluctuation Hamiltonian once again has a factor of (−1)n+1 for the n-point vertex. In

particular, the propagator of the collective field is negative of that of the O(N) collective

field — the quadratic Hamiltonian has an overall negative sign! This is required — the

diagramatic argument for the Sp(2N) oscillator generalizes in a straightforward fashion,

ensuring that (3.30) holds.

4 Bulk dual of the Sp(2N) model

In [6], it was proposed that the collective field theory for the d dimensional free O(N)

theory is in fact Vasiliev’s higher spin theory in AdSd+1. It is easy to see that the collective

field has the right collection of fields. Consider for example d = 3. The field depends on

four spatial variables, which may be reorganized as three spatial coordinates one of which

is restricted to be positive and an angle. A fourier series in the angle then gives rise to a

set of fields χ±n which depend on three spatial variables, with the integer n denoting the

conjugate to the angle. Symmetry under interchange of the arguments of the collective

field then requires n to be even integers. But this is precisely the content of a theory of

massless even spin fields in four space-time dimensions, with n labelling the spin and the

two signs corresponding to the two helicities. (Recall that in four space-time dimensions

massless fields with any spin have just two helicity states.)

The precise relationship between collective fields and higher spin fields in AdS was

found in [7] which we now summarize for d = 3. The correspondence is formulated in the

light front quantization. Denote the usual Minkowski coordinates on the space-time on

which the O(N) fields live by t, y, x and define light cone coordinates

x± =
1√
2
(t± y) (4.1)

The conjugate momenta to x+, x− are denoted by p−, p+. Then in light front quantiza-

tion where x+ is treated as time, the Schrodinger picture fields are φi(x−, x) while the

momentum space fields are given by φi(p+, p). The corresponding collective field is then

defined as

σ(p+1 , p1; p
+
2 , p2) = φi(p+1 , p1)φ

i(p+2 , p2) (4.2)

The fluctuation of this field around the saddle point is denoted by Ψ(p+1 , p1; p
+
2 , p2). Now

define the following bilocal field

Φ(p+, px, z, θ) =

∫

dpzdp+1 dp
+
2 dp1dp2K(p+, px, z, θ; p+1 , p1, p

+
2 , p2)Ψ(p+1 , p1; p

+
2 , p2) (4.3)

where the kernel is given by

K(p+, px, z, θ; p+1 , p1, p
+
2 , p2) = z eizpz δ(p+1 + p+2 − p+) δ(p1 + p2 − p)

δ

(

p1

√

p+2
p+1

− p2

√

p+1
p+2

− pz
)

δ

(

2 tan−1

√

p+2
p+1

− θ

)

(4.4)
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In [7] it was shown that the Fourier transforms of the field Φ(p+, px, z, θ) with respect to θ

satisfy the same linearized equation of motion as the physical helicity modes of higher spin

gauge fields in AdS4 in light cone gauge. The metric of this AdS4 is given by the standard

Poincare form

ds2 =
1

z2
[−2dx+dx− + dx2 + dz2] =

1

z2
[−dt2 + dy2 + dx2 + dz2] (4.5)

The momenta p+, p are conjugate to x−, x. The additional dimension generated from the

large-N degrees of freedom is z, which is canonically conjugate to pz and is given in terms

of the phase space coordinate of the bi-locals by

z =
(x1 − x2)

√

p+1 p
+
2

p+1 + p+2
(4.6)

In particular, the linearized equation for the spin zero field, ϕ(x−, x, z), follows from the

quadratic action

S =
1

2

∫

dx+dx−dzdx

[

1

z2
(

− 2∂+ϕ∂−ϕ− (∂xϕ)
2 − (∂zϕ)

2
)

+
2

z4
ϕ2

]

(4.7)

which is of course the action of a conformally coupled scalar in the AdS4 with coordinates

given by (4.6). The actions for the spin-2s fields can be similarly written down. Even

though these actions are derived using light cone coordinates, they can be covariantized

easily since these are free actions. In terms of the coordinates t, y, x, z the scalar action is

given by

S =
1

2

∫

dtdzdxdy

[

1

z2
(

(∂tϕ)
2 − (∂yϕ)

2 − (∂xϕ)
2 − (∂zϕ)

2
)

+
2

z4
ϕ2

]

(4.8)

Let us now turn to the Sp(2N) collective theory. One can define once again the fields as

in (4.3) and (4.4). The coordinates (x+, x−, x, z) will continue to transform appropriately

under AdS isometries. However, we saw earlier that the quadratic part of the Hamiltonian,

and therefore the quadratic part of the action will have an overall negative sign.

