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1 Introduction

It is well-known that the prepotential of a supersymmetric gauge theory with eight super-

charges can be computed exactly both at the perturbative and non-perturbative level [1, 2].

These results are elegantly encoded in the geometry of Riemann surfaces. While the orig-

inal computations were carried out for theories with unitary gauge groups and fundamen-

tal or adjoint matter, subsequent works extended those results to account for orthogo-

nal/symplectic groups, quiver (product of groups) gauge theories and symmetric or anti-

symmetric matter [3]–[9] (see also [10] for a review and references). These extensions were

possible once the original results were cast in the language of string and M-theory [11, 12].

There is an alternative way, pioneered by Nekrasov and Okounkov [13], to recover

these results from a direct computation in the gauge theory. It is based on the evaluation

of the partition function of the theory by means of localization. Before being amenable to

such treatment, the partition function Z, which is an integral over the instanton moduli

space of the gauge theory of interest, must be suitably deformed by introducing two de-

formation parameters ε` which break the Lorentz symmetries and regularize the spacetime

volume [14]. Equivalently, one considers the gauge theory on a curved spacetime, the so

called Ω-background. For non-trivial ε`, the integral defining Z(ε`, q) localizes around a set
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of isolated points allowing for its explicit evaluation as a series in the instanton winding

number [14]–[20] (see [21] for earlier applications of these ideas). The prepotential F of

the gauge theory is then identified with the free energy of the system in the limit where

the ε-background is turned off. Sending to zero the parameters ε`, the Seiberg-Witten

geometry encoding the non perturbative data emerges from the equations describing the

saddle point of the partition function [13].

The study of the gauge theory dynamics beyond the limit ε` → 0 is also of physical in-

terest. Corrections in ε` to the prepotential describe interactions of gauge theory fields and

gravity and summarize an infinite tower of topological string amplitudes [22]. Moreover,

the N = 2 partition function Z(ε`, q) at finite ε` has been recently related to conformal

blocks of 2D CFT’s [23, 24]. At last, the prepotential for the case where one of the ε` is sent

to zero has been identified with the Yangian of quantum integrable systems [25]. These

results triggered a rapid development of the field along several directions (see [26]–[37] for

recent studies of the gauge theory dynamics in the Ω-background).

In [38, 39] it was shown that a saddle point analysis can be adapted to the study of

N = 2 U(N) gauge theories in presence of an Ωε-background with ε1 = 0 and ε2 = ε. The

exact prepotential and chiral correlators of the gauge theory in this limit were encoded in

a function y(x) solving a Seiberg-Witten like equation. Using a different approach, similar

results were also recently obtained in [40, 41].

In this paper, we apply a similar analysis to the case of N = 2 quiver gauge theories.

We restrict ourselves to asymptotically free theories with unitary groups and fundamental

matter. The quiver gauge theories in this class are given by taking as the quiver diagram an

oriented Dynkin diagram of an (Affine or not) ADE Lie algebra. To each node we associate

two integers (Na, na) characterizing the ranks of the gauge groups and the number of

fundamentals. The arrows in the quiver diagram label bifundamental matter. The study

of these quiver gauge theories and the derivation of the corresponding Seiberg-Witten

curves governing the dynamics has been recently announced in [42]. The techniques in

this paper give an alternative derivation of these results and a generalization to the case

of a non-trivial Ωε-background. Using matrix model techniques the case of quivers in the

Ω-background has also been previously studied in [43].

The paper is organized as follows. In section 2 we introduce the gauge theory mod-

els. In section 3 we describe the instanton moduli spaces and the saddle point equations

determining the leading contribution to the partition function in the limit ε1 → 0. The

saddle point equations are given by an infinite set of conditions on the finite set (one for

each gauge group) of functions ya(x) encoding the prepotential and chiral correlators of

the theory. The set of saddle point equations will be summarized in section 4 as a coupled

system of polynomial functional equations for ya(x) which reduce to the the Seiberg-Witten

curves derived in [42] when the ε-background is turned off. In section 5 we show how chiral

correlators of the gauge theory are computed out of the ε-deformed Seiberg-Witten differ-

entials. In section 6, we present alternative ways of writing the ε-deformed Seiberg-Witten

equations as a decoupled system of polynomial equations, as a quantum version of Seiberg-

Witten curves and as a Thermodynamic Bethe ansatz like integral form. In appendix A we

collect some details of the Seiberg-Witten equations for the affine A1-quiver gauge theory.
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Figure 1. Affine ADE Dynkin diagrams. Non-affine ADE diagrams are obtained by discarding the

crossed node. The nodes are labelled by the rank of the corresponding gauge group.

2 Quiver gauge theories

We consider asymptotically free quiver gauge theories with unitary gauge groups and

(bi)fundamental matter. A quiver gauge theory in this class is described in terms of a

quiver diagram isomorphic to (an orientation of) the Dynkin diagram of an (Affine or not)

ADE algebra. To each node “a”, we associate a gauge group U(Na) and na hypermultiplets

in the fundamental representation a of U(Na). An arrow connecting nodes “a” and “b”

describes a hypermultiplet in the bifundamental representation ( a, b) with mass mab.

