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1 Introduction

Heterotic string model building has received an increasing attention in the past few years.

The perhaps simplest heterotic compactifications are based on Abelian toroidal orbifolds [1,

2]. Unlike in the supergravity compactifications on Calabi-Yau manifolds one has a clear

string theory description. In addition, the scheme is rich enough to produce a large number

of candidate models that may yield a stringy completion of the (supersymmetric) standard

model [3, 4] (for a review see e.g. [5]). At the same time, symmetric orbifolds have a rather

straightforward geometric interpretation (cf. e.g. [6–8]). In fact, the geometric properties

often have immediate consequences for the phenomenological features of the respective

models. One obtains an intuitive understanding of discrete R symmetries in terms of

remnants of the Lorentz group of compact space, of the appearance of matter as complete

GUT multiplets due to localization properties and gauge group topographies as well as

flavor structures.

Despite their simplicity, symmetric toroidal orbifolds provide us with a large number

of different settings, which have, rather surprisingly, not been fully explored up to now.

In the past, different attempts of classifying parts of these compactifications have been

made [9–12]. As we shall see (in section 5.1.2) some of these classifications are mutually

not consistent, and incomplete. The perhaps most complete classification is due to Donagi

and Wendland (DW) [10], who focus on Z2×Z2 orbifolds. The main purpose of this paper

is to provide a complete classification of symmetric Abelian and non-Abelian heterotic

orbifolds that lead to N ≥ 1 supersymmetry (SUSY) in four dimensions.

The structure of this paper is as follows: in section 2 we discuss the tools used to

construct toroidal orbifolds. Later, in section 3, we present a way from crystallography to

classify all possible space groups and apply it to string compactifications. Then, in section 4

we impose the condition of N = 1 SUSY in 4D. Section 5 is devoted to a survey of the

resulting orbifolds, and to a comparison with previous results from the literature [9–12].

Finally, in section 6 we briefly discuss our results. In various appendices we collect more

detailed information on our classification program. Appendix A contains some details on

lattices, in appendix B we survey the already known 2D orbifolds, and in appendix C we

provide tables of our results.

2 Construction of toroidal orbifolds

We start our discussion with the construction of toroidal orbifolds [1, 2]. There are two

equivalent ways of constructing such objects: (i) one can start from the Euclidean space

Rn and divide out a discrete group S, the so-called space group. (ii) Alternatively, one

can start with an n-dimensional lattice Λ, to be defined in detail in section 2.2, which

determines a torus Tn and divide out some discrete symmetry group G. Note that G, the

so-called orbifolding group as defined in section 2.5, is in general not equal to the point

group introduced in section 2.3. That is, a toroidal orbifold is defined as

O = Rn/S = Tn/G . (2.1)
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Even though we are mostly interested in the case n = 6 we will keep n arbitrary. In the

following, we will properly define the concepts behind equation (2.1), closely following [13].

2.1 The space group S

Let S be a discrete subgroup of the group of motions in Rn, i.e. every element of S leaves

the metric of the space invariant. If S contains n linearly independent translations, then it

is called a space group (of degree n). Such groups appear already in crystallography: they

are the symmetry groups of crystal structures, which in turn are objects whose symmetries

comprise discrete translations.

Every element g of a space group S can be written as a composition of a mapping ϑ

that leaves (at least) one point invariant and a translation by some vector λ, i.e. g = λ ◦ ϑ

for g ∈ S (one can think of ϑ as a discrete rotation or inversion). This suggests to write a

space group element as1

g = (ϑ, λ) , (2.2)

and it acts on a vector v ∈ Rn as

v
g
7−→ ϑ v + λ . (2.3)

Let h = (ω, τ) ∈ S be another space group element. Then the composition h ◦ g is given

by (ω ϑ, ω λ+ τ).

2.2 The lattice Λ

Let S be a space group. The subgroup Λ of S consisting of all translations in S is the

lattice of the space group. Note that for a general element g = (ϑ, λ) ∈ S the vector

λ does not need to be a lattice vector. Elements g = (ϑ, λ) ∈ S with λ /∈ Λ are called

roto-translations.

Since a space group is required to contain n linear independent translations, every

lattice contains a basis e = {ei}i∈{1,...,n} and the full lattice is spanned by the ei (with

integer coefficients), i.e. an element λ ∈ Λ can be written as λ = ni ei, summing over

i = 1, . . . , n and ni ∈ Z. Clearly, the choice of basis is not unique. For example, for a

given lattice Λ take two bases e = {e1, . . . , en} and f = {f1, . . . , fn} and define Be and Bf

as matrices whose columns are the basis vectors in e and f, respectively. Then the change

of basis is given by a unimodular matrix M (i.e. M ∈ GL(n,Z)) as

BeM = Bf . (2.4)

On the other hand, one can decide whether two bases e and f span the same lattice by

computing the matrix M = B−1
e Bf and checking whether or not it is an element of

GL(n,Z).

1In the mathematical literature the reverse notation g = (λ, ϑ) is also common, since the normal subgroup

element is usually written to the left, and the lattice Λ is a normal subgroup of the space group.
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2.3 The point group P

For a space group S with elements of the form (ϑ, λ), the set P of all ϑ forms a finite group

([13, p. 15]), the so-called point group of S. The elements of a point group are sometimes

called twists or rotations. However, in general a point group can also contain inversions

and reflections, i.e. ϑ ∈ O(n).

The point group P of S maps the lattice of S to itself. Hence, similarly to the change

of lattice bases, point group elements can be represented by GL(n,Z) (i.e. unimodular)

matrices. When written in the GL(n,Z) basis, we append the twists by an index indicating

the lattice basis, while the O(n) (or SO(n)) representation of the twist is denoted without an

index. For example, the twist ϑ ∈ O(n) is denoted as ϑe in the lattice basis e = {e1, . . . , en}

such that ϑ ei = (ϑe)ji ej and ϑe = B−1
e ϑBe. Furthermore, under a change of basis as in

equation (2.4) the twist transforms according to

ϑf = M−1 ϑeM . (2.5)

Given these definitions, and because the lattice is always a normal subgroup of the

space group (i.e. rotation ◦ translation ◦ (rotation)−1 = translation), the space group S

has a semi-direct product structure iff the point group P is a subgroup of it, i.e. P ⊂ S.

In that case

S = P ⋉ Λ , (2.6)

and one can write the orbifold as

O = R
n/(P ⋉ Λ) = T

n/P . (2.7)

In general, however, the point group is not a subgroup of the space group and thus

the space group is not necessarily a semi-direct product of its point group with its lattice.

More precisely, in general the point group P is not equal to the orbifolding group G of

equation (2.1) because of the possible presence of roto-translations, as we will see in an

example in section 2.4.

2.4 Examples: space groups with Z2 point group

In this section, we give two examples of space groups in two dimensions with Z2 point

group in order to illustrate the discussion of the previous sections.

A simple example: the “pillow”. The first of our examples is the well known two-

dimensional “pillow”, see figure 1(a). The space group S is generated as

S = 〈(1, e1), (1, e2), (ϑ, 0)〉 , (2.8)

and can be realized as the semi-direct product of the oblique lattice Λ (see appendix A.3)

and the point group P = {1, ϑ}. In detail, the lattice is given as Λ = {n1 e1+n2 e2, ni ∈ Z}

using the basis e = {e1, e2}. ϑ is a rotation by π, i.e. it acts on the lattice basis vectors as

ϑ ei = −ei for i = 1, 2 . (2.9)
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(a) (b)

Figure 1. Two-dimensional examples: (a) “pillow” and (b) Klein bottle. In case (a) the blue

arrows indicate a wrap-around and the red symbols indicate fixed points.

Therefore, it can be represented by a GL(2,Z) matrix

ϑe =

(
−1 0

0 −1

)
. (2.10)

Since ϑ2 = 1, the point group is Z2.

Another example: the Klein bottle. Let us take a look at a more advanced example:

the space group of a Klein bottle, see figure 1(b). Here, the space group is generated by

two orthogonal lattice vectors (which thus span a primitive rectangular lattice Λ) {e1, e2},

and an additional element g,

S = 〈(1, e1), (1, e2), g〉 with g =

(
ϑ,

1

2
e1

)
and ϑe =

(
1 0

0 −1

)
.

