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1 Introduction

In this paper, a universal method is suggested for solving the problem of consistent inter-

actions in the general field theories. The method equally well applies to the Lagrangian

or non-Lagrangian field equations, and it does not break the explicit covariance. The field

equations may have (or have no) gauge symmetry, and/or have (or don’t have) the sec-

ond class constraints in the corresponding Hamiltonian form in the variational case - the

method provides identification of all the consistent interactions, in all the instances.

The proposed method is based on the idea of involutive form of the field equations.

Every regular system of field equations can be equivalently reformulated in the involutive

form. The gauge algebra of the involutive equations is more rich, in general, then the

algebra of the equivalent non-involutive system. In particular, the involutive system may

have gauge identities even if the theory does not have any gauge invariance. The consistency

is completely controlled by the stability of the gauge algebra of involutive system with

respect to inclusion of the interaction.

The paper is organized as follows. In the next section, we explain the problem setting,

and discuss previously known methods of its solution. In section 3, we explain the notion of

the involutive form of field equations and preview the basic idea of our method. In section 4,

we describe the gauge algebra associated to the involutive system of field equations. Then,

we explain the procedure of perturbative inclusion of interactions in the involutive systems.

In section 5, we consider the examples of interactions in massive spin 1 and 2 models,
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to illustrate the general method. The conclusion contains a brief discussion of the paper

results. In the appendix we derive the relation (3.8) which is used in the paper for counting

physical degrees of freedom.

2 The consistency problem of interactions

The most common view on the problem of consistent interactions can be roughly formulated

in the following way. The starting point is a system of linear field equations, or a quadratic

Lagrangian, which is supposed to be covariant with respect to certain global symmetry

group (the most often examples are Poincaré, AdS or conformal groups). The free field

model has a certain number of physical degrees of freedom. Switching on an interaction

means inclusion of nonlinear covariant terms into the free equations. The interaction is

said consistent if and only if the nonlinear theory has the same number of physical degrees

of freedom as the original free model has had.

If the free field equations and the interacting ones follow from the least action principle,

the Dirac-Bergmann algorithm [1] will allow one to examine the number of physical degrees

of freedom and to check in this way consistency of the interaction. There is an extension

of this algorithm [2] which is applicable to general regular dynamics with not necessarily

Lagrangian equations. The Dirac-Bergmann technique and its extensions, however, break

the explicit covariance. Because of that, these algorithms can help to examine the consis-

tency of particular interaction a posteriori, but they are hardly able to serve as a tool for

covariant derivation of the consistent interactions.

The explicitly covariant method is known for solving the interaction consistency prob-

lem for the gauge fields in Lagrangian theories (for introductory review see [3]). The basic

idea of this method is that both the action and the gauge symmetry must be simultaneously

deformed by interaction in such a way that the number of gauge transformations for the

Lagrangian would remain the same after inclusion of the interaction as it has been in the

free theory, though the symmetry can change. The most systematic form of this method,

being based on the cohomological view of the problem, is known in the framework of the

BV-BRST formalism [3, 4]. In its turn, the BRST approach to the consistency problem

is based on the general theory of local BRST cohomology [5]. Many gauge field theories

are known where this method either has delivered the complete solution to the consistency

problem, or established a no-go theorem for the interactions. We mention several exam-

ples of such results: establishing all the consistent interactions for p-form fields [6], and

the no-go theorem for graviton-graviton interactions [7]. There are numerous results of

a similar type obtained in various models by various versions of this method during the

two recent decades. Among the most recent ones we mention the work [8], where all cubic

electromagnetic interactions are found by this method for the higher-spin fermionic fields

in Minkowski space, and it is proven that the minimal couplings are not admissible.

The above mentioned method is so popular because of the explicit covariance and al-

gebraic elegance. This method, however, is unable to provide a solution for the consistency

interaction problem for any field theory. The matter is that gauge invariance is not the only

cause that makes “nonphysical” some of degrees of freedom. For example, the number of
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physical degrees of freedom is less than the number of fields for the second class constrained

models, though there is no gauge symmetry. That is why, even in gauge invariant systems,

the non-violation of gauge symmetry by the interaction does not necessarily mean the con-

sistency of interaction. With this regard, it is relevant to mention the idea of introducing

Stückelberg fields to gauge the massive models, and then apply the usual method to intro-

duce the gauge invariant interactions. Many works apply the Stückelberg gauge symmetry

idea to find the consistent interactions or examine consistency for various massive fields.

Among the examples of this type we can mention the series of recent works on massive

gravity [9–11] (further references can be found in these articles, and also in [12]). Inclusion

of the Stückelberg fields is rather an art than a science at the moment. No general prescrip-

tion is known of doing that in such a way that could ensure the consistency of interaction

just as a consequence of its consistency with the Stückelberg symmetry. To examine con-

sistency of interactions in the Stückelberg gauged model, a non-covariant Dirac-Bergmann

constrained analysis still remains inevitable in many cases, see for example [10, 11].

In this paper we suggest to control the consistency of interaction by exploiting the

involutive form of the field equations. As we explain in the next section, any field theory

model can be equivalently formulated in the involutive form, and the result of such a

reformulation is termed an involutive closure. Normally, the involutive closure retains all

of the symmetry of the original system that makes the method convenient for studying

covariant field equations. The involutive closure of the Lagrangian equations is generally

not Lagrangian anymore, even for such a simple model as Proca equations. There is no

pairing between gauge identities and gauge symmetries1 in the involutive closures of the

Lagrangian equations in general. In particular, even if the Lagrangian does not have

gauge symmetry, the involutive closure of the Lagrangian equations can possess non-trivial

gauge identities. The gauge algebra of the involutive closure of the field equations, with

unrelated gauge symmetries and identities, turns out to be more rich, in general, than the

gauge algebra of the equivalent non-involutive system. It is the structure of the gauge

algebra of the involutive closure of the field equations that controls the number of physical

degrees of freedom. That is why, when the interactions are included, it is the stability of the

gauge algebra of the involutive closure of the field equations that ensures the consistency

of the theory.

The idea of involution is well developed in the theory of ODE’s and PDE’s, and it

is effectively applied to a broad range of the problems in various fields, see [13]. It has

been never systematically studied, however, as a tool for controlling the consistency of

interactions - to the best of our knowledge. In the next section we explain some of the

basic notions related to the involutive systems which are relevant in the context of consistent

interaction problem. Our consideration, being at the physical rigor level, skips subtleties

of the theory of involutive systems (for a rigorous review see [13]), because we focus at the

issues of gauge algebra that are underdeveloped in this field at the moment.

1The gauge identities are often termed as the Noether ones, because the second Noether theorem states

the isomorphism between the identities and symmetries. For the general non-Lagrangian system of equa-

tions, including involutive closure of Lagrangian one, there is no automatic Noether’s correspondence be-

tween symmetries and identities. That is why, we do not use the term “Noether identity” to avoid the

impression that it is related to any gauge symmetry.
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3 Involutive form of field equations

By the order of a field equation we understand the maximal order of the derivatives of the

fields in the equation. The maximal order of the equations in the system is said to be the

order of the system.

Definition. A system of order t is said involutive if any differential consequence of the

order less than or equal to t is already contained in the system.

In the theory of involutive PDE’s [13], the definition above is normally complemented

by more strong and intricate requirements which are inessential here, given the physical

rigor level accepted and the problem addressed, so we adopt this simple definition.

If the system of field equations is supplemented by all the differential consequences of

the orders lower or equal to the order of the system, it becomes involutive. The system

brought to involution in this way is said to be the involutive closure of the original system.

Obviously, the original system is equivalent to its involutive closure in the sense that all

the solutions are the same for both systems.

If the system of field equations can be brought to the involutive closure just by inclusion

derivatives of some of the equations, we will also consider it involutive,2 though it is not,

according to the definition above. This simplification is convenient, and it does not lead

to any contradiction as far as the problem of consistent interactions is concerned.

To illustrate the distinctions between the involutive and non-involutive form of

field equations from the viewpoint of variational principle and gauge algebra, consider

the example.

Example. Irreducible massive spin 1 field in d = 4 Minkowski space. The field equations

of the model include the Klein-Gordon equations and the transversality condition for the

vector field,

Tµ ≡ (�−m2)Aµ = 0 , ord(Tµ) = 2 (3.1)

T⊥ ≡ ∂µAµ = 0 , ord (T⊥) = 1 (3.2)

The order of equations is denoted by the symbol ord. This system is involutive and it is

obviously non-Lagrangian as it contains five equations for the four component field Aµ.

There is no gauge symmetry, though there exists a non-trivial gauge identity between the

equations (3.1) and (3.2):

∂µTµ − (�−m2)T⊥ ≡ 0 . (3.3)

It is useful to introduce the generator of gauge identity L, such that the identity would

read

LaTa ≡ 0 , a = (µ,⊥) , Lµ = ∂µ , L⊥ = −(�−m2) (3.4)

Define now a notion of the total order of gauge identity. Suppose the a-th component of

the generator of the gauge identity La is a differential operator of order sa, and the order

2In the theory of PDEs such consequences are termed trivial integrability conditions. These are inessen-

tial for the count of physical degrees of freedom.
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of the equation Ta is ta. The order of the a-th identity component la is defined as the

sum la = sa + ta. The total order of the gauge identity generated by L is defined as the

maximum

ord(L) = max
a

{la} . (3.5)

In the case of the identity (3.3), the differential operator L⊥ = −(� −m2) has the order

s⊥ = 2, and it acts on the first order equation T⊥, so the order of the transverse component

of identity l⊥ = 2+ 1 = 3. The order of the differential operator Lµ = ∂µ is sµ = 1, and it

acts on the second order equation Tµ, so the order of this identity component is the same,

lµ = 1 + 2 = 3. As we see, the total order of the gauge identity (3.3) is 3.