A negative kinetic term signifies a pathology. Indeed we derived this theory with the

Lorentzian signature Sp(2N) model, which has negative norm states. The negative kinetic

term of the collective theory is possibly intimately related to this lack of unitarity.

However, the form of the action (4.8) cries out for a analytic continuation

z = iτ , t = −iw (4.9)

Under this continuation the action, S becomes

S′ =
1

2

∫

dτdwdxdy

[

1

τ2
(

(∂τϕ)
2 − (∂yϕ)

2 − (∂xϕ)
2 − (∂wϕ)

2
)

− 2

τ4
ϕ2

]

(4.10)

The sign of the mass term has not changed in this analytic continuation, and this action

has become the action of a conformally coupled scalar field in de Sitter space with the

metric

ds2 =
1

τ2
[−dτ2 + dx2 + dy2 + dw2] (4.11)

This mechanism works for all even higher spin fields at the quadratic level.
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To summarize, the collective field theory of the three dimensional Lorentzian Sp(2N)

model can be written as a theory of massless even spin fields in AdS4, but with negative

kinetic terms. Under a double analytic continuation this becomes the action in dS4 with

positive kinetic terms. This is consistent with the conjecture of [17] that the euclidean

Sp(N) model is dual to Vasiliev theory in dS4. It is interesting to note that the way an

emergent holographic direction is similar to the way the Liouville mode has to be interpeted

as a time dimension in worldsheet supercritical string theory [18]. In this latter case, the

sign of the kinetic term for the Liouville mode is negative for d > dcr.

Even for theO(N) model, the collective field is an represents seemingly an overcomplete

description, since for a finite number of points in space K, one replaces at most NK

variables by K2 variables, which is much larger in the thermodynamic and continuum

limit. However, in the perturbative 1/N expansion this is not an issue and the collective

theory is known to reproduce the standard results of the O(N) model. The issue becomes

of significance at finite N level.The relevance of incorporating for such features has been

noted in [19, 34].

For the fermionic Sp(2N) model, there appears potentially an even more important

redundancy related to the Grassmannian origin of the construction. Consequently the

fields are to obey nontrivial constraint relationships and the Hilbert space is subject to

a cutoff of highly excited states. This ‘exclusion principle’ was noted already in the AdS

correspondence involving SN orbifolds [35–37].

In an expansion around N = ∞ most effects of this are invisible and our discussion

shows that this can be regarded as a theory of higher spin fields in dS is insensitive to these

effects. However, as we saw above, the Grassmann origin was already of importance in

choosing the correct saddle point and the correct quanization of the quadratic hamiltonian.

In the next section we will address the question of finite N and the Hilbert space of the

bi-local theory. In the framework of geometric (pseudospin) representation we will give

evidence that the bi-local theory is non-perturbatively satisfactory at the finite N level.

5 Geometric representation and the Hilbert space

The bi-local collective field representation is seen to give a bulk description dS space

and the Higher Spin fields. It provides an interacting theory with vertices governed by

G = 1/N as the coupling constant. We would now to show that the collective theory has

an equivalent geometric (Pseudo) Spin variable description appropriate for nonperturba-

tive considerations. The essence of this (geometric) description is in reinterpreting the

bi-local collective fields (and their canonical conjugates) as matrix variables (of infinite

dimensionality) endowed with a Kahler structure.This geometric description will provide a

tractable framework for quantization and non-perturbative definition of the bi-local and HS

de Sitter theory. It will be seen capable to incorporate non-perturbative features related

to the Grassmannian origin of bi-local fields and its Hilbert space. Pseudo-spin collec-

tive variables represent all Sp(2N) invariant variables of the theory (both commuting and

non-commuting). These close a compact algebra and at large N are constrained by the

corresponding Casimir operator. One therefore has an algebraic pseudo-spin system whose
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nonlinearity is governed by the coupling constant G = 1/N . As such they have been em-

ployed earlier for developing a large N expansion [38] and as a model for quantization [39].