(2.11)

g acts on a vector v = v1e1 + v2e2 as

v
g
7−→ ϑ v +

1

2
e1 = v1 e1 − v2 e2 +

1

2
e1 . (2.12)

Notice that even though the point group is Z2 (i.e. ϑ2 = 1), g generates a finite group

isomorphic to Z2 only on the torus T2 = R2/Λ, but not on the Euclidean space R2,

because g2 = (1, e1) 6= (1, 0). In other words, since the generator g also contains a

translation 1
2e1 /∈ Λ, it is not a point group element but a roto-translation.

Obviously, this space group cannot be written as a semi-direct product of a lattice and

a point group, as is always the case when we have roto-translations.

2.5 The orbifolding group G

Due to the possible presence of roto-translations, it is clear that in general space groups

cannot be described by lattices and point groups only. Therefore, we will need to define

an additional object, the orbifolding group (see [10]). Loosely speaking, the orbifolding

group G is generated by those elements of S that have a non-trivial twist part, identifying

elements which differ by a lattice translation. Hence, if there are no roto-translations

the orbifolding group G is equal to the point group P . In other words, the orbifolding

group may contain space group elements with non-trivial, non-lattice translational parts.

Combining the orbifolding group G and the torus lattice Λ generates the space group

S = 〈{G,Λ}〉.
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affine classes ⊂ Z-classes ⊂ Q-classes

Figure 2. Sketch of the classification of space groups.

Hence, we can define the orbifold as

O = R
n/S = R

n/〈{G,Λ}〉 = (Rn/Λ)/G = T
n/G . (2.13)

Orbifolds can be manifolds (see e.g. figure 1(b)), but in general, they come with singularities

which can not be endowed with smooth maps (see e.g. figure 1(a)).

3 Equivalences of space groups

In the context of string orbifold compactifications, some physical properties of a given

model directly depend on the choice of its space group. These features are common to

whole sets of space groups and can be related to some mathematical properties. Using the

latter, one can define equivalence classes of space groups. In detail, there are three kinds of

equivalence classes suitable to sort space groups S with certain physical and corresponding

mathematical properties. These classes are:

1. the Q-class (see section 3.3) determines the point group P contained in S and hence

the number of supersymmetries in 4D and the number of geometrical moduli;

2. the Z-class (see section 3.2) determines the lattice Λ of S and hence the nature of

the geometrical moduli;

3. the affine class (see section 3.1) determines the flavor group and the nature of gauge

symmetry breaking (i.e. local vs. non-local gauge symmetry breaking).

Each Q-class can contain several Z-classes and each Z-class can contain several affine

classes, see figure 2. In other words, for every point group there can be several inequivalent

lattices and for every lattice there can be several inequivalent choices for the orbifolding

group (i.e. with or without roto-translations).

In the following, we will discuss in detail why the concept of affine classes is advant-

ageous to classify physically inequivalent space groups. This is standard knowledge among

crystallographers and can for instance be found in more detail in [13].

3.1 Affine classes of space groups

Two space groups S1 and S2 of degree n belong to the same affine class (i.e. S1 ∼ S2) if

there is an affine mapping f : Rn → Rn such that

f−1 S1 f = S2 . (3.1)

An affine mapping f = (A, t) on Rn consists of a translation t and a linear mapping A, that

is, it allows for rescalings and rotations. Therefore, this definition enables us to distinguish

between space groups that actually describe different symmetries and space groups which
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are just the ones we already know, looked upon from a different angle or distance. Then,

for a given representative space group of an affine class a non-trivial affine transformation

A that leaves the point group invariant (i.e. A−1 P A = P ) corresponds to a change of

the geometrical data. In the context of superstring compactifications this corresponds to

a change of values of the geometrical moduli. That is, affine transformations amount to

moving in the moduli space of the respective compactification. Hence, we will only be

interested in one representative for every affine class.

It turns out that, for a given dimension n, there exists only a finite number of affine

classes of space groups [13, p. 10]. Hence, classifying all affine classes of space groups

enables a complete classification of orbifolds for a fixed number of dimensions. In this

paper, we focus on the six-dimensional case.

Example in two dimensions. Let us illustrate this at the T2/Z2 example with ϑ = −1

given in section 2.4. As discussed there, the lattice is oblique, i.e. one can choose any linear

independent vectors e1 and e2 as basis vectors. Define a space group S by choosing

e1 =

(
r1
0

)
and e2 =

(
r2 cos(α)

r2 sin(α)

)
. (3.2)

This space group is in the same affine class as S̃ with basis vectors

ẽ1 =

(
1

0

)
and ẽ2 =

(
0

1

)
. (3.3)

This can be seen explicitly using the affine transformation f = (A, 0) with

A =

(
r1 r2 cos(α)

0 r2 sin(α)

)
and A−1 =

(
1
r1
− 1

r1 tan(α)

0 1
r2 sin(α)

)
. (3.4)

Take an arbitrary element g = (ϑ, niei) with ni ∈ Z for i = 1, 2. Then

(
f−1 g f

)
(x) =

(
f−1 g

)
(Ax) = f−1(ϑAx+ niei) = ϑx+A−1(niei) (3.5a)

= ϑx+ ni ẽi = g̃ x (3.5b)

for x ∈ R2 and g̃ = (ϑ, niẽi) ∈ S̃. Therefore, S ∼ S̃ and there is only one affine class of

T2/Z2 space groups with ϑ = −1.

This should be compared with the T2/Z3 orbifold, where the angle between the basis

vectors ei and their length ratio are fixed, such that the corresponding moduli space is

different. Hence, it is clear that T2/Z2 and T2/Z3 are two different orbifolds. This

demonstrates the advantages of using affine classes for the classification of space groups.

3.2 Z-classes of space groups

As discussed above, we can sort space groups into affine classes. This can be refined

further by grouping affine classes according to common properties of their point groups.

Following the argument in section 2.3, the elements of the point group can be written in

– 7 –
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the lattice basis as elements of GL(n,Z). Therefore, a point group is a finite subgroup of

the unimodular group on Z.

Take two space groups S1 and S2. For i = 1, 2, the space group Si contains a lattice Λi

and its point group in the lattice basis is denoted by Pi, i.e. Pi ⊂ GL(n,Z). Then, the two

space groups belong to the same Z-class (or in other words to the same arithmetic crystal

class) if there exists an unimodular matrix U (i.e. U ∈ GL(n,Z)) such that (cf. the parallel

discussion around equation (3.1))

U−1 P1 U = P2 , (3.6)

see equation (2.5). That is, if the point groups are related by a change of lattice basis (using

U), the space groups belong to the same Z-class. Hence, Z-classes classify the inequivalent

lattices.

If two space groups belong to the same Z-class, they have the same form space and,

physically, they possess the same amount and nature of geometrical moduli. However, as

we have stressed before, space groups from the same Z-class are not necessarily equivalent

because of the possible presence of roto-translations. In other words, space groups from

the same Z-class can belong to different affine classes and can hence be inequivalent.

3.3 Q-classes of space groups

As before in section 3.2, take two space groups S1 and S2. For i = 1, 2, the point group

in the lattice basis associated to the space group Si is denoted by Pi, i.e. Pi ⊂ GL(n,Z).

Then, the two space groups belong to the same Q-class (or in other words to the same

geometric crystal class) if there exists a matrix V ∈ GL(n,Q) such that

V −1 P1 V = P2 . (3.7)

Obviously, if two space groups belong to the same Z-class they also belong to the same

Q-class, hence the inclusion sketch in figure 2. In contrast to Z-classes, Q-classes do not

distinguish between inequivalent lattices. However, if two space groups belong to the same

Q-class, the commutation relations and the orders of the corresponding point groups are

the same. Therefore, they are isomorphic as crystallographic point groups. They also

possess form spaces of the same dimension, i.e. they have the same number of moduli.

What is important for physics is that all space groups in the same Q-class share a common

holonomy group (cf. section 4). This allows us to identify settings that yield N = 1 SUSY

in 4D. In particular, in order to determine the number of SUSY generators, it is sufficient

to consider only one representative from every Q-class.

