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1 Introduction

Exact results in non-abelian gauge theories are rare and clearly of great importance. In
supersymmetric gauge theories, the powerful technique of localization allows sometimes
for such exact results for certain observables preserving some fermionic symmetries of the
theory. For example the exact expressions conjectured in [1, 2] for the circular 1/2-BPS
Wilson loop in N' =4 SYM were proved using localization in [3], as well as extendend to
a large class of N' = 2 theories.



In N =4 SYM, a wide generalization of the 1/2-BPS circle to lower supersymmetric
Wilson loops of arbitrary shapes was introduced in [4-6] and then classified in [7]. An
interesting subfamily of that construction consists of operators supported on any loop on
a two-sphere S? embedded into the R* spacetime. Generically, these Wilson loops are
1/8-BPS, and it was conjectured in [4-6] that their quantum correlators are exactly cap-
tured by a purely perturbative calculation in bosonic 2d Yang-Mills. The conjecture was
later strongly supported by the localization calculation in [8], where it was shown that the
path-integral with insertions of those loop operators localizes on a 2d gauge theory closely
related to the Hitchin/Higgs-Yang Mills system [9-11], which can be seen to be perturba-
tively equivalent to ordinary bosonic 2d Yang-Mills.! The calculation in the 2d theory can
be then mapped to certain Gaussian multi-matrix models, which allow for an exact eval-
uation of the correlators. Several checks of the relation to 2d YM have appeared [12-17].2
In particular, recently the localization result for the expectation value of a Wilson loop in
this family was used in [18] (see also [19]) to derive an exact expression for the low-angle
limit of the cusp anomalous dimension. This has been checked using integrability up to
three loops in [20] (see also [21]) and analytically to all loops in [22], providing a first link
between localization and integrability results.

The calculation in [8] also suggested that localization applies in fact not only to the
Wilson loops, but to a larger sector of operators that are annihilated by the same super-
charge. This include certain chiral primary operators inserted on the S? [23] as well as 't
Hooft loops linked with the S? [24]. The correlation function of a Wilson loop and a local
operator in this sector was computed in [23], giving support and generalizing the original
conjecture of [25] for the correlator of a 1/2-BPS Wilson loop and a chiral primary (see
also [26] for the study of the large R-charge limit of this correlator). In [24, 27], the exact
results implied by the relation to 2d were also used to obtain some explicit tests of the
S-duality symmetry of the N’ =4 SYM theory.

In this paper, we continue the study of this supersymmetric subsector and concentrate
on mixed correlation functions of Wilson loops and local operators. In particular, we fo-
cus on the limit in which the local operators have large R-charges J ~ v/ in the strong
coupling regime A > 1. A motivation to look at this problem is the recent progress in com-
puting correlation functions of operators with large charges using semiclassical strings in
AdS (see e.g. [28-38] and references therein). We hope that studying similar correlators in
a subsector where exact results are possible may provide detailed tests of the gauge/string
dictionary and serve as a useful benchmark for various computations involving more general
non-protected operators.>

As mentioned above, the localization to 2d allows to map the calculation to certain
multi-matrix models. Atthree-point level, we have to solve a Gaussian three-matrix model.

'n [8] the one-loop determinant for fluctuations around the localization locus was not computed. The
conjecture of [4-6] follows if one assumes that the determinant is just unity. Hence the conjecture for the
1/8-BPS loops is not yet proved at the same level of rigour as [3].

2All calculations in the literature agree with the original conjecture except for a certain disagreement
found in [16]. It would be good to clarify the nature of that disagreement.

3Some examples of (non-supersymmetric) correlation functions of Wilson loop and local operators in the
limit of large charges were recently studied also in [39, 40].



Since we could not find explicit results available in the literature,* here we present in de-
tail a derivation of the exact planar resolvent for the most general Gaussian three-matrix
model. The result can be applied to all possible three-point correlators of Wilson loops and
local operators, but in this paper we focus our attention to the case of (WO, 0,). After
deriving an exact prediction for this correlator, we study its strong coupling behavior in
the regimes J1, Jo < 1, Ji ~ VA > Jp and Ji, Jo ~ V. In the first case, in particular, we
observe a factorization at leading order at strong coupling which is completely analogous
to the one seen in [44] for four-point functions of two “heavy” and two “light” operators.
For J1, Jo ~ v/A we derive a prediction for the exponential behavior of the correlator which
should be matched against a semiclassical string solution with two spikes which end on two
boundary points.

On the string theory side, we first derive a generalization of the solution of [26] describ-
ing (WO;) for J ~ /X > 1 to the case of the 1/4-BPS circular loop. The corresponding
string lies in AdS3 x S3 and preserves less supersymmetries than the solution of [26]. Com-
puting its area we find precise agreement with the two-matrix model derived from the 2d
YM description. We then use this solution to obtain the string prediction for (WO 0y,)
at Ji ~ VX > Jy, again observing perfect agreeement with the exact solution of the three-
matrix model in the appropriate limit. In this paper we do not find the string solution
which should describe (WO 0y,) in the regime Ji, Jo ~ vVA. We derive however a set of
first order differential equations which follow from supersymmetry of the system and which
should be satisfied by all string solutions in AdS3 x S dual to the general (WW ---0O - --)
correlators in our sector. Hopefully, these equations will be useful to find or characterize
new explicit solutions.

The paper is organized as follows. In section 2, we review the Wilson loops and local
operators of interest as well as the dictionary relating them to the 2d theory. In section
3 we show how to derive from 2d YM the Gaussian multi-matrix models capturing mixed
correlators of Wilson and local operators (in particular (IWO0OO)). In section 4 we solve the
general Gaussian three-matrix model in the planar limit, obtain an exact prediction for
(WOO) and study its strong coupling limit. In section 5 we derive the string solution dual
to (Wi/a—ppsOy) at J ~ VA > 1, compare its area to the localization prediction and use
it to compute (WOO) in the limit of one “heavy” and one “light” local operator. Finally,
we study the supersymmetry constraints on the string solutions in our sector and derive a
set of first order differential equations that the solutions should obey.

2 Review of supersymmetric subsector and relation to 2d

In our conventions, the N'= 4 SYM action on R* with the standard flat metric is

1 1
Ssyy = ——— | d'a <2tr FyyFy +tr D@ 4D, P4 + .. ) , (2.1)

9y m

“There is a vast literature on multi-matrix models, see e.g. [41-43]. The class of models that can in
general be solved exactly are those of open chain type, where the interactions among the n matrices are of the
form X;X;4+1,7=1,...,n. In our case we also encounter matrix models with closed chain interactions which
are not solved in general. However, since our models are Gaussian, a solution is still possible, as we show.



where p = 1,...,4 are space-time indices and A = 1,...,6 are SO(6)p indices. The co-
variant derivative is D = d + A, the curvature is F,, = [D,, D,], all fields take value
in the Lie algebra of the gauge group U(N) and represented by anti-Hermitian matrices
Ay = AT, ® = 9T,. The anti-Hermitian generators satisfy tr7,7, = —%(5,11,, hence the
action may be also written as

1 !
Seym = 2952/]\/[ /d € <2F§VF§V +D,®%D,®% + .. > . (2.2)

The Wilson loops we study in this paper are the 1/8-BPS operators constructed in [4—
6]. They are supported on arbitrary closed curves on a S? inside R* which we may define
in Cartesian coordinates as

x4 =0, Zx?er. (2.3)

The radius 7 of the two-sphere is arbitrary, and we will set it henceforth to 1 for simplicity
(the radius dependence is easily reintroduced if desired). The 1/8-BPS Wilson loops couple
to three of the six scalars, ®;, i = 1,2,3, and for any loop C € S?, they are given by

Wr(C) = le trp Pexpfé(Ai + gy ®ixF)da (2.4)
where dr denotes the dimension of the representation R. In other words, given a loop
defined by #(s),i? = 1, the operator couples to the combination of scalars (& x i) - ®.
For arbitrary curve, these operators preserve four supercharges.® Supersymmetry can be
enhanced for special shapes. For example, the well-known 1/2-BPS circular Wilson loop is
obtained by taking C to be an equator of S2. Circles of arbitrary radius along latitudes of
S?% are 1/4-BPS and they coincide with the 1/4-BPS Wilson loops of [45]. Note that since
the four supercharges preserved by the loops do not depend on the contour, an arbitrary
collection of Wilson loops on S? is also 1/8-BPS.

As shown in [23], see also [8], it is possible to add an arbitrary number of local oper-
ators on the same S? while still preserving two supercharges. The relevant local operators
are the following

Os(x) = tr (20" +i0Y)”  2ies?i=1,2,3 (2.5)

Note that these can be viewed as ordinary chiral primaries inserted at a specific point,
where the orientation in the scalar space is correlated with the position of the operator. It
is easy to see from the definition that the two-point function of these operators is position
independent. In the planar limit we have

J
(05(@)0(a")) = J(H;) 1 (2.

5In flat space, these supercharges are linear combinations of Poincaré and superconformal supersymme-
tries.



In fact, (2.5) are a special case of the superprotected operators introduced in [46], where
it was shown that all the n-point functions (O, (x1)O ,(z2) - Oy, (zy)) are position in-
dependent and moreover tree-level exact.

The system of any number of these local operators on S? preserves four super-
charges [23, 46]. When the Wilson loops (2.4) are also present, the combined system is
invariant under two supercharges [23]. While all n-point functions of the O ;’s are protected,
mixed correlation functions of Wilson loops and local operators can have a non-trivial cou-
pling dependence and will be the focus of this paper.

A linear combination of the two supercharges preserved by the system is precisely the
fermionic charge used in the localization calculation of [8], which therefore also applies to
mixed correlators of Wilson loops and local operators. Hence, extending the conjecture
of [4-6], it was proposed in [23] that correlators of any number of Wilson loops and local
operators can be computed exactly by the bosonic two-dimensional Yang-Mills theory on
S? with action

1 1~ -
Sy, = — [ d? —F% W 2.7
Y Mo 2g§d J\/g <2 uwta > ) ( )
with the following 4d/2d map
. NJ g2
Wgr(C) <+ trpPefe?, Oj(x) <« tr (z *94 F) , gay = —2id (2.8)
T

where we used tilde to denote the two-dimensional fields. Under this map, on the 2d YM
side we should extract only the perturbative, or zero-instanton, contribution. In fact,
non-trivial instantons on the 2d side also have an interpretation in 4d: they correspond
to turning on 1/2-BPS ’t Hooft loop operators along a S! linked with the S? [24] (see
also [27]). In this paper we will not consider 't Hooft loops and focus on Wilson loops
and local operators. One way to extract perturbative contribution of the exact 2d YM
quantities [47-51] is to decompose them into a sum of instanton sectors and then pick
the term with zero instanton number [52-54]. Another way is to simply sum up the 2d
perturbative expansion around the trivial vacuum A = 0 in a gauge in which the theory
becomes free. Either way, the end result is that the 4d correlators can be eventually
mapped to certain Gaussian multi-matrix models

(Wry (C1)Wry(C2) -+ Oy (21)O gy (%2) -+ aa (2.9)
1
== ﬁdXﬂ[ng] - [dV3)[dYa] - - trgy €X trg, X2 tr YV tr V2 e S XY

where the matrix model action Sy, ,.[X, Y] is a quadratic form in X,,Y, whose coefficients
depend on the areas singled out by the Wilson loops and the topology of the system (i.e. in
which regions the local operators sit, but not on their precise position). Note that we did
not assume a large N limit here. Localization, and hence the matrix model description,
should apply at any finite V.

As a special case, the Wilson loop expectation value is given by the 1-matrix model

2
_ AT X2

(Wr(C))aa = % / [dX] trpeX e 2FmA1az (2.10)



Figure 1. Supersymmetric Wilson loops and local operators on S2. The system of any number of
loops of arbitrary shape and any number of local operators preserves 2 supercharges. Correlation
functions of these operators are mapped by localization arguments to a multi-matrix model
computation.

where Aj, As are the areas singled out by the Wilson loop and A = A; + Ay = 4w. In
particular for the 1/2-BPS circular loop A; = A2 = A/2 and the correct Gaussian matrix
model [1-3] is reproduced.

Another example previously studied is the Wilson loop/local operator correlator, which
using the map to 2d YM can be shown to be given by [23]

(42— 2ixY)

(Wr(C)O(2))ad = ;/[dX] [dY] trpe™ trY” ¢ (s a (2.11)

where we have assumed that the local operator is in the region of area A;. This result
in particular reproduces and generalizes the conjecture of [25] for the exact correlator of
the 1/2-BPS circular loop and a chiral primary (see also [55] for the generalization to the
1/4-BPS circle).® The correlator of two Wilson loops on S? was also studied, see [14, 15].

Note that the position independence and tree-level exactness [46] of the correlation
functions of local operators (2.5) can also be easily seen from the point of view of the 2d
theory.” The explicit multi-matrix model which computes the correlator in this case is
given by [23]

_8n? (1 N X, )23 X2
<OJ10J2"‘OJn>:;/[Xm][dXQ]"‘[an] e Q%Mt(nfl(za_l ) 1 X3)

X tr X tr X2 -t X (2.12)

The matrix-model action is chosen to reproduce the tree-level propagator between the
local operators, and is such that the propagators from an operator to itself are set to zero

SConformal symmetry fixes the correlation functions of a circular Wilson loop and a scalar primary
operator up to an undetermined function of the coupling, see e.g. [39, 56]. Hence the exact (IWO) correlator
on the sphere is enough to determine the correlator for arbitrary position of the local operator.