Alternatively, the same massive vector field model is described by the Proca equations

Pµ ≡ (δµν �− ∂µ∂
ν −m2 δνµ)Aν = 0 , ord(Pµ) = 2 , (3.6)

that are Lagrangian. The Proca equations follow from (3.1), (3.2):

Pµ ≡ Tµ − ∂µT⊥ ,

and vice versa, the Klein-Gordon and transversality equations follow from (3.6),

T⊥ ≡ −m−2∂µPµ , Tµ ≡ (δµν −m−2∂µ∂
ν)Pν .

Notice that the Proca equations, being of the second order, have the first order differential

consequence - the transversality condition (3.2). This means that the Proca system is not

involutive. Obviously, (3.6) and (3.1), (3.2) are equivalent systems of equations. The invo-

lutive closure of Proca equations, that includes (3.6) and their first order consequence (3.2),

is an involutive non-Lagrangian system that contains the gauge identity of the third order:

∂µPµ +m2T⊥ ≡ 0 (3.7)

One can observe that the involutive form of the spin one equations, being non-Lagrangian,

has a gauge identity, so its gauge algebra is non-trivial. Quite opposite, the Lagrangian

Proca equations equations are not involutive and have trivial gauge algebra, without any

gauge identity.

A similar conclusion as in the above example holds in general: if the Lagrangian

equations are not involutive, their involutive closure, being a non-Lagrangian system, will

have the gauge algebra with more independent gauge identity generators than the original

Lagrangian system has had. Notice that if the Lagrangian system has a gauge symmetry,

its involutive closure will obviously have the same symmetry, so the gauge algebra of the

involutive closure will always have the original gauge symmetry as a subalgebra.

Running a couple steps ahead, notice that the structure of the gauge algebra of invo-

lutive system unambiguously defines the number of physical degrees of freedom N by the

following formula:

N =
∞∑

k=0

k(tk − lk − rk) . (3.8)
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Here tk is a number of equations of order k in the involutive system, lk is the number of

gauge identities of k-th total order, and rk is the number of gauge symmetry generators of

kth order.3 In this formula, both the gauge symmetry and gauge identity generators are

supposed irreducible. The formula is derived in the appendix, where one can also find its

extension to the case of reducible gauge identities and symmetries. The number of physical

degrees of freedom is understood here as a number of the Cauchy data needed to define a

solution modulo gauge ambiguity. In variational case it coincides with the dimension of the

reduced phase space. So, if the configuration space count is done, N has to be divided by 2.

In the example above of the involutive equations for the massive spin-1 in d = 4, we

have one first order equation and four second order ones, so t2 = 4, t1 = 1. There is one

identity of the third order l3 = 1, and no gauge symmetry. Substituting these numbers

into the general formula (3.8) one obtains N = 1 · 1 + 2 · 4 − 3 · 1 = 6 that provides the

correct answer, as the massive vector field has 3 physical polarizations, and the physical

phase space is 6-dimensional.

Consider one more example illustrating relation (3.8): a scalar field φ(t, x) in two-

dimensional space subject to a pair of the second order equations

Tt ≡ ∂2
t φ(t, x) = 0 , Tx ≡ ∂2

xφ(t, x) = 0 , ord(Tt) = ord(Tx) = 2 . (3.9)

There are no differential consequences of the second or lower orders, so the system is in

involution. There is the fourth order gauge identity,

∂2
t Tx − ∂2

xTt ≡ 0 . (3.10)

With two second order equations (t2 = 2) and one forth order identity (l4 = 1), rela-

tion (3.8) brings zero as the number of physical degrees of freedom. Let us directly check

that it is a correct count. The general solution reads

φ(t, x) = Axt+Bx+ Ct+D , (3.11)

with A,B,C,D being arbitrary integration constants. No arbitrary function of x or t is

involved in the general solution. This means that the system, being 2d field theory, has no

local physical degrees of freedom.

Let us comment on formula (3.8). At first, we notice that the relation is valid for

involutive equations. So, prior to applying this formula to a non-involutive system, one

has to take an involutive closure. The involutive closure can be taken in an explicitly

covariant way for covariant equations, it does not require any (3 + 1)-splitting, unlike the

Dirac-Bergman algorithm. Also, it is important that the involutive closure can be found for

any system, be it Lagrangian or not, and it does not require any special (e.g., first order)

3By the order of gauge symmetry generator we understand the highest order of the derivative of the gauge

parameter involved in the gauge transformation of the fields. From this point of view, in Lagrangian theory,

where the gauge identities and gauge symmetries have the same generators, the order of symmetry can be

different from the total order of the identity. This is because the total order of identity is defined taking

into account the order of the equations it involves, while the order of the gauge symmetry is indifferent to

the order of equations.
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formulation. The orders of equations, symmetries and identities can be easily found, so

formula (3.8) provides a simple tool to covariantly control the number of physical degrees

of freedom. The second peculiarity of this formula is that it is somewhat counterintuitive:

it involves neither the number of fields in the system, nor is it sensitive to the number of

zero order gauge symmetries, identities and equations.

The problem of computing the number of the physical degrees of freedom has been

thoroughly studied in the theory of involutive systems [13], though the answer has been

known in a completely different terms,4 not explicitly appealing to the total orders of equa-

tions, identities and symmetries. In the context of the problem of consistent interactions,

where the structure of the gauge algebra is the principal object to study, it is important to

control the degrees of freedom in terms of the gauge algebra constituents. In the appendix

we deduce the formula (3.8) proceeding from the definition accepted in the theory of invo-

lutive systems and based on the concept of strength of a system of equations. This concept

was introduced by Einstein when he counted degrees of freedom in General Relativity [14]

and it has been further developed in many works (among which we mention [15–18]) and

related to the count by Cauchy data [13].

Notice that for Lagrangian equations, whenever they are involutive from the outset

(in this case, the gauge identity generators coincide with the gauge symmetry ones), the

receipt (3.8) for the degree of freedom count takes a special form (A.25), which has been

well known before [19]. Notice another special form of field equations where the asymmetry

may occur between gauge identities and symmetries: the unfolded formulation of the higher

spin fields (for review see [20]). This method utilizes the involutive form of the unfolded

equations, and it also benefits from the fact that all the equations, symmetry and identity

generators are of the first order. The unfolded formalism involves, however, infinite number

of field equations, symmetries and identities. Formula (3.8) can not be immediately applied

to the unfolded systems because all the numbers in (3.8) are supposed to be finite. In this

case, the method of σ−-cohomology [21–23] provides a tool for the degree of freedom count.

The σ−-cohomology method allows one to pick out a finite involutive subsystem such that

the unfolded system will be its infinite jet prolongation. The degree of freedom count in

the finite subsystem, being made by the formula (3.8), delivers the answer for the number

of degrees of freedom in the complete unfolded theory.

Let us formulate now the key stages of the procedure we suggest for constructing

consistent interactions, given the original free field equations:

1. The free system is to be brought to the involutive form.

2. All the gauge symmetries and identities are to be identified in the free involutive

system.

3. The interaction vertices are perturbatively included to comply with the three basic

requirements in every order of coupling constant:

4The analysis is made by means of the theory of Cartan’s differential systems, and the answers are

formulated in terms of the Hilbert polynomials [13]. In principle, this way of counting physical degrees

of freedom is sufficient, though it seems inconvenient in the context of relativistic field theories because it

requires cumbersome and not always explicitly covariant computations.
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(a) The field equations have to remain involutive;

(b) The gauge algebra of the involutive system can be deformed, though the number

of gauge symmetry and gauge identity generators remains the same as it has

been in the free theory;

(c) The number of physical degrees of freedom, being established by relation (3.8),

cannot change, though some of the involved orders can.

This procedure ensures finding all the consistent interaction vertices, for any regular system

of field equations.

4 Gauge algebra of involutive systems

As it has been already explained, if the Lagrangian system of field equations is not involu-

tive, its involutive closure will be non-Lagrangian. It is the structure of the gauge algebra

of the involutive closure, not the original system of equations, that controls number of

physical degrees of freedom. That is why, one has to study the gauge algebra of dynamics

in its non-Lagrangian involutive form even if the Lagrangian exists. The exception is the

case where the Lagrangian equations are involutive from the outset. In this special case,

the known methods [3] work well, being insufficient for general Lagrangians. Notice once

again that the non-involutive Lagrangian equations are not exceptional - many models in

physics are of this class, e.g. massive fields with spin. This leads us to consider first the

gauge algebra of the non-Lagrangian dynamics.

The gauge algebra of the general (not necessarily Lagrangian) system is known in the

same details as in the Lagrangian case, and the corresponding BRST complex is also well

studied [24, 25] that allows one to systematically control all the compatibility conditions.

Below, we provide a simplified description of the gauge algebra, without resorting to the

corresponding cohomological tools and leaving aside the higher compatibility conditions,

as these are less important in the context of interaction problem.

4.1 Algebra of gauge symmetries and identities in general field theory

It is common to consider general structures of gauge algebra by making use of the condensed

notation, and we will follow this tradition as it is convenient for presenting the general idea

of the method. In this notation, the fields are collectively denoted by φi, with i being the

condensed index that includes all the discrete indices, and also the space-time points. For

example, the vector field Aµ(x) is indexed by i = (µ, x). Summation over the condensed

index implies integration over x.

In the condensed notation, any system of field equations reads

Ta(φ) = 0 , ord(Ta) = ta, (4.1)

where a is a condensed index, and Ta is understood as a function of the fields and their

space-time derivatives up to some finite order ta. The discrete part of the condensed

index a labeling the equations is different, in general, from that of the condensed index
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i numbering the fields. For the Lagrangian equations, i coincides with a, though this

is not true if the involutive closure is considered instead of the original equations. For

example, the involutive closure of the Proca equations includes both the original Lagrangian

equations (3.6) and the transversality condition (3.2), so the indices belong to the different

sets: i = (µ, x), and a = (µ,⊥, x). For the regular field equations, the order ta depends

only on the discrete part of the index a, not on the space-time point.