The hypermultiplet content will be written as

Hmatter =
∑
a,b

cab( a, b) +
∑
a

na a (2.1)

with cab = 0, 1 counting the number of arrows starting at node a and ending on b. We stress

the fact that, even if the quiver will be in general described by an orientation of the Dynkin

diagram, i.e cab 6= cba, different orientations of the diagram are physically equivalent since

the states in the N = 2 hypermultiplets come always in CPT conjugated pairs. A flip in

the orientation of an arrow can indeed, as we will see, be always reabsorbed in a redefinition

of the bifundamental masses.

In our study we will limit ourselves to the conformal case since the non-conformal

set ups can be obtained from the former by sending some masses to infinity. Conformal

invariance translates into the condition

βa = −2Na + (cab + cba)Nb + na = 0 (2.2)

which determines the number of fundamentals na at each node in terms of the gauge group

ranks Na. For na = 0, the complete list of conformal quiver gauge theories is given by the

affine ADE quivers given in figure 1.

There are several realizations of the quiver gauge theories in string theory. The non-

affine A-series is realized in type IIA string theory by suspending D4 branes between a
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sequence of NS5 branes distributed along a line [11, 12]. The nodes label the intervals

between the ath and (a+1)th NS5 brane. Na will be the numbers of D4 branes stretched

along this interval. The open strings connecting the D4 branes inside the interval realize

the U(Na) gauge degrees of freedom while the open strings stretched between the ath and

(a+1)th or (a-1)th stacks lead to bifundamental matter. Finally fundamental matter is

included by introducing na D6 branes. The A-quiver diagram corresponds to the choice

cab = δa,b−1. Compactifying the brane system on a circle one finds the closed quiver

diagram associated to the Dynkin diagram of the affine Ã Lie algebra. Alternatively, affine

ADE quiver gauge theories can be realized in terms of fractional D3 branes at a C2/ΓADE
singularity, with ΓADE a discrete subgroup of SU(2). The non affine case can be recovered

turning off the gauge coupling associated to the extra node in the affine Dynkin diagram.

Fundamental matter can be included by adding D7 branes.

3 Instanton moduli spaces

In this section we describe the instanton moduli space of the N = 2 quiver gauge theories

under discussion. We refer to [16, 20, 44] for a more detailed and a self-contained exposition.

We adopt the language of fractional D3-branes (and flavor D7-branes) to describe the quiver

gauge theory. In this framework, instantons are viewed as D(-1)-branes. Each node of the

quiver corresponds to a type of fractional brane. We consider a general system of ka, Na

and na D(-1), D3 and D7 fractional branes respectively.

Instanton moduli are in correspondence with the massless modes of open strings with

at least one end on the D(-1)-branes. The computation of observables in the gauge theory

requires the evaluation of integrals over the moduli space spanned by these modes. After

a suitable deformation, these integrals localize around a finite set of critical points [14–16]

allowing for their explicit evaluation. Complete localization requires the presence of an Ω

background breaking the Lorentz symmetries. Moreover, D-branes have to be distributed

along the transverse complex plane with no superposition in such a way that the full sym-

metry group
∏
a U(ka)×U(Na)×U(na) is broken to its Cartan subgroup. We parametrize

by χIa , aua and msa the Cartan elements of U(ka), U(Na) and U(na) respectively. On the

other hand ε1 and ε2 parametrize the Cartan of the Lorentz group. Geometrically, χIa , aua
and msa specify the positions of D(-1), D3 and D7 branes respectively along the overall

transverse plane. The parameters aua , msa , ε1 and ε2 are part of the gauge theory data,

while χIa being an instanton modulus should be integrated over.

It is convenient to encode the symmetry data in the fundamental characters

Va =

ka∑
Ia

eiχIa Wa =

Na∑
ua

eiaua WF,a =

na∑
sa=1

eimsa (3.1)

and think of open strings connecting two branes as products of two of these functions. For

instance VaV
∗
b represents an open string starting from a D(-1) brane of type “a” and ending

on a D(-1) brane of type “b”, VaW
∗
b connects a D(-1) and a D3 brane, and so on. Finally

we encode the Lorentz transformation properties of the fields by T` = eiε` .
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M T

B`, λc Va V
∗
a (T1 + T2)− Va V ∗a (1 + T1T2)

w, w̄ Wa V
∗
a + VaW

∗
a T1T2

B ˙̀, λm′ cabVa V
∗
b (1 + T1T2)− cabVa V ∗b (T1 + T2)

µ, µ̄ −cabWa V
∗
b − cabVaW ∗b T1T2

µ′ −VaW ∗F,a

Table 1. Instanton moduli for N = 2 quiver gauge theories.