"One may derive for example a Ward identity by acting with the differential on the correlation functions
of tr(i *2q 15)J operators to show their position independence. Tree level exactness follows from the fact
that 2d YM becomes Gaussian in an appropriate gauge.



(the operators are understood to be normal-ordered). Sometimes in this paper we will
also consider operators normalized in the same way as ordinary chiral primaries with unit

two-point function, i.e.®

or\7 1 - J
Oy = <—z> — tr (2'®' + id*)” = N0, . 2.13

Let us mention that the localization arguments reviewed above should also apply when
the local operators are inserted along the loop, i.e. for gauge invariant operators of the form

tr {(x’lqﬂ(zl) + i¢>4(w1))J1W[:L’1, x9) (.TL‘%CI)Z(.’EQ) + i<I>4(:J:2))J2W[x2, xl]}

[72 (Aitiejn®iat)da? (2.14)

Wz, x2] = Pe

and analogous operators with arbitrary number of insertions along the loop. These should
map to the corresponding operators in 2d YM according to (2.8). We leave a detailed
study of these operators for the future.

3 Multi-matrix models from 2d YM

In this section we show how to derive from 2d YM the Gaussian multi-matrix models
computing the correlation functions of Wilson loops and local operators. First, we will use
perturbation theory in the light-cone gauge to obtain the 3-matrix models for the explicit
example of a triple trace correlator of a 1/8 BPS Wilson loop and two local operators on
S2. Then, we will present a simple formula giving the multi-matrix model for the most
general multi-point correlators, and show how to derive it from the known exact solution
of 2d Yang-Mills [47-51].

3.1 Light-cone perturbatione theory

As done in [23], a simple way to derive the matrix model is to look at the perturbative
Feynman diagram expansion in the A = 0 gauge, where z, Z denote complex coordinates
on S? with metric (the radius is set to 1)

4dzdz

ds? = ——=
(1+22)

In the A; = 0 gauge there are no interactions and the 2d YM action becomes simply”

1 o
Sy M, = 2 / d*2\/g97* g7 tr (0:A.0:A.) . (3.1)
2d

8A chiral primary Ny tr(u - ®)7 with u> = 0 and u - u* = 1 has unit normalized 2-point function in the

J
planar limit if Ny = 27/2 (—12—\/}) % The factor of 7 in the normalization factor is due to our convention
that the gauge group generators are anti-hermitian.

“Recall that we use conventions in which the gauge field is anti-hermitian, as in [23]. Also, in this section

we will omit tilde’s on the 2d fields, since confusion with 4d fields will not arise.



(@) (b)

Figure 2. The two distinct topologies for the correlator (WOO). Figure (a) is mapped to an open
chain 3-matrix model, while (b) to a closed chain one.

We use notations d?z = dz A dz = 2idx A dy for z = x + iy, and V9 = —igz, so that
d*z,/q is the conventional volume form on S? normalized as

/sz\/g = 4. (3.2)

The gauge field propagator is

: 2 1 1 z—w
AL (2) (A (w)) = —L245i6h . .
(A () (A ) =~ Lgjgh I 0 (33)
Using this, one gets the propagator for the field strength ¢ x9q F' = —%(1 + 22)20: A,
) ) 92 ’Lg2
(i 43 F1(2) i %34 F (w)) = —616" (8; R R w)) R

For convenience, let us record here also the propagator between the field strength and the

gauge field
' 2 1 1+ zw
. FZ Az k — _g2d 1 k . *
(i %2 F(2) (A2)f (w)) = —T22070) == (3:5)

There are two distinct topologies for the correlator of a Wilson loop and two local
operators on S2: one where the operators are on opposite hemispheres compared to the
loop and the other where the operators are on the same hemisphere, see figure 2.

Let us start with the case in which the two local operators are on opposite hemispheres
compared to the Wilson loop. Using the area preserving invariance of 2d YM and the posi-
tion independence, we can always choose the loop to be a circle at some latitude angle, and
place one local operator, say Oy,, at the north pole and the other, O,, at the south pole.
Let us parameterize the loop as z(7) = roe’™, where ro = tang and 6y is the latitude angle.



It is then easy to see that the propagators in the Az = 0 gauge are all constants (2 = 0,z2):

2

. i : k k92d 0 _ k 954 A1 A

(1A )2 (A ) = 00 T sy = -

: Gy s A k(o siskTadT L 05 A2

(1220 FJ(0) 2(ADHE)) = —iofo P = oo 1 o
, .

- i : k _ k92d7” "o k92dA1

(1020 F(00) (A () = 018} G 0 = ialoy 45

(i %90 Fi(00) i %34 FF(0)) = 6l6’f92d

Since the propagators are all constants, the sum of Feynman diagrams is obviously given
by a matrix model. If we assign matrices X1, X9, X3 to respectively Oy, ,W,0,, the

non-vanishing matrix propagators are then, using the relation ggd =2 /Ag}% M= —% g%/ M
Az i sk
(X0)5(X2)f) = ZQYMA2515 = )‘125153'7
A1 A -
()5 ()) = g g 2010% = 2 Aandlot
A . N (3.7)
i 1 i
<(X2)j(X3)l> ZQYM A2 515 = >‘235l5§€v

((X1)j (X3)F) = gYMﬁélléj = NAB‘SZZ"S?’

where we have introduced the shorthand notation A, to denote the propagator from a to
b matrix, a,b =1, 2, 3. Inverting the propagator, one gets the matrix model action

A? (Al 1 Ag

Sowo = —5— e X1 e + —X 2X1X2 + X2X3> (38)

29%/]\/[ A1 A 2 Aq A Ay

and the correlator is given by
1 J1 X2 J2 ,—Sowo
(05, Wgr(C)Oy,) = Z [dX1][dXo][dX3] tr Xi* trre”? tr X357 e . (3.9)

We see that only adjacent matrices interact. This is known in the literature as an open
chain multi-matrix model. The same structure arises for the correlator of three Wilson
loops with the topology of three latitudes on S?, see [14, 15]. In that case, the explicit
three-matrix model is given by

1
<VVR1 (C1)WRQ (CQ)WR3 (C3)> = E /[dXﬂ[ng”ng] trg, eXl trr, 6X2 tngeX?’ efsWWW ,

A 1 1 1
S = X+ — (X — X))+ —(Xo— X3)2 + —X3 | . 3.10
Www = g9 <A1 i+ A12( 1— X2) A23( 2 — X3)" + R (3.10)
where Ay, A1o, Aas, A3 are the areas of the regions singled out by the three Wilson loops.
The generalization to the case of any number of Wilson loops with the topology of
latitudes on S? is straightforward [14, 15] and gives an open chain multi-matrix model
(see also next section for the derivation of the most general correlator).



When the local operators are on the same hemisphere, a similar derivation goes
through. Assuming that both local operators described by X7 and X3 are to the north of
the Wilson loop described by Xs, the only change compared to (3.7) is that now

i Az ik _ isk
((X2)j (X3)l> ZQYM A2 515 )\235153‘

A )
<(X1) (XQ) > ZgYMAgdlék = )\125;5;?.

(3.11)

Then the matrix model action is
A2
2932’M (Al +2A2)

2

X3
Soow = < A XP+2

A, A2X3 2iX1X2—2iX2X3—|—2AX3X1>. (312)

In this case all pair of matrices interact, and we may refer to this model as a closed chain.

3.2 General multi-matrix model from 2d YM exact solution

In [14], a simple way to derive the multi-matrix model giving the correlator of several
Wilson loops was proposed. The argument was based on the observation that [48, 49, 51]
2d YM on a Riemann surface ¥ localizes on classical configurations solving da * F' = 0.
Also, two dimensional Yang-Mills theory essentially reduces to the abelian theory [48, 49],
so that one can take *F' to be a piecewise constant function on ¥ with jumps supported
on the Wilson loops. The value of xF' in each region is then related via Stokes’ theorem
to the integral of the gauge field 5501_ A = iX; along each loop, where the matrices X; are
the variables in the multi-matrix model. Let us review how this works in the simplest case
of a single Wilson loop expectation value on S?. We divide the sphere in two regions X1,
Yo of areas Ay, As. The field strength is taken to be

F = ’L(bl in 21, « I = Z¢2 in 22, (313)

where ¢1, ¢2 are constant hermitean matrices (we assume U(N) gauge group here).
Stokes’ theorem gives

X = fA = / F = iA1¢1 = — F = —iA2¢2 . (314)
C D] Py}
The 2d Yang-Mills action localized to constant curvatures is then
S=—1 [ Pogirr) = L ( X242 (- X)2> (3.15)
=—— o r — .
T5a 95, \Ai Az

and we get the matrix model

1 L, —— A tr X2 1 oA X
(W) = Z/[dX} trpeXe 9atiA2 = [laX]trg eXe 2nAiAz (3.16)
where in the last step we have used the relation (2.8) between 2d and 4d coupling constants
and formally changed variables from X to ¢X. This is indeed the expected form of the

familiar one-matrix model (2.10). In this derivation one assumes that after abelianization

,10,



the gauge bundle is trivial, which precisely corresponds to dropping the contribution of
the unstable instantons [48, 49]. In other words, the matrix model derived in this way
computes the perturbative contribution of the 2d YM observables as required by the
conjecture of [5, 6, 8].

The argument readily generalizes to the case of k non self-interesecting Wilson loops
of arbitrary topology a general Riemann surface 3. We can always dissect X into several
pieces {¥,,} which have the topology of a sphere with one, two or three holes, such that
all given non-intersecting Wilson loops run along some of the cuts. The localization to
constant curvature gives the multi-matrix model action

2

S = — 3 LI, S osMx |, (3.17)

=2 A
92d {x, 3 B \icox,,

(m)

where s, = £1 is fixed by the orienation of the Wilson loops relative to X,,. The Wilson

loop correlator is then

1 < )
(Wr,(C1) - Wg,(Ck)) = 7 /[dX1] - [dXy] trg, €K1 trg, ek e Omm. (3.18)

To compute mixed correlators of Wilson and local operators, we proceed as follows. We
shrink the Wilson loop C; which we want to replace by a local operator, and substitute
in the above action iX; = a;(xF;), where a; is the small area of the corresponding disk.
We then compute the propagators by inverting the kinetic operator, and take the limit of
a; — 0 while killing the propagator from *F; to *xF; itself to implement normal ordering.
Inverting again the propagator matrix we then obtain the effective matrix model action for
mixed correlators with normal ordering prescription in effect on local operators. It is easy
to verify that this procedure agrees with the matrix models shown earlier for the special
cases (WO), (WOO) which were derived by summing up light-cone perturbation theory.

While the localization to constant F' argument is rather intuitive and convenient,
it is not completely rigorous. For example, one may worry about subtleties in applying
Stokes’ theorem in the non-abelian case. For this reason, we explicitly show here that
the matrix model action (3.17) indeed corresponds to the perturbative, or zero-instanton
sector, contribution to the exact 2d YM partition function [47-51].

To be completely general, let us consider 2d YM with arbitrary compact gauge group
G on a Riemann surface ¥ (the specialization to G = U(N) is straightforward). In the
temporal gauge Ay = 0 the Lagrangian is Q%A%, then the Hamiltonian is %gQA where A
is the Laplacian equal to the second Casimir. The exact partition function with possibly
several Wilson loops inserted is obtained by gluing the spheres with one, two or three
holes along the boundaries [50, 51])

Ki(U1) = Y dae 194Ny, (1)

A
1
Ka(Uy, Us) = 3 e 194Ny (Uy)xx (Vo) (3.19)
A
1
Ky(U1,Us,Us) = 3~ e 14000 00 (U (T3)
A
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where U; are the holonomies of the connection on the boundary, A labels irreducible
representations of G of dimension dy, and y) is the corresponding character. Cs(\)
denotes the value of the second casimir of the Lie algebra of G in the irrep A, and A is
the 2d area of a given piece. For example, consider a sphere with three Wilson loops of
not concentric topology. We can glue this configuration from a sphere with three holes
K3 and three disks K. The Wilson loop correlator is obtained by including the insertions
of xg, (U;) for each Wilson loop and integrating over the boundary holonomies. Explicit
examples for gauge group U(1) and U(2) are given in appendix.

We now want to show that the matrix model with action (3.17) is the perturbative
contribution to the exact partition function obtained from the blocks (3.19). For example,
consider the block K3 (the other cases Ky, K are treated similarly). Let the holonomies
U; be parametrized by elements z; in the Cartan of the Lie algebra of G, such that U; is a
conjugate of an element €% of the maximal torus of G. The character x) of the irrep with
highest weight A is given by Weyl’s formula

Zwew(*l)we(Mp’w@))

= 2
where W is the Weyl group, R(z) is the Weyl denominator
R(ﬂf) — H(eé(avx) _ 67%(0‘71))7 (321)

a>0

and p is the Weyl special vector defined by the condition that (p, ;) = 1 for all simple
roots.'% The dimension of the irrep with highest weight \ is

B (a, A+ p)
dy = };[0 ) (3.22)

where o > 0 denotes positive roots. The second Casimir Ca(A) is
Co(\) = (A +p)% = p2. (3.23)
Let A(x) be the Weyl measure on the Cartan of the Lie algebra of G

Az) =[] (e 2). (3.24)

a>0

Hence, up to an irrelevant constant factor, the building block K3 is given by

3 — 1 Wi A pwi(i)) 2
1 Zw-GW( 1) € _9g Atri(}\ 2
3(171,1'2,1’3) /\€§P+ (A()\ + ,0) il_ll R(sz) € 4 (3 5)

where P denotes the subset of dominant weights in the weight lattice of G.