The general field equations can enjoy gauge symmetry transformations

δǫφ
i = ǫαRi

α(φ) , δǫ Ta(φ)|T=0 = 0 , ∀ǫα , ord(Rα) = rα < ∞ , (4.2)

where the gauge parameters ǫα and generators Ri
α(φ) are understood in the sense of con-

densed notation, i.e. the summation over α implies integration over x. For example, in

electrodynamics, δǫAµ(x) = ∂µǫ(x), and hence i = (µ, x), α = y, Rµ(x, y) = ∂µδ(x− y), so

that δǫAµ(x) =
∫
dyRµ(x, y)ǫ(y). Locality of the gauge symmetry implies that the gauge

generators Rα are the differential operators of finite order, denoted rα, with coefficients

depending on the fields and their derivatives.

The condition (4.1) defines the on-shell invariance of the equations that off-shell reads

Ri
α(φ)∂iTa(φ) = U b

αa(φ)Tb(φ) , (4.3)

where the derivative ∂i is understood as variational and the structure coefficients U b
αa(φ)

are supposed to be regular on shell.

The gauge identities can also take place for the general field equations, being not

necessarily related to the gauge symmetries

La
A(φ)Ta(φ) ≡ 0 , ord(LA) = la . (4.4)

The gauge identity generators LA are supposed to be local differential operators. The total

order of the identity ord(LA) is defined by the order of the differential operator and the

order of the equation it acts on as explained in section 3 below relation (3.4).

The gauge symmetry and gauge identity generators are considered as trivial whenever

they vanish on shell, that is

Ri
α(triv) = ρi aα (φ)Ta , La

A(triv) = ζabA (φ)Tb , ζabA = −ζbaA , (4.5)

where ρ and ζ can be arbitrary local differential operators of finite order with the coefficients

depending on the fields and their derivatives.

The sets {Ri
α}, {L

a
A} of the gauge symmetry and gauge identity generators are sup-

posed to be complete. The completeness means that any other generator of gauge symmetry

or identity, satisfying (4.3) or (4.4), must be a linear combination of the generators from

the given set modulo the trivial ones (4.5).

Let us discuss now the equivalence relations for the systems of field equations. Two

systems of field equations are considered as equivalent if they are related by a locally

invertible change of fields and/or by locally invertible linear combination of the left hand

sides of the equations. The admissible class of changes of fields reads

φi → φ′i = φ′i(φ, ∂φ, ∂2φ, . . . ) , (4.6)
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where the existence is implied for the inverse change belonging to the same class, i.e. the

original fields φ have to be unambiguously determined by (4.6) as functions of the fields φ′

and their derivatives up to some finite order.

For example, consider the system of vector and scalar field. The change A′
µ = Aµ −

∂µφ, φ
′ = φ is admissible as the local inverse change exists.

Given a set of fields, the admissible class of equivalence transformations for the field

equations reduces to the linear combining with invertible coefficients:

Ta ∼ T ′
a ⇔ T ′

a = Kb
a(φ)Tb , Ta = (K−1)ba(φ)T

′
b , (4.7)

where the elements of the transformation matrices K and K−1 are the differential operators

of finite order.

Assuming the completeness of the generators of gauge symmetries and gauge identities,

one can derive the following consequences from the relations (4.3), (4.4):

Rj
α∂jR

i
β −Rj

β∂jR
i
α = Uγ

αβR
i
γ +W i a

αβTa ; (4.8)

Rj
α∂jL

a
A = UB

αAL
a
B +W ab

αATb , W ab
αA = −W ba

αA , (4.9)

where U,W are some structure functions. These relations have further compatibility condi-

tions involving higher structure functions (see for details [24, 25]). The existence of all the

higher structure functions and their locality have been proven in [26] under the condition

that the generators L,R and the structure function U involved in (4.3) are all local. The

corresponding existence theorem for Lagrangian theories has been known long before [27].

So, with the existence theorem, to ensure consistency of the field theory (4.1), it is sufficient

to fulfill relations (4.3), (4.4) with some differential operators R,Z,U of finite order.

4.2 Gauge algebra and perturbative inclusion of interactions

Consider involutive system of free field equations

T (0)
a (φ) = 0 , ord(T (0)

a ) = t(0)a . (4.10)

As the free field equations are supposed to be linear, the generators of gauge symmetries

and gauge identities are the differential operators with field-independent coefficients. With

this regard, relations (4.3), (4.4) in the free theory should have identically vanishing on-shell

terms:

R(0)i
α ∂iT

(0)
a (φ) ≡ 0 , ord(R(0)

α ) = r(0)α ; (4.11)

L
(0)a
A T (0)

a (φ) ≡ 0 , ord(L
(0)
A ) = l

(0)
A . (4.12)

Given the orders of the equations, gauge symmetries and identities, the number of physical

degrees of freedom in the free model, N (0), is defined by (3.8).

Perturbative inclusion of interaction is understood as a deformation of the equations,

identities and gauge symmetries by nonlinear terms,

T (0)
a → Ta = T (0)

a + gT (1)
a + g2T (2)

a + . . . , (4.13)

R(0)i
α → Ri

α = R(0)i
α + gR(1)i

α + g2R(2)i
α + . . . , (4.14)

L
(0)a
A → La

A = L
(0)a
A + gL

(1)a
A + g2L

(2)a
A + . . . . (4.15)
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Here g is a coupling constant considered as formal deformation parameter, generators

L
(1)a
A and R

(1)i
α are linear in fields and their derivatives; T

(1)
a , L

(2)a
A , and R

(2)i
α are bi-linear,

etc. Notice that in each order of the deformation, the orders of equations, identities and

symmetries can never decrease.

Now, we can give a more specific formulation of the consistency conditions for the

interactions than the general explanation in the end of section 3. The consistency of the

interaction is provided if the three conditions are fulfilled: (a) the system remains involutive

at each order in g; (b) the deformations do not break the gauge algebra generated by

relations (4.3), (4.4), though the structure functions can change in (4.3) as well as the

higher relations; (c) the orders of the equations, symmetries, and identities may increase,

though the overall balance established by relation (3.8) cannot change, i.e., it is required

N (0) = N in every order in g. The conditions (a) and (b) provide algebraic consistency of

the system with perturbatively included interactions, and (c) ensures that the interacting

system has the same number of physical degrees of freedom.

Let us elaborate on the perturbative procedure of the interaction inclusion. Suppose

we have taken the most general ansatz for T
(1)
a , ord(T

(0)
a +gT

(1)
a ) = t

(1)
a , that does not break

involutivity, so (a) is fulfilled. Substituting this ansatz into relations (4.3), (4.4) and con-

sidering that in the first order in g, we find the following relations between T (1), R(1), L(1):

R(0)i
α ∂iT

(1)
a = U (1)b

αa T
(0)
b −R(1)i

α ∂iT
(0)
a , (4.16)

L
(0)a
A T (1)

a + L
(1)a
A T (0)

a = 0. (4.17)

These relations impose nontrivial restrictions on the first order interaction.

The first relation means that the free theory gauge transformation has to leave the

first order interaction on-shell invariant modulo linear combination of variations of free

equations. “On-shell” hereafter means on the free equations.

The second relation means that the free gauge identity generators must leave the first

order interaction on-shell invariant. Notice that even if the model has no gauge symmetry,

the involutive closure of its equations can have non-trivial gauge identities. This means

that the conditions (4.17) are essential for consistency of interactions even in the systems

without any gauge invariance. If the equations are Lagrangian and involutive from the out-

set,5 relations (4.17) are reduced to the the on-shell gauge invariance of the cubic vertices

in the Lagrangian. For the involutive Lagrangian equations, the generators R and L coin-

cide, and the relations (4.16) follow from (4.17) in this case. For general system, including

the involutive closure of the Lagrangian equations, the relations (4.17) are not necessarily

connected with (4.16). The relations (4.16) are always first examined in the Lagrangian

case (see [3]–[8]) to check the first order consistency of the interaction in Lagrangian dy-

namics. As is seen from the explanations above, if the Lagrangian field equations are not

involutive, the first order consistency of interaction requires to independently impose the

extra conditions (4.17) on the vertices, because these are not necessarily connected to the

gauge symmetry of the Lagrangian.

5As it has been already noticed in section 3, there are many non-involutive Lagrangian equations being

of a considerable interest in physics.

– 11 –



J
H
E
P
0
1
(
2
0
1
3
)
0
9
7

Given a free model, the solution does not necessarily exist in any theory for the first

order consistency conditions (4.16), (4.17) imposed on the first order interactions T (1)

and the corresponding first order corrections to the gauge identity and gauge symmetry

generators L(1), R(1). If a solution exists, it can be explicitly found as the system is linear.

The solutions for interactions are considered modulo ambiguities related to the equiv-

alence relations (4.7), (4.6). In particular, a nonlinear change of fields in the free equations

is not considered as an interaction as well as a linear combination of the free equations

with field-dependent coefficients.

If the order t
(1)
a increases because of the first order interactions, the orders of gauge

identity and symmetry generators should also increase in a corresponding way to have the

same number of physical degrees of freedom (3.8). If a solution to (4.16), (4.17) exists with

the correct N , one can proceed to the next order.