3.4 Some examples

Before going to six dimensions, let us illustrate the above definitions with some easy ex-

amples of two-dimensional Z2 orbifolds, taken from appendix B.

– 8 –
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f2

e1 ≡ f1 ≡ e′1 ≡ f ′
1

f ′
2

e2

e′2

Figure 3. Two different bases for the p-rectangular lattice: e = {e1, e2} and f = {f1, f2}, and the

action of the point group generator (primed vectors).

Space groups in the same Z-class. Consider the affine class Z2–II–1–1, as defined in

appendix B. As there are no roto-translations, the orbifolding group is equal to the point

group and is generated by ϑ, a reflection at the horizontal axis. Now, let this reflection

act on a lattice, first spanned by the basis vectors e = {e1, e2} and second spanned by

f = {f1, f2}, see figure 3. The two corresponding space groups read

Se = 〈(ϑ, 0), (1, e1), (1, e2)〉 with ϑe =

(
1 0

0 −1

)
, (3.8)

Sf = 〈(ϑ, 0), (1, f1), (1, f2)〉 with ϑf =

(
1 2

0 −1

)
, (3.9)

where ϑe 6= ϑf because they are given in their corresponding lattice bases. However, it is

easy to see that they are related by the GL(2,Z) transformation

U =

(
1 1

0 1

)
with U−1 ϑe U = ϑf , (3.10)

cf. equation (3.6). Therefore, they belong to the same Z-class. Hence, as we actually knew

from the start, they act on the same lattice and the matrix U just defines the associated

change of basis precisely as in equation (2.4).

Space groups in the same Q-class, but different Z-classes. Next, consider the

space groups,

S1–1 = 〈(ϑ1–1, 0), (1, e1), (1, e2)〉 with ϑ1–1,e =

(
1 0

0 −1

)
, (3.11)

S2–1 = 〈(ϑ2–1, 0), (1, f1), (1, f2)〉 with ϑ2–1,f =

(
0 1

1 0

)
, (3.12)

with lattices spanned by e1 = (1, 0), e2 = (0, 1) and f1 = (1/2, 1/2), f2 = (1/2,−1/2),

respectively. The first space group belongs to the affine class Z2–II–1–1 and the second

one to Z2–II–2–1, see appendix B. If we try to find the transformation V from equation (3.7)

– 9 –
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e2

e1

τ

e1 − τ

Figure 4. Change of a lattice by an additional translation: the basis of the original lattice is red,

the basis of the new one blue. The additional lattice points are gray. The action of ϑ is a reflection

at the horizontal axis. Therefore, it maps e1 to itself, e2 to its negative and interchanges τ and

e1 − τ .

that fulfills V −1 ϑ1–1,e V = ϑ2–1,f we see that

V =

(
x x

y −y

)
with x, y ∈ Q . (3.13)

But for all values of x and y for which V −1 exists, either V or V −1 has non-integer entries.

Therefore, the space groups Z2–II–1–1 and Z2–II–2–1 belong to the same Q-class, but

to different Z-classes. In other words, these space groups are defined with inequivalent

lattices. Indeed, the first space group possesses a primitive rectangular lattice, while the

second one has a centered rectangular lattice, as we will see in detail in the following.

The effect of including additional translations. There is an alternative way of seeing

the relationship between the two space groups of the last example: one can amend one of

the space groups by an additional translation. In general, this gives rise to a new lattice,

and consequently to a different Z-class.

In our case, let us take the Z2–II–1–1 affine class and add the non-lattice translation

τ =
1

2
(e1 + e2) (3.14)

to its space group. If we incorporate this translation into the lattice, we notice that this

element changes the original primitive rectangular lattice to a centered rectangular lattice,

with a fundamental cell of half area. The new lattice (see figure 4) can be spanned by the

basis vectors τ and e1 − τ .

We can interpret the inclusion of this additional translation as a “change of basis”, see

equation (2.4), but now generated by a matrix M ∈ GL(2,Q) instead of one from GL(2,Z).

The transformation looks like

BeM = Bτ with M =

(
1/2 1/2
1/2 −1/2

)
, (3.15)

where Be and Bτ are matrices whose columns are (e1, e2) and (τ, e1 − τ), respectively. M

is precisely the matrix in equation (3.13) with values x = y = 1/2. Performing this basis

– 10 –
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change, the twist has to be transformed accordingly. Hence, the two Z-classes are related

by a GL(2,Q) transformation M and the new space group with lattice Bτ is Z2–II–2–1.

The geometrical action of the twist, however, is the same in both cases: it is a reflection

at the horizontal axis (see figure 4). That is the reason for the name geometrical crystal

classes for Q-classes. A general method for including additional translations can be found

in appendix A.2.

The method of using additional translations has been used in [10] and [12] in order

to classify six-dimensional space groups with point groups ZN × ZN for N = 2, 3, 4, 6

(the classification of [12] is not fully exhaustive, see section 5.1.2). In these works, the

authors start with factorized lattices, i.e. lattices which are the orthogonal sum of three

two-dimensional sublattices, on which the twists act diagonally. Then, in a second step

additional translations are introduced. As we have shown here, adding such translations is

equivalent to switching between Z-classes in the same Q-class. Hence, if one considers all

possible lattices (Z-classes) additional translations do not give rise to new orbifolds.

Space groups in different Q-classes. Finally, consider the affine classes Z2–I–1–1 and

Z2–II–1–1 defined in appendix B. If we try to find a transformation between both space

groups generators, see equation (3.7),

V −1

(
−1 0

0 −1

)
V =

(
1 0

0 −1

)
⇔

(
−1 0

0 −1

)
V = V

(
1 0

0 −1

)
, (3.16)

we obtain

V =

(
0 x

0 y

)
/∈ GL(2,Q) ∀x, y . (3.17)

Therefore, the space groups Z2–I–1–1 and Z2–II–1–1 belong to different Q-classes (and

also to different Z-classes). That is, the point groups are inequivalent: the twist of the

first point group is a reflection at the origin and the twist of the second point group is a

reflection at the horizontal axis.

4 Classification of space groups

In this section we describe our strategy to classify all inequivalent space groups for the

compactification of the heterotic string to four dimensions with N = 1 SUSY.

4.1 Classification strategy

As is well known, the amount of residual supersymmetry exhibited by the 4D effective

theory is related to the holonomy group of the compact space [14]. In detail, for the

heterotic string the number N of residual SUSY in 4D is given by the number of covariantly

constant spinors and, therefore, depends on the holonomy group. For example, a trivial

holonomy group yields four covariantly constant spinors and hence N = 4 in 4D. On the

other hand, one gets N = 1 SUSY in 4D for SU(3) holonomy.

In the context of orbifolds, one can relate the holonomy group to the point group [2].

Orbifold compactifications preserve four-dimensional supersymmetry if the point group is a
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discrete subgroup of SU(3). The holonomy group and hence the amount of unbroken SUSY

is the same for all members of a given Q-class. Therefore, we start our classification with

the identification of all Q-classes (i.e. point groups) that are subgroups of SU(3). Then, for

each Q-class we identify all Z-classes (i.e. lattices) and finally construct for each Z-class

all affine classes (i.e. roto-translations).

In more detail, our strategy reads:

1. Choose a Q-class and find a representative P of it.2

2. Check that P is a subgroup of SO(6) rather than O(6).

3. Verify that P is a subgroup of SU(3).

4. Find every possible Z-class inside that Q-class.

5. Find every possible affine class inside each one of those Z-classes.

There exists a catalog of every possible affine class in up to six dimensions classified into

Z- and Q-classes [15]. Furthermore, one can access this catalog easily using the software

carat [16]. In detail, the command Q catalog lists all Q-classes, the command QtoZ

lists all Z-classes of a given Q-class and, finally, the command Extensions lists all affine

classes of a given Z-class. Hence, the main open question is to decide whether a given

representative of a Q-class is a subgroup of SU(3).