The exact 2d YM partition function is the integral over the holonomies associated
with the loops that join the building blocks. Each loop variable enters the measure of the
integration with the two building blocks associated with it

Z:/[dUl]Kgm(Ul,...,)Kgn(Ul,...,)... (3.26)

'%In finite-dimensional Lie algebras p = 1>, a.
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where ¥,,, ¥, are two building blocks (either disk, cylinder or triunion) which share a
boundary loop. We can integrate over adjoint orbits of G and reduce the integral to the
maximal torus of G on which the measure of integration is

[dU;] = dx; R(x;)* . (3.27)

The factors R(z;)? in the measure cancel the denominators R(z;) in the blocks (3.25).
Let dx; be the flat abelian measure of integration and K2* be the blocks (3.25) without
denominators, i.e.

3

1 92Atri 2
Kot (51 29, 23) = —_ —1)wigXFpwi(z:) e 1 ()T (398
AepPt =1 \w;eW
so that the partition function is
7= /dxiKgi‘:(xi,...,) (o ). (3.29)

Let us now go back to the matrix model (3.17) obtained from the localization to
constant F' argument. By introducing an auxiliary integration variable ®y, = for each block
Ym, we can rewrite (3.17) as

2
9°As,,
S=> Z(E Xz-,@Em)—Tq%m (3.30)
{EZm} 1€0Ym

Here (,) denotes the positive bilinear form on the Lie algebra g of G which replaces ‘tr’
in the general case. It is normalized such that the long roots a have norm (o, ) = 2. We
have also omitted the orientation factors sgm) = +1 for simplicity.'? While X; € g, it is
natural to assume that @y takes values in the dual g* to the Lie algebra g. To proceed,
we can integrate over adjoint G-orbits for each variable X; € g and ®x,, € g¢* using
Itzykson-Zuber formula so that the matrix model integral over X;’s and @y,  ’s reduces to
the Cartan b and its dual b*.

Let X be in the G-orbit of z; € b, and let ® be in the G-orbit of A € h*. The
Itzykson-Zuber formula for X € g, ® € g* and integration Dg over the group G with the
invariant measure reads

w ,(w(x),A
/ Dgels Xo#) _ Zwew (1) (3.31)
geG

Az)A(A)
The matrix model measure [[dX;] reduces to [ dz; with the measure
/ [dX,] = / di A (1) (3.32)

Since each x; appears in two blocks touching the same boundary, the factors A(z;)? in the
measure cancel the denominators A(z;) in the Cartan blocks (3.31). The factor A(Ay,,)?

'We assume canonical orientation of the boundary 9%, with respect to X,,, and if necessary reabsorb

the signs due to orientation into the Wilson loop insertions trg, et
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Figure 3. In this recursion we sum over the label ¢ with which the leg “1” is contracted.

in the measure coming from [[d®y, ] combines with the denominators A(Ay, ) in (3.31)

2-10%m| | that is exponents 1,0, —1 for disk, cylinder

and gives the overall power A(Ay,,)
and triunion respectively. Hence, after reduction to the abelian integrations, the matrix
model partition function with action (3.30) (with possibly Wilson loops inserted) can be

written in terms of the blocks

3

1 9% Agri \2
Kﬂat,m.m. 1)wi (Awi(x;)) - A .
3 = /* dA ALY J:ll wge (=1)"e e 4 (3.33)

and similarly for disk and cylinder. Notice that under the substitution A = A + p, the
matrix model blocks (3.33) are exactly the same as the exact 2d YM blocks (3.25), except
that the summation over the subset of dominant weights P* C h* in the weight lattice
P C b* is replaced by the integration over h*. Using arguments based on the Poisson
resummation or Euler-Maclaurin formula one can see that indeed the matrix model
block (3.33), given by the integral, is the perturbative approximation to the exact 2d
YM block (3.25), given by the sum. To support this general proof, in appendix we have
computed (WWW) from the matrix model and compared the result to the zero-instanton
sector of the exact partition function for gauge group U(1) and U(2).

4 Gaussian three-matrix model in the planar limit

4.1 Catalan numbers

For start, we recall the usual combinatorial computation for the generating function of
Catalan numbers, which count the number of planar diagrams for the one-point correlation
function 4 tr(X*) in the Gaussian matrix model. By c¢(k) we denote the number of such
diagrams, so that ¢(0) = 1,¢(1) = 0,¢(2) = 1,.... The numbers ¢(k) satisfy the recursion
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on figure 3

Let f(z) be the generating function

flz) = c(k)z""". (4.2)

k=0

From the recursion relation (4.1), the generating function f(z) satisfies

F2(z) = 2f(2) — o (4.3)
with ¢p = 1. Hence the solution with asymptotics f(z) = 27!+ ... as z — oo is
z2—Vz2—4
fz) =Y (4.4)

Of course, the generating function

_ _ 2 — V22— 4\
fX) = A2 = ——= (4.5)
is actually the planar resolvent
1 1
f(z, A) = <N tr ﬁhﬂanar (46)

in the Gaussian matrix model

Z:/DXexp<—2]\j\trX2>. (4.7)

4.2 One-point resolvent with external legs

First we compute the number of planar diagrams of the following shape (fig 4). Consider
a half-stripe I x R™ where an interval I is vertical and R™ is a half-line extending to the
right, and we are given a set P of i+ 1 points points placed on I and labelled consecutively
from “0” to “i”.

We define a planar diagram with & external legs as a configuration where k£ points
from the set P are connected to the positive infinity by horizontal halflines, moreover,

these k points must include the point “0” and “i”

, and the remaining 7 + 1 — k points are
connected pairwise by the internal propagators such that diagram can be drawn on the
half-stripe without intersections. Let cgtripe (%, k) be the number of such diagrams.

Then

cstripe(ia k) = Z Cstripe(ila k— I)C(Z —i' - 1) (48)
/=0
and
Cstripe(ia 1) = 0;0- (49)
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CG’-1) i

CG’ k=1) j

Figure 4. Stripe diagrams.

Let w(z) be generating function for cgtripe(?, k) given by

chtrlpe Z, k (410)

=0

The recursion implies w(z)r = w(z)k—1f(2), and hence

w(z)p = f(2)". (4.11)

Now, let ceyel(n, k) be the number of planar diagram on a cylinder S L R* with the set
P consisting of n cyclicly labelled points 0. ..7n—1 positioned on the circle S' and k external
cyclicly labelled legs connecting k£ points from P with the infinity with the condition that
the legs are cyclicly oriented. In particular, cqyc1(n,n) = n since the are n diagrams obtained

4( =99

by cyclic shifts from the diagram in which poin in P connects by leg “¢” to infinity.
We can deduce ceyel (1, k) from cgripe (%, k) by summing over the position of the leg “1”
and “k”. More explicitly, suppose that the k external legs are connected to points on the
circle with labels between “0” and “” (0 < i < n — 1), with the external legs “1” and
“k” corresponding to points “0” and “” respectively. Then the number of diagrams is
Cstripe (4, k)e(n — ¢ — 1). Summing over all possible values of “i”, and including an overall
factor of n by cyclic symmetry due to the arbitrary position of external leg “1”, we get
n—1
Ceyel(Ny k) =1 Cstripe(iy k)e(n — i — 1) (4.12)
i=0
Consider the generating function for ceyci(n, k), that is the generating function of the
one-point diagrams with £ > 1 external legs

(z)k = Z ccycl(n; k)z_n_l (413)
n=0
From (4.12) we get
W (2)i = =0 (wi(2) f(2)) = =0 f*(2). (4.14)

As a check, from this generating function we can extract for instance ceyei(1,1) =
1, ceye1(3,1) = 3, ceye(4,2) =8, ... which can be seen to correctly count the corresponding
number of planar diagrams.
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4.3 Two-point function

To count two-point planar diagrams we need to glue two effecive vertices Wy (z) and sum
over k. The product Wy(z1)Wy(22) overcounts the number of two point diagrams by
factor of k£ because on a cylinder we have cyclic symmetry which shifts labelling of the k
propagators. Therefore, in the sector with k propagators connecting the two-points we get
the generating function

1
W(z1, 29) = EW(Zl)kW(ZQ)k. (4.15)
Now consider the two-matrix Gaussian matrix model with matrices X,,a = 1,2 and the
propagators
(Xa)5 (X)) = Aab6i 0] (4.16)
After we rescale by the propagators A\, and sum over all £ > 1 we get the two-point
resolvent
1 Eyk
W (21, 22; Aap) = 21,Z2 ;k Zla)‘ll f (225 A22))" Ay (4'17)
and finally
1 1

W (21, 22; Aap) = =0z 2, log(1 — A2 f1f2) = (tr (4.18)

X, tr 2y — X2>conn
where fo = f(24, Aaa)- It is easy to check that this agrees with the resolvent derived in [57]
and used in [14, 23] to obtain exact predictions for Wilson loops and local operators. In
particular, Laplace transforming the above resolvent on zo and setting A;; = 0 (since we
want no propagator from the local operator to itself), one finds the following result for
the correlator of a Wilson loop and a local operator

Ap \ 7 —
<tI‘ Xih tr 682X2>C0nn J1 <\/>1\722> IJI (282 )\22) . (419)

which upon inserting the appropriate values of Aj2, Ago gives the result obtained in [23],
see eq. (5.24) below.

4.4 Three-point function

When computing the three-point planar connected function we shall distinguish between
two possible global topologies of the diagrams. We call them closed and open type (see
figure 5).

4.4.1 Closed type diagrams

The only difference with the reasoning used to compute the two-point function, is that on
three-punctured sphere we do not have cyclic symmetry like on a cylinder. Therefore, the
total number of three-point diagrams is the product of W (z;)g,

3
W(Zl, 22,2’3) = H W<Za)ka (4.20)

a=1
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5

Closed Open

Figure 5. In these examples, in the closed diagram k1o = 4, ko = 2, k13 = 3, in the open diagram
k12 =3, k13 = 3, ka3 = 0.

where kg, 1 <a <b<3,a,b=1...3 is the number of propagators by which operator a is
connected with operator b, and ki = k2 + ko3, ko = kog + k12, k3 = k13 + ko3. Now we will
sum over all sectors and also we include dependence on the propagators. Let A, be the
propagator between matrices X, and X;. In the sector with k5 = %(kl + ko — k3) propaga-
tors we get a factor )\]{’52, etc. Then the resolvent for closed type planar diagrams topology is

W (21, 22, 235 Aab) ks kas kiz>1 = — 0z 29,2 S Caafife) 2 (Nasfafs) (Misfi fs)F2
k12>1,ka3>1,k13>1

(4.21)
After the summation we get
A2Aos Az (f1f2/3)°
w i A = —0sy 292 4.22
(21, 22, 283 Aab b s 21 DI = Aafifa) (1 — Aasfof3) (1 — Mz fif3) (4.22)
with
fa = f(2a; Aaa)- (4.23)

4.4.2 Open topology

Now we consider the open topology diagrams (see figure 5). Let k12 > 1, kog > 1, kas = 0.
This case is different from the triangle topology because we have extra diagrams with
internal propagators connecting legs 7 and j of operator “1” such that in between ¢ and j
there could be a bunch of propagators connecting O to O.
The total number of diagrams at operator O; with two bunches consisting of k19 and
k13 external legs is then

ni—1lni—i—2

Ceyei2(n1; k1o, ig)=n1 Y Y (mi—l=i—j)cstripe (i, k12)Cstripe (J, k1) e(ni—2—i—j) (4.24)
=0 j=0

In this sum 7 = ix,, — 41 and j = ji13 — j1 where ¢, denotes the leg in vertex “1” connected
to the propagator p = 1...kq2 in the first bunch, and j, denotes the leg in vertex “1”
connected to the propagator p = 1... k3 in the second bunch. The generating function

W(Zl)km,km = Z Ccycl2(nl; k127 kli’))zfnli1 (425)
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W (21 k1o, kas = Oz (w(21) k1w (2115 (92 (21))) (4.26)

which simplifies to

! 02 (ffrethely, (4.27)

W (21)kiz krs = k,12+—k13_1 21

Combining W (z1)g,s,k; With the vertices W (22)k,, and W(z3)y,, from operators O
and O3 we get the generating function for diagrams with the open connected topology in
the sector with ko3 = 0 and k1o > 1, k13 > 1:

(e.) [o.¢]
1
. _ a2 kio+ki3—1 pk k k k
W(21’22’237>‘)k23=0 - 8z1az2az3 E § : 112 e f212 313)‘152)‘1%’)3 (4‘28)
kio+kiz—1
k12=1k13=1
We can sum the series using

o0 o0
1 o 1 —
Z Z —a'y! = oy log J (4.29)
i:1j:12+]_1 T —y 11—z

which can be derived from the series expansion of the integral

1
xy xy 1—y
dt = I . 4.30
/0 Aty z-y %1 o (4.30)

So we finally get

A2z fafs 1—Xisfifs
W (z1, 22, 23; A\g — zﬁfﬁzﬁz lo )
(21, 22, 25 Aab) hza=0 TS Nafa — Misfs 81— M2fif2

4.4.3 Complete three-point planar resolvent

(4.31)

The complete three-point planar resolvent in the Gaussian three-matrix model is given by
the sum of the the resolvent for the closed topology (4.22) and three possible sectors with the
open topology (4.31). The final result for the planar connected three-point resolvent is then

1 1 1

1% Aay) = N(t t t o
(21722)’237 b) < rzl_Xl rZQ_XQ rZ3_X3>
- M2Aos Az (f1f2/3)°
- _821822823
(1 = Xiafif2)(1 — Xasfaf3)(1 — Aisfif3)
A2A13f2f3 1—Misfifs
+ 92 0.,0. lo 4.32
VT N fa — Misfs g1—>\12f1fz (4.32)
A12A23 f1f3 1 —Xa3fafs
+ 0, (93 0. lo
PRI N f1 — Aoz fs g1*)\12f2f1
A23A13 f1f2 1—X3fifs
+ 0,, 0, 83 lo
P Nog fo — Mg fi g1*>\23fzf3
with f, = W, a =1,2,3. As a test, one can verify that if one sets all propagators

to be equal, Ay = A, then (4.32) reduces as it should to the known 3-point resolvent in
the Gaussian one matrix model (see e.g. [58]). As a further test, we have also computed
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(tr X fl tr X§2 tr X§3> from a direct Feynman diagram calculation at some fixed low values
of k1, ke, k3, and verified that the result agrees with the series expansion of (4.32).