This version of the theory is in its perturbative (1/N) expansion identical to the bi-local

collective representation. It therefore has the same map to and correspondence with Higher

Spin dS4 at perturbative level. We will see however that the geometric representation be-

comes of use for defining (and evaluating) the Hilbert space and its quantization.

To describe the pseudo-spin description of the Sp(2N) theory we will follow the quan-

tization procedure of [40]. In this approach one starts from the action:

S =

∫

ddx dt(∂µηi1∂µη
i
2) (5.1)

and deduces the canonical anti-commutation relations

{ηi1(x, t)∂tηj2(x′, t)} = −{ηi2(x, t)∂tηj1(x′, t)} = iδd(x− x′)δij (5.2)

The quantization based on the mode expansion

ηi1(x) =

∫

ddk

(2π)d/2
√
2ωk

(ai†k+e
−ikx + aik−e

ikx)

ηi2(x) =

∫

ddk

(2π)d/2
√
2ωk

(−ai†k−e
−ikx + aik+e

ikx) (5.3)

with

{aik−, aj†k′−} = {aik+, aj†k′+} = δd(k − k′)δij (5.4)

Note that in this approach the operators ηia are not hermitian, but pseudo-hermitian in

the sense of [41].

Pseudo-spin bi-local variables will be introduced based on Sp(2N) invariance, we have

the vectors:

η =
(

η11, η
1
2, η

2
1, η

2
2, · · · , ηN1 , ηN2

)

a(k) =
(

a1k−, a
1
k+, a

2
k−, a

2
k+, · · · , aNk−, aNk+

)

ã(k) =
(

a1†k+,−a1†k−, a
2†
k+,−a2†k−, · · · , aN+

k† ,−aN†
k−

)

(5.5)

and the notation:

η(x) =

∫

ddk

(2π)d/2
√
2ωk

(

ã(k)e−ikx + a(k)eikx
)

(5.6)

so that a complete set of Sp(2N) invariant operators now follows:

S(p1, p2) =
−i

2
√
N

aT (p1)ǫNa(p2) =
i

2
√
N

N
∑

i=1

(

aip1+a
i
p2− + aip2+a

i
p1−

)

S†(p1, p2) =
−i

2
√
N

ãT (p1)ǫN ã(p2) =
i

2
√
N

N
∑

i=1

(

ai†p1+a
i†
p2− + ai†p2+a

i†
p1−

)

B(p1, p2) = ãT (p1)ǫNa(p2) =
N
∑

i=1

ai†p1+a
i
p2+ + ai†p1−a

i
p2− (5.7)

and ǫN = ǫ⊗ IN , ǫ =
(

0 1
−1 0

)

.
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These invariant operators close an invariant algebra. The commutation relations are

found to equal:

[

S(~p1, ~p2), S
†(~p3, ~p4)

]

=
1

2

(

δ~p2,~p3δ~p4,~p1+δ~p2,~p4δ~p3,~p1
)

− 1

4N

[

δ~p2,~p3B(~p4, ~p1) + δ~p2,~p4B(~p3, ~p1)

+δ~p1,~p3B(~p4, ~p2)+δ~p1,~p4B(~p3, ~p2)
]

[

B(~p1, ~p2), S
†(~p3, ~p4)

]

= δ~p2,~p3S
†(~p1, ~p4) + δ~p2,~p4S

†(~p1, ~p3)
[

B(~p1, ~p2), S(~p3, ~p4)
]

=−δ~p1,~p3S(~p2, ~p4)− δ~p1,~p4S(~p2, ~p3) (5.8)

The singlet sector of the original Sp(2N) theory is characterized by a further constraint.