4.2 Residual SUSY

We start by verifying that P ⊂ SO(6). carat offers representatives for all Q-classes,

i.e. it gives the generators of the point group P in some (unspecified) lattice basis e as

GL(6,Z) matrices ϑe. In principle, one can transform them to matrices from O(6) using

the (unspecified) lattice basis, i.e. ϑ = Be ϑeB
−1
e . However, as the determinant is invariant

under this transformation (det(ϑ) = det(ϑe)) one can check whether or not the determinant

equals +1 for all generators of P in the GL(6,Z) form given by carat. This allows us to

determine whether or not P ⊂ SO(6).

Next, we recall that the matrices ϑe ∈ P originate from the six-dimensional repres-

entation 6 of SO(6). One way to check that P is a subgroup of SU(3) is to consider the

breaking of the 6 into representations of SU(3),

6 → 3⊕ 3̄ . (4.1)

On the other hand, the six-dimensional representation is, in general, a reducible represent-

ation of the point group P . Hence, it can be decomposed

6 → a⊕ b⊕ . . . (4.2)

into irreducible representations a, b, . . . of P . This decomposition can be computed using

the character table of P as discussed in the following.

2A discussion about the possible orders of the elements of the point group, and therefore the possible

point groups, can be found in appendix B.
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For g ∈ P , the character χρ(g) in the representation ρ is given by the trace of the

matrix representation ρ(g) of g,

χρ(g) = Tr(ρ(g)) . (4.3)

As the trace is invariant under cyclic permutations, the character χρ is the same for all

elements of a conjugacy class, i.e.

χρ(g) = χρ(h) for h ∈ [g] = {f g f−1 for all f ∈ P} . (4.4)

Now, the character table of a finite group P contains one row for each irreducible repres-

entation ρi and one column for each conjugacy class [gj ] and the entry is the corresponding

character χρi
(gj). In fact, the number of irreducible representations c equals the number

of conjugacy classes. Hence, the character table is a square c × c matrix. In order to de-

compose the 6 in equation (4.2) we use χ6(g) = χa(g) + χb(g) + . . . and the orthogonality

of the rows of the character table (where the scalar product is defined over all elements of

the conjugacy classes). In detail, for two irreducible representations α and β, we have

〈α,β〉 =
1

|P |

∑

g∈P

χα(g)χβ(g) =

{
1 for α = β ,

0 for α 6= β ,
(4.5)

where the overline indicates complex conjugation and |P | is the order of P . So for each

conjugacy class [g] we compute the character χξ(g) of the six-dimensional representation

6, now denoted by ξ, and determine the multiplicities ni of the irreducible representation

ρi in the decomposition,

ξ →
c⊕

i=1

ni ρi with ni =
1

|P |

∑

g∈P

χρi
(g)χξ(g) . (4.6)

If P is a subgroup of SU(3) this decomposition has to be of the kind

6 → a⊕ ā , (4.7)

where a denotes some (in general reducible) representation of P originating from the 3 of

SU(3) and ā its complex conjugate (from 3̄ of SU(3)). So, the first check is to see whether

the decomposition (4.6) is of the form (4.7). Then we know at least P ⊂ U(3). If this

is possible, then there are in general many combinations to arrange the representations

ρi of the decomposition (4.6) into a three-dimensional representation plus its complex

conjugate. But in order to see that P is a subgroup of (S)U(3) it is necessary to find only

one combination. However, one needs to know the explicit matrix representation of a in

order to check that the determinant is +1. Then P ⊂ SU(3) and at least N = 1 SUSY

survives the compactification of the heterotic string on the corresponding orbifold.

Let us make a short remark. If a point group is Abelian its generators can be diagon-

alized simultaneously. In this case, it is convenient to write them as so-called twist vectors

v = (v1, v2, v3), three-dimensional vectors containing the three rotational angles vi in units
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of 2π in the three complex planes i = 1, 2, 3. In this case, the check P ⊂ SU(3) is particular

easy: v1 + v2 + v3 = 0 mod 1 so that the determinant is +1. More precisely, it is always

possible to choose the signs of the vi such that they add to 0. For example, the generator

of the Z7 point group corresponds to the twist vector 1
7(1, 2,−3) with 1

7(1 + 2 − 3) = 0

such that Z7 ⊂ SU(3).

We use the software GAP [17] and the GAP package Repsn [18] for these computa-

tions. In detail, first we use GAP to uniquely identify the discrete group P by the GAPID

[N,M ], where N denotes the order of the group and M consecutively enumerates the

discrete groups of order N . Then we perform the decomposition of the six-dimensional

representation according to equation (4.6). If the decomposition cannot be arranged ac-

cording to equation (4.7) we know that P is not a subgroup of SU(3). Otherwise, we create

all combinations that fit with equation (4.7) and compute the explicit matrix representa-

tion using the GAP package Repsn.3 Then we can easily compute the determinant of the

generators of P in the (reducible) representation a.

Example: S3 point group. As an example we consider P = S3 and follow the steps in

order to check that S3 ⊂ SU(3). The 2262nd Q-class obtained from carat is generated by

two GL(6,Z) matrices, both of determinant +1,

ϑ
(ξ)
e =




1 1 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

0 0 −1 1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1




and ω
(ξ)
e =




0 1 0 0 0 0

−1 −1 0 0 0 0

0 0 −1 1 0 0

0 0 −1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1




. (4.8)

The group generated by these (non-commuting) matrices is identified by GAP as GAPID

[6, 1] being S3. ϑ
(ξ)
e and ω

(ξ)
e generate the six-dimensional (reducible) representation ξ of

S3. In what follows, we figure out how this decomposes into irreducible representations

of S3.

The character table of S3 reads (in the ordering given by GAP)

irrep [1] [ϑe] [ωe]

ρ1 1 1 1

ρ2 1 −1 1

ρ3 2 0 −1

(4.9)

where ρ1 denotes the singlet and ρ2 and ρ3 are a one- and a two-dimensional (non-trivial)

representation of S3, respectively. Note that the conjugacy class [ϑe] contains three elements

while [ωe] contains two. Furthermore, the characters of the six-dimensional representation

ξ generated by equation (4.8) read

χξ =
(
tr16, trϑ

(ξ)
e , trω

(ξ)
e

)
= (6,−2, 0) . (4.10)

3In our case, Repsn automatically created unitary representations except for one case (point group

PSL(3, 2)). In this case we had to transform the representation obtained by Repsn to a unitary one by

hand.
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Comparing this to the character table in equation (4.9) we find that ξ decomposes into

irreducible representations of S3 as

ξ → 2ρ2 ⊕ 2ρ3 . (4.11)

The only combination that fits into a three-dimensional representation is ρ2 ⊕ ρ3. Using

the GAP package Repsn we create the explicit matrix representation of this, resulting in

ϑ(3) =



−1 0 0

0 0 1

0 1 0


 and ω(3) =




1 0 0

0 exp
(
−2π i

3

)
0

0 0 exp
(
2π i
3

)


 . (4.12)

As both generators have determinant +1, we see that S3 ⊂ SU(3). Furthermore, since

3 → ρ2 ⊕ ρ3 does not contain the trivial singlet ρ1, we see that N = 1 SUSY (and not

more) is preserved by an S3 orbifold compactification.

Recently, an explicit example of a non-Abelian orbifold based on S3 has been con-

structed [19]. Among other things, such settings feature, unlike Abelian orbifolds, rank

reduction of the gauge symmetry already at the string level.

5 Results: classification of toroidal orbifolds

We perform a systematic classification of space groups that keep (at least) N = 1 SUSY in

four dimensions unbroken. As discussed in section 3, the amount of unbroken supersym-

metry depends only on the Q-class (i.e. point group). Using carat we know that there

are 7103 Q-classes in six dimensions. Out of those, we find 60 Q-classes with N ≥ 1 SUSY

where 52 lead to precisely N = 1, see table 1 for a summary of the results. The 60 cases

split into 22 Abelian and 38 non-Abelian Q-classes, where the Abelian cases were already

known in the literature. By contrast, most of the 38 non-Abelian Q-classes have not been

used in orbifold compactifications before. Starting from these 60 Q-classes we construct

all possible Z- and affine classes (i.e. lattices and roto-translations). In the following we

discuss them in detail: sections 5.1 and 5.2 are devoted to the Abelian and non-Abelian

case, respectively.