Note that (4.32) is the resolvent for a general Gaussian 3-matrix model, and hence, once
the appropriate Ay, are plugged in, it encodes the result for all possible correlators (WW W),
(WWO), (WOO) and (OOO) in our supersymmetric subsector. The 3-point function of
local operators is a particularly simple case (and of course is well known by independent
means, since the O’s are chiral primaries), so we derive it here as a simple test of our general
result for the resolvent. Recall that for three local operators, the 3-matrix model is such that

A Moo for a #b. (4.33)

)\aa = 07 >\ab = 1672 =

Then, (4.32) simplifies to

)‘%)0(2122 + 2923 + 2123 — 2)\00)
(Moo — z122)(Aoo — 2223) (Moo — #123)

W(Zl, 22,233 )‘ab) = 821 822623

oo min(Jy,J2) )\J1+J2 kJ1J2(J1 Ty 2]{:)
- Z Z Z J1+1 Jo+1 _Ji+Jo—2k+1 (434)
Ji=1Jo=1 k= 2T 2 2

from which can read off the 3-point function (we omit the position dependence on the
operators, since the correlator does not depend on it)

\/X) Ji+J2+J3

1
(05,05,04,) = NJ1J2J3 <47T

(4.35)
for |1 — Jo| < Js < Ji+Jo, Ji+ J2+ J3 =even

and zero otherwise. It is easy to check that this is the expected result for the three-point

function of chiral primaries of the type we consider here.!?

4.4.4 Exact (WOO) correlator and strong coupling limit

We now use the exact planar result to derive the exact prediction for the (WO 0y,)
correlator. It will be first convenient to go to an exponential generating function by taking
the Laplace transform of the 3 point resolvent on z1, 22, z3. Let us define for convenience

W(217227Z3, ) 8z18ZQ8Z3w(f17f27f57 ab)

where the function w(f1, f2, f3; Aap) can be easily read off from (4.32). Then

d21d22d23
N<tre$1X1 tr e52%2 tres3X3)Conn:7{65121+52z2+53z36 02,02, (21, 22, 235 Aab)

(2mi)3
(4.36)

2The result in (4.35) is for the operators normalized as Os(z) = tr(z'®* + i®*)7. The 3-point

function for operators with unit normalized 2-point function is obtained multiplying (4.35) by the factor
(ZQJ)J1+J2+J3 1
VX VI1J2J3 "
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where the contours are large circles enclosing the origin. It is convenient to make the
2

change of variables z, = Agofo + 1/fa, 0., = #aﬁl, so that f(z,) = f4, and the

integral turns into a contour integral over fi, fa, f3

N(tr eS1X1 ¢y e52X2 ¢ 633X3> _j{dfldf2df3 651(>\11f1+ﬁ)+52(>\22f2+é)+53()\33f3+%) %
conn —

B (2mi)3
x 01, 05,0 pw(f1, f2, £33 Aab)
(4.37)

where the contours are small circles around the origin. Using the contour integral
representation of the modified Bessel function

dz z.,.1 > (1x)2n+k
Ii(z) = f —eaEz) kol = nQi (4.38)

one finds

N{tre®t Xt tre®2 X2 tpe®a Xy = ( 12 ) ( 2 ) ( 13 ) i+k)(i+7)(j+k)x
{ ) ”zk::1 V1122 V2233 V1133 ( I I )

X Lipk(281V A1) Li45(252V A22) L1k (283V As3)

A2 i 13 k, . )
275 —2)1; _o(2 I; (2 1 (2
+<W11Am) <W> Pk (i bt 2] = ik 250V A 152V A2) Ik(253VA53) - (4.39)

A A b .
+<\/ﬁ> (\/ﬁ) Zk(l+k+2]_2)]1‘(251\/)\11)Ii+k+2j_2(252\/A22)1k(253\/A33)

X \'f s\ :
—I—(\/&) (\/ﬁ) Zk‘(Z—‘rk—‘rzj—2)[k(281\/)\11)[1(282\/)\22)Ii+k+2j2(253\/A33):|.

So far the result is completely general, since we have not specified the propagators A,,. For
example, plugging in the appropriate values corresponding to the 3-matrix model (3.10),
the expression (4.39) gives the exact prediction for the (WWW) correlator, and it is then
straightforward to study for example its strong coupling limit. We will not pursue this
further here, and focus on (WOO) in the following.

To obtain the exact WO j, 0, correlator, we should plug in the Ag’s coming from (3.8)
or (3.12), and then extract from (4.39) (tr X tres>*2 tr X§]2>Conn, by picking up the ap-
propriate power in sq,s3.!3 In fact, the result simplifies considerably if we remember the
structure of the particular 3-matrix models we want to solve. They are such that

A1 =XA33=0 (4.40)

since we do not allow propagators from a local operator to itself. Then taking the limit

13We leave for now an arbitrary s, parameter. The singly wound Wilson loop corresponds to s = 1.
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A11, Az — 0 of (4.39) and extracting the term proportional to 511 52 we get
min(Jy,J2)—1 )\Jl k)\Jg k)\k
N<t1“Xi]1 tr682X2 tngJ"’>conn:J1J2 Z Tkls(a] +J2_2k)_[]1+]2 Qk 282\/ )\2 )
k=1 Aoy’
AJI J2>\J2
—|—®(J1 —Jz—l)%((]l JQ)IJl_J2(232\/ )\22)
Agp”
)\J] J2

+ Z IJQQES (J1+ Jo+ 2k — 2)1 7, 1 7y12k—2(2521/ A22)

S o
+ @(JQ - J1 — 1)T(JQ Jl)IJI,JQ(ZSQ )\22) .

” (4.41)

where ©(x) is the unit step function (with the convention ©(0) = 1). We can simplify this
further into the following form

<tI‘Xi]1 tre®2X2 trX;§72>conn = i<]1<]2 ( e >J1 < < )J2 X
N VAz2 VAz

min(Jy,J2)
Z,O J1—|—J2—2]€)IJ1+J2 2k(252 )\22 —|—Z J1+J2—|—2/€ 2)[J1+J2+2k 2(252\/ )\22)]

k=1 k=1
(4.42)
where we have defined
A3
C Ai2Agg

Eq. (4.42) is the final result for the correlator (WOO)4y computed from the Gaussian
3-matrix model. To specialize to the two possible topologies of figure 2, one should insert
the appropriate values of Ay, given in (3.7)-(3.11), i.e

LA LA A AlA
A2 = Mﬁ , Aoz = *Z)\Afé ;o A3 = a2 Aog = A 222 (4.43)
for the open chain OW O topology and
LA A AlA
M2=iAm =, A=, A=A (4.44)

for the closed chain OOW topology.
We can now study various strong coupling limits of this result. Let us first look at
the limit
Ao oo,  Ji,Ja < VA (4.45)

Assuming that J; + Jy is even (if it is odd, a similar analysis goes through with minor
modifications), we may rewrite the second sum in (4.42) as (we set so = 1)

J1+Jo _1
o0 o0 2
> (i Ja+2k=2) 11, 4 gy 2k—2(2 )= (2k)Ik(2v/ A22) = D (2k)I2k(21/ A22)
=1 =1 =1

T+l g

= VA22D1(2V/A2) — Z (2k) Tk (21/a2) (4.46)
k=1
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Plugging in the contour integral representation (4.38) of the Bessel function, performing
the finite sum and evaluating the large A behavior by saddle point analysis, one finds that

Zl< e (2/h) ~ L+ o) o (4.47)
2k) 151 (27/ Aoo) ~ —(J1 + Jo)(J1 + Jo — 2) ——— A — 00 4.47
k—1 4 \ 47‘(’\/)\22

In particular, we see that the second term in (4.46) is subleading compared to the first
one (recall that I;(z) ~ e®/v/2nz at large ). By a similar analysis, one can see that the
first sum in (4.42) is of the same order as (4.47), so the leading behavior of the correlator
in the limit (4.45) is

1 A2 N\ A\ 222
tr X tr e tr X2 eonn ~ — J1J2 ( > VAgg————  (4.48
(tr Xi i N vV A22 VA2 A1/ A22 (4.48)

Normalizing by the Wilson loop expectation value

(treX2) = XEM@) (4.49)

we find

(tr Xih treX2 tr Xé]2>conn 1 A2 N1 Aa3 J2
ltr X2y ~ 2 |V A2 Ji | ——= V A2z J2

VA2 V22
- <t1“ Xih tr 6X2>conn <tI‘ e2 tr Xé]2>conn
~ <tI‘ 6X2> <tr €X2> )

(4.50)

where in the last step we have used the two-point function (4.19). We will see in the next
section that this factorized structure is indeed reproduced in string theory.
We can now move on to the more interesting strong coupling limit

A—=oo, S /VA=fixed=T, Jo<VA (4.51)
For comparison to string theory, it is convenient to look at the normalized correlator

(tr X tr e tr X52)conn
(tr Xih treX2) conn

(4.52)

where the two point function at the denominator is given in (4.19). To extract the strong
coupling limit, we can employ as usual the contour integral representation of the modified
Bessel function and apply the saddle point analysis. The term in square bracket in (4.42)
gives, after performing the summation and keeping the leading terms in the J; > J5 limit

dz pJQZ—JQ *ZJQ ZJ2 _ Ll
fzm(‘hp T Ay ) e (4.53)

Writing (see eq. (4.43), (4.44))

Ji=VAT, A =a®\4, o =44,4,/A2
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the saddle point is the solution of

1 a 1
j12+2(122> =0. (4.54)

The solution which gives the dominant exponential at large A is

_ 1T D
a=y 1+ 55 -2 (4.55)

Evaluating (4.53) on this saddle point and dividing by the (Oj; W) correlator we then
obtain (note that the exponential and the “l-loop” correction around the saddle point
cancel out in the normalization by the two point function)

tr X treX2 tr X2 Jo [ Aoz \ 72 T y=Jo _ 42 T2
( rAy I'J@ rAg >COIlIl ~ J2 < 23 > \/le <pp Zy _ 2 i Z; 2) ' (456)
(tr X;* treX2)conn N \ VAo p—z 1—22

*

To compare to string theory, it will be convenient to insert also the normalization fac-
J

tor (2.13) for the local operators, i.e. Nj = (— 2—”) -L_ | Using the explicit \gp in (4.43)-

VX)) Vi
(4.44), we get for the open chain (for which one has p = 1)

t XJl t X2 t XJ2 1 A J2/2 —Js
< rXq I“€J NJ2 T Ag >conn ~ 7(_1)‘]22_(]2 /TQ)\ <1) Y Zy . (457)
(tr X7t treX2)cony N Ag 1—z
and for the closed chain (for which p = —‘2—;)
J2
Ay -
o X N X 1y 5 (42 [ (h) =row
(tr Xih treX2)conn N Ay ! Ay ‘2—; + 22 1—22
(4.58)

These are the predictions of the 3-matrix model in the limit (4.51). In the next section we
will compare them to the result one obtains from semiclassical strings in AdS5 x S°.
Finally, let us look at the limit in which all operators are in the semiclassical regime

Ao oo,  Ji/VA=fixed=J,  Jo/VA=fixed=T. (4.59)

Let us assume without loss of generality that J; > Js. Passing to the contour integral
representation of the Bessel functions and performing the sums in (4.42), one gets the
following structure

d av/X
N (tr Xijl treX2 tr Xé]2>conn :fQ;Z |:fl (z)pﬁjQZﬁ(jl_jQ) + fZ(Z)Zﬁ(JH-\%)} e Y2 (z41)
(4.60)
where f1(2), f2(2) have at most a linear dependence in v/A. The saddle point analysis at

large A then gives the behavior

o ; \F/\( a2+(J1—J2)2+(71—J2)10g< 1+(j1a52>2—j1aj2>+~’72 105P>
N(tr X' tre? tI‘X32>conn ~cie

ﬁ( a2+(‘71+\72)2+(;71+~72)10g<\/WW))
9y

+coe (4.61)
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We see that there are two saddle points, both with positive exponents, contributing at
large A. It can be seen that the saddle point in the first line is the dominant one (recall
that we are assuming [J; > J2). These saddle points should correspond to semiclassical
string solutions describing a Wilson loop worldsheet with two “fattened” spikes. It would
be interesting to find those solutions.

5 String theory computations

5.1 Semiclassical (WO) correlator

For finite R-charge J, it is well known that the correlator (IWOj) at strong coupling can
be computed (as originally done in [59]) via the exchange of a supergravity mode between
the string worldsheet dual to the Wilson loop and the operator insertion point at the AdS
boundary. Here we are interested instead in the limit of large R-charge J ~ vA > 1.
In this limit the correlator is effectively described by a new string solution where the
propagator for the supergravity mode has “fattened” into an infinite spike [26].

