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1 Introduction

A recent development in the effort to improve theoretical predictions for the pair production

of squarks and gluinos at hadron colliders has been the calculation of higher-order threshold

corrections in QCD [1–12], i.e. corrections that are enhanced in the limit of a small relative

velocity β of the produced squark/gluino pair

β ≡
√

1− 4m̄2

ŝ
→ 0, (1.1)

with the partonic centre-of-mass energy ŝ and the average mass m̄ of the sparticle pair.

These threshold corrections are given by two contributions, Coulomb corrections, that

occur in powers of αs/β, and threshold logarithms of the form αns lnm β. In the limit (1.1),

the expansion in the strong coupling constant must be reorganized, since both types of

corrections can become of order one,

αs lnβ ∼ 1 ,
αs
β
∼ 1. (1.2)
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Resumming all enhanced contributions to all orders using eikonal methods [13–16] and

non-relativistic field theory [17], the cross section assumes the form

σ̂pp′ ∝ σ̂(0)
∑
k=0

(
αs
β

)k
exp

[
lnβ g0(αs lnβ)︸ ︷︷ ︸

(LL)

+ g1(αs lnβ)︸ ︷︷ ︸
(NLL)

+αsg2(αs lnβ)︸ ︷︷ ︸
(NNLL)

+ . . .
]

×
{

1 (LL,NLL);αs, β (NNLL);α2
s, αsβ, β

2 (NNNLL); . . .
}
. (1.3)

For squark and gluino production, the corrections beyond next-to-leading order (NLO) can

be large, becoming as large as the NLO cross sections for the case of heavy gluinos.

In the calculations of threshold corrections the produced squarks and gluinos are usu-

ally treated as stable, while in most realistic SUSY models they are highly unstable and

decay promptly.1 In a more realistic treatment including finite decay widths Γ, the thresh-

old singularities are smoothed [17] since the decay width sets the smallest perturbative

scale in the process. This raises the question of whether the resummation based on the

counting (1.2) is appropriate in the presence of the new scale Γ and to which extent the

large higher-order threshold corrections found for stable squarks and gluinos provide a

reasonable approximation to the more realistic unstable case. One effect of the finite de-

cay width is the emergence of a non-vanishing partonic cross section below the nominal

production threshold ŝ = 4m̄2, as discussed for stop-pair production in [20], and more re-

cently for gluino pair [21, 22] and squark-gluino production [23]. In our previous combined

resummation of threshold logarithms and Coulomb corrections for squark and gluino pair-

production [11, 12] the contribution from the region below the nominal threshold to the

total production cross section has been taken into account in the zero-width limit, where

the smooth invariant-mass distribution turns into a series of would-be bound-state poles.

As we will show in this note, for moderate decay widths Γ/m̄ . 5%, the finite-width

effects on higher-order QCD corrections are small and within the error estimate of the NLL

cross sections with soft and Coulomb resummation and bound-state corrections. This cov-

ers the relevant production channels in the MSSM, since larger decay widths only arise for

heavier gluinos with a large gluino-squark mass splitting, in which case gluino production

is suppressed compared to squark production. Therefore the treatment of NLL soft and

Coulomb corrections in [12] captures the dominant higher-order QCD effects also when the

instability of squarks and gluinos is taken into account. Furthermore, the dominant effect

of the finite decay widths arises at NLO, so the impact on higher-order corrections is small.

It should be emphasized that the aim of our study is the assessment of finite-width

effects on QCD corrections beyond LO rather than a complete treatment at leading and

next-to-leading order. Studies of other aspects of finite squark and gluino decay widths

include that of non-resonant tree diagrams [24]; the accuracy of the narrow-width approxi-

mation for small mass-splittings of the decaying particle and its decay products [25, 26], the

consistent treatment of off-shell effects in Monte-Carlo programs [27] and NLO corrections

to production and decay for the squark-squark production process [28].

1We do not consider the case of stops and gluinos that are stable on collider timescales. For recent work

on higher-order corrections in this case see [18, 19].
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This article is organized as follows. In section 2 we specify the considered production

and decay processes and review the effective-theory treatment of unstable particles [29–32]

and soft and Coulomb resummation near threshold [11]. In section 3 we estimate the

impact of the screening of threshold corrections by the finite decay width as well as the

magnitude of non-resonant corrections. In section 4 we study the invariant-mass spectrum

for squark and gluino production processes at the LHC and the total production cross

sections. We find that for moderate decay widths the finite-width corrections to the total

cross section are within the residual uncertainty of the NLL calculation of [12].

2 Theoretical framework

2.1 Production and decay of squarks and gluinos in SQCD

In this note we consider the pair-production processes of squarks q̃ and gluinos g̃ at hadron

colliders in supersymmetric QCD (SQCD) that proceed through the partonic production

channels

pp′ → s̃1s̃2X , (2.1)

where s̃i ∈ {q̃, ¯̃q, g̃} denote the two produced sparticles and p, p′ ∈ {q, q̄, g} the initial-state

partons. The average mass of the sparticle pair is given by

m̄ =
ms̃1 +ms̃2

2
. (2.2)

In general, the produced squarks and gluinos can decay via long cascade decay chains to a

final state of standard model particles and the lightest supersymmetric particle (assuming

the latter is stable on detector time scales). For this initial study of finite-width effects we

limit ourselves to squark and gluino decay in pure SQCD, i.e. we neglect the decay width

of the lightest coloured sparticle and consider the decay modes

q̃ → qg̃, ¯̃q → q̄g̃, mq̃ > mg̃,

g̃ → q ¯̃q, g̃ → q̄q̃, mq̃ < mg̃. (2.3)

We treat the masses of the different squark flavours as degenerate and equal to mq̃, while

the gluino mass equals mg̃ 6= mq̃. The full one-loop SUSY-QCD partial widths of the

above decay processes have been calculated in [33]. The NLO corrections to the LO partial

widths were found to be of the order of 30 − 50% and will not be given here. In order to

estimate the finite-width effects we will employ the LO tree level SUSY-QCD widths,

Γ(q̃ → qg̃) =
αsCFmq̃

2

(
1−

(mg̃

mq̃

)2)2
, mq̃ > mg̃,

Γ(g̃ → q ¯̃q, q̄q̃) =
αsnfmg̃

2

(
1−

(mg̃

mq̃

)−2)2
,mq̃ < mg̃. (2.4)

Since the numerical values are only used for illustration of the finite-width effects, we

only consider gluino decay into light-flavour and bottom squarks that are treated as mass-

degenerate, i.e. we set nf = 5. Therefore we neglect the decay into stops and the related
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additional dependence on the parameters of the stop sector unless stated otherwise. The

effect of gluino decay to stops on our results is discussed briefly in section 4.2. In the full

MSSM, the lighter coloured sparticles are, of course, unstable with respect to electroweak

two- or three-body decays q̃ → χq and g̃ → qq̄χ for charginos or neutralinos χ, which have

been calculated in leading order in [34, 35] and for which state-of-the-art predictions are

implemented in [36–39]. These effects would be straightforward to include in our framework

but would introduce a dependence on the electroweak parameters of the MSSM. Therefore

we will use the tree-level SQCD decay widths (2.4) for the purpose of estimating the size

of finite-width effects in higher-order QCD corrections. Since the electroweak decay widths

are typically of the order Γ/m̄ < 1%, this should not affect our qualitative conclusions.