Localization is based on the existence of a BRST charge Q. The instanton moduli

organize into Q-pair (M,N) related by

QM = N Q2 M = λM (3.2)

with λ the eigenvalue of the field M with respect to the action of an element of the Cartan

symmetry group parametrized by χIa , aua ,msa and ε`. The spectrum of eigenvalues λ is

summarized in the character

T = trMe
iQ2

(3.3)

In table 1 we display the list of moduli and their contributions to T.

The three main rows display the contributions coming from the moduli associated

to gauge, bifundamental and fundamental matter degrees of freedom respectively. The

first column displays the highest weight states of the Q-pairs and the second column their

contributions to the character of the given field. In particular the fields B`=1,2, B ˙̀=3,4,

parametrize the positions of the instanton along the spacetime and the transverse space re-

spectively. w, w̄ come from open strings stretching between D(-1) and D3 branes. Fermions

λc, λm′ , µ, µ̄, µ
′ contribute with a minus sign and account for the implementation of the

ADHM constraints which reduce the number of the degrees of freedom.

3.1 Instanton partition function

The instanton partition function is defined by

Zinst =

∫
dMe−SD(−1)D3 (3.4)

After the equivariant deformation this integral localizes around a set of isolated fixed

points of Q2. These points are in one-to-one correspondence with the arrays Y = {Yua}
ua = 1, ..Na of Young tableaux centered at the D3-brane positions aua . Each box in the

array of tableaux represents an instanton with position

χYIa = χYua,ij = aua + (i− 1)ε1 + (j − 1)ε2 (3.5)

with i, j running over the rows and columns of the tableau Yua . The partition function

reduces to

Zinst =
∑
Y

ZY =
∑
Y

q|Y |

SdetYQ2
(3.6)
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with SdetYQ2 the superdeterminant of Q2 evaluated at (3.5) for a given Y . The eigenvalues

entering into (3.6) can be extracted from the character T defined in (3.3) and listed in

table 1. Collecting all the contributions one finds

TY =
∑
ab

tabTab − TF (3.7)

with tab = δab − cabeimab , and

Tab,Y = −Va V ∗b (1− T1)(1− T2) +WaV
∗
b + VaW

∗
b T1 T2

TF,Y =
∑
a

VaW
∗
F,a (3.8)

Here the Va’s are evaluated at the instanton positions (3.5) associated to the critical point

described by Y . The extra phases mab parametrize the masses of bifundamentals.

Collecting the eigenvalues from (3.7), (3.8) and taking q|Y | =
∏
a[(−)Na−cbaNbqa]

ka one

finds1

ZY =
∏
a,Ia

[
−

Qa(χ
Y
Ia

)

Pa(χYIa)Pa(χYIa + ε1 + ε2)

∏
Ja

∆(χYIa − χ
Y
Ja)

]

×
∏
a,b,Ia

[
Pb(χ

Y
Ia
−mba)

cbaPb(χ
Y
Ia

+ ε1 + ε2 +mab)
cab∏

Jb
∆(χYIa − χ

Y
Jb

+mab)cab

]
(3.9)

with

∆(x) =
x(x+ ε1 + ε2)

(x+ ε1)(x+ ε2)
Pb(x) =

Nb∏
ub=1

(x− aub)

Qa(x) = qa

na∏
sa=1

(x−msa) (3.10)

We notice that a flip in the orientation of an arrow in the quiver diagram sends cab ↔ cba
and it can be reabsorbed in the redefinition mba ↔ −mab − ε1 − ε2. The prepotential of

the gauge theory is given by

Finst(ε`, a, q) = −ε1ε2 logZinst(ε`, a, q) (3.11)

The chiral correlators are computed by the localization formula

〈trNaeizΦ〉 =

Na∑
ua=1

eizaua − (1− T z1 )(1− T z2 )
1

Zinst

∑
Y

ZY
∑
Ia

eiz χIa (3.12)

1One can easily check that the number of zero eigenvalues in the numerator and denominator of this

formula matches, leading to a finite result.
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3.2 Saddle point equations

The instanton partition function is

Zinst =
∑
Y

elnZY (3.13)

with the sum running over the arrays of
∑

aNa Young tableaux. From (3.9) one finds

lnZY =
∑
a,b

∑
Ia,Jb

Fab(χ
Y
Ia − χ

Y
Jb

) +
∑
a

∑
Ia

Ma(χ
Y
Ia) (3.14)

with

Fab(x) = δab ln ∆(x)− cab ln ∆(x+mab) (3.15)

Ma(x) = ln

(
− Qa(x)

Pa(x)Pa(x+ ε1 + ε2)

)
+
∑
b

[cab lnPb(x+mab + ε1 + ε2) + cba lnPb(x−mba)]