In [26], the string solution corresponding to (Wy /2—BPSO J) in the large R-charge
limit was derived (W; /2-BPS is the well-known 1/2-BPS circular Wilson loop). Here we
obtain a generalization of that solution to the lower supersymmetric case (W / 4-BpsOJ)-
The Wilson loop W, /4-BPS is the quarter-BPS operator of [45] (which is also a special

case of the infinite family of loops on S? of [6]). It corresponds to a circular contour
in space-time and couples to 3 scalar fields which we take to be ®1,®s, $3. The chiral
primary we consider is given by tr(®sz + i®,)”.

In the original definition of [45], the 1/4-BPS Wilson loop is specified by the circular
contour (which we can take to have say unit radius) x*(s) = (cos s,sin s, 0,0), and couples
to the scalar field combination

— cos By cos s 1 — cos by sin s Py + sin Oy P53 . (5.1)

The choice §y = m/2 corresponds to the 1/2-BPS Wilson loop. By a conformal transfor-

mation, one can map the space-time contour z#(s) to be a latitude on S? at angle 6p: this

gives an equivalent definition of W; /4-BPS which fits inside the infinite family of loops

of [6]. To derive the string solution below, it will be more convenient to consider the original

definition of [45] and do the conformal transformation to the S? setup in a second step.
The string solution of interest lies on a AdSs x S? subspace of AdS5 x S°, on which

we take the metric

1

2 _
ds-Z2

(dZ” + dR? + R*d¢*) + d¥? + sin® 9dp® + cos® 9dip* . (5.2)
Defining embedding coordinates on S3 as

04 = (—sin1 cos ¢, — sin ¥ sin ¢, cos 1 cos 1), cos ¥ sin 1)), (5.3)

the local operator we wish to insert corresponds to the spherical harmonic
(©° + i@4)J = (cos )’ e?.
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We will assume worldsheet conformal gauge, with worldsheet coordinates (7,0), and
take the following rotationally symmetric ansatz

Z=2(r), R=R(r), 9=19() Y =P(T)

(5.4)
p=p=0 0<o<21r 0<7T<00.
The string action specialized to this ansatz reads
A 1 /. . . ,
S = \g / dr [Z? (22 + R* + R2> + 92 + sin? 0 + cos? 9> (5.5)

where the dot indicates 7-derivative.
The solution dual to the 1/4-BPS Wilson loop, without local operator insertion, is

given by

1
7 = tanh T R =
cosh 7

S'[ 1’ = = ann 7 = S.[ .

In these coordinates, the Wilson loop at the boundary sits at 7 = 0. The choice of + sign
correspond to the existence of two inequivalent solutions, one stable and one unstable,
which are dual to the same Wilson loop [45] (see also [14]). For simplicity in the following
we will focus on the stable solution, corresponding to the choice of +-sign, but everything
below has a counterpart for the corresponding unstable solution.

Let us now derive the solution corresponding to the insertion of the local operator
tr(®3 + i®,)7, with J/v/X = fixed = J. The insertion of the local operator deforms the
above solution by creating an infinite spike which terminates at 7 — oo. The angle 1
also assumes a non-trivial profile. The boundary conditions for the various fields are as
follows [26]. At 7 = 0, they are controlled by the Wilson loop, i.e.

Z(0)=0, R(0)=1, 0(0):%-90, $(0) =0. (5.7)

At 7 — o0, the boundary condition are dictated by the presence of the local operator and
are given by [26]

logZ(t) = J1, R(r)—=0, 91)—=0, o()—iJT, at 7 — 00. (5.8)

In particular the boundary condition on v corresponds to the fact that we have rotation on
a great circle of S° with the appropriate angular momentum J (after analytic continuation
to Minkowski signature on the worldsheet).

The equations of motion following from the above action

Z oo o) R R
aT<Z>+ZQ(R +R>—0 8T<ZQ> s =0 59)

ﬂ—sinﬁcosﬁ(l—@bQ):O, 8T(coszﬂ¢):0,
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can be solved because they admit the following integrals of motion

ZQ+1<R2—R2>:6

zZ2 72
RR+Z
bk T
7?2 A (5.10)
COSQﬁwzpw

2

, P

2 ) [

9¥° — sin 19+COS219——6.

where ¢, k, p, are constants. The first and last integrals of motion are just the “energies”
corresponding to the AdSs and S3 parts of the lagrangian, while the second one follows
from invariance under dilatation. The fact that the constants in the first and last line have
equal and opposite values is a consequence of the Virasoro constraints. One can see that
the boundary conditions in (5.8) further fix py, =iJ, e = J%, k= J.

To integrate the first two lines of (5.10), it is convenient to introduce the variables

(see also [60])
U= i v =logV/R?+ Z? (5.11)

in terms of which we have

-2 4 2 2 : K

U —ut — (14 €eu” =e— kK", b= (5.12)
These equations, as well as the last two lines of (5.10), can be integrated in a straightfor-
ward way in terms of elliptic integrals. In fact, the solution becomes elementary once one
imposes that € = x? = —pfb = J?. Going back to the R, Z variables, the solution with the

correct boundary conditions turns out to be

_ sinh(v1 + J27)
cosh(v1+ J2(1 + 1))

B V14 J%e77 : B
= cosh (W(T + TO)) 7 o <\/@TO) -7

2 2 102
Vit sinh (\/1+j271) _ VITEsnT b (g gy

(5.13)

sin79 = )
cosh(v1+ J2%2(t+ 1)) cos Oy
J?2 J
GV — oI 1+ 55 — s
1+ 22 _ T

cos2d  cos?
One can see that for 8y = 7/2 (i.e. 71 = 00) one recovers the solution of Zarembo [26],
while for J = 0 we recover the solution dual to the 1/4-BPS Wilson loop (5.6). A
depiction of the AdS3 part of the solution is given in figure 6.
It is not difficult to write down the conformal transformation that maps the solution
found above to the setup in which the Wilson and local operators are inserted on a S?
subspace of the boundary [6, 23]. Consider AdSsy with metric

1
ds® = = (dz2 +dr? + r2de® + dx%) . (5.15)
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Figure 6. AdS; part of the string solution (5.14) describing the correlator (WO,) for large R-
charge J ~ v/\. The infinite spike corresponds to the local operator insertion.

The transformed string solution lies on the AdSs slice defined by 22 + 72 + 23 = 1, and is

given by
2c04
Tlrd(22 R
260R
T (2% + R?) (5.16)
vy — —1+ (2% + R?) " )
1+3(Z2+R?) 2

where R, Z correspond to the solution in (5.14). The angle ¢ = o as well as the S° part
of the solution are unchanged. One can see that at 7 = 0 the solution ends on a latitude
on S? of angle #y. Notice that now 7 = oo is also a point on the AdS boundary, since
z(T = 00) = 0. Indeed we see that after the conformal transformation the spike at 7 = oo
ends on the north pole of the S? (i.e. z =0, 23 = 1, » = 0), which is then interpreted as
the insertion point of the local operator in the boundary theory, see figure 7. Recall that
in the S? setup the interesting local operators have the form tr (x“I)Z(x) + iCI>4)J, SO an
operator inserted at the north pole indeed corresponds to tr (CIJS(J:) + Z'CI>4)J, as used in
the derivation of the string solution above.

To obtain the strong coupling prediction for the correlator (Wp,0s), we need to
evaluate the string action on the solution, supplemented by a boundary contribution at
infinity which follows from the insertion of the local operator at 7 = oco. After using
in (5.5) the values of the integrals of motion, the “bulk” action is

2 2
Shulk = \/X/dT (; + sin? 19) = \/X/dT <§2 + sin? 19) . (5.17)

This has a well-understood divergence at 7 = 0, which in this case we can simply eliminate
by considering the normalized correlator (Wy,O)/(Wp,), i.e. by subtracting the value of
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Figure 7. The string solution describing the semiclassical (WO ;) correlator after the conformal
transformation (5.16). The Wilson loop is a latitude on S? = 9AdS3, here depicted as a plane, and
the spike ends on the north pole of 52, where the local operator is inserted.

the action at J = 0. After performing the 7-integral

0o 2 2
[o(EEl )
0 I= (5.18)

/ dr (sin? 9 — sin® 9] 7—g) = sinby — 1 + /1 + T2 — /T2 +sin?
0

we obtain
Sbulk — Sbulk|7=0 = VA (Sin o — vV J? + sin? 9()) . (5.19)

The boundary contribution at infinity originates from the insertion of the vertex operator
for the local operator at the north pole, which, omitting subleading factors in the large
J = V/AJ limit, is essentially given by

J
“ J i _ (€0 N7 J iJip
<Z2+T2+(x3—1)2> (cos) e = (312)" (cos9)e . (5.20)

This corresponds to adding to the action the boundary term

Sbdy = —VA (T log Z(c0) + iT1p(c0) 4+ J log cos ¥(o0)) — VAT log %0 . (5.21)

The last term in the first parenthesis vanishes, while the divergences in the first two terms
cancel each other leaving the result

2
deyz—ﬁjlog< R )—fwlog?. (5.22)

sin?fp sinfy

Putting everything together, we then find

<W90 OJ> B e~ Sbulk —Shdy B e\f)\(\/Jz—&-sinQ 0p—sin 90+Jlog< 1+Sin‘72290 —ﬁ))—i—\f/\log(% cot 07())
(W) e~ Sbulk| 7=0

(5.23)
We can now compare this to the field theory prediction. The relation to 2d YM implies
that the exact Wilson-local correlator should be given by the Gaussian two-matrix model
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result in eq. (5.24), see [23]. Inserting the values of the couplings A2, Aoo which can
be read off from the action in (2.11), as well as the normalization factor (2.13) for the
local operator, (4.19) yields the prediction, for an arbitrary Wilson loop on S? and local
operator inserted at the north pole (or any other point on the upper hemisphere)

(O )W(C)) 1 —( Ay \7 L(VN)
J(xN :5\/JT (4Azl> Ij(ﬁ) (5.24)

where N = 4A;A5/A%?)X. Recall that for a latitude 4A4;A45/A%? = sin®fy and Ay/A; =

J/2 1ot %0
cot? %. Thus we see that the prefactor (&%) _ VAT logyy/Aa/AT _ VT tog (3 ot %)

reproduces the last term in the exponent in (5.23). The remaining terms arise from the
strong coupling limit of the Bessel function

IJ(\/XSiHGO) = fj;zJ—leéx/Xsinﬁo(z—i-i). (525)

The saddle point analysis at large A and large R-charge J = JV/\ is the same as
in (4.54)—(4.55), and the dominant exponent at strong coupling'* gives

(v sin ) ~ ¢/ A(VTPrsin? b0+ log (V1472 sin? 80—/ sinto ) ) (5.26)

After dividing by I;(v/Asinfg) ~ eﬁsmeo, we therefore precisely reproduce the string
theory prediction (5.23).

5.2 (WOO) correlator

In this section, we present the string theory computation of the correlator (Wy, Oy, Oy,),
and we then compare to strong coupling limit of the 3-matrix model prediction.

Let us start with the case in which both local operators are “light”, i.e. Ji, Ja < V.
In this regime, the correlator at strong coupling should be computed by considering the
exchange of two supergravity modes between the boundary and the worldsheet describing
the 1/4-BPS Wilson loop 5.6. There are two types of contributions, one involving a
3-point interaction in the bulk, and one with two independent propagators ending on
distinct points on the worldsheet, see figure 8. As explained in [44] in the case of the
analogous calculation of 4-point functions of local operators, the diagram involving the
3-vertex is subleading at large A, since it involves only one vertex operator inserted on
the worldsheet. On the other hand, the diagram with two independent bulk-to-boundary
propagators simply factorizes, so we immediately conclude that

(Woo Oy (1) Oy (22))  (Wo, Oy (1)) (We Oy (22))
<W90 > B <W90 > <W90 > 7

VA1, J1, Js < VA (5.27)

Each of the factors on the right-hand-side is the same as computed in [23], in particular
it agrees with the two-point function in the two-matrix model. The factorized structure

M There is also a subleading saddle point which corresponds to an unstable string solution, see refs.
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0J1 0y1
w Ou2 w OJ2
(a) (b)

Figure 8. The two diagrams contributing at leading order at large N to (WO ;,0,) for Ji, Jo <
V. Figure (b) is subleading in the large X limit.

precisely agrees with the 3-matrix model in the relevant limit, see eq. (4.50).1° It would
be interesting to compute the subleading corrections from the diagram in figure 8(b), and
compare to the corrections to (4.50) on the matrix model side.

Next we look at the more interesting case in which one operator is “heavy”
Ji ~ /A > 1, while the other is “light”, i.e. Jy is kept of order one. In this case, we can
simply use the string solution for (Wjy, O ,) derived earlier, and compute the amplitude
for the exchange of a supergravity mode corresponding to Oy,, see figure 9. The recipe to
do this is well understood, see e.g. [30, 32| for analogous calculations involving three-point
functions of local operators. Here we follow the notations of [23], where the appropriate
vertex operator for local operators inserted on S? was given. We have

(We, O;,(Zn) O,(%0)) / 5 AdSs | 1,55
= d 2
Wa, O, (7n)) 7 (Vi + Vi)
VAdS5 _ \A J2+1 2J2(J2*1)
T2 47N 4\/72 Jo+1
s _ VAt
Ja 47N 4/ T,

1%

4
Jo+1

1
Zﬁaax“aax“GJZ (zt;20)— 000G j, (2"; :z:o)) Y72(0, )

2.J5 0,020,04 G 1, (zH;20)Y 72 (O, )

at = (z,%), = (rcos¢,rsing,xs),

04 = (— sin ¥ cos p, — sin ¥ sin , cos ¥ cos 1, cos ¥ sin 1))

Jo 2 (_; — )2 2 2 = 5 (.’I;O . + 1 ) 5

where z#, 94 correspond to the solution (5.14), with z,r, x3 related to R, Z in (5.14) by
the conformal transformation (5.16) (and of course J = J1 = J1/ \f/\) The notation z N
indicates the north pole of S?, where the heavy operator is inserted, while we keep the
insertion point of the light operator zy € S? arbitrary. We can choose the parameterization

xo = (sinncos~y,sinnsin~y, cosn), 0<n<m 0<~vy<2r.