5.1 Abelian toroidal orbifolds

5.1.1 Our results

Restricting ourselves to Abelian point groups, we find 17 point groups with N = 1 SUSY,

four cases withN = 2 and one case (i.e. the trivial point group) withN = 4 supersymmetry.

Next, we classify all Z- and affine classes. For the 17 point groups with N = 1 it turns

out that there are in total 138 inequivalent space groups with Abelian point group and

N = 1. Many of them were unknown before. The results are summarized in table 2. More

details including the generators of the orbifolding group G, the nature of gauge symmetry

breaking (i.e. local or non-local) and the Hodge numbers (h(1,1), h(2,1)) can be found in

the appendix in table 11. Furthermore, we have plotted the 138 pairs of Hodge numbers

in figure 7 in the appendix, visualizing the fact that h(1,1) − h(2,1) is always divisible by
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# of generators # of SUSY Abelian non-Abelian

1 N = 4 1 0

N = 2 4 0

N = 1 9 0

14 0

2 N = 4 0 0

N = 2 0 3

N = 1 8 32

8 35

3 N = 4 0 0

N = 2 0 0

N = 1 0 3

0 3

total: N = 4 1 0

N = 2 4 3

N = 1 17 35

22 38

Table 1. Summary of the classification of all point groups with at least N = 1 SUSY. Out of 7103

cases obtained from carat there are 60 point groups with N ≥ 1 SUSY where 52 have exactly

N = 1.

6, except for the case (h(1,1), h(2,1)) = (20, 0). Note that this does not say that Standard

Models with three generations of quarks and leptons are impossible, due to the possibility

of introducing so-called discrete Wilson lines [2, 20] and/or discrete torsion [21–26].

At this point, a comment on a statement in DW [10] appears appropriate. The models

obtained in the free fermionic construction (such as [27]) are related to Z2 × Z2 orbifolds.

DW [10] conclude from the fact that their classification does not exhibit settings with

h(1,1) − h(2,1) equal to three, that realistic free fermionic models cannot have a geometric

interpretation. On the one hand, this is in agreement with the existing three generation

models based on Z2×Z2 orbifolds [7, 28, 29] as these models make use of non-trivial back-

ground fields, i.e. discrete Wilson lines, which do not have a geometric interpretation. To

be more precise, as pointed out in [20] and also in [26] discrete Wilson lines and/or (gen-

eralized) discrete torsion allows us to control the number of generations without changing

the Hodge numbers. Hence, one might call such models ‘non-geometric’. On the other

hand, we use the terminology to call these Z2 × Z2 orbifolds ‘geometric’ although they

have non-trivial background fields as their six-dimensional compactification spaces allow

for a clear geometric interpretation.

The results are also available as input for the orbifolder [30], a tool to study the

low energy phenomenology of heterotic orbifolds. We have created input files for the

orbifolder, which we have made available at

http://einrichtungen.physik.tu-muenchen.de/T30e/codes/ClassificationOrbifolds/.

There is a geometry file for each of the 138 affine classes, and one model file per Q-class,
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label of twist GAPID carat carat # of # of affine

Q-class vector(s) symbol index Z-classes classes

Z3
1
3(1, 1,−2) [3, 1] min.290 1965 1 1

Z4
1
4(1, 1,−2) [4, 1] min.201 4667 3 3

Z6–I
1
6(1, 1,−2) [6, 2] min.296 1997 2 2

Z6–II
1
6(1, 2,−3) [6, 2] min.403 944 4 4

Z7
1
7(1, 2,−3) [7, 1] min.665 2950 1 1

Z8–I
1
8(1, 2,−3) [8, 1] min.475 5600 3 3

Z8–II
1
8(1, 3,−4) [8, 1] min.467 5567 2 2

Z12–I
1
12(1, 4,−5) [12, 2] min.562 3346 2 2

Z12–II
1
12(1, 5,−6) [12, 2] min.553 3307 1 1

Z2 × Z2
1
2(0, 1,−1) ,

1
2(1, 0,−1) [4, 2] min.185 4625 12 35

Z2 × Z4
1
2(0, 1,−1) ,

1
4(1, 0,−1) [8, 2] min.258 2377 10 41

Z2 × Z6–I
1
2(0, 1,−1) ,

1
6(1, 0,−1) [12, 5] group.2702 871 2 4

Z2 × Z6–II
1
2(0, 1,−1) ,

1
6(1, 1,−2) [12, 5] min.424 1745 4 4

Z3 × Z3
1
3(0, 1,−1) ,

1
3(1, 0,−1) [9, 2] min.429 1964 5 15

Z3 × Z6
1
3(0, 1,−1) ,

1
6(1, 0,−1) [18, 5] group.3567 1759 2 4

Z4 × Z4
1
4(0, 1,−1) ,

1
4(1, 0,−1) [16, 2] min.278 2629 5 15

Z6 × Z6
1
6(0, 1,−1) ,

1
6(1, 0,−1) [36, 14] group.3664 1859 1 1

# of Abelian N = 1 60 138

Table 2. Summary of all space groups with Abelian point group and N = 1 SUSY. Columns # 3,

4 and 5 identify the Q-classes: “GAPID” is obtained using the command IdGroup in GAP, “carat

symbol” using the carat command Q catalog and, finally, “carat index” gives the index in the

list of all 7103 Q-classes obtained from carat.

that contains a model with standard embedding for each of the corresponding affine classes

in that Q-class.

In addition, we find 23 inequivalent space groups (i.e. affine classes) with Abelian point

group and N = 2. These space groups are based on the well-known four Abelian point

groups Z2, Z3, Z4 and Z6. However, the inequivalent lattices and roto-translations were

unknown before. They are summarized in table 3.

5.1.2 Previous classifications

There are several attempts in the literature to classify six-dimensional N = 1 SUSY pre-

serving Abelian toroidal orbifolds. For example, Bailin and Love [9] give a classification

for ZN orbifolds using root lattices of semi-simple Lie algebras of rank six as lattices Λ

and the (generalized) Coxeter element as the generator of the point group P . However, as

also discussed in appendix A.3, they overcount the geometries and, in addition, miss a few

cases. A detailed comparison to our results can be found in table 4.

For Z2×Z2 orbifolds there have been two approaches for the classification of geometries.

In the first one, the classification is based on Lie lattices [11], see also [31]. Again, this

classification is somewhat incomplete: it misses four lattices and, in addition, neglects
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label of GAPID carat carat # of # of affine

Q-class symbol index Z-classes classes

Z2 [2, 1] min.174 5 3 5

Z3 [3, 1] min.291 1968 3 5

Z4 [4, 1] min.202 4668 3 9

Z6 [6, 2] group.1611 1970 1 4

# of Abelian N = 2 10 23

Table 3. Summary of all space groups with N > 1 SUSY for Abelian point groups P . In addition,

there is the trivial Q-class with N = 4 SUSY (i.e. GAPID [1, 1], carat symbol min.170, carat

index 2709) with one Z- and one affine class.

the possibility of roto-translations. In a second approach by DW [10] (based on [32]), a

classification for Z2×Z2 is given, which, as we find, is complete, see table 5 for a comparison.

In addition, we were able to resolve an ambiguity between the models 3–1 and 3–2 of DW.

Furthermore, based on the strategy of DW [10], there is an (incomplete) classification

of ZN × ZN for N = 3, 4 and 6 [12]. For both Z3 × Z3 and Z4 × Z4 he identifies 8 out of

15 affine classes (compare section 2.3 of [12] to our table 11). The Hodge numbers agree

with our findings except for case IV.7 (i.e. Z4 × Z4 with (38, 0)). Finally, in the case of

Z6 × Z6 [12] correctly identifies that there is only one possible geometry but the Hodge

numbers disagree with ours, i.e. [12] finds (80, 0) and we have (84, 0).

5.1.3 Fundamental groups

The fundamental group of a toroidal orbifold with space group S is given as [2, 34]

π1 = S/〈F 〉 , (5.1)

where 〈F 〉 is the group generated by those space group elements that leave some points

fixed.