In the second order in g, the basic relations of the gauge algebra (4.3), (4.4) read

R(0)i
α ∂iT

(2)
a +R(1)i

α ∂iT
(1)
a +R(2)i

α ∂iT
(0)
a = U (1)b

α a T
(1)
b + U (2)b

α a T
(0)
b , (4.18)

L
(0)a
A T (2)

a + L
(1)a
A T (1)

a + L
(2)a
A T (0)

a = 0 . (4.19)

In the first instance, these relations represent further compatibility conditions for the

first order interaction. Let us explain that in the case of relation (4.19). On substi-

tuting into (4.19) the expressions for L
(1)a
A , T

(1)
a previously derived from (4.16), (4.17),

one has to get a combination of the free theory gauge identity generators L(0) modulo

free equations. This requirement is not automatically fulfilled for any interaction de-

rived from (4.16), (4.17). In some models it can be even possible that these relations

are inconsistent. In this case, one arrives at a no-go theorem for the interaction. So,

the second order relations (4.18), (4.19) provide an additional selection mechanism for

the first order interactions. If this filter is passed by the first order interactions, then rela-

tions (4.18), (4.19) can be viewed as a consistent algebraic system of linear equations defin-

ing the second order contributions to the equations, gauge symmetry and gauge identity

generators: T
(2)
a , R

(2)i
α , L

(2)a
A . The solution for the second order interaction is to be consid-

ered modulo the equivalence relations (4.6), (4.7). In particular, the nonlinear changes of

fields or combinations of the lower order equations with field dependent coefficients are not

considered as interactions. If the solution for T
(2)
a involves the field derivatives of a higher

order than T
(1)
a and T

(0)
a , then the orders of the gauge symmetries and gauge identities

have to increase in the corresponding way to provide the same number of physical degrees

of freedom according to relation (3.8).

On substituting the second order interactions into the third order expansion terms

of the relations (4.3), (4.4) one arrives at the relations that represent the consistency

conditions for T
(2)
a , R

(2)i
α , L

(2)a
A . This is much like the relations (4.18), (4.19) work for the

previous order equations and generators. Again, there can be either inconsistency found

at this stage, or one derives the third order interaction, and the procedure repeats in the

next order. Three different scenarios are possible for further development of the iterative

constructing the interactions. The first is that the iterative analysis of the expansion in

g of the conditions (4.3), (4.4) will terminate at certain order because of contradiction.
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This results in a no-go theorem. The second is that starting from certain order all the

interactions become trivial. This results in a polynomial interaction. The third option is

that the procedure results in nontrivial consistent interactions in every order. This leads

to a non-polynomial interaction.

In the case of involutive Lagrangian equations, this procedure reduces to the commonly

known method of inclusion interactions between gauge fields (see [3] for a review). It has

been already mentioned that the involutive closure of non-involutive Lagrangian equations

is not Lagrangian anymore. Because of that, the Lagrangian method does not apply to

this case, whereas the method of this section still works well, as well as for any other

involutive system of field equations. Our method exploits the same general idea as the

Lagrangian gauge approach: to include interactions by a consistent deformation of the

equations and the related gauge algebra. The main distinctions are related to the fact that

the general gauge algebra of involutive system involves gauge identities (4.4) independently

from gauge symmetries, and the involutive form of equations allows one to effectively control

the number of physical degrees of freedom.

5 Examples: consistent self-interactions of massive fields of spin 1 and 2

In this section we illustrate the general procedure of perturbative inclusion of consistent

interactions described in section 4 by the examples of self-interactions for massive fields of

spin one and two. Applying this method we find all the consistent interaction contributions

(without higher derivatives) to the field equations of the second order in fields. For the

corresponding Lagrangians this would correspond to the cubic vertices, though we find that

some of the admissible interactions do not follow from any Lagrangian.

5.1 The massive spin 1 in d=4

As it has been explained in previous section, there are equivalence relations for the in-

volutive field equations, so one can choose various representatives from the equivalence

class of the free equations. For the spin 1, this choice is not unique either, as it has been

explained in section 3. We choose the Proca equations and the transversality condition as

free involutive equations for the spin 1,

T (0)
µ = ∂νFνµ −m2Aµ, T

(0)
⊥ = ∂νAν , ord(T (0)

µ ) = 2 , ord(T
(0)
⊥ ) = 1 . (5.1)

In this section, we adopt the following agreement for the strength tensor and its dual:

Fµν = ∂µAν − ∂νAµ, F̃µν = 1
2εµναβF

αβ . The choice of free equations in the form (5.1)

is slightly more convenient than the other equivalent options, e.g. (3.1), (3.2), because the

second order equations in the system (5.1) are Lagrangian that makes it easier to check

the consistency of the interactions.

Equations (5.1) admit the gauge identity whose generator reads

L(0)µ = ∂µ, L(0)⊥ = m2 , L(0)µT (0)
µ + L(0)⊥T

(0)
⊥ ≡ 0 , ord(L(0)) = 3. (5.2)

So, the involutive form of the massive spin-1 free field equations includes four second

order equations and one of the first order together with the third-order gauge identity

between them. (The general definition is provided by relation (3.5) for the total order of

the gauge identity.)
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The next step according to the general procedure of perturbative inclusion of interac-

tions, as described in section 4, is to take the most general covariant ansatz for the first

order correction to the field equations that does not break involutivity. Let us assume that

no higher order derivatives of the fields are included in the interactions.6 Then the most

general ansatz reads

T (1)
µ = Aα

(
ρ1Fµα + ρ3F̃µα

)
+ ρ2

(
Aα∂αAµ − T

(0)
⊥ Aµ

)
+ ∂αAβ

(
ρ4∂βF̃αµ+

+ ρ5∂βFαµ + ρ9∂αF̃βµ

)
+ ∂µ

(
ρ7∂αAβ∂

αAβ + ρ8∂βAα∂
αAβ + ρ6FαβF̃

αβ
)
+

+ ζ1AµT
(0)
⊥ + ζ2∂µA

α∂αT
(0)
⊥ + ζ3∂

αAµ∂αT
(0)
⊥ + ζ4F̃

α
µ∂αT

(0)
⊥ + ζ5∂µ

(
T
(0)
⊥

)2
+

+ ζ6T
(0)
α ∂αAµ + ζ7T

(0)
α ∂µA

α + ζ8F̃
α
µT

(0)
α + ζ9T

(0)
⊥ T (0)

µ ,

T
(1)
⊥ = ρ10F

αβFαβ + ρ11∂
βAα∂αAβ + ρ12F

αβF̃αβ + ρ13m
2AαA

α+

+ (ζ10 +
ρ2
m2

)
(
T
(0)
⊥

)2
. (5.3)

The vertices with ten ζ-coefficients are trivial as they are reduced to a linear combi-

nation of the free equations with field-dependent coefficients. Inclusion/exclusion of these

vertices gives an example of the equivalence transformation (4.7) with

(Kζ)
ν
µ
= δµν + ζ6∂

νAµ + ζ7∂µA
ν + ζ8F̃

ν
µ + ζ9δ

ν
µT

(0)
⊥ , (Kζ)

⊥
⊥
= 1 + ζ10T

(0)
⊥ ,

(Kζ)
⊥
µ
= ζ1Aµ +

(
ζ2∂µA

α + ζ3∂
αAµ + ζ4F̃α

µ

)
∂α + 2ζ5∂µT

(0)
⊥ , (Kζ)

ν
⊥
= 0 . (5.4)

The inverse transformation has the form (Kζ)
−1 = K−ζ + O(ζ). We keep these terms to

simplify the control of trivial vertices in the next order of interactions. Besides the trivial

terms, the most general covariant quadratic ansatz (5.3) includes a 13-parametrer set of

the non-trivial contributions with the coupling constants ρ.

Substituting the ansatz (5.3) into the structure relations (4.17), we obtain the following

consistency conditions for T
(1)
µ , T

(1)
⊥ :

L(0)αT (1)
α + L(0)⊥T

(1)
⊥ ≡ ∂αT (1)

α +m2T
(1)
⊥ =

=
(ρ1
2

+m2(ρ7 + ρ10)
)
FαβFαβ +

(ρ3
2

+m2(2ρ6 + ρ12)
)
FαβF̃αβ+

+
(
ρ2 +m2(2ρ8 + 2ρ7 − ρ5 + ρ11)

)
∂βAα∂αAβ +m2

(
ρ1 +m2ρ13

)
AαA

α+

+
(
−

ρ9
2

+ 2ρ6

)
∂γFαβ∂

γF̃αβ + 2ρ7∂γ∂βAα∂
γ∂αAβ + 2ρ8∂γ∂αAβ∂

γ∂αAβ+

+ ρ1A
αT (0)

α + ∂αAβ
(
2ρ7∂αT

(0)
β + (2ρ8 − ρ5)∂βT

(0)
α + 2(ρ7 + ρ8)∂α∂βT

(0)
⊥

)
+

+ 4ρ6F̃
αβ∂αT

(0)
β +O(ζ) = 0 (mod T (0)) . (5.5)

6This assumption does not restrict generality. One can see that the inclusion of higher derivatives would

inevitably increase the number of physical degrees of freedom, as it is defined by relation (3.8). We omit

the detailed proof of this fact, though the simple evidence of that can be easily seen. If, for example, the

third order derivatives are included into T
(1)
µ , there will be four equations of the third order, so the positive

contribution to N will increase by 4. There is only one gauge identity, so its total order should increase at

least by four to compensate that. To achieve such a growth of the order of the identity, one has to raise

the order of T⊥. As the order of the scalar equation raised, this will again increase N with no way to

compensate the latter growth of the order.