By rotational invariance of the problem, we can always set v = 0, which we will assume
in the following. We can simplify these expressions further if we integrate by parts the

151t is easy to see that a similar leading factorization into a product of (WO) applies more genereally to
the correlator of a Wilson loop and several local operators, as long as the operators are “light”.

6For a recent evaluation of the analogous subleading corrections to the 4-point function of two “heavy”
and two “light” operators, see [61].
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Figure 9. Diagram describing the string theory computation of the correlator (WO O,,) for
Jp ~ VX and Jy < J.

second term in Vj;‘dss‘. This produces a term proportional to Y /2. Using the classical

equations of motion 9204 + (9,080,07)04 = 0, we can rewrite this as
= 2 Ay oAl v
DY 2 = [JQ(JQ ~1) (aa log (fg .8 +i@4>) — 1,0,6%9,0 ] Y, (5.29)

Then, further using the fact that on the explicit solution Z%@aajf‘@a:v“ = 22—; + J¢ and
9,040,004 = 2sin? 9 — jf, we arrive at

<W90 OJ1 (fN) OJ2 (:L_:O» _
(Wa, O, ()

/ 2 N 2
= 47;]]2\?\(J2 -1) /deO’ [; —sin® 9 + J¢ — ((% log (fg -0+ i@4>> GY?"
J2)\ 2 Jo Jo T=00
_ 4V7TNJ2 /0 Ao [(0,G )Y = G0 y)] | (5.30)

The boundary term in the second line is easily evaluated. The contribution from 7 = 0,
where the Wilson loop is inserted, vanishes.'” On the other hand at 7 — co we have

Jo
e~ T
Gy, = 5 +...
<co(1 —cosn) (/14 JE — jl))

J2 (5.31)
1 V1 >
Y2 = [ -Z(1—cosn)elr” + I = +...
sin? A sin g
so that
2 0 72
vV Jo A 4 J S TEe — tan %
- do |(0-G1,)Y "2 -Gy, (0, Y 72 =27724/JoA
47TNJ2/ 7 [(0-G1) 7 (0:Y2)] =0 2A1 77 5
sin?fy  sinfg
(5.32)

Note in particular that the dependence on the insertion point xy of the light operator
(which enters through the parameter 7, see above) drops out.

"Recall that Jy > 2.
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The integral in the first line of (5.30) is more challenging to compute, given the compli-
cated form of the solution. A limit in which it can be evaluated analytically is 6y = 5 and
J1 — 0 (in this case the calculation essentially reduces to the (WO) correlator considered
in [23]). In particular, in this limit one can explicitly show the independence on the position
of the local operator O ,, see appendix B. In any case, a numerical evaluation is straightfor-
ward for all ranges of the parameters. Keeping in mind the structure of the matrix model re-
sult (4.57)—(4.58) which we would like to match, we can simply guess the analytic result and
compare it to numerics. We find that the numerical integration agrees with very good preci-
sion, over a wide range of the parameters Jo, J1, 0o, n, with the following analytic expression

VJaA 2 . 2
(- 1) / drdo [; ~sin?9 4+ J2 — (aa log (fo B+ ¢@4)) Gy =
_ J: 2—J.
% JoA (— tan %0) ’ J1 21*7232 Op<n<m
= _J Jo —tan2 % J2z37J2+tan2 0—02;12 Jo (533)
2N2 2 (COt 6?0> Ji <_< ; 2an2 970+Z2 2 + 1%23 0<n< fo

Here we have used, as in the matrix model calculation, the shorthand notation

\712 \71

Zx = 1 + - .
sin®f, sinfy

Note that, as a non-trivial result of the integration, we find that the correlator is
independent of the insertion point xg, except for a jump when the operator crosses the
loop. This is again as expected from the localization to the 2d theory.!®

Putting together the integral (5.33) and the contribution of the boundary term (5.32),
our final result for the 3-point correlator from string theory is

(Wo, O (Zn) Oy (T0)) _
<W90 OJ1 (fN»

—J J2 —Ja
2PV (~tan% )" i mo €S~

_ J. —tan? %0)72, 77272 J (5.34)
21\‘[]2\&]2/\ (COt %0) ’ T <tan220 ( an 2) z : + 12_*jz> Ty € S+ \{xN}

>

[2]
tan? 20 422

where ST denote the two regions of S singled out by the loop, with the north pole zy € S7.
Recall that for a loop along a latitude with angle 6y we have

0 6
Ap = 4 sin® 50 Ay = 47 cos? 50 (5.35)

and so we see that the result of the string calculation precisely matches the 3-matrix
model prediction (4.57)-(4.58).

181t might be possible to prove the position independence of the correlator for a generic solution in the
supersymmetric subsector on S2. One should be able to represent the variation of the integrand under the
shift of the position 2o € S? of the vertex operator as an exact two-form using the calibration conditions
(see the next subsection) and the fact that the operator 60, where ¢ is a shift along 52, is Q-exact.
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5.3 Supersymmetry equations

In this subsection we show that the string solution in (5.14) dual to the (WO) correlator
preserves the same supercharges found in the field theory analysis. Moreover we derive
a set of first order differential equations which should be satisfied by the string solutions
dual to correlators of any number of Wilson loops and local operators.

Let us start with the k-symmetry equation for a fundamental string. Since the relevant
solutions lie on AdSs x S3, we can restrict the analysis to such subspace of AdSs x S°. It
will be actually convenient to view AdSs x S? as embedded in AdS; x S® with metric

1. o
ds* = —da'da’ + 22(dy'dy’ + (dy")?)  i=1,23

o (5.36)
Z—Q = yzyz + (y4)2.
The equation defining the relevant AdSs x S3 subspace is
st 422 =1. (5.37)
In what follows, we will denote the coordinates on AdS; x S% as XM = (2% % y*),
M=1,...,17.
In our conventions and in Euclidean signature, the k-symmetry equations read
i0- XM, XNTrveaas = Vheaas - (5.38)

Here Ty = 1/2[Ta, Tiv] and Ty are curved 7d Dirac matrices, epqg is the AdSs x S°
Killing spinor and h is the determinant of the worldsheet metric. We assume worldsheet
conformal gauge, so that

Vh =0, XM, XNGyn =0, XM, XNG (5.39)

where Gy is the metric (5.36).
Restricted to AdSy x S3 with metric (5.36), the explicit form of the Killing spinor is

1 . . 1 -
EAJS = ﬁ (60 + Z(.%'ZFZ‘ — yZFi+3 — y4F7)61) = ﬁ (60 + XMFM61> , (5.40)

where for later convenience we have introduced the notation
XM = 22, =y, —yh). (5.41)

Note that on the AdS3x S3 subspace we have X™ X, = 1. Note also that X is orthogonal
to all vectors in the tangent space of AdS3 x S3

XMpy =0 Vpa € T(AdSs x S%) (5.42)

as follows from differentiating the constraint z’z? + 22 = 1.
In (5.40) ¢y and € are constant 16 components (Majorana-Weyl) spinors which are
directly identified with the Poincare and superconformal supersymmetry parameters in the
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N =4 SYM at the boundary. In particular, to impose that the string solution preserves
the same supercharges as the dual operators, ¢y and €1 should satisfy

1Yjk€0 = €jkPi€1, 1YK€l = €jkPi€0

_ . (5.43)
LYiP4€0 = Pi€1 1YiPAEL = Pi€0
which imply that
ii + pii)eg =0, €0 = P4E
(%g pm) 0 . Y123€0 = pP4€o (5‘44)
€1 = —1pP123€0 -

We can collect all these conditions in the following equations, written in terms of curved
7d Dirac matrices

iCyneo = JunplTer,  iTyne = Junpl e . (5.45)

Here Jy/np is a totally antisymmetric tensor whose components can be read off from (5.43)—
(5.44). They are the components of the following 3-form

1
Jiz) = gJMNPCZXJVI ANdXN A dXP
3

1 , . . : , .
= Zeijkd:c’ Adad A dy* — %eljkdy’ Ady? Ady® — zdxt Adyt Adyt. (5.46)

Similarly to [6], from .Ji3) we can construct an almost-complex structure on AdSs x 53
Indeed, one can see that
JM = ML XT (5.47)

satisfies on AdSs x S3
JMIL = =M + XM Xy (5.48)

and hence it squares to —1 when acting on a vector in the tangent space T'(AdS3 x S3). It
is also easy to see that J % maps tangent vectors to tangent vectors, and so it defines an
almost-complex structure on AdSs x S3.19 From J % one can construct as usual a 2-form
Joy = 1/2JyndXM A dX N, which however is not closed.

Going back to the k-symmetry equations, we start from
(#0- X0, X Ty = VB) (e0 + X"Tper) = 0 (5.49)
and use the supersymmetry conditions (5.45). This gives
(OTXM&,XNXQFQJMNPFP - \/H) €0 + ((‘JTXMOUXNJM N \/EXPFP) e1=0,

where we have used that [['yn,T'g] = 2Gnol'm — 2Gm@l'n and that X0 XM —
X0, XM = 0. Writing T'oI'? = 65 + FQP and using again (5.45) as well as the last line

9n fact, its components are closely related to those of the almost-complex structure on AdS; x S2
constructed in [6] for general supersymmetric Wilson loops on S?.
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of (5.44) we end up with
[(@AWQ%XNLWV—V%)1 (5.50)
7,;73 (&-XMGUXNJMNP — \/EXP — z’&TXM&,XNJMNQJ%) FPF456] e=0.

Since we have already imposed all supersymmetry constraints, the terms multiplying the
identity and T'P'T 56 should vanish independently. The condition coming from the identity

- XMo, XN Jyny —Vh =0 (5.51)

is the statement that the string solution is “calibrated” by Jo) (in a generalized sense,
since J(9) is not closed), i.e. the worldsheet area is given by

Nﬂ:éﬁw (5.52)

Note that the calibration condition is actually not independent from the remaining seven
conditions

8, XM, XN Jyinp — VhXp —i0, XM, XN Tpng % = 0 (5.53)

since (5.51) follows from contracting the above equations by X* (recall that XM X, = 1
and J9XP = 0).

The fact that the string solutions are calibrated by J(3) is analogous to the result
obtained in [6] for the Wilson loops on S3. There is however an important difference in
the present case involving mixed correlators of Wilson loops and local operators. If the
string solution XM (7, o) were real, then from

(%0, XN — 0, XM)* = 2Vh — 2y N0 XM 9, XN =0 (5.54)
one could conclude that the solution is pseudo-holomorphic with respect to J, i.e.
JMo, XN = o, xM . (5.55)

One can also check that if (5.55) holds, then (5.53) are automatically satisfied.?’ So for
real solutions, the supersymmetry equations are equivalent to the pseudo-holomorphicity
equations. This is the case for correlators of Wilson loops alone, as in [6]. However, in the
cases involving some local operators, the boundary conditions on the Euclidean worldsheet
are such that some angle along S° is purely imaginary, see (5.8),2! so the solution
XM(7,0) is not in general real. Therefore, while the solutions are still calibrated (5.52),
the pseudo-holomorphic equations do not follow from (5.54), and one should solve the
more general supersymmetry equations (5.53).

22T see this, one can note that Js satisfies the identity JMNQJ%, = GMPX'N — GNPXM +
%EMNPQleQSQélXQI JQ2Q3Q4_

2'While the analysis in the previous section was for (WO), a similar boundary condition would apply
also in the general case, at each spike corresponding to a local operator.
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To support the general analysis of this subsection, we have explicitly checked by direct
computation that the solution (5.14) found earlier indeed satisfies (5.53), proving that it
preserves the correct supersymmetries. On the other hand, it is easy to see that it does
not satisfy the pseudo-holomorphicity equations (5.55), unless J = 0.

It would be interesting to study further the supersymmetry equations (5.53) and see if
they can be used to find new solutions dual to more general (WW --- OO ---) correlators.
In particular they could be useful to find the solution dual to (WO, 0y,) for Ji, Jo ~ VA,
for which we have an explicit prediction (4.61) from the 3-matrix model. We leave this
for future work.
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A (WWW) for U(1) and U(2): matrix model vs exact 2d YM partition
function

Al UQ)

Let G = U(1). Let the holonomies be U; = e™i%i. Let the Wilson loops be €% where w;
are fixed integer weights.
Gluing Kty and three Kgiq and integrating over z; we get

1
(WaWaWa)u) = 5 e drermmmfusmmp sl (au)
nez

where here n labels the summation index over irreps in the block Ky, and for shortness
we absorbed ¢? into areas a, a;, where a is the area of the triunion and a; are areas of the
disks. Now we will make use of the Poisson resummation identity

Yy —n)=>Y €, (A.2)
nez MEZ

so that

(W2 Wa)y(a)y = / dy 3 e2mimue=HQPathun) ot s ar (v us)as)
meZ

(A.3)

( (gajw;+2mim)” +27‘r7,m

72 T 42:111(12

meZ
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where now the meaning of m is labelling 2d magnetic fluxes, or 2d unstable instantons.
The perturbative, or zero-instanton, contribution comes from the m = 0 term:

(Eaiwi)zil e
<W1W2W3>peTt,U(1) — edlatXa;) 4 >0 wyaq

(A.4)

If we repeat the localization argument of [14] to the constant curvature configurations as
described in section 3.2, we get the Gaussian 3-matrix model

(X1+Xo+X3)2 x?