We are interested in the limit ε1 → 0, keeping ε2 = ε finite. We will follow the

strategy in [38, 39] where a similar analysis has been performed for U(N) gauge theories

with fundamental and adjoint matter. We refer the reader to these references for further

details. In the limit ε1 → 0, the instantons of type “a” form a continuous distribution

along the intervals

Ia = ∪uaIua = ∪uai [x0
uai, xuai] (3.16)

with

x0
ua,i = aua + (i− 1)ε (3.17)

xua,i parametrizes the height of the ith columns in the tableau. The details of the Young

tableau can be encoded in the instanton density

ρa(x) = ε1
∑
Ia

δ(x− χIa) =

{
1 x ∈ Ia
0 x /∈ Ia

(3.18)

We write

lnZY =
1

ε1
Hinst(ρ) (3.19)

with

Hinst(ρ) =
1

2

∑
a,b

∫
dxdyρa(x)ρb(y)Gab(x− y) +

∑
a

∫
dxρa(x)Ma(x) (3.20)

and

Gab(x) = lim
ε1→0

1

ε1
[Fab(x) + Fba(−x)] (3.21)

The partition function becomes

Zinst =

∫
Dρ e

1
ε1
Hinst(ρ)

(3.22)

– 7 –



J
H
E
P
0
1
(
2
0
1
3
)
0
9
1

In the limit ε1 → 0 the main contribution to the integral comes from the instanton distri-

bution ρ(x) extremizing the Hamiltonian

δρa
δxuai

δH
δρa

=
∑
b

∫
dyρb(y)Gab(xuai − y) +Ma(xuai) = 0 (3.23)

To perform the integral in (3.23) it is convenient to write Gab(x) in the form

Gab(x) =
d

dx

[
δab ln

(
x+ ε

x− ε

)
+ cab ln

(
x+mab

x+mab + ε

)
+ cba ln

(
x−mba − ε
x−mba

)]
(3.24)

and introduce the function

Ya(x) =

Na∏
va=1

∞∏
i=1

(
x− xvai
x− x0

vai

)
(3.25)

encoding the information about the xuai. Each term in the saddle point equation (3.23)

can be written in terms of this function using the identity∫
dy ρa(y)

d

dx
ln(x− y) = − lnYa(x) (3.26)

The saddle point equations can be thought of as an extremization over the Y-function.

Alternatively, one can use the x0
ui,a-independent combinations2

ya(x) =
Ya(x)Pa(x)

Ya(x− ε)
=

Na∏
va=1

∞∏
i=1

(
x− xvai

x− xvai − ε

)
(3.27)

We notice that at large x Ya ≈ 1 and

ya ≈ xNa (3.28)

In terms of this function the saddle point equation (3.23) can be written in the compact

form

1 +Qa(x)

∏
b yb(x−mba)

cba yb(x+mab + ε)cab

ya(x) ya(x+ ε)
= 0 for x ∈ {xuai} (3.29)

4 Deformed Seiberg-Witten equations

In this section we show that the saddle point equations (3.29) can be equivalently written

as Seiberg-Witten like equations for the functions ya(x). In turn the physical quantities of

the deformed theory can be extracted from the integrals of the deformed Seiberg-Witten

differentials λSW = xd log ya(x). We will follow again the strategy of [38, 39] adapting the

analysis to the quiver theory. The main idea is to exploit the saddle point equations to

build a set of rational functions, χa, of the y’s with no poles in the complex x-plane, i.e. a

set of polynomials. In this way, χa is completely determined in terms of a finite number of

coefficients.
2y(x) is related to the variable w(x) in [39] as y(x) = 1/w(x).

– 8 –
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4.1 The ε = 0 case

We will start by considering the ε = 0 case with massless bifundamental hypermultiplets,

i.e. mab = 0, making contact with the results in [42]. In this limit, the Young tableaux

profile becomes a smooth curve and the details of the instanton saddle point configuration

are encoded in a set of continuous functions ya(x) with cuts in the x-plane. The Seiberg-

Witten equations were deduced [42] from a careful analysis of the discontinuities of these

functions across the cuts. We start by illustrating how these results can be recovered

from the ε-deformed saddle point equations (3.29) after turning off the ε-background. The

discussion will serve as a warm up for the ε 6= 0 analysis in the next subsection.

First we notice that in the limit ε→ 0, the points xuai form a continuous distribution

around the eua ’s filling the intervals Ia defined in (3.16). It is convenient to introduce the

following function

fa(x) = ya(x) +Qa(x)

∏
b yb(x)cab+cba

ya(x)
(4.1)

Using (3.29) one can see that these functions have no poles around Ia. Indeed, the two

terms in the r.h.s. of (4.1) have simple poles in xuai, but they cancel against each other

according to (3.29). On the other hand the functions fa(x) have poles around Ib with b

linked to a in the quiver diagram. Again these poles can be canceled by the replacement

yb(x)→ fb(x) (4.2)

in the second term in (4.1). This replacement will however generate new poles at higher

orders in the Qa’s that can be canceled again by the substitution (4.2). According to

the case at study, the iteration process will close in a finite or infinite number of steps.