– 14 –



J
H
E
P
0
1
(
2
0
1
3
)
0
9
7

The ζ-terms vanish on-shell, and for this reason, the parameters ζ remain arbitrary at this

stage. The consistency requirement (5.5) imposes seven conditions on thirteen interaction

parameters ρ:

ρ7 = 0, ρ8 = 0, ρ9 = 4ρ6, ρ10 = −
ρ1
2m2

, ρ11 = ρ5 −
ρ2
m2

,

ρ12 = −
ρ3
2m2

− 2ρ6, ρ13 = −
ρ1
m2

. (5.6)

Obviously, six parameters ρ1, . . . , ρ6 remain arbitrary, while the seven others are fixed by

these relations. Having the consistency conditions (5.5) fulfilled, we arrive at the following

six-parametrer set of vertices:

T (1)
µ = Aα

(
ρ1Fµα + ρ3F̃µα

)
+ ρ2

(
Aα∂αAµ − T

(0)
⊥ Aµ

)
+ ∂αAβ

(
ρ4∂βF̃αµ+

+ ρ5∂βFαµ

)
+ ρ6

(
4∂αAβ∂αF̃βµ + ∂µ(F

αβF̃αβ)
)
,

T
(1)
⊥ = −

ρ1
m2

(1
2
FαβFαβ +m2AαA

α
)
+
(
ρ5 −

ρ2
m2

)
∂βAα∂αAβ−

−
( ρ3
2m2

+ 2ρ6

)
FαβF̃αβ +

ρ2
m2

(
T (0)

)2
(mod ζ). (5.7)

The corresponding contributions to the gauge identity generators read

L(1)ν = −ρ1A
ν +

(
ρ5∂

νAα − 4ρ6F̃
αν
)
∂α, L(1)⊥ = 0 . (5.8)

Consider now the problem of compatibility of the first-order interactions at the next or-

der. Following the general prescription of section 4, we have to substitute the first-order

gauge identity generators and equations L(1), T (1) obtained above, into relations (4.19) and

examine their consistency. We have

L(1)αT (1)
α = −ρ1ρ2

(1
2
Aα∂αA

2 −A2T
(0)
⊥

)
− ρ1A

ν∂αAβ
(
ρ4∂βF̃αν + ρ5∂βFαν+

+ 4ρ6∂αF̃βν

)
− ρ1ρ6A

ν∂ν(F
αβF̃αβ) +

(
ρ5∂

νAα − 4ρ6F̃
αν
)
∂αT

(1)
ν (5.9)

As is seen from (4.19) the first order interactions L(1), T (1), having the form (5.9) with

six parameters involved, will be compatible in the second order if there exist functions

T
(2)
α , T

(2)
⊥ such that ord(T

(2)
α ) ≤ 2, ord(T

(2)
⊥ ) ≤ 1 and the following conditions are fulfilled:

L(1)αT (1)
α + ∂αT (2)

α +m2T
(2)
⊥ = 0 (mod T (0)). (5.10)

On substituting (5.9) into (5.10), one can find that no obstructions occur to the existence

of T
(2)
α , T

(2)
⊥ with appropriate orders of field derivatives. For example, we can always take

T (2)
µ = −

(
ρ5∂

βAµ − 4ρ6F̃
β

µ

)
T
(1)
β + ρ1A

β∂αAµ

(
ρ4F̃αβ + ρ5Fαβ

)
+

+ ρ1ρ6

(
4Aβ∂µA

αF̃αβ +AµF
αβF̃αβ

)
,

T
(2)
⊥ =

ρ1ρ2
m2

(1
2
Aα∂αA

2 −A2T
(0)
⊥

)
−

ρ1
m2

∂βA
ν∂αAβ

(
ρ4F̃αν + ρ5Fαν

)
. (5.11)
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This means that the six-parametrer set of the first-order interactions (5.7), being the general

solution to the first-order condition (4.17), admits a consistent extension to the second

order without any restriction on the parameters ρ. We will not further elaborate here

on the most general interactions of the higher orders, although the method allows one to

study the issue in its full generality in any order, as it can be seen from the first-order

example. Instead, we will just notice some special cases, where the perturbative procedure

of interaction inclusion can be consistently interrupted already at the second order level.

At first, notice that if the parameters ρ are chosen in such a way that L
(2)
⊥ = 0 and

T
(2)
µ = 0, the identity will be consistent without higher order contributions, i.e., with

T (n), L(n) = 0, n > 2. The corresponding first-order vertices are called self-consistent.

Two special combinations of the parameters are possible that define inequivalent self-

consistent first-order interactions:

1. ρ1 , ρ2 , ρ3 6= 0, ρ4 = ρ5 = ρ6 = 0 that corresponds to the equations at most cubic

in fields. A further specialized option ρ1ρ2 = 0 leads to the at most quadratic in

fields interactions;

2. ρ2 , ρ3 , ρ4 6= 0, ρ1 = ρ5 = ρ6 = 0 results in quadratic interaction.

In the first case, the corresponding equations read

Tµ = ∂αFαµ −m2Aµ +Aα
(
ρ1Fµα + ρ3F̃µα

)
+ ρ2

(
Aα∂αAµ − T

(0)
⊥ Aµ

)
,

T⊥ = ∂αAα −
ρ1
m2

(1
2
FαβFαβ +m2AαA

α
)
−

ρ2
m2

(
∂βAα∂αAβ −

(
T (0)

)2 )
−

−
ρ3
2m2

FαβF̃αβ +
ρ1ρ2
m2

(1
2
Aα∂αA

2 −A2T
(0)
⊥

)
,

Lα = ∂α − ρ1A
α, L⊥ = m2. (5.12)

The second item results in a different self-consistent interaction of the first order

Tµ = ∂αFαµ −m2Aµ + ρ3A
αF̃µα + ρ2

(
Aα∂αAµ − T

(0)
⊥ Aµ

)
+ ρ4∂

αAβ∂βF̃αµ,

T⊥ = ∂αAα −
ρ2
m2

(
∂βAα∂αAβ −

(
T (0)

)2
)
−

ρ3
2m2

FαβF̃αβ ,

Lα = ∂α, L⊥ = m2 . (5.13)

These two different quadratic interactions, being self-consistent as such, can be comple-

mented by the higher order interactions. The more general quadratic interactions (5.3)

need cubic corrections to ensue consistency. Though such corrections exist, as we have

explained above, they can be inconsistent in the next order of interaction.

Notice that the three-parameter sets of self-consistent interactions (5.12), (5.13), being

the most general in this class, are not necessarily compatible with variational principle,

though the free theory admits Lagrangian formulation. One can see that only the one-

parameter family of the vertices (5.12), (5.13) is variational. It is the case of ρ2 = −ρ1 = g

and the other ρ’s and ζ’s vanishing. The corresponding Lagrangian reads

L = L(0) + L(1) = −
1

4
FαβFαβ −

m2

2
AαAα −

g

2
∂αAαA

βAβ .
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All other vertices of (5.12), (5.13) do not follow from variational principle. This demon-

strates that the general class of the consistent interactions can be much broader than that

of Lagrangian ones. This fact can also mean that some of the no-go theorems for the

interactions, known in the Lagrangian framework, may be bypassed if the requirement is

relaxed for the vertices to be variational.

5.2 The massive spin 2 in d=4

The irreducible spin-2 massive field theory can be described by a traceless, symmetric, rank-

2 tensor field hµν subject to the Klein-Gordon equations and the transversality condition

T (0)
µν ≡ (�−m2)hµν = 0, T (0)

ν ≡ ∂νhµν = 0 , ord(T (0)
µν ) = 2, ord(T (0)

µ ) = 1 . (5.14)

These equations are involutive as there are no low order differential consequences. Unlike

spin 1, the equations are inequivalent to any Lagrangian system formulated in terms of the

original irreducible field. The Fierz-Pauli Lagrangian [28] that involves auxiliary scalar field

and traceless tensor hµν leads to the equations that are equivalent to (5.14). The Fierz-

Pauli equations (FPE) are not involutive. Their involutive closure is not Lagrangian and it

has a more complex structure than the equations (5.14) formulated without any auxiliary

field. A similar picture is observed for all the higher-spin massive fields. The Lagrangian

formulation due to Singh and Hagen [29] needs auxiliary fields, that makes the system non-

involutive. The involutive closure of the Sing-Hagen equations is not Lagrangian anymore,

and is more complex than the system of Klein-Gordon equations and the transversality

condition for the traceless tensors. The aim of this subsection is to demonstrate by the

example of the spin-2 field that the minimal formulation of the irreducible field equations,

involving just the mass shell and transversality conditions, is sufficient for iterative con-

struction of consistent interactions. Though this formulation is not Lagrangian, it admits

quantization and can enjoy all the other advantages of Lagrangian formalism, including

Noether’s correspondence between symmetries and conserved currents. The matter is that

the model admits a Lagrange anchor. As is known, the Lagrange anchor [25], being iden-

tified for not necessarily Lagrangian field equations, allows one to path-integral quantize

the theory [25, 30, 31], and also to connect symmetries with conservation laws [26, 32].

Prior to seeking for consistent interactions, we have to identify the gauge identity and

gauge symmetry generators for the free field equations (5.14). The model has no gauge

symmetry and there exists four third-order gauge identities. The generators are given by

L(0)µν
α =

1

2
(δµα∂

ν + δνα∂
µ) , L(0)ν

α = −(�−m2)δµα, (5.15)

L(0)µν
α T (0)

µν + L(0)ν
αT

(0)
ν ≡ 0 , ord(L(0))α = 3 . (5.16)

Following the general procedure of section 4, to switch on the first order interactions,

one has to find the quadratic vertices T
(1)
µν , T

(1)
ν such that the identities (4.17) hold with

T
(0)
µν , T

(0)
µ , L

(0)µν
α L

(0)µ
α defined by (5.14), (5.15).
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We do not study the most general case, restricting the quadratic vertices by the ansatz

with at most two derivatives in every term:7

T (1)
µν = ρ8

(
∂µhαβ∂νh

αβ −
1

4
ηµν (∂h)

2

)
+ ρ3

(
∂αhβµ∂

αhβν −
1

4
ηµν (∂h)

2

)
+

+ ρ9

(
∂µhαβ∂

αhβν + ∂νhαβ∂
αhβµ −

1

2
ηµν

(
∂̃h

)2
)
+ ρ6h

αβ∂α∂βhµν+

+ ρ4

(
∂αhβµ∂

βhαν −
1

4
ηµν

(
∂̃h

)2
)
+ ρ7

(
hαβ∂ν∂µhαβ −

1

4
ηµνh

αβ
�hαβ

)
+

+m2ρ5

(
hαµh

α
ν −

1

4
ηµνh

2

)
+ ρ1h

αβ

(
∂ν∂αhβµ + ∂µ∂αhβν −

1

2
ηµν∂αT

(0)
β

)
,

T (1)
ν = ∂µ

(
ρ2hαµh

α
ν + ρ10ηµνh

2
)
, (5.17)

where we used the following abbreviations:

h2 = hαβh
αβ , (∂h)2 = ∂νhαβ∂

νhαβ ,
(
∂̃h

)2
= ∂νhαβ∂

αhνβ .