(Wi WoWs)pery = / dX1dXodXsze @ LEW(X)W (X)W (X3)  (A5)

where X; take value in the Lie algebra of G, and Wilson loops are defined on the group ele-
ments ¢ € G. Not surprisingly, the Gaussian integration of the U(1) matrix model with
fef%meJrin —L1gH-1g

W (z;) = e™i% using the standard formula — e 2 , reproduces the

perturbative part of the correlation function from the exact Migdal formula for U(1) (A.3).

A.2 SU(2)

We will label irreps of spin j of SU(2) by their dimension n = 25+ 1, so that n € Z~y. The

characters are )
sin nx

Xn() = sinz (A-6)
The Casimir is )
Cy=2j(j+1) = 5(n* ~1) (A7)

(our Casimir is twice of the standard quantum mechanics textbook conventions
> LZ2 = j(j + 1) because of the normalization trp L1Ly = trp LoLy = trp L3Ls = % ).
The building blocks are

(0.)
Z n2— 1 sin nx sinnxs sin nws
e 8

Kii(z1, 22, 23)
n Sln I Sln xI9 Sln I3

n=1
(A.8)
-1 sinn;x;
KdlSk xz g e B Yin;—
S Ty
n;=1

The Haar measure to integrate over G = SU(2) is

/dw sin? x (A.9)
Let the Wilson loops be in the fundamental W = £ trp U(x), i.e
Wi(x;) = cosz; . (A.10)

Integration over x; is trivial

1
/sin nx sin nricosr) = 5(6%”14_1 + 0nni—1) (A.11)
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so that we obtain

11 > n? 3 n+ w;)? 3_ n + w;
<W1W2W3>SU(2) = 78 Z Zexp <8a — Z ( ) ai> Hlfl( ) =

: 8 n
(w1,w2,ws)=(£1,£1,£1) n=1 =1
L1 22 anp— 1
=75 X Ym0 bne ) o) + ca)  (Al2)
(’LUl ,’LUz,’LUg)GS n#0
where . ) )
2
a=glatatata) =73 wa y=g) wie (A.13)
and

c1(w) = Zwi co(w) = Zwiwj c3(w) = wiwaws (A.14)
1<j
and the index set S = {(1,1,1),(-1,1,1),(1,—-1,1),(1,1,—1)}. Next we make a Poisson
resummation (there is a subtlety as we have sum over n # 0 not over n € Z but the extra
term n = 0 actually gives vanishing contribution after summation over S). We get
11 -
(WA WaWs)su(2) = 73 Z Z(8?3—61(10)35—1—62(10)—8671)6%(54'2”"”)2—7 (A.15)

(w1,w2,w3)ES MEZ
where 8§1F(B) = foﬁ dBF(B). The perturbative part is given by the term m = 0. We find
3(AGCA) + e 24i4; ) o
8(A+ Ap + Ay + A3)
If we wish to get the U(2) correlation function, we simply need to multiply the above SU(2)

<W1W2W3>pert,SU(2) =1-

... (A.16)

result by the U(1) correlation function (A.4) with g* substituted by 3¢* (because in our
conventions the Casimir of U(1) factor inside U(NN) is % in fundamental representation).

Starting from the matrix model (A.5) for U(2) (i.e. the matrix integral is over 2 x 2
hermitean matrices), we have computed perturbatively (WrWrWg) up to order ¢'° and
verified that it agrees with the expansion of the perturbative truncation (A.16) (multiplied
by the U(1) contribution (A.4) as described above) of the exact result (A.15). Of course,
this agrees with the general proof given in section 3.2.

B Position independence of the (IWO) correlator from string theory

Here we show analytically the independence of the integral in (5.33) on the position xg
of the local operator in the special case 6y = 5 and J; — 0. In this case the calculation
reduces to (IWO) and the non-trivial integral to compute is (see also [23])

1 2T [e'e) d ) 7 1
=5 dU/ T2 tanh”f( —— ) = — (B.1)
2m o cosh”T 1 —sinncosocosh™ 7 Jj—1

for any integer j > 2. The integral is elementary for 7 = 0 by the change of variables
¢ = tanh 7. We want to show that, in fact, the integral does not depend on 7. In terms
of the variables sin 8 = cosh™! 7, cos 8 = tanh 7 the integral is

2 jus . 7
o [ / da/2 i3 s1n2ﬁ cosnc.osﬁ . ' (B.2)
0 0 cos? B \ 1 — cososinnsin 8
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We now notice that the integrand

_ sinf < cos 1 cos 3 )j

~ cos2 B3 \ 1 — cososinnsin

satisfies

cosn Oy fdo Ndp = dg
where the one-form g is
sin o
sin 8

cos.778n(27r[)—/dg—/8 g=20
R R

g= fcosocosfBdo+ f

dg .

Therefore

(B.3)

(B.4)

(B.5)

(B.6)

where the cylinder R = Ig X Sl is the integration domain and OR is the boundary

™

consisting of two circles S. at 8 = 0 and 8 = 5

and the last equality holds because g

identically vanishes for 3 = 0 or § = 5. Hence we have shown that I does not depend on

n in the range 0 <7 < § in which f, g are smooth on the compact integration domain R.

References

[1] J. Erickson, G. Semenoff and K. Zarembo, Wilson loops in N = 4 supersymmetric
Yang-Mills theory, Nucl. Phys. B 582 (2000) 155 [hep-th/0003055] [INSPIRE].

[2] N. Drukker and D.J. Gross, An exact prediction of N = 4 SUSYM theory for string theory,

J. Math. Phys. 42 (2001) 2896 [hep-th/0010274] [INSPIRE].

[3] V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops,

Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INnSPIRE].

[4] N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, More supersymmetric Wilson loops,

Phys. Rev. D 76 (2007) 107703 [arXiv:0704.2237] [INSPIRE].

[6] N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, Wilson loops: from four-dimensional
SYM to two-dimensional YM, Phys. Rev. D 77 (2008) 047901 [arXiv:0707.2699] [INSPIRE].

[6] N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, Supersymmetric Wilson loops on S3,

JHEP 05 (2008) 017 [arXiv:0711.3226] [INSPIRE].

[7] A. Dymarsky and V. Pestun, Supersymmetric Wilson loops in N = 4 SYM and pure spinors,

JHEP 04 (2010) 115 [arXiv:0911.1841] [IxSPIRE].

[8] V. Pestun, Localization of the four-dimensional N =4 SYM to a two-sphere and 1/8 BPS

Wilson loops, JHEP 12 (2012) 067 [arXiv:0906.0638] [INSPIRE].

[9] G.W. Moore, N. Nekrasov and S. Shatashvili, Integrating over Higgs branches,
Commun. Math. Phys. 209 (2000) 97 [hep-th/9712241] [INSPIRE].

[10] A.A. Gerasimov and S.L. Shatashvili, Higgs bundles, gauge theories and quantum groups,

Commun. Math. Phys. 277 (2008) 323 [hep-th/0609024| [INSPIRE].

[11] A.A. Gerasimov and S.L. Shatashvili, Two-dimensional gauge theories and quantum

integrable systems, arXiv:0711.1472 [INSPIRE].

— 40 —


http://dx.doi.org/10.1016/S0550-3213(00)00300-X
http://arxiv.org/abs/hep-th/0003055
http://inspirehep.net/search?p=find+EPRINT+hep-th/0003055
http://dx.doi.org/10.1063/1.1372177
http://arxiv.org/abs/hep-th/0010274
http://inspirehep.net/search?p=find+EPRINT+hep-th/0010274
http://dx.doi.org/10.1007/s00220-012-1485-0
http://arxiv.org/abs/0712.2824
http://inspirehep.net/search?p=find+EPRINT+arXiv:0712.2824
http://dx.doi.org/10.1103/PhysRevD.76.107703
http://arxiv.org/abs/0704.2237
http://inspirehep.net/search?p=find+EPRINT+arXiv:0704.2237
http://dx.doi.org/10.1103/PhysRevD.77.047901
http://arxiv.org/abs/0707.2699
http://inspirehep.net/search?p=find+EPRINT+arXiv:0707.2699
http://dx.doi.org/10.1088/1126-6708/2008/05/017
http://arxiv.org/abs/0711.3226
http://inspirehep.net/search?p=find+EPRINT+arXiv:0711.3226
http://dx.doi.org/10.1007/JHEP04(2010)115
http://arxiv.org/abs/0911.1841
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.1841
http://dx.doi.org/10.1007/JHEP12(2012)067
http://arxiv.org/abs/0906.0638
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.0638
http://dx.doi.org/10.1007/PL00005525
http://arxiv.org/abs/hep-th/9712241
http://inspirehep.net/search?p=find+EPRINT+hep-th/9712241
http://dx.doi.org/10.1007/s00220-007-0369-1
http://arxiv.org/abs/hep-th/0609024
http://inspirehep.net/search?p=find+EPRINT+hep-th/0609024
http://arxiv.org/abs/0711.1472
http://inspirehep.net/search?p=find+EPRINT+arXiv:0711.1472

[12] D. Young, BPS Wilson loops on S? at higher loops, JHEP 05 (2008) 077 [arXiv:0804.4098]
[INSPIRE].

[13] A. Bassetto, L. Griguolo, F. Pucci and D. Seminara, Supersymmetric Wilson loops at two
loops, JHEP 06 (2008) 083 [arXiv:0804.3973] [INSPIRE].

[14] S. Giombi, V. Pestun and R. Ricci, Notes on supersymmetric Wilson loops on a two-sphere,
JHEP 07 (2010) 088 [arXiv:0905.0665] [INSPIRE].

[15] A. Bassetto et al., Correlators of supersymmetric Wilson-loops, protected operators and
matriz models in N =4 SYM, JHEP 08 (2009) 061 [arXiv:0905.1943] [INSPIRE].

[16] A. Bassetto et al., Correlators of supersymmetric Wilson loops at weak and strong coupling,
JHEP 03 (2010) 038 [arXiv:0912.5440] [INSPIRE].

[17] C. Kalousios and D. Young, Dressed Wilson loops on S?, Phys. Lett. B 702 (2011) 299
[arXiv:1104.3746] [INSPIRE].

[18] D. Correa, J. Henn, J. Maldacena and A. Sever, An exact formula for the radiation of a
moving quark in N = 4 super Yang-Mills, JHEP 06 (2012) 048 [arXiv:1202.4455]
[INSPIRE].

[19] B. Fiol, B. Garolera and A. Lewkowycz, FEzact results for static and radiative fields of a
quark in N = 4 super Yang-Mills, JHEP 05 (2012) 093 [arXiv:1202.5292] [INSPIRE].

[20] D. Correa, J. Maldacena and A. Sever, The quark anti-quark potential and the cusp
anomalous dimension from a TBA equation, JHEP 08 (2012) 134 [arXiv:1203.1913]
[INSPIRE].

[21] N. Drukker, Integrable Wilson loops, arXiv:1203.1617 [INSPIRE].

[22] N. Gromov and A. Sever, Analytic solution of bremsstrahlung TBA, JHEP 11 (2012) 075
[arXiv:1207.5489] [INSPIRE].

[23] S. Giombi and V. Pestun, Correlators of local operators and 1/8 BPS Wilson loops on S?
from 2D YM and matriz models, JHEP 10 (2010) 033 [arXiv:0906.1572] [INSPIRE].

[24] S. Giombi and V. Pestun, The 1/2 BPS 't Hooft loops in N =4 SYM as instantons in 2D
Yang-Mills, arXiv:0909.4272 [INSPIRE].

[25] G.W. Semenoff and K. Zarembo, More exact predictions of SUSYM for string theory,
Nucl. Phys. B 616 (2001) 34 [hep-th/0106015] INSPIRE].

[26] K. Zarembo, Open string fluctuations in AdSs x S°® and operators with large R charge,
Phys. Rev. D 66 (2002) 105021 [hep-th/0209095] [INSPIRE].

[27] A. Bassetto and S. Thambyahpillai, Quantum 't Hooft loops of SYM N = 4 as instantons of
Y My in dual groups SU(N) and SU(N)/Zy, Lett. Math. Phys. 98 (2011) 97
[arXiv:1011.0638] [INSPIRE].

[28] R.A. Janik, P. Surowka and A. Wereszczynski, On correlation functions of operators dual to
classical spinning string states, JHEP 05 (2010) 030 [arXiv:1002.4613] INSPIRE].

[29] E. Buchbinder and A. Tseytlin, On semiclassical approzimation for correlators of closed
string vertex operators in AdS/CFT, JHEP 08 (2010) 057 [arXiv:1005.4516] INSPIRE].

[30] K. Zarembo, Holographic three-point functions of semiclassical states, JHEP 09 (2010) 030
[arXiv:1008.1059] [INSPIRE].