This constraint is is associated with the Casimir operator of of the algebra and can be shown

to take the form:
4

N
S† ⋆ S +

(

1− 1

N
B

)

⋆

(

1− 1

N
B

)

= I (5.9)

Here we have used the matrix star product notation: ⋆ product as: with A ⋆ B =
∫

d~p2A(~p1~p2)B(~p2~p3).

The form of the Casimir, which commutes with the above pseudo-spin fields points to

the compact nature of the bi-local pseudo-spin algebra associated with the Sp(2N) theory.

This will have major consequences which we will highlight later.

Indeed it is interesting to compare the algebra with the bosonic case, where we have:

S(p1, p2) =
1

2
√
N

2N
∑

i=1

ai(p1)ai(p2)

S†(p1, p2) =
1

2
√
N

2N
∑

i=1

a†i (p1)a
†
i (p2)

B(p1, p2) =
2N
∑

i=1

a†i (p1)ai(p2) (5.10)

with the commutation relations:

[

S(~p1, ~p2), S
†(~p3, ~p4)

]

=
1

2

(

δ~p2,~p3δ~p4,~p1+δ~p2,~p4δ~p3,~p1
)

+
1

4N

[

δ~p2,~p3B(~p4, ~p1)+δ~p2,~p4B(~p3, ~p1)

+δ~p1,~p3B(~p4, ~p2)+δ~p1,~p4B(~p3, ~p2)
]

[

B(~p1, ~p2), S
†(~p3, ~p4)

]

= δ~p2,~p3S
†(~p1, ~p4) + δ~p2,~p4S

†(~p1, ~p3)
[

B(~p1, ~p2), S(~p3, ~p4)
]

=−δ~p1,~p3S(~p2, ~p4)− δ~p1,~p4S(~p2, ~p3) (5.11)

In this case the Casimir constraint is found to equal:

− 4

N
S† ⋆ S +

(

1 +
1

N
B

)

⋆

(

1 +
1

N
B

)

= I (5.12)

featuring the non-compact nature of the bosonic problem.

We can see therefore that the singlet sectors of the fermionic Sp(2N) theory and

the bosonic O(2N) theory can be described in analogous a bi-local pseudo-spin algebraic

formulations with a quadratic Casimir taking the form:

4γS† ⋆ S + (1− γB) ⋆ (1− γB) = I (5.13)
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the difference being that with γ = 1
N (− 1

N ) for the fermionic (bosonic) case respectively.

This signifies the compact versus the non-compact nature of the algebra, but also exhibits

the relationship obtained through the N ↔ −N switch that was central in the argument

for de Sitter correspondence in [17].

From this algebraic bi-local formulation one can easily see the the Collective field

representation(s) that we have discussed in sections 2 and 3. Very simply, the Casimir

constraints can be solved, and the algebra implemented in terms of a canonical pair of

bi-local fields:

S(p1p2) =

√−γ

2

∫

dy1dy2e
−i(p1y2+p2y2)

{

− 2

κp1κp2
Π ⋆Ψ ⋆Π(y1y2)−

1

2γ2κp1κp2

1

Ψ
(y1y2)

+
κp1κp2

2
Ψ(y1y2)− i

κp1
κp2

Ψ ⋆Π(y1y2)− i
κp2
κp1

Π ⋆Ψ(y1y2)

}

S†(p1p2) =

√−γ

2

∫

dy1dy2e
−i(p1y2+p2y2)

{

− 2

κp1κp2
Π ⋆Ψ ⋆Π(y1y2)−

1

2γ2κp1κp2

1

Ψ
(y1y2)

+
κp1κp2

2
Ψ(y1y2) + i

κp1
κp2

Ψ ⋆Π(y1y2) + i
κp2
κp1

Π ⋆Ψ(y1y2)

}

B(p1p2) =
1

γ
+

∫

dy1dy2e
−i(p1y2+p2y2)

{

2

κp1κp2
Π ⋆Ψ ⋆Π(y1y2) +

1

2γ2κp1κp2

1

Ψ
(y1y2)

+
κp1κp2

2
Ψ(y1y2)− i

κp1
κp2

Ψ ⋆Π(y1y2) + i
κp2
κp1

Π ⋆Ψ(y1y2)

}

(5.14)

where κp =
√
ωp.