We therefore consider production and decay processes of squarks and gluinos at hadron

colliders of the type

pp′ → s̃1s̃2 → (s̃′1p1) (s̃′2p2), (2.5)

with massless partons p1/2. Such four-body final states arise in SQCD for gluino pair

production for the case mg̃ > mq̃ or squark-(anti-)squark production for mq̃ > mg̃. The

treatment of a three-body final state that arises for squark-gluino production in our ap-

proximation should be obvious. In detail, the partonic production and decay processes of

squarks and gluinos for the two mass hierarchies are as follows:

mg̃ < mq̃ : gg, qiq̄i → g̃g̃,

qig → q̃g̃ → qg̃g̃,

gg, qiq̄j → q̃ ¯̃q → qq̄g̃g̃,

qiqj → q̃q̃ → qqg̃g̃,

mg̃ > mq̃ : gg, qiq̄j → q̃ ¯̃q,

qiqj → q̃q̃,

qig → q̃g̃ → q̄q̃q̃,

gg, qiq̄i → g̃g̃ → q̄q̄q̃q̃ (2.6)

where i, j = u, d, s, c, b and all charge conjugated processes are understood.

The complete gauge-invariant set of Feynman diagrams for the production of the three-

or four-body final states of “stable” particles (2.6) contain doubly-resonant diagrams, i.e.

diagrams where the particles indicated in the first step of (2.6) appear as internal lines, and

singly- or non-resonant diagrams, where only one or none of the unstable squarks or gluinos

is present. Examples of these topologies are given in figure 1. Beyond leading order, the

production processes cannot be strictly separated since, e.g. the process qig → q̄q̃q̃ enters

the real NLO corrections to q̃q̃-production. Furthermore, the non-resonant diagrams can

contain collinear singularities (e.g. the last topology given in figure 1) that would cancel

against higher-order virtual corrections and require taking kinematic cuts on the final state

particles into account.

A full NLO QCD calculation of a process comparable to (2.5) including finite-width ef-

fects has been performed in the standard model for the case of bb̄W+W− production [40, 41],

but not yet for an MSSM process. Very recently, a tool for automatic calculation of
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Figure 1. Examples of Feynman-diagram topologies contributing to the generic production and

decay process (2.5). The second non-resonant diagram contains collinear singularities.

MSSM processes at NLO has been presented in [42], but so far applied to the on-shell

processes (2.1). Short of a full NLO calculation, a well-defined approximation method for

calculating radiative corrections to production and decay processes is based on the pole

expansion [43, 44]. In this framework the total partonic production cross sections for the

processes (2.6) is written in the form

σ̂pp′(ŝ) = σ̂res
pp′(ŝ) + σ̂non-res

pp′ (ŝ). (2.7)

The doubly-resonant cross-section σ̂res is defined in a consistent way by an expansion of

the S-matrix around the complex poles of the Dyson-resummed propagators of the un-

stable particles [43, 44]. At NLO it contains both factorizable corrections to production

and decay, as well as non-factorizable corrections connecting production, propagation and

decay stages. Non-factorizable corrections related to the final state cancel for the total

cross section [45, 46], but not for differential distributions. The fully differential factoriz-

able corrections to production and decay have recently been computed for squark-squark

production [28]. For the remaining processes, at present only the corrections to the to-

tal production cross sections [47] and decay rates [33] are available. The “non-resonant”

cross-section σ̂non-res includes singly- and non-resonant Feynman-diagrams as well as con-

tributions from doubly-resonant diagrams where one or both of the s̃1 or s̃2 lines are far

off-shell.

2.2 Effective theory framework for unstable particles

For the investigation of the interplay of higher-order threshold corrections in QCD and

finite squark and gluino lifetimes, we are interested in the partonic cross sections for the

processes (2.6) near the partonic production threshold (1.1). For the precise definition of

the resonant and non-resonant contributions to the cross section we adopt the effective-

theory approach to unstable particles [29, 30], generalizing the treatment of W -boson pair

production at an electron positron collider [31, 32]. The aim of the effective-theory approach

is to provide a precise prediction of the partonic cross section for partonic centre-of-mass

energies in the vicinity of the threshold, ŝ−4m̄2 ∼ m̄Γ. This is achieved by a simultaneous

expansion in the quantity

δ =
ŝ− 4m̄2

m̄2
≈ β2 (2.8)

and the coupling constants. For power-counting purposes, we therefore set

β ∼ (Γ/m̄)1/2 ∼ δ1/2. (2.9)
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iApp′ =

ψ′

ψ

O(0)
p O†(0)

p + O(0)
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Figure 2. Diagrammatic representation of the leading resonant and non-resonant contribution to

the forward-scattering amplitude in unstable-particle effective theory.

q

¯̃q
g̃

q̃

q̄
+

q

q̄

g
q̃

¯̃q
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q

ψ
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Figure 3. Computation of the matching coefficient of the production operator for squark-

antisquark production from the quark-antiquark initial state.
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q

q̄
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q
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g̃

+ · · · ⇒
q

q̄q̄

q

ImO(1/2)
4p

Figure 4. Computation of the matching coefficient of the four-parton operator for squark-

antisquark production and decay. The first diagram is an example of a double-resonant diagram,

the second of the interference of a double-resonant and a single-resonant diagram.

The leading-order resonant production cross-section for S-wave production processes is of

the form

σ̂res
pp′(ŝ, µ) ∼ α2

s β. (2.10)

Near the production threshold, the processes (2.5) can be treated in an effective the-

ory where the light-partons are described by collinear fields φ, φ′ in soft-collinear effective

theory (SCET) [48–50] and the pair-produced squarks and gluinos are described by non-

relativistic fields ψ,ψ′ in potential non-relativistic QCD (pNRQCD) [51]. In the leading

effective Lagrangian, the collinear and non-relativistic fields interact only through the ex-

change of soft gluons, which give rise to the non-factorizable corrections mentioned above.

This effective theory has also been used for soft-gluon and Coulomb resummation in [11],

where more details can be found.

In the EFT framework, the total partonic cross section for the process (2.5) is computed

from the imaginary part of the partonic forward-scattering amplitudes App′ of the processes

pp′ → pp′ which reads2

iApp′(ŝ)|ŝ∼4m̄2 =

∫
d4x 〈pp′|T

[
iO†prod(0)iOprod(x)

]
|pp′〉+ 〈pp′|iO4p(0)|pp′〉 . (2.11)

2As written, the forward-scattering amplitude is not infrared safe but requires mass factorization where

matrix elements of the collinear fields are identified with parton distribution functions (PDFs).
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The “production operator” Oprod = Cprod φφ
′ ψ†ψ′† describes the resonant production of

the s̃1s̃2-pair from pp′ collisions while the expectation value of the four-parton operators

O4p = C4p φ
†φ′†φφ′ describes the non-resonant contributions. The two terms in (2.11)

therefore correspond to the resonant and non-resonant cross sections defined earlier in (2.7),

see figure 2. The cross section for a specific final state s̃′1s̃
′
2p1p2 can be obtained by com-

puting the imaginary part of the forward-scattering amplitude using unitarity cuts and

selecting only cuts corresponding to the desired final state [31]. At leading order, this

simply amounts to multiplying by the branching ratios BR(q̃1 → q̃′1p1) and BR(q̃2 → q̃′2p2).

The matching coefficients Cprod of the production operators are computed from the on-

shell amplitude for the processes pp′ → s̃1s̃2 at the desired accuracy, as sketched for LO

in figure 3. The coefficients C4p are calculated by expanding the forward-scattering ampli-

tude in the hard momentum region, where all loop momenta are far off-shell.3 The leading

non-resonant contribution to the processes (2.5) arises from the squared tree amplitudes

of the processes pp′ → s̃1s̃
′
2p2 and pp′ → s̃′1p1s̃2 as sketched in figure 4 for the example of

squark-antisquark production and decay. The EFT calculation of the forward-scattering

amplitude to order αs and δ includes soft one-loop corrections, the one-loop corrections to

Cprod as well as kinematic corrections due to subleading kinetic Lagrangian terms.