Interestingly, one can see that the terms generated in this way match the weights of the

basic representations Ra of the Lie algebra. More in detail, a term of the type yp11 y
p2
2 . . . can

be put in correspondence with a weight (p1, p2, . . .) of the representation Ra. Therefore χa
can be thought of as a Q-deformed version of its character. The function χa(y,Q) obtained

in this way is in general a polynomial in the Qa’s with coefficients given by ratios of ya’s.

Moreover, χa(y,Q) has no poles in the complex plane and therefore is a polynomial Pa(x).

Using (3.28) one can easily see that all the terms in χa grow like xNa at large x, and

therefore Pa is a polynomial of order Na in x. One can then write

χa(y,Q) = Pa(x) (4.3)

The system of equations (4.3) summarizes the content of the infinite number of algebraic

saddle point equations (3.29) in the limit of ε → 0 and generalizes the Seiberg-Witten

equations to the case of a quiver gauge theory. The equations (4.3) can be solved for ya(x)

in terms of the polynomials Pa. The prepotential and chiral correlators of the quiver gauge

theory will be computed in the next section in terms of the periods of the ε-deformed

Seiberg-Witten differentials built out of the ya’s.

The result obtained by the iterative procedure (4.2) can be alternatively obtained

iterating the maps

sa : yb(x)→

{
a = b Qa(x) ya(x)

∏
b yb(x)−Cab

a 6= b yb(x)
(4.4)

– 9 –
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with

Cab = 2δab − cab − cba (4.5)

the Cartan matrix of the ADE Lie algebra. The map sa is a sort of Q-deformed Weyl

reflection. Indeed, acting with sa on y−1
a in the denominator brings you back to the previous

step in the recursion, i.e. s2
a = 1. The group W generated by the sa’s is isomorphic to the

Weyl group of the corresponding algebra and was named the iWeyl group in [42]. We refer

to the orbit starting from ya as the iWeyl orbit.

It is important to notice that for some representations of the D and E series higher

powers of yna arise in the iWeyl orbit and the replacement yna → fna cannot be realized as

a result of an iWeyl reflection. In these cases, the extra terms in fna generate new iWeyl

orbits completing the weights of the associated representation. For example, for D4 the

28 leads to a length 24 orbit and four singlets, in the D5 for the 120 one finds a length 80

and four length 10 orbits, for the 45 we get a 40 plus five singlets and so on and so forth.

On the other hand for the A series all characters χa are made out of a single orbit.

We write

χa(x) =
∑

w∈Orba

w(ya) (4.6)

with Orba the collection of iWeyl orbits spanning all weights of the representation Ra.

For instance, for A3 one finds the recursion trees

y1
s1→ Q1y2

y1

s2→ Q1Q2y3
y2

s3→ Q1Q2Q3

y3

s1↗ Q1Q2y3
y1

↘s3

A3 : ©→©→© y2
s2→ Q2y1y3

y2
Q1Q2Q3y2

y1y3

s2→ Q1Q2
2Q3

y2
s3↘ Q2Q3y1

y3
s1↗

y3
s3→ Q3y2

y3

s2→ Q2Q3y1
y2

s1→ Q1Q2Q3

y1

(4.7)

leading to the characters

χ1 = y1 +
Q1y2

y1
+
Q1Q2y3

y2
+
Q1Q2Q3

y3

χ2 = y2 +
Q2y1y3

y2
+
Q2Q3y1

y3
+
Q1Q2y3

y1
+
Q1Q2Q3y2

y1y3
+
Q1Q

2
2Q3

y2

χ3 = y3 +
Q3y2

y3
+
Q2Q3y1

y2
+
Q1Q2Q3

y1
(4.8)

The Seiberg-Witten curves follow from equating χa in (4.8) to Pa. The same results were

recently obtained in [42] by a careful study of the discontinuities of functions ya crossing

the cuts Ia in the complex plane.

4.2 Turning on the ε-background

The analysis in the previous section can be easily adapted to the case of a non-trivial Ω

background ε and massive bifundamental matter. Using the saddle point equations (3.29)

– 10 –
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we can build the function

fa(x) = ya(x) +Qa(x− ε)
∏
b yb(x−mba − ε)cba yb(x+mab)

cab

ya(x− ε)
(4.9)

with no poles around Ia. Indeed, both terms in (4.9) have poles at {xuai + ε} but they

cancel against each other as it follows from (3.29). As before, the function fa(x) has poles

around Ib that can be canceled by the replacement

yb(z)→ fb(z) (4.10)

in the numerator of the second term in (4.9). The process is iterated order by order in the

Qi’s and leads, as before, to a continuous function χa(z) with no poles in the complex plane,

i.e. a polynomial. Alternatively, one can implement the sequence of replacements (4.10) as

a recursion generated at each level by the map

ya(x)→ Qa(x− ε)
∏
b yb(x−mba − ε)cba yb(x+mab)

cab

ya(x− ε)
(4.11)

which is a sort of “quantum version” of the iWeyl reflection (4.4). The characters χa(x) are

built from ya(x) following the same steps as before (see (4.7) for example for A3), with the

arguments of the Qa’s and ya’s shifted at each step according to (4.11). Explicitly, for an

A2-quiver with c12 = 1, m12 = m, the characters entering in the Seiberg-Witten equations

are given by

A2 : χ1 = y1(x) +Q1(x− ε)y2(x+m)

y1(x− ε)
+
Q1(x− ε)Q2(x+m− ε)

y2(x+m− ε)

χ2 = y2(x) +Q2(x− ε)y1(x−m− ε)
y2(x− ε)

+
Q1(x−m− 2ε)Q2(x− ε)

y1(x−m− 2ε)
(4.12)

The first two terms in χ1 have poles in xu1i that cancel against each other according

to (3.29). A similar cancellation is achieved between the poles at xu2i of the last two terms

in χ1. The analysis for χ2 is identical.