Recalling that the Hamiltonian is given in terms of B we now see that its bi-local form

is the same in the fermionic and the bosonic case. This explains the feature that we have

established by direct construction in section 2,3. While the bi-local field representation of B

is the same in the fermionic and bosonic cases, the difference is seen in the representations

of operators S and S†. These operators create singlet states in the Hilbert space and the dif-

ference contained in the sign of gamma implies the opposite shifts for the background fields

that we have identified in section 2,3. The algebraic pseudo spin reformulation is therefore

seen to account for all the perturbative (1/N) features of the the bi-local theory that we

have identified in section 2,3. However, in addition and we would like to emphasize that, the

algebraic formulation provides a proper framework for defining the bi-local Hilbert space.

5.1 Quantization and the Hilbert space

The bi-local pseudo-spin algebra has several equivalent representations that turn out to

be useful. Beside that collective representation that we have explained above, one has the

simple oscillator representation:

S(p1, p2) = α ⋆

(

1− 1

N
α† ⋆ α

)
1
2

(p1, p2)

S†(p1, p2) =

(

1− 1

N
α† ⋆ α

)
1
2

⋆ α†(p1, p2)

B(p1, p2) = 2α† ⋆ α(p1, p2) (5.15)

with standard canonical canonical commutators (or Poisson brackets).
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A more relevant geometric representation is obtained through a change:

α = Z

(

1 +
1

N
Z̄Z

)− 1
2

α† =

(

1 +
1

N
Z̄Z

)− 1
2

Z̄ (5.16)

The pseudo-spins in the Z representation are given by:

S(p1, p2) = Z ⋆

(

1 +
1

N
Z̄ ⋆ Z

)−1

(p1, p2)

S†(p1, p2) =

(

1 +
1

N
Z̄ ⋆ Z

)−1

⋆ Z̄(p1, p2)

B(p1, p2) = 2Z ⋆

(

1 +
1

N
Z̄ ⋆ Z

)−1

⋆ Z̄(p1, p2) (5.17)

It’s easy to see that this satisfy the Casimir constraint: 4
N S† ⋆ S + (1− 1

NB)2 = 1.

One can write the Lagrangian in this Z representation as:

L = i

∫

dt tr

[

Z

(

1 +
1

N
Z̄Z

)−1
˙̄Z − Ż

(

1 +
1

N
Z̄Z

)−1

Z̄

]

−H (5.18)

For regularization purposes, it is useful to consider putting ~x in a box and limiting the

momenta by a cutoff Λ: this makes the bi-local fields into finite dimensional matrices (which

we will take to be a size K). For Sp(2N) one deals with a K × K dimensional complex

matrix Z and we have obtained in the above a compact symmetric (Kahler) space:

ds2 = tr
[

dZ(1− Z̄Z)−1dZ̄(1− ZZ̄)−1
]

(5.19)

According to the classification of [42], this would correspond to manifold MI(K,K).

We note that the standard fermionic problem which was considered in detail in [39] corre-

sponds to manifold MIII(K,K) of complex antisymmetric matrices.

Quantization on Kahler manifolds in general has been formulated in detail by

Berezin [39]. We also note that the usefullnes of Kahler quantization for discretizing de Sit-

ter space was pointed out by A.Volovich in a quantum mechanical scenario [23]. In the

present Quantization we are dealing with a field theory with infinitely many degrees of

freedom and infinite Khaler matrix variables. We will now summarize some of the results

of quantization which are directly relevant to the Sp(2N) bi-local collective fields theory.