Notice that the trivial (on-shell vanishing) terms are omitted in (5.17). All the vertices

are identically traceless. Following the general procedure of section 4, we substitute the

ansatz (5.17) into the relations (4.17) and examine consistency,

L(0)αβ
ν T

(1)
αβ + L(0)α

ν T (1)
α ≡ ∂νT (1)

µν − (�−m2)Tν = (5.18)

= ∂µQµν + ρ8∂νh
αβT

(0)
αβ + ρ9∂

αhβνT
(0)
αβ + ρ9∂νh

αβ∂αT
(0)
β −

− (ρ9 + ρ1)∂
αhβν∂αT

(0)
β + ρ6h

αβ∂α∂βT
(0)
ν − ρ6∂

βhαν∂αT
(0)
β + ρ7h

αβ∂νT
(0)
αβ )+

+ ρ1h
αβ∂ν∂αT

(0)
β + ρ1h

αβ∂αT
(0)
βν − (ρ9 + ρ1)m

2hβνT
(0)
β −

− ∂µ
(
ρ1ηµν

1

2
hαβ∂αT

(0)
β + ρ2

(
hαµT

(0)
αν + hανT

(0)
αµ

)
+
(
2ρ10 +

ρ7
4

)
ηµνh

αβT
(0)
αβ

)
,

where

Qµν = ∂αhβµ∂αhβν

(
ρ9 + ρ3 + ρ1 − 2ρ2

)
+ ∂βhαµ∂αhβν

(
ρ4 + ρ6

)
+

+
1

4
ηµν (∂h)

2
(
ρ8 − ρ3 + 2ρ7 − 8ρ10

)
+

1

4
ηµν

(
∂̃h

)2 (
2ρ1 − ρ4

)
+

+m2hαµhαν

(
ρ9 + ρ5 + ρ1 − ρ2

)
+

1

4
m2ηµνh

2
(
2ρ8 − ρ5 + ρ7 − 4ρ10

)
. (5.19)

At first order, the consistency requires the expression (5.18) to vanish modulo T (0). Each

term in (5.19) being independent (modulo a conserved tensor), so we arrive at the system

of equations restricting the interaction parameters

ρ9 + ρ3 + ρ1 − 2ρ2 = 0, ρ8 − ρ3 + 2ρ7 − 8ρ10 = 0, ρ4 + ρ6 = 0 ,

ρ9 + ρ5 + ρ1 − ρ2 = 0, 2ρ8 − ρ5 + ρ7 − 4ρ10 = 0, 2ρ1 − ρ4 = 0 . (5.20)

7In the most general case, the terms can appear with two second-order derivatives and four derivatives

in total. The interactions of this type are usually considered abnormal, and we do not study them here.
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The solution to this system reads

ρ8 = −
γ

3
, ρ9 = γ − ρ1, ρ3 = 2ρ2 − γ, ρ4 = 2ρ1,

ρ5 = ρ2 − γ , ρ6 = −2ρ1, ρ7 = 4ρ0 −
γ

3
, ρ10 = ρ0 −

ρ2
4

, (5.21)

where γ, ρ0, ρ1, ρ2 are arbitrary constants. The term with the coefficient ρ2 can be consid-

ered as trivial, because it is generated by the diffeomorphism in the space of fields:

hµν 7→ h
′

νν = hµν + ρ2

(
hαµh

α
ν −

1

4
ηµνh

2
)
.

Finally, we conclude that the set of non-trivial vertices for the massive spin-2 equations

may involve at most 3 parameters. The consistent quadratic vertices are given by

T (1)
µν = γ

[
−

1

3
∂µhαβ∂νh

αβ − ∂αhβµ∂
αhβν +

1

3
ηµν (∂h)

2 + ∂µhαβ∂
αhβν+

+ ∂νhαβ∂
αhβµ −

1

2
ηµν

(
∂̃h

)2
−

1

3
hαβ∂ν∂µhαβ +

1

12
ηµνh

αβ
�hαβ−

−m2hαµh
α
ν +

m2

4
ηµνh

2
]
+ ρ1

[
hαβ

(
∂ν∂αhβµ + ∂µ∂αhβν −

1

2
ηµν∂αT

(0)
β

)
−

− ∂µhαβ∂
αhβν − ∂νhαβ∂

αhβµ − 2hαβ∂α∂βhµν + 2∂αhβµ∂
βhαν

]
+

+ ρ2

[
2∂αhβµ∂

αhβν −
1

2
ηµν (∂h)

2 +m2hαµhαν −
m2

4
ηµνh

2
]
+

+ ρ0

[
4hαβ∂ν∂µhαβ − ηµνh

αβ
�hαβ

]
,

T (1)
µ = ∂µ

(
ρ2hαµh

α
ν +

(
ρ0 −

ρ2
4

)
ηµνh

2
)
. (5.22)

Notice that two parameters γ and ρ1 are associated with the conserved currents that do

not contribute to the transversality condition T
(1)
µ .

The first-order deformation of the Noether identity generators is given by

L(1)αβ
ν = ∂µ

(
Lαβ
µν ·

)
+
(
ρ1 − γ

)
∂(αh

β)
ν
+ 4ρ0∂νh

αβ + ρ1δ
(α
ν T (0)β) ,

L(1)α
ν = ∂µ

(
Lα
µν ·

)
+ L̃α

ν , (5.23)

where the round brackets mean symmetrization in corresponding indices and the following

notation is used:

Lαβ
µν =

(γ
4
−

ρ2
2

− ρ0

)
ηµνh

αβ +
(
ρ2 − ρ1

)
h(αµδ

β)
ν + ρ2h

(α
νδ

β)
µ , (5.24)

L̃α
ν = γ

(
∂νT

(0)α − T (0)α
ν

)
+ ρ1

(
2∂αT (0)

ν + T (0)α∂ν − ∂νT
(0)
α − 2δανT

(0)
β ∂β

)
,

Lα
µν = ρ1

(
∂νh

α
µ + 2δανh

β
µ∂β − 2∂αhµν − hαµ∂ν +

1

2
ηµνh

βα∂β

)
+ γ

(
∂µh

α
ν − ∂νh

α
µ

)
.

As it follows from the general requirement (4.19), the next order consistency of the

vertices (5.22) is only possible under the following condition:

L(1)µν
α T (1)

µν + L(1)µ
α T (1)

µ = ∂µQαµ −m2T (2)
α (mod T (0)) , (5.25)
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where

Qαµ = ∂µT
(2)
α − T (2)

αµ . (5.26)

Relation (5.19) is the compatibility condition for the second-order vertices. We will seek

for the solutions to these equations that obey conditions

ord(Qµν) = 2, ord(T (2)
µ ) = 1 .

These are obviously consistent with the number of physical degrees of freedom. The ad-

missible choice is

Qνµ = Lαβ
µνT

(1)
αβ + Lα

µνT
(1)
α +

(
ρ1 − γ

)[
hβν

(
T
(1)
βµ − ∂µT

(1)
β

)
+ ∂µh

β
νT

(1)
β

]
.

To get Q we integrate by parts and take into account the identity (5.18):

hβν∂
αT

(1)
αβ = hβν

(
�−m2

)
T
(1)
β = ∂µ

[
hβν

(
T
(1)
βµ − ∂µT

(1)
β

)
+ ∂µh

β
νT

(1)
β

]
(mod T (0)) .

The on-shell vanishing gauge identity generators L̃α
ν and δ

(α
ν T (0)β) can not affect the re-

lation (5.25), so the question left reads: is it possible to represent the remaining term

hαβ∂νT
(1)
αβ in the form (5.25) for some Q? If the answer is affirmative, one should try to

express Q in the form (5.26) with on-shell traceless and symmetric tensor T
(2)
αβ . If the

answer is negative, an obstruction for the second order vertex appears. We have

4ρ0∂νh
αβT

(1)
αβ = ∂µ

[
4ρ0

(
4ρ0 −

γ

3

)
∂νh

β
µh

στ∂βhστ + 8ρ0ρ1∂νh
β
µh

στ∂τhσβ

]
−

− 8ρ0ρ1∂νh
αβhστ∂σ∂τhαβ + . . . (mod T (0)) , (5.27)

where the dots denote the terms of order 1 that may be included into T
(2)
ν . There is a term

of order 2 in the r.h.s. of (5.27)

−8ρ0ρ1∂νh
αβhστ∂σ∂τhαβ

that does not reduce on shell to a total divergence. It cannot also be absorbed by deforma-

tion of the transversality condition T
(2)
µ because of the order restriction. This means that

the vertices are inconsistent in the class with ord(T
(2)
µ ) = 1 unless ρ0ρ1 = 0. Therefore there

can be at most two 2-parameter families of consistent interactions in the considered class.