2.3 Soft and Coulomb resummation for the resonant contributions

The resummation of soft logarithms and Coulomb corrections has been derived in [11] by

establishing a factorization of the doubly resonant contribution to the partonic cross section

into hard, soft and non-relativistic (potential) matrix elements,

σ̂res
pp′(ŝ, µ) =

∑
Rα

HRα
pp′ (mq̃,mg̃, µ)

∫
dω JRα

(
E + i Γ̄− ω

2

)
WRα(ω, µ) . (2.12)

Here we have defined the average width

Γ̄ =
1

2
(Γs̃1 + Γs̃2) (2.13)

and Rα are the irreducible colour representations in the decomposition of the product of the

colour representations of the sparticles s̃1 and s̃2. In analogy to the zero-width treatment

in [12], as a default we use the expression

E = m̄

(
1− 4m̄2

ŝ

)
(2.14)

for the energy of the squark or gluino pair which coincides with the non-relativistic expres-

sion E = m̄β2 for ŝ > 4m̄2. Therefore we refer to this treatment as the ‘β-implementation’.

In order to estimate ambiguities of the threshold approximation we will also use an ‘E-

implementation’ defined by E =
√
ŝ− 2m̄ that agrees with (2.14) near threshold.

The hard functions HRα
pp′ are related to the square of the matching coefficients Cprod. At

LO they are proportional to the Born cross section at threshold.4 The soft functions WRα

3Explicit calculations have been performed for W -pair production [31] and top-pair production [52, 53]

at electron-positron colliders.
4As in [12], in our numerical results we compute the hard function from the full Born cross section

instead of its threshold limit.
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are matrix elements of soft-gluon Wilson lines and implement the eikonal approximation.

Precise definitions can be found in [11]. Threshold resummation of soft logarithms can be

performed using renormalization group equations for the hard and soft function [9, 54, 55]

that can be solved in Mellin-moment or momentum space [56]. The relevant anomalous

dimensions for all squark and gluino production processes up to NNLL accuracy have been

collected in [9, 11].

The potential function JRα is an expectation value of the non-relativistic fields ψ(0),

that have been decoupled from the soft gluons by a field redefinition and interact only

through the exchange of Coulomb gluons. It is related to the zero-distance Green function

of the non-relativistic Schrödinger equation with a Coulomb potential, G
Rα(0)
C (0, 0; E):

JRα(E) = 2 ImG
Rα(0)
C (0, 0; E) , (2.15)

with the Coulomb Green function including all-order gluon exchange in the

MS-scheme [57, 58]:

G
Rα(0)
C (0, 0; E) = −(2mred)2

4π

{√
− E

2mred
+ (−DRα)αs

[
1

2
ln

(
− 8mredE

µ2

)

− 1

2
+ γE + ψ

(
1− (−DRα)αs

2
√
−E/(2mred)

)]}
. (2.16)

Here γE is the Euler-Mascheroni constant and mred = ms̃1ms̃2/(ms̃1 + ms̃2). The coef-

ficients DRα = 1
2(CRα − CR1 − CR2) of the Coulomb potential depend on the quadratic

Casimir operators of the colour representations Ri of the sparticles s̃i and of the irreducible

representation Rα in the decomposition of R1⊗R2. The trivial (αs → 0) potential function

for finite width obtained by neglecting the Coulomb corrections is given by

JRα(0)(E + iΓ̄) =

√
2m

3/2
red (E2 + Γ̄2)1/4

π

E + (E2 + Γ̄2)1/2√(
E + (E2 + Γ̄2)1/2

)2
+ Γ̄2

. (2.17)

The use of a complex energy E + iΓ̄ takes the finite-width effects in the doubly-resonant

cross section into account in leading order in the non-relativistic expansion [17].

For energies below the production threshold E < 0 and for Γ̄ = 0, the Coulomb Green

function develops a series of bound-state poles at energies

En = −
2mredα

2
sD

2
Rα

4n2
. (2.18)

These contributions have been taken into account in the NLL predictions of [12]. For

unstable particles, the complex energy shift in the potential function in (2.12) leads to a

smoothing of the discrete set of bound-state poles (2.18) into a continuous non-vanishing

contribution below the nominal production threshold.

– 8 –



J
H
E
P
0
1
(
2
0
1
3
)
0
8
5

3 Estimate of contributions to the cross section

In section 2 we have discussed the treatment of finite-width effects (section 2.2) and higher-

order soft and Coulomb corrections for the case of stable particles (section 2.3). The

resummation of threshold logarithms and Coulomb corrections was performed under the

assumption (1.2) that a sizable contribution to the total hadronic cross section arises from

the region where αs lnβ ∼ αs
β ∼ 1, leading to a reorganization of the perturbative expansion

according to (1.3). For finite decay widths, the replacement E → E + iΓ̄ in the potential

function leads to the screening of the threshold singularities, raising the question if the

resummation based on the counting (1.2) is still justified. Furthermore, for an unstable

particle the size of the non-resonant contribution to the cross section (2.7) compared to the

higher-order corrections to the resonant contributions has to be addressed. In this section

we use power-counting arguments to estimate these effects and compare these expectations

to explicit results for squark and gluino production.

3.1 Size of the decay width

To discuss the size of the screening effect and the non-resonant contributions, we consider

the decay of the sparticle s̃ of mass M into a sparticle s̃′ of mass m and a massless parton p,

mediated by the strong interaction. On kinematic grounds, the decay width is of the form

Γ(s̃→ s̃′p) = αsM
(
1− x2

)
f(x) (3.1)

for some function f of the mass ratio

x ≡ m

M
. (3.2)

In the following, we consider the decay width (3.1) for two limiting cases:

a) Light decay product, x→ 0:

Γ/M ∼ αs. (3.3)

In this case, the expansion parameter δ of the effective theory (2.9) is estimated as

δ ∼ β2 ∼ αs. (3.4)

b) Heavy decay product, x→ 1:

Γ/M ∼ αs × (1− x2)γ , (3.5)

where γ = 1 if the function f(x) in (3.1) is of the order one, but γ = 2 for the case of

squark and gluino decay (2.4). In this case, another small scale κ ≡ (1−x2)γ is present,

and the hierarchy of scales is given by

δ ∼ β2 ∼ αsκ. (3.6)

In particular, if for squarks and gluinos the numerical size of the mass ratio is such that

κ = (1− (m/M)2)2 ∼ 0.1, i.e. m/M & 0.8, we count δ ∼ α2
s.

– 9 –
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Figure 5. Size of the first Coulomb correction (red, dotted), first and second Coulomb corrections

(blue, dashed) and resummed Coulomb corrections (black, solid) relative to the leading cross section

in the effective theory as a function of Γ̄ and for m̄ = 1500 GeV at the LHC with
√
s = 8 TeV. r is

defined as r = mg̃/mq̃. For technical reasons the potential function is set to zero for E < ∆E as

defined in (4.6).