Commutation relations of this system follow from the Poisson Brackets associated with the

Lagrangian L(Z̄, Z). States in the Hilbert space are represented by (holomorphic) func-

tions (functionals) of the bi-locals Z(k, l). A Kahler scalar product defining the bi-local

Hilbert space reads:

(F1, F2) = C(N,K)

∫

dµ(Z̄, Z)F1(Z)F2(Z̄) det[1 + Z̄Z]−N (5.20)
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with the (Kahler) integration measure:

dµ = det[1 + Z̄Z]−2KdZ̄dZ (5.21)

The normalization constant is found from requiring (F1, F1) = 1 for F = 1. Let:

a(N,K) =
1

C(N,K)
=

∫

dµ(Z̄, Z) det[1 + Z̄Z]−N (5.22)

This leads to the matrix integral (complex Penner Model)

a(N,K) =
1

C(N,K)
=

∫ K
∏

k,l=1

dZ̄(k, l)dZ(k, l) det[1 + Z̄Z]−2K−N (5.23)

which determines C(N,K).

The following results on quantization of this type of Kahler system are of note: first, the

parameter N : much like for ordinary spin, one can show that N (and therefore G in Higher

Spin Theory) can only take integer values, i.e. N = 0, 1, 2, 3, · · · . Next, one has question

about the total number of states in the above Hilbert space. Naively, bi-local theory would

seem to grossly overcount the number of states of the original fermionic theory. Originally

one essentially had 2NK fermionic degrees of freedom with a finite Hilbert space. The

bi-local description is based on (complex) bosonic variables of dimensions K2 and the

corresponding Hilbert space would appear to be much larger. But due to the compact

nature of the phase space, the number of states much smaller.

We will now evaluate this number (at finite N and K) for the present case of Sp(2N)

(in [39] ordinary fermions were studied) and show that the exact dimension of the bi-local

Hilbert space in geometric (Kahler) quantization agrees with the dimension of the singlet

Hilbert space of the Sp(2N) fermionic theory.

The dimension of quantized Hilbert space is found as follows: Considering the operator

Ô = I one has that:

Tr(I) = C(N,K)

∫ K
∏

k,l=1

dZ̄(k, l)dZ(k, l) det[1 + Z̄Z]−2K (5.24)

Consequently the dimension of the bi-local Hilbert space is given by:

Dim HB =
C(N,K)

C(0,K)
=

a(0,K)

a(N,K)
(5.25)

The evaluation of the matrix (Penner) integral therefore also determines the dimension

of the bi-local Hilbert space. Since this evaluation is a little bit involved, we present it

in the following. Evaluation of matrix integrals (for real matrices) is given in [43] the

extension to the complex case was considered in [44].
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We will use results of [42], whereby every (complex) matrix can be reduced through

(symmetry) transformations to a diagonal form:

Z(k, l) →

















ω1

ω2 0
ω3

0 . . .

ωK

















(5.26)

and the matrix integration measure becomes:

[dZ̄dZ] = |∆(ω)|2
K
∏

l=1

dωldΩ (5.27)

where dΩ denotes “angular” parts of the integration and ∆(x1, · · · , xK) =
∏

k<l(xk−xl) is

a Vandermonde determinant, with xi = ω2
i . Consequently the matrix integral for a(N,K)

(and C(N,K)) becomes:

a(N,K) =
VolΩ

K!

∫

∆(x1, · · · , xK)2
∏

l

(1 + ω2
l )

−2K−N
∏

l

dωl (5.28)

changing variables: xi = − yi
1−yi

, we get:

a(N,K) =
VolΩ

2KK!

∫ Λ

0

K
∏

i

dyi∆(y1, · · · , yK)2
∏

i

(1− yi)
N (5.29)

This integral can be evaluated exactly. It belongs to a class of integrals evaluated by

Selberg in 1944 [45]:

I(α, β, γ, n) =

∫ 1

0
dx1 · · ·

∫ 1

0
dxn|∆(x)|2γ

n
∏

j=1

xα−1
j (1− xj)

β−1

=

n−1
∏

j=0

Γ(1 + γ + jγ)Γ(α+ jγ)Γ(β + jγ)

Γ(1 + γ)Γ(α+ β + (n+ j − 1)γ)
(5.30)

we have the case with α = 1, β = N + 1, γ = 1, n = K and

I(1, N + 1, 1,K) =
K−1
∏

j=0

Γ(2 + j)Γ(1 + j)Γ(N + 1 + j)

Γ(2)Γ(N +K + j + 1)
(5.31)

We therefore obtain the following formula for the number of states in our Bi-local

Sp(2N) Hilbert space:

Dim HB =
K−1
∏

j=0

Γ(j + 1)Γ(N +K + j + 1)

Γ(K + j + 1)Γ(N + j + 1)
(5.32)
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We have compared this number with explicit enumeration of Sp(2N) invariant states

in the fermionic Hilbert space (for low values of N and K) and found complete agreement.