This seems matching well the fact that the massive gravity admits a 2-parameter family of

Lagrangians [33] that are consistent from the viewpoint of Hamiltonian constrained analy-

sis [34]. The detailed comparison, however, with complete nonlinear equations of massive

gravity [33] is not straightforward as the vertices for the field equations (5.14) are deduced

for the traceless tensor hµν without any auxiliary field involved. The massive gravity equa-

tions involve the tracefull tensor. In the free limit the massive gravity reduces to the FP

equations. In the FP theory, the trace vanishes on shell, leading to the equations (5.14)

for traceless tensor. For the nonlinear equations of massive gravity, the explicit on-shell

exclusion of the auxiliary field is unknown at the moment, though one should expect it is

still possible (if it was impossible, the theory would have a different number of degrees of
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freedom). Unless the auxiliary field remains involved in the equations, the corresponding

vertices can not be immediately compared with the ones in the equations formulated with-

out auxiliary fields from outset. The goal of this section, however, is not to perturbatively

re-derive the massive gravity vertices, but to exemplify the involutive technique of finding

interactions without a direct use of Lagrangian, making use of a minimal set of fields.

6 Concluding remarks

Let us briefly discuss the results. In this paper, we propose a new method that allows

one to examine the consistency of interactions for the general field theory models, be they

Lagrangian or non-Lagrangian. The method also provides a technique for perturbative

identification of all the admissible interactions, given a free field model. The method

requires first to bring the field equations to the involutive form. Notice that the involutive

closure is always non-variational for variational non-involutive equations. As far as the field

equations are brought to the involutive form, the gauge algebra is to be identified for the

equations. The consistency of the gauge algebra is examined by tools similar to those based

on the BV formalism for Lagrangian systems [3, 4] with three major generalizations. The

first generalization is that the consistency of gauge algebra is examined for the involutive

closure of the system of field equations, not for the action functional which might be even

non-existent. The second is that the gauge identity generators are involved in the gauge

algebra of the involutive closure independently from the gauge symmetries. The identity

generators impose their own consistency conditions that are not identified by previously

known method [3] even in the Lagrangian case. The third is that the gauge algebra of the

involutive system provides a convenient receipt (3.8), (A.23) for counting physical degrees

of freedom. This formula is applied to the involutive equations in a covariant form, and it

uniformly covers all conceivable instances. Let us also mention that the formula (A.23) has

been derived in the appendix in a more general setting than it is actually utilized in the

paper, as it also applies to the case of reducible gauge symmetries and gauge identities. Let

us finally notice, that the involutive closure of field equations admits a BRST embedding

along the lines of [25]. From the viewpoint of the corresponding local BRST complex [26],

the formula for the degree of freedom count (3.8), (A.23) can get a natural cohomological

interpretation. This issue will be addressed elsewhere.
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A Physical degree of freedom count

In this appendix, we explain the origin of formula (3.8) for counting of the physical degrees

of freedom.

The starting point for deriving the formula (3.8) is the notion of the strength of dif-

ferential equations introduced by Einstein [14]. Roughly, the strength is a number that

measures the size of the solution space. The “stronger” is the system of differential equa-

tions, the smaller is its solution space. It turns out that the numerical value of strength

can be immediately related with the number of Cauchy data needed to define the general

solution modulo gauge freedom, i.e., with the number of physical degrees of freedom. The

original Einstein’s argumentation was not mathematically rigor, its justification and ex-

planation within the modern theory of formal integrability can be found in book [13]. For

earlier discussions of the concept of strength of equation as well as numerous applications

to the analysis of relativistic field equations we refer the reader to [15–18].

Let us first explain the Einstein’s concept of the strength of field equations. Consider

a set of fields φi on d-dimensional space-time with coordinates xµ. Assuming the fields to

be analytical functions, we can expand them in Taylor series about some point x0:

φi(x) =
∞∑

p=0

1

p!
ϕi
µ1···µp

(x− x0)
µ1(x− x0)

µ2 · · · (x− x0)
µp . (A.1)

Let Np denote the total number of terms of pth order in the expansion above. (The explicit

expression for Np is given below.) As far as the fields φi obey a system of PDEs, not all the

Taylor coefficients ϕi
µ1···µp

can remain arbitrary. Denote N ′
p the number of monomials of

order p that are left free in the general solution of the field equations. Obviously, N ′
p < Np.

On the other hand, if the field equations enjoy a gauge symmetry, not all the solutions are

physically relevant; some of the monomials in the general solution come from Taylor series

for the gauge parameters. Modding out by the gauge freedom, one can define the number

N ′′
p of gauge inequivalent monomials of order p entering the general solution. Now, the

number of physical degrees of freedom per point8 is given by

N = lim
p→∞

p

d− 1

N ′′
p

Np
. (A.2)

This formula, that dates dates back to Einstein, defines the number of physical degrees

of freedom as the growth of the number of “physical monomials” compared to the uncon-

strained ones.

Consider a system of PDEs

Ta(φ
i, ∂µφ

i, . . . , ∂µ1 · · · ∂µmφ
i) = 0 , a = 1, . . . , t, (A.3)

governing the dynamics of fields φi, i = 1, 2 . . . , f . The order of these equations equals

to m. Substituting the expansion (A.1) into the field equations (A.3) and evaluating the

result at x = x0, we get the system of algebraic equations

Ta(ϕ
i, ϕi

µ, . . . , ϕ
i
µ1···µm

) = 0 . (A.4)

8Accordingly, the number of physical polarizations of the field φi is the half of N .
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These equations follow from (A.3) by simply replacing the partial derivatives of fields with

the corresponding Taylor coefficients. In general, the solution space for these equations

can be a very complicated algebraic variety containing strata of different dimensions. So,

it might be problematic to choose the independent coefficients and compute their total-

ity. But the task is considerably simplified if one considers the conditions on the higher

order coefficients. After all, the lower order monomials do not matter for evaluating the

limit (A.2). Differentiating (A.3) k times by x’s and setting x = x0, we obtain a set of

algebraic equations of the form

J
ν1···νm+k

aiµ1···µk
ϕi
ν1···νm+k

+ Iaµ1···µk
= 0 , (A.5)

where the functions J ’s and I’s depend on ϕ’s of order less than m + k. Thus, for each

given k, we get a system of linear inhomogeneous equations for the coefficients ϕi
ν1···νm+k

.

The matrix J = Jk, defining the system, is called the symbol matrix of order k; it has the

following structure:

J
ν1···νm+k

aiµ1···µk
= J

(ν1···νm
ai δνm+1

µ1
· · · δ

νm+k)
µk

, J ν1···νm
ai =

∂Ta(ϕ)

∂ϕi
ν1···νm

. (A.6)

Here the round brackets mean symmetrization of the indices enclosed and the functions

Ta(ϕ) are given by the left hand side of equation (A.4). As is seen, the symbol matrix Jk

of order k is expressed in a very specific way trough the symbol matrix of order 0. The

latter may be called the symbol matrix of the field equations (A.3). For linear differential

equations the symbol matrix J0 is just the highest-order or principal part of the system.

We thus see that whatever the original system of field equations may be, there is an

integer m such that the space of monomials of order p > m is determined by a finite system

of linear inhomogeneous equations with coefficients depending on ϕ’s of order ≤ p. The

echelon form of the algebraic equations (A.5) suggests to solve them one after another, so

that at each step one deals with a finite system of linear inhomogeneous equations. This

makes possible applying the usual theorems of linear algebra to evaluate the solution space.

First of all, the number of linearly independent solutions to equations (A.5) crucially

depends on the rank of the symbol matrix Jl. The symbol matrix in its turn is the function

of the Taylor coefficients {ϕi
µ1···µj

}mj=0 constrained by the algebraic equations (A.4), so that

the rank of Jk can suddenly change. To avoid this complication we will restrict ourselves

to those solutions of (A.4) for which the rank of the symbol matrix Jk(ϕ) is maximal.

This means that we consider only the general (opposite to singular) solutions to the field

equations. Following [13], we will call {ϕi
µ1···µj

}mj=0 the principal coefficients, referring to

the other Taylor coefficients as parametric.

By Kronecker-Capelli’s criterion, the system of linear inhomogeneous equations (A.5)

is compatible iff each left null-vector K of the symbol matrix Jk annihilates also the inho-

mogeneous term Ik. Clearly, the null-vectors of the symbol matrix, if any, can always be

chosen to be functions of the principal coefficients alone. A crucial point is that the com-

patibility criterion is automatically satisfied for differential equations in involution. The

reason is very simple: vanishing of the function Kaµ1···µkIaµ1···µk
would otherwise give a

nontrivial constraint on the lower order coefficients that, in turn, would be manifestation
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of a hidden integrability condition. On the other hand, if the vector K annihilates both

the symbol matrix Jk and the inhomogeneous term Ik, then it defines an identity for the

linear equations (A.5) and this identity must follow from a gauge identity for the original

differential equations (A.3).

The general solution to an inhomogeneous linear system is given by its partial solution

plus the general solution to the corresponding homogeneous system. In our case, the

latter is completely determined by the symbol matrix. Thus, to evaluate the size of the

solution space, we focus on the solutions to the homogeneous system. These form a linear

space, whose dimension is given by the number of unknowns minus the rank of the symbol

matrix. The number of unknowns {ϕi
ν1···νm+k

} in (A.5) coincide with the number Np of

lineally independent monomials of order p = m+ k. It is easy to find that

Np = f

(
p+ d− 1

p

)
= f

(p+ d− 1)!

p!(d− 1)!
. (A.7)

The rank of the symbol matrix Jk can be computed as the difference between the number

of equations (A.5) and the number of left null-vectors of the matrix Jk. The former is

expressed through the binomial coefficients as

t

(
k + d− 1

l

)
= t

(
p−m+ d− 1

p−m

)
. (A.8)

As was explained above all left null-vectors for the symbol matrix of involutive equations

come from gauge identities. Each gauge identity

L̂aTa ≡ 0 (A.9)

is defined by differential operators

L̂a =

q′∑

n=0

Laν1···νn∂ν1 · · · ∂νn ,

with coefficients depending on fields and their derivative up to some finite order j. If the

highest coefficients {Laµ1···µq} are not all equal to zero identically, then the number q′ is

called the order of the gauge identity (4.4). Differentiating (A.9) s times by x’s and setting

x = x0, we find

Laµ1···µq′J
ν1···νm+s+q′

aiµ1···µs+q′
ϕi
ν1···νm+s+q′

+ · · · ≡ 0 , (A.10)

where dots stand for the terms involving ϕ’s of order less than m + s + q′. If s is large

enough such that m + s + q′ > j, then we are lead to conclude that the coefficients at

ϕi
ν1···νm+s+q′

in (A.10) must be zero in order for the identity to hold. This implies that the

symbol matrix Js+q′ admits the set of null-vectors {Lλ1···λs
} of the form

L
aµ1···µs+q′

λ1···λs
= La(µ1···µq′ δ

µq′+1

λ1
· · · δ

µp+s)
λs

, L
aµ1···µs+q′

λ1···λs
J

ν1···νm+s+q′

aiµ1···µs+q′
= 0 .