The deformed Seiberg-Witten equations can be written as before as

χa(y,Q) = Pa(x) (4.13)

with the ε-deformed characters χa(y,Q) given in terms of the recursion trees generated

by (4.11) starting from ya(x) and Pa some polynomials of order Na.

5 Chiral correlators

Let ya(x) be a solution of the deformed Seiberg-Witten equations (4.13). The chiral cor-

relators of the SU(Na) gauge group can be computed according to [39]

〈trNaΦJ〉 =

∫
γa

dx

2πi
xJ ∂x ln ya(x) (5.1)

– 11 –



J
H
E
P
0
1
(
2
0
1
3
)
0
9
1

with γa a cycle around Ia defined in (3.16). At the instanton level k, this integral receives

contributions from the poles of the form x = eua + iε with i = 0, . . . k and eua the zeroes

of Pa(x). More precisely, we write

Pa(x) = ga

Na∏
ua=1

(x− eua) (5.2)

with the eua ’s parametrizing the quantum moduli space of the gauge theory. The coefficient

ga is fixed by matching the leading behavior at large x of the two sides of the equation

ga = x−Na lim
x→∞

χa(x) = χa(Qa, ya)
∣∣∣
Qa,ya→1

(5.3)

The expression for ga in the non-conformal case can be found from (5.3) by sending to zero

all the q’s associated to a non-conformal node.

The quantum parameters eua can be determined in terms of the classical vevs aua by

inverting the relations

aua =

∫
γua

dx

2πi
x ∂x ln ya(x) (5.4)

with γua a cycle round Iua . The dual variables aD,ua = ∂F/∂a can be similarly obtained

integrating over the dual cycles and encode the theory prepotential. Alternatively the non-

perturbative prepotential F of the gauge theory can be extracted from the expression for

〈trNaΦ2〉 using the Matone relation [45, 46]

〈trNaΦ2〉 =

Na∑
ua=1

a2
ua + 2 qa

∂F
∂qa

(5.5)

In the next subsection we will match the results obtained from (5.1) with those coming

from the direct evaluation of the instanton partition function (3.12) at k = 1 instanton

level. We have also performed higher instanton checks of the deformed Seiberg-Witten

curves for various quivers of the ADE series.

5.1 k = 1

In this section we display the k = 1 instanton contribution for a general quiver. The

deformed Seiberg-Witten equations up to this order can be written as

Pa(x) = ya(x) +Qa(x− ε)
∏
b yb(x− ε−mba)

cba yb(x+mab)
cab

ya(x− ε)
+ . . . (5.6)

The solution of the system of equations (5.6) at first order in the qa reads

ya(x) = Pa(x)−Qa(x− ε)
∏
b Pb(x− ε−mba)

cba Pb(x+mab)
cab

Pa(x− ε)
+ . . . (5.7)

– 12 –
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Plugging this into (5.4) one finds

aub =

1∑
i=0

Resz=eub+i ε x ∂x ln yb(x) + . . .

= eub +
1

P ′b(eub)

[
Qb(eub)

∏
d Pd(eub −mdb)

cdbPd(eub + ε+mbd)
cbd

Pb(eub + ε)

+Qb(eub − ε)
∏
d Pd(eub − ε−mdb)

cdbPd(eub,b +mbd)
cbd

Pb(eub − ε)

]
+ . . . (5.8)

which can be simply inverted and used to evaluate

〈trΦJ〉b =
1∑
i=0

Nb∑
ub=1

Resz=eub+i ε x
J ∂x ln yb(x) + . . . =

Nb∑
ub=1

aJub (5.9)

+J

Nb∑
ub=1

[
(aub + ε)J−1 − aJ−1

ub

]
Qb(aub)

∏
d Pd(aub −mdb)

cdbPd(aub + ε+mbd)
cbd

P ′b(aub)Pb(aub + ε)
+ . . .

In particular, using the Matone relation (5.5) one finds the first instanton order to the

quiver gauge theory prepotential

Finst =
∑
b

Nb∑
ub=1

ε Qb(aub)

∏
d Pd(aub −mdb)

cdbPd(aub + ε+mbd)
cbd

P ′(aub)Pb(aub + ε)
+ . . . (5.10)

This formula matches the result for the one-instanton contribution to F1 coming from (3.11)

F1 = −ε1ε2Z1 = −ε1ε2
∑
b

∑
ub

Z
ub

(5.11)

with Z
ub

given by (3.9) with χIb = aub , ε1 = 0 and ε2 = ε.