— 41 —


http://dx.doi.org/10.1088/1126-6708/2008/05/077
http://arxiv.org/abs/0804.4098
http://inspirehep.net/search?p=find+EPRINT+arXiv:0804.4098
http://dx.doi.org/10.1088/1126-6708/2008/06/083
http://arxiv.org/abs/0804.3973
http://inspirehep.net/search?p=find+EPRINT+arXiv:0804.3973
http://dx.doi.org/10.1007/JHEP07(2010)088
http://arxiv.org/abs/0905.0665
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.0665
http://dx.doi.org/10.1088/1126-6708/2009/08/061
http://arxiv.org/abs/0905.1943
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.1943
http://dx.doi.org/10.1007/JHEP03(2010)038
http://arxiv.org/abs/0912.5440
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.5440
http://dx.doi.org/10.1016/j.physletb.2011.07.016
http://arxiv.org/abs/1104.3746
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.3746
http://dx.doi.org/10.1007/JHEP06(2012)048
http://arxiv.org/abs/1202.4455
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.4455
http://dx.doi.org/10.1007/JHEP05(2012)093
http://arxiv.org/abs/1202.5292
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.5292
http://dx.doi.org/10.1007/JHEP08(2012)134
http://arxiv.org/abs/1203.1913
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.1913
http://arxiv.org/abs/1203.1617
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.1617
http://dx.doi.org/10.1007/JHEP11(2012)075
http://arxiv.org/abs/1207.5489
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.5489
http://dx.doi.org/10.1007/JHEP10(2010)033
http://arxiv.org/abs/0906.1572
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.1572
http://arxiv.org/abs/0909.4272
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.4272
http://dx.doi.org/10.1016/S (01) 055000455-2
http://arxiv.org/abs/hep-th/0106015
http://inspirehep.net/search?p=find+EPRINT+hep-th/0106015
http://dx.doi.org/10.1103/PhysRevD.66.105021
http://arxiv.org/abs/hep-th/0209095
http://inspirehep.net/search?p=find+EPRINT+hep-th/0209095
http://dx.doi.org/10.1007/s11005-011-0480-2
http://arxiv.org/abs/1011.0638
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.0638
http://dx.doi.org/10.1007/JHEP05(2010)030
http://arxiv.org/abs/1002.4613
http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.4613
http://dx.doi.org/10.1007/JHEP08(2010)057
http://arxiv.org/abs/1005.4516
http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.4516
http://dx.doi.org/10.1007/JHEP09(2010)030
http://arxiv.org/abs/1008.1059
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.1059

[31]

[32]

M.S. Costa, R. Monteiro, J.E. Santos and D. Zoakos, On three-point correlation functions in
the gauge/gravity duality, JHEP 11 (2010) 141 [arXiv:1008.1070] [INSPIRE].

R. Roiban and A. Tseytlin, On semiclassical computation of 3-point functions of closed
string vertex operators in AdSs x S°, Phys. Rev. D 82 (2010) 106011 [arXiv:1008.4921]
[INSPIRE].

R.A. Janik and A. Wereszczynski, Correlation functions of three heavy operators: the AdS
contribution, JHEP 12 (2011) 095 [arXiv:1109.6262] [INSPIRE].

Y. Kazama and S. Komatsu, On holographic three point functions for GKP strings from
integrability, JHEP 01 (2012) 110 [Erratum ibid. 06 (2012) 150] [arXiv:1110.3949]
[INSPIRE].

E. Buchbinder and A. Tseytlin, Semiclassical correlators of three states with large S° charges
in string theory in AdSs x S°, Phys. Rev. D 85 (2012) 026001 [arXiv:1110.5621] [INSPIRE].

J. Escobedo, N. Gromov, A. Sever and P. Vieira, Tailoring three-point functions and
integrability, JHEP 09 (2011) 028 [arXiv:1012.2475] [INSPIRE].

J. Escobedo, N. Gromov, A. Sever and P. Vieira, Tailoring three-point functions and
integrability II. Weak/strong coupling match, JHEP 09 (2011) 029 [arXiv:1104.5501]
[INSPIRE].

N. Gromov, A. Sever and P. Vieira, Tailoring three-point functions and integrability II1.
Classical tunneling, JHEP 07 (2012) 044 [arXiv:1111.2349] [INSPIRE].

L.F. Alday and A.A. Tseytlin, On strong-coupling correlation functions of circular Wilson
loops and local operators, J. Phys. A 44 (2011) 395401 [arXiv:1105.1537] INSPIRE].

R. Hernandez, Semiclassical correlation functions of Wilson loops and local vertex operators,
Nucl. Phys. B 862 (2012) 751 [arXiv:1202.4383] [INSPIRE].

P.H. Ginsparg and G.W. Moore, Lectures on 2D gravity and 2D string theory,
hep-th/9304011 [INSPIRE].

P. Di Francesco, P.H. Ginsparg and J. Zinn-Justin, 2D gravity and random matrices,
Phys. Rept. 254 (1995) 1 [hep-th/9306153] [INSPIRE].

J. Daul, V. Kazakov and 1. Kostov, Rational theories of 2D gravity from the two matriz
model, Nucl. Phys. B 409 (1993) 311 [hep-th/9303093] [INSPIRE].

E. Buchbinder and A. Tseytlin, Semiclassical four-point functions in AdSs x S°,
JHEP 02 (2011) 072 [arXiv:1012.3740] [INSPIRE].

N. Drukker, 1/4 BPS circular loops, unstable world-sheet instantons and the matriz model,
JHEP 09 (2006) 004 [hep-th/0605151] [INSPIRE].

N. Drukker and J. Plefka, Superprotected n-point correlation functions of local operators in
N =4 super Yang-Mills, JHEP 04 (2009) 052 [arXiv:0901.3653] [INSPIRE].

A.A. Migdal, Gauge transitions in gauge and spin lattice systems, Sov. Phys. JETP 42
(1975) 743 [Zh. Eksp. Teor. Fiz. 69 (1975) 1457] [INSPIRE].

M. Blau and G. Thompson, Quantum Yang-Mills theory on arbitrary surfaces,
Int. J. Mod. Phys. A 7 (1992) 3781 [INSPIRE].

M. Blau and G. Thompson, Lectures on 2D gauge theories: topological aspects and path
integral techniques, hep-th/9310144 [INSPIRE].

— 492 —


http://dx.doi.org/10.1007/JHEP11(2010)141
http://arxiv.org/abs/1008.1070
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.1070
http://dx.doi.org/10.1103/PhysRevD.82.106011
http://arxiv.org/abs/1008.4921
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.4921
http://dx.doi.org/10.1007/JHEP12(2011)095
http://arxiv.org/abs/1109.6262
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.6262
http://dx.doi.org/10.1007/JHEP01(2012)110
http://arxiv.org/abs/1110.3949
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.3949
http://dx.doi.org/10.1103/PhysRevD.85.026001
http://arxiv.org/abs/1110.5621
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.5621
http://dx.doi.org/10.1007/JHEP09(2011)028
http://arxiv.org/abs/1012.2475
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.2475
http://dx.doi.org/10.1007/JHEP09(2011)029
http://arxiv.org/abs/1104.5501
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.5501
http://dx.doi.org/10.1007/JHEP07(2012)044
http://arxiv.org/abs/1111.2349
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.2349
http://dx.doi.org/10.1088/1751-8113/44/39/395401
http://arxiv.org/abs/1105.1537
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.1537
http://dx.doi.org/10.1016/j.nuclphysb.2012.05.013
http://arxiv.org/abs/1202.4383
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.4383
http://arxiv.org/abs/hep-th/9304011
http://inspirehep.net/search?p=find+EPRINT+hep-th/9304011
http://dx.doi.org/10.1016/0370-1573(94)00084-G
http://arxiv.org/abs/hep-th/9306153
http://inspirehep.net/search?p=find+EPRINT+hep-th/9306153
http://dx.doi.org/10.1016/0550-3213(93)90582-A
http://arxiv.org/abs/hep-th/9303093
http://inspirehep.net/search?p=find+EPRINT+hep-th/9303093
http://dx.doi.org/10.1007/JHEP02(2011)072
http://arxiv.org/abs/1012.3740
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.3740
http://dx.doi.org/10.1088/1126-6708/2006/09/004
http://arxiv.org/abs/hep-th/0605151
http://inspirehep.net/search?p=find+EPRINT+hep-th/0605151
http://dx.doi.org/10.1088/1126-6708/2009/04/052
http://arxiv.org/abs/0901.3653
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.3653
http://inspirehep.net/search?p=find+J+Sov.Phys.JETP,42,743
http://dx.doi.org/10.1142/S0217751X9200168X
http://inspirehep.net/search?p=find+J+Int.J.Mod.Phys.,A7,3781
http://arxiv.org/abs/hep-th/9310144
http://inspirehep.net/search?p=find+EPRINT+hep-th/9310144

[50]
[51]

[52]

[53]

[54]

[59]

[60]

[61]

E. Witten, On quantum gauge theories in two-dimensions,

Commun. Math. Phys. 141 (1991) 153 [INSPIRE].

E. Witten, Two-dimensional gauge theories revisited, J. Geom. Phys. 9 (1992) 303
[hep-th/9204083] [INSPIRE].

A. Bassetto and L. Griguolo, Two-dimensional QCD, instanton contributions and the
perturbative Wu-Mandelstam-Leibbrandt prescription, Phys. Lett. B 443 (1998) 325
[hep-th/9806037] [INSPIRE].

A. Bassetto, L. Griguolo and F. Vian, Instanton contributions to Wilson loops with general
winding number in two-dimensions and the spectral density, Nucl. Phys. B 559 (1999) 563
[hep-th/9906125] [iINSPIRE].

M. Staudacher and W. Krauth, Two-dimensional QCD in the Wu-Mandelstam-Leibbrandt
prescription, Phys. Rev. D 57 (1998) 2456 [hep-th/9709101] INSPIRE].

G.W. Semenoff and D. Young, Ezact 1/4 BPS loop: chiral primary correlator,
Phys. Lett. B 643 (2006) 195 [hep-th/0609158] [INSPIRE].

J. Gomis, S. Matsuura, T. Okuda and D. Trancanelli, Wilson loop correlators at strong
coupling: from matrices to bubbling geometries, JHEP 08 (2008) 068 [arXiv:0807.3330]
[INSPIRE].

B. Eynard, Eigenvalue distribution of large random matrices, from one matrixz to several
coupled matrices, Nucl. Phys. B 506 (1997) 633 [INSPIRE].

A. Alexandrov, A. Mironov and A. Morozov, Partition functions of matriz models as the first
special functions of string theory. 1. Finite size Hermitean one matriz model,

Int. J. Mod. Phys. A 19 (2004) 4127 [Teor. Mat. Fiz. 142 (2005) 419] [hep-th/0310113]
[INSPIRE].

D.E. Berenstein, R. Corrado, W. Fischler and J.M. Maldacena, The operator product
expansion for Wilson loops and surfaces in the large-N limit, Phys. Rev. D 59 (1999) 105023
[hep-th/9809188] [INSPIRE].

N. Drukker and B. Fiol, On the integrability of Wilson loops in AdSs x S°: some periodic
ansitze, JHEP 01 (2006) 056 [hep-th/0506058] [INSPIRE].

D. Arnaudov and R. Rashkov, On semiclassical four-point correlators in AdSs x S°,
arXiv:1206.2613 [INSPIRE].

— 43 —


http://dx.doi.org/10.1007/BF02100009
http://inspirehep.net/search?p=find+J+Comm.Math.Phys.,141,153
http://dx.doi.org/10.1016/0393-0440(92)90034-X
http://arxiv.org/abs/hep-th/9204083
http://inspirehep.net/search?p=find+EPRINT+hep-th/9204083
http://dx.doi.org/10.1016/S0370-2693(98)01319-7
http://arxiv.org/abs/hep-th/9806037
http://inspirehep.net/search?p=find+EPRINT+hep-th/9806037
http://dx.doi.org/10.1016/S0550-3213(99)00474-5
http://arxiv.org/abs/hep-th/9906125
http://inspirehep.net/search?p=find+EPRINT+hep-th/9906125
http://dx.doi.org/10.1103/PhysRevD.57.2456
http://arxiv.org/abs/hep-th/9709101
http://inspirehep.net/search?p=find+EPRINT+hep-th/9709101
http://dx.doi.org/10.1016/j.physletb.2006.10.047
http://arxiv.org/abs/hep-th/0609158
http://inspirehep.net/search?p=find+EPRINT+hep-th/0609158
http://dx.doi.org/10.1088/1126-6708/2008/08/068
http://arxiv.org/abs/0807.3330
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.3330
http://dx.doi.org/10.1016/S0550-3213(97)00452-5
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B506,633
http://dx.doi.org/10.1142/S0217751X04018245
http://arxiv.org/abs/hep-th/0310113
http://inspirehep.net/search?p=find+EPRINT+hep-th/0310113
http://dx.doi.org/10.1103/PhysRevD.59.105023
http://arxiv.org/abs/hep-th/9809188
http://inspirehep.net/search?p=find+EPRINT+hep-th/9809188
http://dx.doi.org/10.1088/1126-6708/2006/01/056
http://arxiv.org/abs/hep-th/0506058
http://inspirehep.net/search?p=find+EPRINT+hep-th/0506058
http://arxiv.org/abs/1206.2613
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.2613

	Introduction
	Review of supersymmetric subsector and relation to 2d
	Multi-matrix models from 2d YM
	Light-cone perturbatione theory
	General multi-matrix model from 2d YM exact solution

	Gaussian three-matrix model in the planar limit
	Catalan numbers
	One-point resolvent with external legs
	Two-point function
	Three-point function
	Closed type diagrams
	Open topology
	Complete three-point planar resolvent
	Exact <WOO> correlator and strong coupling limit


	String theory computations
	Semiclassical <WO> correlator
	<WOO> correlator
	Supersymmetry equations

	<WWW> for U(1) and U(2): matrix model vs exact 2d YM partition function
	U(1)
	SU(2)

	Position independence of the <WO> correlator from string theory