All these null-vectors are linearly independent and their number is given by
(
s+ d− 1

s

)
. (A.11)
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In other words, each gauge identity of order q′ for the involutive equations of order m gives
(
l − q′ + d− 1

l − q

)
=

(
p− q + d− 1

p− q

)
(A.12)

left null-vectors for the corresponding symbol matrix Jk provided that k is large enough.

Here p = k +m and the number q = q′ +m is called the total order of gauge identity.

Now, suppose that the system (A.3) involves equations of different orders: t0 equations

of order zero (algebraic equations), t1 equations of the first order and so on. Let us also

assume that the system contains no hidden integrability conditions and becomes involu-

tive upon adjoining trivial differential consequences. Then according to (A.8) all these

differential equations give rise to

∞∑

n=0

tn

(
p− n+ d− 1

p− n

)
(A.13)

linear equations for the parametric coefficients ϕi
µ1···µp

with large p. Of course, only a

finitely many terms are different from zero in the above sum. Let us further suppose that

the field equations enjoy ln gauge identities of total orders n = 0, 1, 2, . . .. If all these

identities are independent (irreducible), then the linear equations (A.5) for the parametric

coefficients of order p are possessed of exactly

∞∑

n=0

ln

(
p− n+ d− 1

p− n

)
(A.14)

dependencies (left null-vectors) provided that p is large enough. The difference be-

tween (A.13) and (A.14) is the number of independent equations for unknowns ϕi
µ1···µp

.

Subtracting this difference from (A.7), we get the dimension of the solution space, that is,

the number of independent monomials of order p:

N ′
p = f

(
p+ d− 1

p

)
−

∞∑

n=0

(tn − ln)

(
p− n+ d− 1

p− n

)
. (A.15)

Now, we should take into account gauge freedom. Each gauge transformation has the

form

δǫφ
i =

q∑

n=0

Riµ1···µn∂µ1 · · · ∂µnǫ . (A.16)

In this expression, the coefficients R’s are functions of the fields and their derivatives up

to some finite order and the infinitesimal gauge parameter ǫ is an arbitrary function of x’s.

The number q is the order of the gauge transformation. The gauge invariance of the field

equations (A.3) implies that

δǫTa = Û b
aTb (A.17)

for some matrix differential operator Û . Let us expand the gauge parameter in Taylor

series

ǫ(x) =
∞∑

n=0

1

n!
εµ1···µn(x− x0)

µ1 · · · (x− x0)
µn .
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Then s-fold differentiation of the equality (A.17) at x0 yields the identity

J µ1···µm

ai Riµm+1···µm+qεµ1···µm+q+s + · · · = 0 . (A.18)

Here the dots stand for ε’s of order less than m+ q+ s and all ϕ’s are assumed to define a

solution to the field equations. Since all ε’s are arbitrary, we conclude that the leading term

in (A.18) must vanish separately. This results in the set {Rν1···νq+m+s} of right null-vectors

for the symbol matrix Js:

R
iν1···νm+s+q
µ1···µm+l

= Ri(ν1···νqδ
νq+1
µ1 · · · δ

νq+m+s)
µm+s , J

µ1···µm+s

aiλ1···λl
R

iν1···νm+s+q
µ1···µm+s = 0 .

These null-vectors span the space of dimension

(
m+ s+ q + d− 1

m+ s+ q

)
=

(
p+ q + d− 1

p+ q

)
.

In general, the system (A.3) may enjoy several gauge symmetry transformations. We let rn
denote the number of the gauge transformations of order n. If all these gauge symmetries

are independent (irreducible), then they make

∞∑

n=0

rn

(
p+ n+ d− 1

q + n

)
.

coefficients of {ϕµ1···µq} unphysical. Subtracting this number from (A.15), we get the

number of “physically distinguishable” parametric coefficients of pth order,

N ′′
p = f

(
p+ d− 1

q

)
−

∞∑

n=0

{
(tn − ln)

(
p− n+ d− 1

p− n

)
+ rn

(
p+ n+ d− 1

p+ n

)}
. (A.19)

Having computed Np and N ′′
p we are ready to evaluating the limit (A.2). Making use

of the asymptotic expansion for the binomial coefficients [15, 18]

(
p± n+ d− 1

p± n

)
=

(
p+ d− 1

p

){
1±

n

p
(d− 1) +O

(
1

p2

)}
, p → ∞ ,

we find

N ′′
p /Np = (f − t+ l − r) +

(d− 1)

p

∞∑

n=0

n(tn − ln − rn) +O

(
1

p2

)
. (A.20)

The numbers

t =
∞∑

n=0

tn , l =
∞∑

n=0

ln , r =
∞∑

n=0

rn

coincide, respectively, with the total number of equations, gauge identities, and gauge

symmetries. The leading term of the expansion

∆ = f − t+ l − r (A.21)
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is called the compatibility coefficient. Let us assume that the system (A.3) is absolutely

compatible, that means ∆ = 0. Then comparing (A.20) with (A.2), we finally arrive at the

desired formula for the physical degrees of freedom

N =
∞∑

n=0

n(tn − ln − rn) . (A.22)

Vanishing of the compatibility coefficient ∆ can be easily established under the as-

sumption that each right null-vector of the symbol matrix J = J0 originates from some

gauge symmetry. To do this, we introduce the n× t-matrix

Jai(p) = J µ1···µm

ai pµ1 · · · pµm ,

whose entries are polynomials in formal variables pµ, µ = 1, . . . , d. It then follows

from (A.10) that each gauge identity provides the left null-vector

La(p) = Laµ1···µq′pµ1 · · · pµq′

for the polynomial matrix J(p), so that La(p)Jai(p) = 0. Similarly, each gauge symmetry

transformation (A.18) gives rise to the polynomial vector

Ri(p) = Riµ1···µqpµ1 · · · pµq

annihilating the matrix J(p) on the right, that is, Jai(p)R
i(p) = 0. The vanishing condition

for the compatibility coefficient (A.21) can be written as

t− l = f − r .

It means that the rank of the rectangular matrix J(p), being computed by the number of

left null-vectors, coincides with its rank defined in terms of right null-vectors. Clearly, this

equality takes place for any matrix over an algebraic field, say R or C. It turns out that

the same statement holds true for the matrices over the ring of polynomials in p’s provided

that the null-vectors L’s and R’s are linearly independent (over the ring of polynomials in

p’s) and span the right and left kernel spaces of the matrix J (see, e.g. [35]).

There is also another, more direct, interpretation of the absolute compatibility condi-

tion. It can be shown [13] that the value f − t+ l defines the number of arbitrary functions

of d variables entering the general solution to the field equations (A.3). The equality

∆ = f − t+ l− r = 0 then implies that all these functional parameters owe their existence

to the gauge symmetries. To the best of our knowledge, example of field equations has been

yet unknown that would not be absolutely compatible. Moreover, the results of [2] suggest

that any system of ODEs is absolutely compatible and the same is true for two-dimensional

field theories [36]. So, it is a very plausible hypotheses that any reasonable field theory is

absolutely compatible.

The above consideration can be extended to the field equations with reducible gauge

symmetries and/or identities. Without further ado we just present the final formula for
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the physical degrees of freedom, which might be deduced by appropriate adjustment of the

derivation in the irreducible case:

N =
∑

m,n=0

n
(
tn − (−1)m(lmn + rmn )

)
. (A.23)

Here tn is the number of the equations of order n; lmn is the number of gauge identities of

the total order n, and the reducibility order m; and rmn is the number of gauge symmetry

transformations of the total order n and reducibility order m. The total order of the

generator of gauge symmetry/identity is defined inductively to be the sum of its order as

a differential operator and the total order of a generator it annihilates. It is also assumed

that the total order of the original gauge symmetry generators coincides with their order as

differential operators, whereas the total order of gauge identities for the field equations is

given by the order of the corresponding generators plus the order of equations they act on.

For the field theories with irreducible gauge symmetries of the first order, equality (A.23)

was first derived in [18].

It is curious to note that the final formula (A.23), being independent on d, holds true

for the one-dimensional systems as well, whereas the original definition (A.2) becomes

meaningless. The proof of (A.23) for d = 1 requires a different method, which is beyond

the scope of this paper.

Let us concretize the formula (A.23) for the special case of involutive Lagrangian second

order equations as this case has a common interest in field theory. For the Lagrangian

equations, the gauge symmetries and identities are generated by the same operators. The

total order of the identities, however, is shifted by the order of the equations involved in,

so the careful adjustment of the general relation (A.23) for the second order involutive

Lagrangian equations leads to the following count of physical degrees of freedom:

N = 2


t2 +

∑

n,m=0

(−1)m+1(n+ 1)r(m)
n


 . (A.24)

Here t2 is a number of the Lagrangian equations, r
(m)
n is the number of the gauge symmetry

generators of the total order n and reducibility orderm. In the irreducible case, (m = 0) this

brings the well known relation for the degrees of freedom for the second order Lagrangian

equations [19]:
N

2
= t2 −

∑

n=0

(n+ 1)rn . (A.25)

N/2 has the meaning of number of physical polarizations.
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