6 Alternative formulations of Seiberg-Witten equations

6.1 Seiberg-Witten equations in the non-commutative space

The Seiberg-Witten equations (4.3) for a quiver gauge theory at ε = 0 can be alternatively

written in terms of the set of polynomial equations [42]

detRa(1l− y−1
a g)

∣∣∣
χb→Pb

= 0 (6.1)

with g a matrix satisfying χa(x) = tr g. More precisely thinking of χa(x) as a polynomial

in the Qa’s with monomials χa,i we take g = diag{χa,i}.
We remark that the system of equations (6.1) is only apparently decoupled since the

polynomials appearing in (6.1) depend on all the quantum variables eua . The evaluation of

the chiral correlators of the U(Na) gauge theory requires the knowledge of all the periods

aua (and therefore of all the ya(x)) in order to be able to find the relation between the

quantum eua and the classical variables aua computed from (5.4).

– 13 –
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In this section we show how these results can be extended to the ε 6= 0 case for the

simplest case, the fundamental representation R1 of the Ar−1 quiver.3 We will then show

how the results can be reinterpreted as a non-commutative (or quantum) version of the

Seiberg-Witten curves for the quiver.

By construction

0 = detR1(1l− y−1
1 g) =

r∑
j=0

∑
i1<...<ij

j∏
p=1

(−χ1,ip y
−1
1 ) (6.2)

The first equality follows from the fact that y1(x) is the first eigenvalue of g. One can

easily build an ε-deformation of this identity4

r∑
j=0

∑
i1<...<ij

j∏
p=1

(
−
χ1,ip(x+ pε− jε)
y1(x− pε+ ε)

)
= 0 (6.3)

which reduces to (6.2) when ε = 0. On the other hand, the product in the right hand side

of (6.3) can be written in terms of χj(x) using the identity

∑
i1<i2...<ij

j∏
p=1

χ1,ip(x− jε+ pε) = χj(x)

j∏
`=1

Q̃`(x− (j − `+ 1)ε) (6.4)

with

Q̃`(x) =

`−1∏
j=1

Qj(x) ` = 1, . . . , r (6.5)

For ε = 0, Qa = 1, the relation (6.4) is nothing but the statement that the node j in the

A Dynkin diagram is associated to the antisymmetric product of j fundamentals. For ε

and Qa generic the identity (6.4) can be checked using the explicit form of the characters.

Replacing χj(x) by Pj(x) in (6.4) one finds a non-trivial equation that is satisfied precisely

at the solutions of the deformed Seiberg-Witten equations χa(x) = Pa(x) , i.e.

r∑
j=0

(−)j Pj(x)

j∏
`=1

Q̃`(x− (j − `+ 1)ε)

y(x− (`− 1)ε)
= 0 (6.6)

For ε = 0, we get the Seiberg-Witten curve

WAr−1(x, y) =
r∑
j=0

(−1)j Pj(x)

j∏
`=1

(y−1 Q̃`) = 0 (6.7)

In the rest of this section we show that the equation (6.6) can be thought as a quantum

version of the Seiberg-Witten curve. Indeed (6.6) can be found from (6.7) by promoting

3We thank R. Poghossian for discussions on this point.
4This relation can be checked recursively by noticing that each term in the sum cancels the previous one

leaving a residue canceled by the next, and the process goes on and on and on.
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the variables x and z = log y to non-commutative variables. Explicitly, we replace x and z

in (6.7) by the operators x̂, ẑ satisfying the non-commutativity relation

[ẑ, x̂] = ε (6.8)

The quantum version of the Seiberg-Witten curve can then be written as

WAr−1(x̂, ŷ = eẑ) |Ψ〉 = 0 (6.9)

with the product over ` in (6.7) ordered in such a way that terms with greater ` go to the

left. Taking ẑ = ε ∂x, |Ψ〉 = Ψ(x) and using eẑA(x̂) = A(x̂+ ε) eẑ we obtain

r∑
j=0

(−1)jPj(x)

(
j∏
`=1

Q̃`(x− (j − `+ 1)ε)

)
Ψ(x− j ε) = 0 (6.10)

After dividing by Ψ(x− rε) and defining

y(x) =
Ψ(x)

Ψ(x− ε)
(6.11)

we recover the deformed Seiberg-Witten curve (6.6). It would be nice to extend this analysis

to the D and E series and other representations of the A series. The main difficulty in doing

this comes from the fact that products of representations other than the fundamental leads

to products of basic representations that require a more subtle ordering definition. We

pospone a more systematic analysis of this issue to future investigations.