For the phenomenology of unstable strongly-interacting particles, different scenarios

have been identified (e.g. [21, 59]). For very narrow particles, bound states can form that

subsequently decay into di-photon or di-jet final states and therefore lead to a very different

phenomenology than the missing energy signatures usually employed in squark and gluino

searches. In the MSSM this case is only relevant for gluinonium and stoponium production

and will not be considered further here. For a sparticle decay width that is larger than the

bound-state decay widths into di-photons or di-jets, but much smaller than the energy E1 of

the first bound-state (2.18), a few bound state-peaks can form, but the decay is dominated

by the underlying sparticle decay, while for Γ̄ . E1, bound-state effects enhance the cross

section near threshold, but the different peaks might not be separated. Since E1 ∼ α2
s,

bound-state peaks might be visible in the invariant-mass distribution below threshold for

narrow sparticles in the category b), as we will study in section 4.1. For Γ̄ > E1 the

bound-state effects are washed out, which we expect to be the case for broader sparticles

in category a).

We will now estimate the size of the Coulomb and soft corrections as well as the

non-resonant contributions for these two limiting cases.
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3.2 Coulomb corrections

In the two scenarios for the decay width, the n-th Coulomb correction is of the order(
αs
β

)n
∼
(
α2
s

δ

)n/2
∼
{
δn/2 ∼ αn/2s , case a)(
αs
κ

)n/2
, case b)

(3.7)

Therefore by power counting, Coulomb resummation is not necessary for case a), i.e. for

particles with decay widths of the order of Γ/M ∼ αs ∼ 10%. This exemplifies the screening

of the threshold corrections by the finite lifetime. However, to reach NLO accuracy in δ ∼
αs the second Coulomb correction has to be included. This is analogous to the case of W -

pair production considered in [31] (up to the replacement of α by αs). In the opposite limit

of narrow particles where numerically Γ
M ∼ α2

s ∼ 1% (case b), κ ∼ αs so the screening of

the Coulomb corrections is not effective and Coulomb resummation should be performed as

in the stable case.5 Since in these formal counting arguments the numerical prefactors such

as the strength of the Coulomb potential are not taken into account, the actual relevance

of the Coulomb corrections has to be studied on a process-by-process basis. In figure 5

we show the contribution of the first (C1, red dotted line) and second (C2, blue dashed

line) Coulomb corrections, as well as the resummed Coulomb corrections (Cfull, solid black

line), to the total hadronic production cross sections as a function of the decay width for

all four squark and gluino production processes. The Coulomb corrections are normalized

by the approximation σ
(0)
Thresh that is defined as the effective theory cross section (2.12)

without soft-gluon resummation and using only the α0
s term of the potential function (2.17).

One sees that for larger widths the Coulomb corrections are increasingly saturated by the

first two Coulomb corrections, while the second Coulomb correction always gives a non-

negligible contribution, in agreement with the general discussion above. However, the total

contribution of the Coulomb corrections can be sizable, as for gluino-pair production, or

numerically small, as for squark-squark production.

3.3 Soft corrections

The parametric scaling of soft corrections in the scenarios a) and b) considered in section 3.1

is given by

lnβ ∼ ln
√
δ ∼

{
1
2 lnαs, case a)
1
2(lnαs + lnκ) ∼ lnαs, case b)

(3.8)

where in case b) we have again considered the case where numerically κ ∼ αs. It is thus

not obvious at a first glance in which scenarios resummation of soft-gluon correction is

necessary, if at all, since for αs ∼ 0.1 one has αs| lnαs| ∼ 0.23. Clearly one would expect

resummation effects to be more important for case b), where the screening effect due to

a finite width is less effective. However the parametric scaling in the two scenarios is

formally the same and equal, up to constant prefactors, to ∼ lnαs. As already stressed

for the case of Coulomb corrections, the scaling argument which leads to (3.8) does not

5This is analogous to the well-known case of top-quark production at linear colliders, where the small

decay width of the top is due to the electroweak nature of the decay, Γt/mt ∼ αEW ∼ α2
s.
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Figure 6. Size of the NLL soft corrections expanded to NLO (red, dotted), up to NNLO (blue,

dashed) and the resummed NLL corrections (black, solid) relative to the leading cross section in

the effective theory as a function of Γ̄ and for m̄ = 1500 GeV at the LHC with
√
s = 8 TeV. The

remaining definitions are as in figure 5.

take into account the coefficients of the logs, which can be numerically large. This is

particularly true for gluon-initiated squark-antisquark production and for squark-gluino

and gluino-gluino production, where the Casimir invariants for the adjoint and higher

colour representations appear in the prefactors. Once again, a meaningful assessment

of the importance of resummation can only be done on a process-by-process basis by a

numerical analysis of different fixed-order contributions.

Figure 6 shows the effect of NLL soft resummation (Sfull, solid black line) on the cross

section of the four SUSY-production processes considered in this work and the contributions

of the O(αs) (S1, red dotted line) and O(α2
s) (S2, blue dashed line) terms obtained from the

expansion of the resummed cross section, as a function of the width Γ̄. As in figure 5 the

cross sections are normalized to the leading threshold approximation. It can be seen that

for small widths of order Γ̄/m̄ ∼ α2
s resummation is numerically important for all processes

(and more so for those where large colour charges are involved), with NNLO corrections of

the order of 10− 25% of the LO cross section and terms beyond NNLO as large as ∼ 10%

for squark-gluino and gluino-gluino production. One can therefore argue that in scenario

b) it makes sense to keep the zero-width scaling αs lnβ ∼ 1 for soft logarithms, which leads

to the representation of the cross section given in (1.3).

At larger width (Γ̄/m̄ & αs) the bulk of NLL corrections is accounted for by the O(αs)

terms, which correspond to a 30 − 50% contribution to the Born result. However NNLO
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terms still represent a correction of order 5 − 15% depending on the process considered.

Consistent with the stronger screening effect expected for larger widths, higher-order soft

corrections beyond NNLO are small, . 5% for gluino-gluino and squark-gluino production

and below 1% for squark-antisquark and squark-squark production. We thus conclude that

in case a) the relevance of soft resummation is not immediately clear, though the inclusion

of higher-order corrections at NNLO might still be necessary to achieve an accuracy of

order δ ∼ αs. It is interesting to note that for large widths the fixed-order one-loop soft

correction is numerically about
√
αs ∼ 30% of the tree-level threshold result, and the

two-loop soft terms of order (
√
αs)

2 ∼ 10%.

To summarize, in the two limiting scenarios one can give the following parametric

representation of the cross section:

a) Adopting for the soft logarithms the (approximate) scaling αs ln2 β ∼
√
δ ∼ √αs, which

is motivated by the numerical results in figure 6, and using (3.7), the cross section can

be represented as

σ̂pp′ ∝ σ̂(0) ×



1 LO
αs
β , αs ln2 β N1/2LO

αs,
(
αs
β

)2
, (αs ln2 β)2, (αs lnβ)2/β, αs lnβ, β2 NLO

. . .

(3.9)

where the expansion in half-integer powers of δ is similar to the case of W -pair produc-

tion at a linear collider [31]. There are no terms linear in β because they are known to

average out to zero for the total cross section.

b) For the case κ ∼ αs, the counting is identical to the stable case.

While according to (3.9) resummation is parametrically not necessary for Γ̄/m̄ & αs,

in practice it is not always clear for which numerical value of Γ̄ one can switch from

the prescription (1.3) to (3.9). This is particularly true for the transition region where

α2
s . Γ̄/m̄ . αs. For this reason in section 4 we will use the NLL implementation of (1.3)

for arbitrary values of the width. This choice has the advantage of including, in both limits

of a small and large width, all the terms relevant to achieving an accuracy of ∼ δ, with

the exception of the β2 contribution appearing at NLO in the counting (3.9). These are

however correctly taken into account by matching the effective-theory result to the exact

Born result including the leading finite-width and power suppressed effects, as explained

in section 3.4.