The fundamental groups of most of the Abelian orbifolds discussed here are trivial, for

in those cases 〈F 〉 ≡ S. The only non-trivial cases are the following (see table 11 in the

appendix):

• 21 space groups from the Z2 × Z2 Q-class as already calculated in [10]. See table 5,

where

– 0 means a trivial fundamental group

– S means the fundamental group equals the space group (no fixed points, hence

〈F 〉 = {1})

– A means a Z2 ⋉ Z
2 fundamental group

– C means a Z2 fundamental group

– D means a (Z2)
2 fundamental group

• 6 space groups from the Z2 × Z4 Q-class. In detail, the affine classes 1–6, 2–4, 3–6,

4–4, 6–5 and 8–3 posses a Z2 fundamental group.
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Q-class Z-class corresponding root lattice(s)

Z3 1 SU(3)3

Z4 1 SO(5)2 × SU(2)2

2 SO(5)× SU(4)× SU(2)

3 SU(4)2

Z6–I 1 (G2)
2 × SU(3) and

(
SU(3)[2]

)2
× SU(3)

2 —

Z6–II 1 G2 × SU(3)× SU(2)2 and SU(3)[2] × SU(3)× SU(2)2

2 —

3 SO(8)× SU(3) and SO(7)× SU(3)× SU(2) and

SU(4)[2] × SU(3)× SU(2)

4 SU(6)× SU(2)

Z7 1 SU(7)

Z8–I 1 SO(9)× SO(5) and SO(8)[2] × SO(5)

2 —

3 —

Z8–II 1 SO(8)[2] × SU(2)2 and SO(9)× SU(2)2

2 SO(10)× SU(2)

Z12–I 1 F4 × SU(3) and SO(8)[3] × SU(3)

2 E6

Z12–II 1 SO(4)× F4 and SO(8)[3] × SU(2)2

Table 4. Matching between our classification of ZN space groups and the traditional notation of

lattices as root lattices of semi-simple Lie algebras of rank six, see e.g. table 3 of [9] and table D.1

of [33]. Cases previously not known are indicated with a dash.

• 4 space groups from the Z3 × Z3 Q-class. In detail, the affine classes 1–4, 2–4, 3–3

and 4–3 posses a Z3 fundamental group.

Elements of the space group that leave no fixed points are called freely acting. A non-

trivial fundamental group signals the presence of non-decomposable freely acting elements

in the space group, i.e. freely acting elements that cannot be written as a combination of

non-freely acting elements. In the cases Z2×Z4 and Z3×Z3, the non-decomposable freely

acting elements belong to the orbifolding group. On the other hand, for Z2 × Z2 those

elements are pure lattice translations in the cases C and D, while in the cases A they are

both pure lattice translations and elements of the orbifolding group.

In the context of heterotic compactifications, the phenomenologically appealing feature

of non-local GUT symmetry breaking is due to the presence of non-decomposable freely

acting space group elements with a non-trivial gauge embedding. In total we find 31 affine

classes based on Abelian point groups with non-trivial fundamental groups. These cases

are of special interest, and their phenomenology will be studied elsewhere.
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Here Donagi Förste et al. π1 Here Donagi Förste et al. π1
et al. [10] [11] et al. [10] [11]

1–1 0–1 SU(2)6 0 5–3 1–2 — 0

1–2 0–2 — 0 5–4 1–4 — A

1–3 0–3 — A 5–5 1–5 — S

1–4 0–4 — S 6–1 2–6 SU(3)2 × SU(2)2–II 0

2–1 1–6 SU(3)× SU(2)4 0 6–2 2–7 — C

2–2 1–8 — 0 6–3 2–8 — A

2–3 1–10 — A 7–1 3–3 — 0

2–4 1–7 — C 7–2 3–4 — C

2–5 1–9 — A 8–1 4–1 — 0

2–6 1–11 — S 9–1 2–3 SU(4)× SU(3)× SU(2) C

3–1 2–9 — 0 9–2 2–5 — D

3–2 2–10 — 0 9–3 2–4 — 0

3–3 2–11 — A 10–1 3–5 — C

3–4 2–12 — S 10–2 3–6 — 0

4–1 2–13 SU(3)2 × SU(2)2–I 0 11–1 3–1≡3–2 SU(3)3 0

4–2 2–14 — D 12–1 2–1 SU(4)2 D

5–1 1–1 SU(4)× SU(2)3 C 12–2 2–2 — C

5–2 1–3 — C

Table 5. Comparison of the affine classes of Z2×Z2 between our classification and the ones in [10]

and [11]. In our case, the two numbers enumerate the Z- and affine classes, respectively.

5.2 Non-Abelian toroidal orbifolds

Six-dimensional orbifolds with non-Abelian point groups have not been studied systemat-

ically up to now and the literature is limited to examples only. For example, in the context

of free fermionic constructions compact models based on S3, D4 and A4 point groups have

been constructed [35]. Furthermore, non-compact examples of the form C3/Γ with non-

Abelian Γ ⊂ SU(3) focusing on Γ = ∆(3n2) or ∆(6n2) have been discussed in [36] and

some related work has been carried out for IIB superstring theory on AdS5 × S
5/Γ with

non-Abelian Γ ⊂ SU(3) of order up to 31 [37]. In addition, conformal field theories of

two-dimensional toroidal orbifolds with Abelian and non-Abelian point groups and central

charge c = 2 have been classified in [38].

Our classification results in 35 point groups with N = 1 SUSY and three cases with

N = 2 SUSY, see table 12 in appendix C. Surprisingly, the order of non-Abelian point

groups has a much wider range compared to the Abelian case. For example, the point

group ∆(216) has order 216.

Next, we classify all Z- and affine classes. It turns out that there are in total 331

inequivalent space groups with non-Abelian point group and N = 1 SUSY and 27 inequi-

valent space groups with non-Abelian point group and N = 2. Most of them were unknown

before. The results are summarized in table 6 and table 7.

– 20 –



J
H
E
P
0
1
(
2
0
1
3
)
0
8
4

label of GAPID carat carat # of # of affine

Q-class symbol index Z-classes classes

Q8 [8, 4] min.487 5750 5 20

Dic3 [12, 1] min.565 3374 1 3

SL(2, 3)–II [24, 3] group.4493 5669 1 4

# of non-Abelian N = 2 7 27

Table 6. Summary of all space groups with N > 1 SUSY for non-Abelian P .

Example: D6 Orbifold. Let us consider the T6/D6 orbifold. D6 is a non-Abelian finite

group of order 12. The (reducible) three-dimensional representation is generated by

ϑ(3) =



−1 0 0

0 0 1

0 1 0


 and ω(3) =




1 0 0

0 e2π i 1
6 0

0 0 e−2π i 1
6


 , (5.2)

and one can see that D6 ⊂ SU(3). In terms of irreducible representations of D6 it de-

composes as 3 → 2 ⊕ 1′, where 1′ is a non-trivial, one-dimensional representation of D6.

Hence, we find N = 1 SUSY in 4D.