6.2 A thermodynamics Bethe ansatz form

In this section we present an equivalent form of the deformed Seiberg-Witten equations

as a set of integral equations of TBA type. We first observe that the saddle point equa-

tions (3.29) imply that

1 +Qa(x− ε)
∏
b yb(x−mba − ε)cba yb(x+mab)

cab

ya(x− ε)ya(x)
=
Pa(x)

ya(x)
Θa(x) (6.12)

with Θa(x) a function with no zeros or poles around Ia. Indeed the functions in the two

sides of (6.12) have zeros at xuai+ε and poles at xuai. Taking the log of the two sides of this

equation, multiplying by 1
z−x and integrating around Ia one finds that the Θa(x)-dependent

term cancels and one is left with the TBA integral equation

log ya(z) = logPa(z) (6.13)

−
∫
γa

dx

2πi(x− z)
log

(
1 +Qa(x− ε)

∏
b yb(x−mba − ε)cba yb(x+mab)

cab

ya(x− ε)ya(x)

)
This equation can be easily solved order by order in qa. In particular at one-instanton

order one finds

ya(x) = Pa(x)−Qa(x− ε)
∏
b Pb(x−mba − ε)cba Pb(x+mab)

cab

Pa(x− ε)
+ . . . (6.14)

in agreement with the result (5.7) coming from the deformed Seiberg-Witten curve. We

remark that function Θa(x) can be determined order by order in Qa by solving in ya these

equations and requiring that ya has no poles outside of Ia.
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A The affine case

In this appendix we display the deformed Seiberg-Witten curves for the simplest quiver in

the Affine series: the A1 quiver.

A.1 A1 affine

We consider here an Affine A1-quiver gauge theory with N1 = N2 = N , no fundamental

matter n1 = n2 = 0 and two massless bifundamentals c12 = c21 = 1. Up to k1 + k2 = 3 one

finds

χ1(x) = y1(x) + q1
y2(x) y2(x− ε)
y1(x− ε)

+ q1 q2

(
y1(x) +

y1(x− 2ε) y2(x)

y2(x− 2ε)

)
+ . . . (A.1)

q2
1 q2

(
y2(x) y2(x− ε)
y1(x− ε)

+
y2(x) y2(x− 3ε)

y1(x− 3ε)

)
+ q1 q

2
2

y1(x) y1(x− ε) y1(x− 2ε)

y2(x− ε) y2(x− 2ε)
+ . . .

χ2(x) = y2(x) + q2
y1(x) y1(x− ε)
y2(x− ε)

+ q2 q1

(
y2(x) +

y2(x− 2ε) y1(x)

y1(x− 2ε)

)
q2

2 q1

(
y1(x) y1(x− ε)
y2(x− ε)

+
y1(x) y1(x− 3ε)

y2(x− 3ε)

)
+ q2 q

2
1

y2(x) y2(x− ε) y2(x− 2ε)

y1(x− ε) y1(x− 2ε)
+ . . .

The deformed Seiberg-Witten equations are written as

χa(y,Q) = Pa(x) (A.2)

with χa given by (A.1) and ga given by the leading term in a large x-expansion of the right

hand side of (A.1). One finds

ga =

∑
n∈Z q

n2−n qna
(1− q)

∏∞
n=1(1− qn)

(A.3)

with q = q1q2.

The ε = 0 limit. In the limit ε = 0, the right hand side of (A.1) sums up to

χ1(x) =
y2(x)

(1− q)
∏∞
n=1(1− qn)

(
q1

q2

) 1
4

ϑ2(q1
y2(x)2

y1(x)2
|q2)

χ2(x) =
y2(x)

(1− q)
∏∞
n=1(1− qn)

ϑ3(q1
y2(x)2

y1(x)2
|q2) (A.4)

with

ϑ[ab ](y|q) =
∑
n∈Z

q
1
2(n−a2 )

2

yn−
a
2 e−πib(n−

a
2

) (A.5)
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and ϑ1 = ϑ[11], ϑ2 = ϑ[10], ϑ3 = ϑ[00] and ϑ4 = ϑ[01]. Using (A.2) and (A.3), the deformed

Seiberg-Witten equations (A.4) can be brought to the form

Pe1(x) = y2(x)
ϑ2(q1

y2(x)2

y1(x)2
|q2)

ϑ2(q1|q2)
(A.6)

Pe2(x) = y2(x)
ϑ3(q1

y2(x)2

y1(x)2
|q2)

ϑ3(q1|q2)
(A.7)

with

Pea =

Na∏
ua=1

(x− eua) (A.8)

Interestingly, the ratio between these two equations depends only on the combination

y = y1/y2. The function y determines the supergravity profile of the twisted field generated

by the system of fractional branes at the A1-singularity [44]. Moreover in the limit q2 → 0

(where the gauge dynamics of the second node is turned off) (A.6) becomes simply y2(x) =

Pe2(x), while (A.6) leads to

y2
1 − y1Pe1(x) (1 + q1)− q1Pe2(x)2 = 0 (A.9)

reproducing the Seiberg-Witten curve for SU(N) gauge theories with 2N flavors. The same

result follows in the limit q1 → 0.
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