3.4 Non-resonant corrections

We now turn to an estimate of the size of non-resonant corrections neglected in present

higher-order calculations that treat squarks and gluinos as stable. The leading non-resonant

contributions as well as subleading kinetic corrections to the double-resonant cross section

are both included in a calculation of the full Born cross section of a process of the form (2.5)

using multi-leg Monte Carlo programs [24] so the strict EFT treatment is not necessary.
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Also the non-resonant diagrams are in general well-defined only with kinematic cuts, as

mentioned above. A study of the full non-resonant effects for all squark and gluino pro-

duction processes would therefore require a dedicated study taking the realistic selection

cuts used by the LHC experiments into account, which is beyond the scope of this work.

We will therefore limit ourselves to an estimate of the unknown radiative corrections to

the non-resonant contributions that cannot easily be computed in a Monte Carlo program.

These are given by higher-order corrections to the diagrams shown in figure 4. The com-

putation of these corrections is currently an ongoing effort for top-pair production at a

linear collider [52, 53, 60, 61] and the computation for the case of squarks and gluinos is

far beyond the scope of the present work. These corrections would also be included in a

complete fixed-order NLO calculation of the process (2.5).

We consider again the two cases introduced in section 3.1:

a) Since in the calculation of the matching coefficients of the four-parton operator all the

momenta are large compared to the scale δ, there is no enhancement of these corrections

by resonant propagators and one expects them to be of the order [31]

σ̂non-res
pp′ ∼ α3

s ∼ σ̂res
pp′ ×

αs
β
. (3.10)

For the scaling (3.4) appropriate for Γ/M ∼ 10%, the leading non-resonant corrections

are therefore of the order δ1/2 ∼
√

Γ/M , as the first Coulomb correction. The unknown

radiative corrections to the non-resonant contributions (3.10) therefore are of the order

αs
√

Γ/M ∼ α
3/2
s relative to the leading resonant cross section, and therefore beyond

NLO accuracy.

b) For a small mass hierarchy leading to the scaling (3.6) the non-resonant contributions

can be further expanded according to β � √ρ � 1, with ρ = 1 −m/M . For the case

of top-quark production the leading non-resonant corrections were found to be of the

order [53]

σ̂non-res
pp′ ∼ σ̂res

pp′ ×
√

Γ

Mρ
. (3.11)

Using (3.5) we have
Γ

Mρ
∼ αs(1− x2)γ

(1− x)
∼ 2αsκ

(γ−1)/γ . (3.12)

For squark and gluino decay γ = 2, so counting κ ∼ αs we find that the suppression of

the non-resonant corrections is of the order of ( Γ
M

1

α
1/2
s

)1/2 ∼ (Γ/M)3/8 compared to the

leading resonant term. The unknown radiative non-resonant corrections are then of the

order ( Γ
Mα

3/2
s )1/2 ∼ (Γ/M)7/8, i.e. of a similar magnitude as for the case x→ 0. These

corrections are beyond NNLL accuracy.

To study the numerical impact of the non-resonant corrections, we consider the following

approximations:

• σ̂(0)
NWA: The LO cross section calculated using the narrow-width approximation ev-

erywhere, i.e. the on-shell production cross section in the Γ → 0 limit is multiplied

by the decay branching ratios. This approximation is valid for M � Γ and far above
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Figure 7. The partonic cross section for squark-gluino production and squark decay as a function

of the energy E = m̄β2 at a fixed average mass m̄ = 1
2 (mq̃ + mg̃) = 1500 GeV. Left: r =

mg̃

mq̃
=

0.95, Γ̄ = 0.4 GeV. Right: r = 0.5, Γ̄ = 32 GeV.

threshold [25]. In this work only the decay processes (2.3) are considered and thus

σ̂
(0)
NWA = σ̂

(0)
Tree(Γ = 0).

• σ̂(0)
Thresh: The threshold approximated LO cross section in the EFT, using only the α0

s

term of the potential function (2.17). The unstable-particle momentum in the centre

of mass frame is in the potential region (slightly off-shell).

• σ̂(0)
Off: The LO cross section obtained using the off-shell doubly-resonant diagrams and

fixed-width Breit-Wigner propagators computed with WHIZARD [62] and validated

with SHERPA [63] when possible. This implements tree-level off-shell effects and

allows for unrestricted momenta of the unstable particles.6

In figure 7 the three different approximations of the partonic cross sections are shown

for the example of squark-gluino production and subsequent squark decay as a function

of the energy E = m̄β2 for two examples of the decay width. The plots for the other

processes have the same behaviour as above and are not shown here. It can be seen

that the EFT approximation σ̂
(0)
Thresh agrees with the off-shell results for small widths, but

is systematically shifted for larger decay width. This is the expected effect of the non-

resonant contribution to the Born cross section, that is of the form σ̂non-res
pp′ ∼ m̄2

ŝ ImC4p,

and has also been observed in [31, 52, 60]. Note that while we do not include truly

singly or non-resonant diagrams in the off-shell approximation, the off-shell momentum

configurations of doubly-resonant diagrams contribute to the non-resonant part of the

cross section and, in fact, provide the dominant numerical effect in the case of W or top

production [31, 52, 53]. Therefore the shift observed in figure 7 provides an estimate of

the non-resonant corrections. For Γ̄/m̄ = 32/1500 = 0.02 the nonresonant correction is

of the order of 40%, which is of the same order of magnitude, but somewhat larger, than

the estimate (Γ/M)1/2–(Γ/M)3/8 = 14%–24%. We then estimate that the uncalculated

corrections due to higher-order non-resonant effects are of the order of . 5%.

6The selection of doubly-resonant diagrams violates gauge invariance. However, we have verified for

a selection of different covariant and axial gauges that gauge violation is numerically below 1% for the

processes of interest in this work.
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4 Application to squark and gluino production at LHC

In this section we present results for finite-width effects on the soft and Coulomb NLL

corrections to squark and gluino production at the LHC in the setup discussed in section 2.

In section 4.1 we give results for the invariant-mass distributions, while in section 4.2 we

discuss our implementation and present numerical results for the total cross sections.

4.1 Invariant-mass distributions

In order to discuss the finite-width effects on the production cross sections, we first consider

the invariant-mass distribution. Similarly to the total cross section (2.12), it satisfies a

factorization formula near the production threshold [11] (see also e.g. [21])

dσres
NN ′(ŝ, µ)

dMs̃1s̃2

=
∑
Rα

JRα(Ms̃1s̃2−2m̄+iΓ̄)
∑

p,p′=q,q̄,g

2HRα
pp′ (µ)

∫ 1

τ0

dτLpp′(τ, µ)WRα(2(
√
ŝ−Ms̃1s̃2), µ),

(4.1)

where τ0 = M2
s̃1s̃2

/s. We have defined the parton luminosity in terms of the PDFs fp/N for

a parton p in a nucleon N :

Lpp′(τ, µ) =

∫ 1

0
dx1dx2 δ(x1x2 − τ) fp/N1

(x1, µ)fp′/N2
(x2, µ). (4.2)

In our numerical results we use the NLL-resummed soft function that can be found in [12].

Since we are interested in the invariant-mass spectrum near threshold we deviate somewhat

from the default treatment of the total cross section and always express the hard function in

terms of the threshold-approximation of the Born cross section and use a constant Coulomb

scale, defined as solution to the equation µC = 2αs(µC)mr|DRα |, and constant soft scales

µs that are process-specific and determined in [12].