It is probably not that difficult to prove agreement for all N,K. This settles however

the potential problem of overcompletness of the bi-local representation. Since the Sp(2N)

counting uses the fermionic nature of creation operators and features exclusion when oc-

cupation numbers grow above certain limit it is seen that bi-local geometric quantization

elegantly incorporates these effects. The compact nature of the associated infinite di-

mensional Kahler manifold secures the correct dimensionality of the the singlet Hilbert

space. By using Stirling’s approximation for the number of states in the bi-local Hilbert

space (5.32), we see the dimension growing linearly in N (with K ≫ N):

ln(Dim HB) ∼ 2NK ln 2 at the leading order (5.33)

This is a clear demonstration of the presence of an N -dependent cutoff in agreement with

the fermionic nature of the original Sp(2N) Hilbert space. So in the nonlinear bi-local

theory with G = 1/N as coupling constant, we have the desired effect that the Hilbert

space is cutoff through 1/G effects. Consequently we conclude that the geometric bi-local

representation with infinite dimensional matrices Z(k, l) provides a complete framework

for quantization of the bi-local theory and of de Sitter HS Gravity.

6 Comments

We have motivated the use of double analytic continuation and hence the connection be-

tween the Sp(2N) model and de Sitter higher field theory for the quadratic action for the

collective field. To establish this connection one of course needs to establish this for the

interaction terms. This is of course highly nontrivial, and in fact the connection between

the collective theory for the O(N) model and the AdS higher spin theory is only beginning

to be understood. We believe that once this is understood well enough one can address

the question for the Sp(2N)-dS connection.

In this paper we have dealt mostly with the free Sp(2N) vector model. As the parallel

O(N)/AdS case this theory is characterized with an infinite sequence of conserved higher

spin currents and associated conserved charges. The question regarding the implementation

of the Coleman-Mandula theorem then arises, this question was discussed recently in [46–

48]. One can expected that identical conclusions hold for the present Sp(2N) case. The

bi-local collective field theory technqiue is trivially extendible to the linear sigma model

based on Sp(2N), as commented in section 4.2. Of particular interest is the IR behavior of

the theory which presumably takes the theory from the Gaussian fixed point to a nontrivial

fixed point.

It is well known that dS/CFT correspondence is quite different from AdS/CFT corre-

spondence, particularly in the interpretation of bulk correlation functions [15, 16, 49, 50].

We have not addressed these issues in this paper. Recently it has been proposed that the

Sp(2N)/dS connection can be used to understand subtle points about dS/CFT [19]. We

hope that an explicit construction as described in this paper will be valuable for a deeper

understanding of these issues.
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The bi-local formulation that we have presented was cast in a geometric, pseudo-

spin framework. We have suggested that this representation offers the best framework for

quantization of the bi-local theory and consequently the Hilbert space in dS/CFT. We

have demonstrated through counting of the size of the Hilbert space that it incorporates

finite N effects through a cutoff which depends on the coupling constant of the theory:

G = 1/N . Most importantly it incorporates the finite N exclusion principle and provides

an explanation on the quantization of G = 1/N from the bulk point of view. These

features are obviously of definite relevance for understanding quantization of Gravity in

de Sitter space-time. Nevertheless the question of understanding de Sitter Entropy from

this 3 dimensional CFT remains an interesting and challenging problem.

It would be interesting to consider the analogues of Sp(2N)/dS correspondence in the

CFT2/Chern-Simons version [52–54], as well as to three dimensional conformal theories

which have a line of fixed points, as in [55]. Finally higher spin theories arise as limits of

string theory in several contexts, e.g. [56] and [55]. It would be interesting to see if these

models can be modified to realize a dS/CFT correspondence in string theory.
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