There are two inequivalent lattices (i.e. two Z-classes) and in total eight affine classes,

see table 7. For example, consider the space group generated by
(
ϑ(3), 0

)
,
(
ω(3), 0

)
and the

lattice

e1 = (1, 0, 0) , e2 = (i, 0, 0) , (5.3)

e3 = (0, 1, 0) , e4 =
(
0, e2π i 1

3 , 0
)

, (5.4)

e5 = (0, 0, 1) , e6 =
(
0, 0, e2π i 1

3

)
. (5.5)

As D6 has six conjugacy classes, the T6/D6 orbifold has 6 − 1 = 5 twisted sectors, all of

them have fixed planes and hence are N = 2 subsectors.

label of GAPID carat carat # of # of affine

Q-class symbol index Z-classes classes

S3 [6, 1] min.300 2262 6 11

D4 [8, 3] min.207 4682 9 48

A4 [12, 3] min.430 4893 9 15

D6 [12, 4] group.1637 2258 2 8

Z8 ⋊ Z2 [16, 6] min.506 6222 6 18

QD16 [16, 8] group.4474 5650 4 14

(Z4 × Z2)⋊ Z2 [16, 13] group.4469 5645 5 55

Z3 × S3 [18, 3] min.613 4235 6 16

Frobenius T7 [21, 1] min.664 2935 3 3

Z3 ⋊ Z8 [24, 1] min.511 6266 1 1

continued . . .
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label of GAPID carat carat # of # of affine

Q-class symbol index Z-classes classes

SL(2, 3)–I [24, 3] min.536 6743 4 7

Z4 × S3 [24, 5] group.5943 3414 1 2

(Z6 × Z2)⋊ Z2 [24, 8] group.5937 3408 2 6

Z3 ×D4 [24, 10] min.616 4326 2 2

Z3 ×Q8 [24, 11] min.528 6735 2 2

S4 [24, 12] group.3770 4895 6 19

∆(27) [27, 3] min.659 2864 3 10

(Z4 × Z4)⋊ Z2 [32, 11] group.5125 6337 5 30

Z3 × (Z3 ⋊ Z4) [36, 6] min.620 4353 1 1

Z3 ×A4 [36, 11] min.661 2875 3 3

Z6 × S3 [36, 12] group.6834 4356 2 4

∆(48) [48, 3] min.651 2774 4 8

GL(2, 3) [48, 29] group.4532 5713 1 4

SL(2, 3)⋊ Z2 [48, 33] group.4531 5712 1 3

∆(54) [54, 8] group.7587 2897 3 10

Z3 × SL(2, 3) [72, 25] group.5746 6988 1 2

Z3 ×GAPID [24, 8] [72, 30] group.7007 4533 1 1

Z3 × S4 [72, 42] group.7614 2924 3 3

∆(96) [96, 64] group.7498 2802 4 12

SL(2, 3)⋊ Z4 [96, 67] group.5290 6512 1 2

Σ(36φ) [108, 15] group.7500 2806 2 4

∆(108) [108, 22] group.7504 2810 1 1

PSL(3, 2) [168, 42] group.7622 2934 1 3

Σ(72φ) [216, 88] group.7540 2846 2 2

∆(216) [216, 95] group.7545 2851 1 1

# of non-Abelian N = 1 108 331

Table 7: Summary of all space groups with non-Abelian point group and N = 1 SUSY.

6 Summary and discussion

We have classified all symmetric orbifolds that give N ≥ 1 supersymmetry in four dimen-

sions. Our main results are as follows:

1. In total we find 60 Q-classes (point groups) that lead to N ≥ 1 SUSY.

2. These Q-classes decompose in

• 22 with an Abelian point group with one or two generators, i.e. ZN or ZN×ZM ,

out of which 17 lead to exactly N = 1 SUSY, and

• 38 with a non-Abelian point group with two or three generators, such as S3 or

∆(216), out of which 35 lead to exactly N = 1 SUSY.
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That is, there are 52 Q-classes that can lead to models yielding the supersymmetric stand-

ard model.

As we have explained in detail, Q-classes (or point groups) can come with inequivalent

lattices, classified by the so-called Z-classes. In the traditional orbifold literature, Z-classes

are given by Lie lattices and a given choice fixes an orbifold geometry. However, as we

have pointed out, not all lattices can be described by Lie lattices.

Our results on Q-classes potentially relevant for supersymmetric model building are

as follows.

3. We find that there are 186 Z-classes, or, in other words, orbifold geometries that lead

to N ≥ 1 SUSY.

4. These Z-classes decompose in

• 71 with an Abelian point group, out of which 60 lead to exactly N = 1 SUSY,

and

• 115 with a non-Abelian point group, out of which 108 lead to exactly N = 1

SUSY.

Furthermore, space groups can be extended by so-called roto-translations, a combination

of a twist and a (non-lattice) translation. We provide a full classification of all roto-

translations in terms of affine classes, which are, as we discuss, the most suitable objects

to classify inequivalent space groups.

5. We find 520 affine classes that lead to N ≥ 1 SUSY.

6. These affine classes decompose in

• 162 with an Abelian point group, out of which 138 lead to exactly N = 1 SUSY,

and

• 358 with a non-Abelian point group, out of which 331 lead to exactly N = 1

SUSY.

An important aspect of our classification is that we provide the data for all 138 space

groups with Abelian point group and N = 1 SUSY required to construct the corresponding

models with the C++ orbifolder [30]. Among other things, this allows one to obtain a

statistical survey of the properties of the models, which has so far only been performed for

the Z6–II orbifold [39].

Our classification also has conceivable importance for phenomenology. For instance,

one of the questions is how the ten-dimensional gauge group (i.e. E8×E8 or SO(32)) of the

heterotic string gets broken by orbifolding. In most of the models discussed so far, the larger

symmetry gets broken locally at some fixed point. Yet it has been argued that ‘non-local’

GUT symmetry breaking, as utilized in the context of smooth compactifications of the

heterotic string [40–43], has certain phenomenological advantages [44, 45]. Explicit MSSM

candidate models, based on the DW classification, featuring non-local GUT breaking have

been constructed recently [28, 29]. As we have seen, there are 31 affine classes of space
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groups, based on the Q-classes Z2×Z2, Z2×Z4 and Z3×Z3, that lead to an orbifold with

a non-trivial fundamental group, thus allowing us to introduce a Wilson line that breaks

the GUT symmetry. In other words, we have identified a large set of geometries that can

give rise to non-local GUT breaking. This might also allow for a dynamical stabilization

of some of the moduli in the early universe, similar as in toroidal compactifications [46].

In this study, we have focused on symmetric toroidal orbifolds, which have a rather

clear geometric interpretation, such that crystallographic methods can be applied in a

straightforward way. We have focused on the geometrical aspects. On the other hand, it

is known that background fields, i.e. the so-called discrete Wilson lines [20] and discrete

torsion [21, 23–26], play a crucial role in model building. It will be interesting to work out

the conditions on such background fields in the geometries of our classification. Further,

it is, of course, clear that there are other orbifolds, such as T-folds [47, 48], asymmetric

and/or non-toroidal orbifolds, whose classification is beyond the scope of this study. Let

us also mention, we implicitly assumed that the radii are away from the self-dual point.

As we are using crystallographic methods our classification strategy is independent of this

assumption. Still, it might be interesting to study what happens if one sends one or more T -

moduli to the self-dual values. In this case one may make contact with the free fermionic

formulation, where also interesting models have been constructed [27]. In addition, our

results may also be applied to compactifications of type II string theory on orientifolds (see

e.g. [49–51] for some interesting models and [52] for a review).
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A Details on lattices

A.1 Bravais types and form spaces

One can classify lattices by the symmetry groups they obey. This is the concept of Bravais

equivalent lattices. In more detail, denote the symmetry group of some lattice Λ as G ⊂

GL(n,Z). Obviously, the point group P ⊂ G, is a subgroup of it. Now, if two lattices

give rise to the same finite unimodular group G, we call them Bravais equivalent. This
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equivalence generates a finite number of Bravais types of lattices for every dimension n.

They have been classified for dimensions up to six [53].

The interesting task would now be to decide which Bravais type a given lattice belongs

to. This can be done using the notion of form spaces [15]. The form space F(G) of some

finite group G ⊂ GL(n,Z) is defined as the vector space of all symmetric matrices left

invariant by G, i.e.

F(G) = {F ∈ Rn×n
sym | g

T F g = F for all g ∈ G} . (A.1)

On the other hand, we define the Gram matrix of the lattice basis e = {e1, . . . , en} as

Gr(e)ij = (ei, ej) = (B T
e Be)ij , (A.2)

where the parentheses (ei, ej) denote the standard scalar product. By definition, the Gram

matrix is a symmetric, positive definite matrix. Under a change of lattice basis, represented

by a unimodular matrix M , the Gram matrix changes as MTGr(e)M , c.f. section 2.2. By

contrast, elements of the point group leave the Gram matrix invariant, i.e. for ϑ ∈ P

Gr(e)
ϑ
7−→ ϑTGr(e)ϑ = Gr(e) . (A.3)

Hence, a form space is in direct correspondence to a Bravais type of lattice, i.e. every

lattice Λ has a basis e = {e1, . . . , en} such that its Gram matrix Gr(e) is an element of

the form space of a finite subgroup P of GL(n,Z), i.e. Gr(e) ∈ F(P ) [13]. But in order

to see that one lattice belongs to a given form space, it needs to be in this special basis,

which is canonically chosen to be the so-called shortest possible basis for that lattice [13].