Consistent with the treatment of the total cross section discussed in section 2.3, as a

default we use the expression (2.14) for the energy of the squark or gluino pair, i.e. we

write the argument of the soft function WRα in (4.1) as

√
ŝ−Ms̃1s̃2 → m̄

(
1− 4m̄2

ŝ

)
+ 2m̄−Ms̃1s̃2 . (4.3)

As for the total cross section, this will be referred to as the ‘β-implementation’. Note that

the soft function vanishes for negative argument which implies that the lower boundary of

the τ integral is given by

τ0 =
4m̄2

s

m̄

3m̄−Ms̃1s̃2

. (4.4)

In order to estimate ambiguities of our treatment, we also introduce an ‘E-implementation’

keeping the unexpanded expression
√
ŝ−Ms̃1s̃2 in the argument of the soft function. In order

not to introduce artificial differences in the two implementations due to a different boundary

of the τ integral, we perform the replacement Ms̃1s̃2 → M ′s̃1s̃2 ≡ m̄(3− 4m̄2/M2
s̃1s̃2

) in the

E-implementation and consider the differential cross section with respect to M ′s̃1s̃2 .

Based on experience with W -pair production [31] we do not expect the leading resonant

approximation to be valid significantly below the nominal threshold, where higher-order

– 16 –



J
H
E
P
0
1
(
2
0
1
3
)
0
8
5

2980 2990 3000 3010 3020
M s

�
1 s

�
2

5. ´ 10 - 7

1. ´ 10 - 6

1.5 ´ 10 - 6

2. ´ 10 - 6

2.5 ´ 10 - 6

dΣ � dM s
�

1 s
�

2

q
�

q
�

, r = 0.95

Β
E

2600 2800 3000 3200 3400 3600 3800 4000
M s

�
1 s

�
2

5. ´ 10 - 8

1. ´ 10 - 7

1.5 ´ 10 - 7

2. ´ 10 - 7

2.5 ´ 10 - 7

3. ´ 10 - 7

3.5 ´ 10 - 7

dΣ � dM s
�

1 s
�

2

q
�

q
�

, r = 0.5

Β
E

2980 2990 3000 3010 3020
M s

�
1 s

�
20

5. ´ 10 - 7

1. ´ 10 - 6

1.5 ´ 10 - 6

dΣ � dM s
�

1 s
�

2

q
�

q
�

, r = 0.95

Β
E

2600 2800 3000 3200 3400 3600 3800 4000
M s

�
1 s

�
20

5. ´ 10 - 7

1. ´ 10 - 6

1.5 ´ 10 - 6

2. ´ 10 - 6

dΣ � dM s
�

1 s
�

2

q
�

q
�

, r = 0.5

Β
E

2900 2950 3000 3050 3100
M s

�
1 s

�
20

2. ´ 10 - 7

4. ´ 10 - 7

6. ´ 10 - 7

8. ´ 10 - 7

dΣ � dM s
�

1 s
�

2

g
�

g
�

, r =1.05

Β
E

2600 2800 3000 3200 3400 3600 3800 4000
M s

�
1 s

�
20

1. ´ 10 - 7

2. ´ 10 - 7

3. ´ 10 - 7

4. ´ 10 - 7

5. ´ 10 - 7

dΣ � dM s
�

1 s
�

2

g
�

g
�

, r = 2

Β
E

2980 2990 3000 3010 3020
M s

�
1 s

�
20

1. ´ 10 - 6

2. ´ 10 - 6

3. ´ 10 - 6

4. ´ 10 - 6

5. ´ 10 - 6

6. ´ 10 - 6

dΣ � dM s
�

1 s
�

2

q
�

g
�

, r =1.05

Β
E

2600 2800 3000 3200 3400 3600 3800 4000
M s

�
1 s

�
20

5. ´ 10 - 7

1. ´ 10 - 6

1.5 ´ 10 - 6

2. ´ 10 - 6

dΣ � dM s
�

1 s
�

2

q
�

g
�

, r = 2

Β
E

Figure 8. Invariant-mass distributions for an average mass m̄ = 1500 GeV of the produced sparticle

pair and a centre-of-mass energy
√
s = 8 TeV for the β (blue, solid) and E (red, dashed) imple-

mentation as defined below (4.3). Left-hand plots are examples of case b) (Γ̄/m̄ ∼ α2
s), right-hand

plots case a) (Γ̄/m̄ ∼ αs).
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terms in the non-relativistic expansion and non-resonant contributions become important.

The differences between the default β and the E approximation provide an estimate for the

size of the higher-order relativistic effects. Note that because of soft radiation (as taken

into account by the convolution of the soft function with the parton luminosity) also the

invariant-mass distribution directly at threshold is sensitive to larger partonic centre-of-

mass energies and the associated ambiguities in the threshold expansion.

In figure 8 the invariant-mass distributions for the four relevant squark and gluino

production processes (2.6) are shown for m̄ = 1500 GeV at a centre-of-mass energy
√
s =

8 TeV for two different mass ratios corresponding to the cases a) and b) discussed in

section 3.1 . For the case mg̃ > mq̃ we consider r = mg̃/mq̃ = 2 and r = 1.05, corresponding

to Γg̃/mg̃ = 12% and Γg̃/mg̃ = 0.2%, respectively. For the case mg̃ < mq̃ we consider

r = 0.5 and r = 0.95, corresponding to Γq̃/mq̃ = 3% and Γq̃/mq̃ = 0.05%, respectively.

As explained in section 3, we will perform treshold resummation also for the case of larger

decay widths, although it might not be strictly necessary in this case.

In the small-width case, i.e. the left-hand plots in figure 8 where r = 0.95 or r =

1.05, the ambiguities in our prediction as estimated by the difference of the E- and β-

implementations are moderate. Depending on the process, the different regimes men-

tioned in section 3.1 are observed: for the given choice of parameters, a single would-be

bound-state peak appears for squark-squark production, where Γ̄ = 0.9 GeV . E1 =

1.5 GeV, while two peaks are visible in gluino-pair production where Γ̄ = 3 GeV � E1 =

30 GeV. In the remaining two processes the second bound-state peak is less pronounced,

but still visible.

In the case of larger widths, i.e. the right-hand plots in figure 8 with r = 0.5 or r = 2,

the decay widths are always much larger than the bound-state energy, so no peaks below

threshold are observed. It can be seen that the invariant-mass distributions do not vanish

for Ms̃1s̃2 far below the nominal threshold, Ms̃1s̃2 = 3000 GeV. This behaviour arises as a

combination of the rise of the PDFs for small x and the behaviour of the potential function

in 4.1, that scales as JDR ∝ Γ̄/(2m̄−Ms̃1s̃2)1/2 → Γ̄/(2m̄)1/2 for Ms̃1s̃2 → 0, which follows

from the LO (trivial) potential function (2.17). While for the default β-implementation

the distributions approach a flat plateau far below threshold, in the E-implementation one

observes a (clearly unphysical) rise for larger widths for processes involving gluinos.7 In

fact, as already pointed out, far below threshold the LO potential function is not expected

to be a good approximation, and the inclusion of non-resonant contributions and relativistic

corrections are needed for a realistic description of the invariant-mass distributions in this

region, similar to what was seen for the partonic cross sections in figure 7.

The difference between the E- and β-implementations is amplified due to the soft

function in (4.1), WRα(ω) ∼ ω−1+2η with η < 0. In the E-implementation the argument of

the soft function (left-hand side of eq. (4.3)) approaches zero faster than the corresponding

quantity in the β-implementation (right-hand side of eq. (4.3)) as the lower integration

7Note that this is not an artifact of our use of M ′
s̃1s̃2 for the E-implementation. In fact, for the original

formula (4.1) an even stronger rise is observed, since smaller x values are probed in the parton luminosity

due to smaller values of τ0.
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boundary τ0 is approached, and the soft function W diverges faster.8 If soft corrections

are not taken into account, the soft function reduces to a delta function, WRα(ω) ∝ δ(ω).

In this case we have observed a substantial reduction in the difference between the E- and

β-implementation also for large widths.

From the results presented in this section we conclude that our approximation is rea-

sonably accurate for processes with decay widths of the order of Γ̄/m̄ . 5%. As we will

argue in section 4.2, this covers the phenomenologically-relevant MSSM parameter-space

regions. Our effective-theory treatment becomes inadequate for larger decay widths, so our

results in this regime should be considered as indicative only.

4.2 Total cross sections

In order to compute the total cross section for a finite decay width, in principle the ω-

integral in (2.12) has to be performed up to the maximal energy ω = 2
√
ŝ since the potential

function JRα is defined for arbitrary negative values of the partonic energy E. However, as

mentioned above, far below threshold (i.e. ω � 2E) the leading threshold approximation

becomes insufficient and higher-order and non-resonant contributions become relevant.

This was shown by the difference of the σ̂
(0)
thresh and σ̂

(0)
Off curves for large widths in figure 7

and by the large difference of the β- and E-implementations for the invariant-mass spectrum

and the unphysical behaviour of the latter below threshold, as seen in figure 8. Since the

non-resonant and higher-order non-relativistic corrections for squark and gluino production

are not available beyond LO, we introduce a cut-off in the potential function:

JR(E + iΓ̄) = 2Im
[
GR

(
E + iΓ̄

)]
θ (E + ∆E) , ∆E > 0, (4.5)

with E equal to the expression (2.14) as our default implementation. The parameter ∆E

cuts off the convolution of the soft and potential function at ω = 2(E + ∆E). In order to

capture the bound-state peaks, this cut-off is chosen as

∆E = 1.1|E1|+ ∆E, (4.6)

where E1 is the energy of the lowest-lying bound-state peak, see eq. (2.18). The prefactor

1.1 multiplying E1 insures that the bound-state contribution is always fully included. As

a default for ∆E we take

∆E0 := Min[10 Γ̄, 0.25 m̄]. (4.7)

A related cutoff ∆E = |E1|+3Γ̄ was used for gluino-pair production in [21] where the focus

was on narrow gluinos with decay widths at most of the order of Γg̃ ∼ |E1| ∼ mg̃α
2
s. In

the case of larger decay widths, the value of ∆E = 10Γ̄ becomes of the order of mg̃, where

we expect the threshold approximation to become invalid. Therefore we have chosen the

cutoff ∆E ∼ 0.25m̄ in the case of larger decay widths. The uncertainty in choosing ∆E is

estimated by varying it around its default value:

∆E0/2 ≤ ∆E ≤ 2∆E0. (4.8)

8This is further enhanced by the rise of the PDFs at the lower integration boundary.
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The hadronic cross sections are obtained by convoluting the partonic cross sections

with the parton luminosity (4.2)

σN1N2→s̃s̃′X(s) =

∫ 1

τ0

dτ
∑

p,p′=q,q̄,g

Lpp′(τ, µf )σ̂pp′(τs, µf ) , (4.9)

where the lower integration boundary depends on the cutoff,

τ0(∆E) =
4m̄2

s

1

1 + ∆E/m̄
. (4.10)

In the E-implementation, the lower integration boundary is instead given by τ0(∆E) =

(2m̄−∆E)2/s. In order not to introduce numerical differences due to different integration

boundaries, in the E-implementation we use the same numerical value for τ0 as for the

β-implementation, and adjust the value of ∆E in the potential function accordingly.9

While the Born amplitudes for the production and decay processes of squarks and

gluinos can be treated exactly with Monte Carlo programs [24], the NLO corrections for the

production processes are known only in the narrow-width approximation, as implemented

in Prospino [64]. In order to take these exactly-known contributions into account, we match

our finite-width NLL results to the sum of the Born cross section including finite-width

effects and the NLO corrections in the narrow-width approximation. In practice, we ap-

proximate the Born cross section by σ
(0)
Off defined in section 3.4 and computed with Whizard.

The total hadronic cross sections at NLO for finite widths are thus approximated as:

σNLO(Γ̄) = σ
(0)
Off(Γ̄) + (σNLO,NWA − σ(0)

NWA). (4.11)

Here σNLO,NWA is the NLO result obtained with Prospino and σ
(0)
NWA is the leading-order

production cross section for stable squarks or gluinos (see section 3.4). Analogously to the

narrow-width case [12], the NLL resummed cross section is then matched to σNLO(Γ̄):

σmatched
NLL (Γ̄) = ∆σNLL(Γ̄) + σNLO(Γ̄),

∆σNLL(Γ̄) = σNLL(Γ̄)− σNLL, LO(Γ̄)− σNLL, NLO(Γ̄ = 0). (4.12)

Here σNLL, (N)LO is the expansion of the NLL resummed cross section to (N)LO accuracy.

For comparison we will also consider results where the decay width is set to zero in the

higher-order corrections, i.e.

σmatched
NLL (0) = ∆σNLL(0) + σNLO(Γ̄) . (4.13)

The result (4.12) is our best current prediction. It could be made more realistic by replacing

the off-shell approximation for the tree cross section by a full LO simulation including

acceptance cuts, which we leave for further investigation. Contrary to the NLO cross

section σNLO(Γ̄), the matched NLL cross section σNLL(Γ̄) does contain finite-width effects

at NLO from the resummed Coulomb and soft corrections. It is also interesting to consider

9This is related to the replacement of the invariant mass Ms̃1s̃2 → M ′
s̃1s̃2 for the E-implementation in

section 4.1.

– 20 –



J
H
E
P
0
1
(
2
0
1
3
)
0
8
5

Figure 9. The plots show the ratio σmatched
NLL (Γ̄)/σmatched

NLL (0) of the matched finite-width NLL cross

section (4.12) to the zero-width approximation (4.13) (red dot-dashed, left-hand vertical axis) for

m̄ = 1500 GeV and
√
s = 8 TeV and the ratio Γ̄/m̄ in per-cent (purple dotted, right-hand vertical

axis). Both quantities are plotted as a function of the gluino-to-squark mass ratio. The NLL result

is for default ∆E = ∆E0. The red band represents the error from ∆E variation and E vs β

uncertainty added in quadrature, the green band the total error for zero width, the blue band the

E vs β uncertainty for the zero-width case.

only the finite-width corrections beyond NLO. This shows the size of the effects that are

beyond a possible future exact NLO calculation of the processes (2.6). For this purpose we

consider the alternative matching

σ
matched,(2)
NLL (Γ̄) = ∆σ

(2)
NLL(Γ̄) + σNLO(Γ̄),

∆σ
(2)
NLL(Γ̄) = σNLL(Γ̄)− σNLL, LO(Γ̄)− σNLL, NLO(Γ̄). (4.14)

For the results shown in this section we take as a representative average mass m̄ =

1500 GeV and the setting is the LHC at a centre-of-mass energy of
√
s = 8 TeV. We use the

β-implementation as default and the scales are taken to be the same as in the zero-width

case [12]: µf = m̄ = 1500 GeV, µh = 2m̄ = 3000 GeV and a running soft and Coulomb

scale. We note that the soft and Coulomb scales are always fixed below threshold. The

LO widths in eq. (2.4) for the squarks and gluinos are used.

Figure 9 shows the ratio of the matched NLL cross section for finite widths (4.12)

to that for the zero-width case (4.13) (red, dot-dashed) as a function of the gluino-to-

squark mass ratio. The green band gives the total uncertainty for the zero-width NLL
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Figure 10. Same as in figure 9, but for the ratio σ
matched,(2)
NLL (Γ̄)/σmatched

NLL (0) of the matched

cross section (4.14) including only finite-width effects beyond NLO to the zero-width approxima-

tion (4.13). See figure 9 and the text for explanation.

result, including ambiguities in soft, hard, factorization and Coulomb-scale choices and the

difference of the E- and β-implementation, added up in quadrature as discussed in detail

in [12]. The difference of the E- and β-implementation alone is given by the blue band.

The red band indicates the ambiguities related to our implementation of the finite-width

effects, as estimated by the ∆E variation as described in eq. (4.8) and the difference of the

E- and β-implementations, summed in quadrature. The plots also show the ratio of the

average decay width to the average mass of the produced particles.

It can be seen that for all processes the finite-width result including uncertainties lies

within the uncertainty estimate of the NLL calculation for stable squarks and gluinos if

Γ̄/m̄ . 5%. For larger widths, large corrections are observed for the gluino-gluino and

squark-gluino processes, where the ratio Γ̄/m̄ grows up to 12%, and the finite-width cor-

rections become of the order of 20%. In this case the uncertainties due to the treatment of

finite-width effects are of a similar magnitude as those due to scale and resummation ambi-

guities. This indicates that corrections beyond the leading E → E + iΓ̄ replacement, such

as higher-order non-relativistic corrections and non-resonant corrections become relevant.

A more accurate treatment would require the matching of the NLL results to the exact

NLO QCD cross sections for the full q̃q̃q or q̃q̃qq-processes and the inclusion of the N3/2LO

corrections in the counting (3.9) that are expected to be of the order δ3/2 ∼ (Γ̄/m̄)3/2 ∼ 5%,

both of which are not available at the moment. Nevertheless it is interesting to anticipate

such a future matching to a full NLO calculation by using the matching prescription (4.14)
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Figure 11. The K-factors of the NLL cross sections including (red dot-dashed) and excluding

(black) the widths for default ∆E = ∆E0 and m̄ = 1500 GeV at centre of mass energy
√
s = 8 TeV.

Dashed black: NLL resummed cross sections excluding bound-state contributions. Green band:

Total error for zero width.

where the finite-width effects are included purely beyond NLO. The results are shown

in figure 10, where the colour coding used for the lines is the same as in figure 9. It is

seen that the finite-width effects on the central values, as well as ambiguities due to the

∆E variation and the E- and β-implementation difference, are much smaller than for the

matching (4.12). In particular, the total uncertainty bands related to the finite-width im-

plementation (red) lie now fully within the total zero-width NLL error bands (green). The

difference of the plots in figure 9 and figure 10 indicates the potential impact of a full NLO

SQCD calculation for the processes (2.6) and shows that the finite-width effects beyond

NLO are expected to be small.

To assess the size of the finite width corrections relative to the NLL soft and Coulomb

corrections, in figure 11 we compare the K-factors for our NLL result including finite decay

widths to the result for stable squarks and gluinos (4.13). TheK-factors relative to the NLO

prediction are defined as KNLL = σNLL/σNLO, where the finite-width approximation (4.11)

is always used for the denominator. We also show the result NLLnoBS defined as the cross

section in the stable case, excluding the bound-state contribution below threshold. In

general, for relatively narrow particles with Γ̄/m̄ . 5% the K-factors including finite-width

effects are well approximated by those for the zero-width case including the bound-state
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Figure 12. Left plot: The NLL K-factor including (dot-dashed red) and excluding (black) the

widths for default ∆E = ∆E0 and MS = (mq̃ + mg̃)/2 = 1500 GeV at centre of mass energy√
s = 8 TeV. Dashed black: NLL K-factor excluding bound-state contributions. Green band:

Total error for zero width. The plot also shows the squark (thick orange) and gluino (thick green)

widths (right vertical axis). Right plot: The ratio of the four relevant NLL cross sections to the

total SUSY cross section.

Figure 13. Ratio of the matched finite-width NLL cross section (4.12) to the zero-width approx-

imation (4.13) for gluino-pair production and subsequent decay to stops, as a function of mt̃/mg̃

for a fixed gluino mass mg̃ = 1000 GeV, a common light-flavour squark mass of mq̃ = 2000 GeV.

The error bands for finite- and zero-width curves are defined as in figures 9 and 10.

contribution, with the exception of squark-gluino production and gluino-gluino production

for the case mg̃ > mq̃, where larger finite-width effects are observed.

The relatively large finite-width corrections for gluino-production processes for mg̃ >

mq̃ have to be compared to the contributions of these processes to the total SUSY produc-

tion rate. This can be seen in figure 12, where in the left plot the KNLL-factor is shown

for the finite-width and zero-width case. The effect of the QCD widths is seen to be negli-

gible and the finite width can be safely set to zero when it comes to the total SUSY cross

section. This is also expected since the numerically dominant processes are almost always

those whose final-state particles are stable against SQCD decay, as can be seen from the

right plot of figure 12. The inclusion of electroweak widths is not expected to change our

qualitative results. These can be dominating when r ' 1, but are only about the order of

Γ̄/m̄ ∼ 1% and thus the effects are expected to be negligible.

As mentioned in section 2, in the study of finite-width effects considered in this work

we have neglected the decay of gluinos to stops. We do not expect the inclusion of this
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additional decay channel to significantly change the results presented in this section, except

in the case in which gluino production is the dominant SUSY production channel and the

gluinos only decay to stops. This is for example the case of scenarios with the mass

hierarchy mt̃ < mg̃ � mq̃, with all squarks heavy except for stops. To have an estimate

of the effects of a finite gluino width in this particular situation in figure 13 we show the

NLL cross section for gluino-gluino production as a function of the ratio mt̃/mg̃ for a fixed

gluino mass mg̃ = 1000 GeV, a common light-flavour squark mass of mq̃ = 2000 GeV and

top mass mt = 174 GeV. As in figure 9 the cross section is normalized to the gluino-pair

production cross section at zero width, and the green band represents the total uncertainty

of the zero-width result, while the purple dashed curve gives the gluino width as a function

of mt̃/mg̃. As can be seen from the plot the finite-width effects amount to a maximum of

∼ 1− 2% for small stop masses and the uncertainty associated with the finite-width result

is contained in the zero-width case error band. We thus expect corrections to the plots in

figures 11, 12 to amount to at most few percents.

5 Conclusions

In this work we have considered corrections related to finite widths of squarks and gluinos

on the NLL resummed results presented in [12]. As anticipated, a finite decay width

leads to a screening of higher-order soft and Coulomb corrections. However we have found

that for decay widths of the order of Γ̄/m̄ . 5%, corresponding to gluino to squark mass

ratios of 0.5 . mg̃/mq̃ . 1.4, finite-width effects on the NLL corrections are small and

within the uncertainty of the soft and Coulomb resummation including bound-state effects

performed in [12].

For larger decay widths of the order of Γ̄/m̄ ∼ αs non-resonant contributions and higher

order non-relativistic corrections become important. In this case it becomes necessary

to perform a calculation of order δ3/2 ∼ αs
√

Γ̄/m̄ in unstable particle-effective theory

matched to an exact NLO calculation for three- or four-particle final states including finite-

width effects, which should be feasible but challenging with current NLO technology. The

accuracy of such a calculation is expected to be better than 5%. For the doubly-resonant

contributions to the cross section, we have observed that finite-width corrections beyond

NLO are small.

Because the pair production processes of the lighter coloured sparticles, which are

stable with respect to SQCD, dominate the total SUSY cross section, finite-width effects

on the total SUSY production rate are negligible on the whole range of squark and gluino

widths considered.
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