Fortunately, algorithms for precisely that task do exist, cf. e.g. [54] (though one should be

careful: the shortest basis of a lattice is in general not unique).

Note that physically the Gram matrix is the metric of the torus defined by the lattice

Λ and the dimension of the form space F(P ) is exactly the number of (untwisted) moduli

the orbifold offers.

Let us consider an example in two dimensions. Take the point group defined by

P = {1 = ϑ2, ϑ} ∼= Z2 with ϑ =

(
1 0

0 −1

)
. (A.4)

It leaves invariant the form space

F(P ) =

(
a 0

0 b

)
. (A.5)

That form space corresponds to the Bravais type called p-rectangular lattice (cf. ap-

pendix A.3), consisting of two arbitrarily long, orthogonal vectors.

A.2 Introducing an additional shift

DW [10] starts with an orthonormal lattice in six dimensions. Then, in a second step,

additional shifts, which are linear combinations of the (orthonormal) lattice vectors with
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rational coefficients, are included in the space group. As we have seen in the second example

in section 3.4, those additional shifts can be incorporated to the lattice itself. Here we show

in detail how to transform the space group accordingly.

The perhaps most elegant procedure is to perform a change of basis, but using trans-

formations from GL(n,Q). Hence, we are selecting a different Z-class from the same

Q-class, cf. section 3. Let us list the necessary steps and illustrate them with an example:

1. The additional shift is a linear combination with rational coefficients of some of the

lattice vectors. Exchange one of the old lattice vectors (that appears in the linear

combination) by the new additional shift.

2. Write the transformation matrix M : start with the identity matrix and substitute

the column corresponding to the exchanged vector by the coefficients of the linear

combination.

3. Transform your space group using M accordingly: see equation (2.4) and equa-

tion (2.5).

4. (Optional) In order to see the geometry more clearly, one can perform a basis reduc-

tion (e.g. using the LLL algorithm, cf. [54]), which is a transformation from GL(n,Z).

As an example, take the Z2×Z2 model named (1–1) in DW [10], which consists of an

orthogonal lattice (p-cubic) with orthonormal basis e and an additional shift

τ =
1

2
(e2 + e4 + e6) . (A.6)

We will restrict the discussion to the three-dimensional (sub-)lattice Λ spanned by the basis

e = {e2, e4, e6}.

The basis matrix, Gram matrix and point group generators read

Be =




1 0 0

0 1 0

0 0 1


 , Gr(e) =




1 0 0

0 1 0

0 0 1


 , (A.7a)

ϑe =




1 0 0

0 −1 0

0 0 −1


 , ωe =



−1 0 0

0 1 0

0 0 −1


 . (A.7b)

Let us follow the steps described above:

1. We choose to exchange the 3rd (originally 6th) vector for the additional shift: the

new basis f is spanned by f = {e2, e4, τ}. Notice that f is not a basis of the lattice Λ,

but one of a new, different lattice Σ.

2. In accordance with our choice, the transformation matrix is

M =




1 0 1/2

0 1 1/2

0 0 1/2


 . (A.8)
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3. We perform the transformation using M . For the new lattice Σ in the new basis f,

the quantities we are interested in look like

Bf =




1 0 1/2

0 1 1/2

0 0 1/2


 , Gr(f) =




1 0 1/2

0 1 1/2
1/2 1/2 3/4


 , (A.9a)

ϑf =




1 0 1

0 −1 0

0 0 −1


 , ωf =



−1 0 0

0 1 1

0 0 −1


 . (A.9b)

4. Next, we perform a LLL reduction, which is a change of basis to a reduced one r,

and transform the point group elements accordingly,

Br =




1/2 1/2 −1/2
1/2 −1/2 1/2
1/2 −1/2 −1/2


 , Gr(r) =

1

4




3 −1 −1

−1 3 −1

−1 −1 3


 , (A.10a)

ϑr =




0 1 −1

1 0 −1

0 0 −1


 , ωr =




0 −1 1

0 −1 0

1 −1 0


 . (A.10b)

Last, we compare the Gram matrix Gr(r) with table 8. We see that introducing the

additional shift τ into the p-cubic lattice is equivalent to work with the appropriately

transformed point group in an i-cubic lattice.

A remark is in order. The form space left invariant by the Z2 ×Z2 point group in the

(reduced) basis of equation (A.10) is

F(P ) =




a b c

b a −a− b− c

c −a− b− c a


 . (A.11)

This form space is the one of a three-parametric, i-orthogonal lattice, which contains as

possible realizations the i-cubic and the f-cubic lattices (both one-parametric, see table 8).

Therefore, model (1–1) in [10] corresponds to model A4 of Förste et al. [11], i.e. to the Lie

lattice SU(4)× SU(2)3 where the SU(4) part is an f-cubic lattice, see table 5.

A.3 Bravais types and Lie lattices

It is common in the string-orbifold literature to describe lattices as root lattices of (semi-

simple) Lie algebras. On the one hand, this makes it easy to identify the point group, i.e.

a discrete subgroup of SU(3), using Weyl reflections and the Coxeter element. However,

we find this practice to be problematic for at least three different reasons:

Redundancies. A root lattice is the lattice spanned by the simple roots of a certain

(semi-simple) Lie algebra. Even if the simple roots of two non-equivalent (semi-simple) Lie

algebras are different, the lattices they span might not. For example, the lattices spanned

by the root systems of SU(3) and G2 are the same (see figure 5). Some more examples are

provided in table 8.
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Figure 5. The hexagonal lattice: the blue lines form the SU(3) root system, and the green lines

form the G2 root system. Simple roots are also indicated, as well as the fundamental cells (shaded).

Missing lattices. When considering the redundancy of root lattices, one might think

that there are more root lattices than types of lattices and that the situation could be

resolved by introducing some clever convention to avoid this overcounting. But the problem

exists in the other direction too: the set of all possible root lattices does not exhaust the

whole family of Bravais types, i.e. there are Bravais types of lattices which are not generated

by any root system. The lowest dimension in which this occurs is three and the most basic

example is the body centered cubic lattice, also known as bcc or i-cubic to crystallographers

(see table 8). The bcc lattice is a cubic lattice with an additional lattice point in the center

of the fundamental cell. Its only free parameter is the size of the system (e.g. the edge

length of the cube). One possible way to convince oneself that there is no root lattice that

can generate this Bravais lattice is taking every rank three root lattice and calculating

which Bravais lattice it generates. We find that the i-cubic lattice has no description as

root lattice (see table 8).

Continuous parameters. Every Bravais type allows for a set of continuous deformations

which conserve its symmetries. Those deformations are encoded and made explicit in the

form space that defines that particular Bravais type (cf. appendix A.1). The form space

tells us how many deformation parameters one Bravais type allows for, and what is the

effect of them (to change lengths of or angles between basis vectors). The realization of

that freedom in the context of root lattices is very limited: lattices of Lie algebras allow

for just one parameter, the size of the system; and if one includes semi-simple Lie algebras

(direct products of simple ones), one can choose different sizes for different sublattices,

but never the angles between vectors, which are fixed to a limited set of values. So, for

example, a two-dimensional oblique lattice, in which the angle between the basis vectors is

arbitrary, could never be unambiguously expressed in terms of Lie root lattices.
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In conclusion, the language of root lattices is incomplete and ambiguous, and is lacking

geometrical insight with respect to the language of Bravais types and form spaces, which

is, therefore, the one used in this paper.

Nevertheless, in order to justify some of the matchings between our classification of

space groups and the ones already existing in the literature, we present in table 8 a clas-

sification of all of the Bravais types of lattices in 1, 2 and 3 dimensions, together with

their equivalent root lattices, if there are any. There, in order to overcome the discussed

ambiguities in the root lattice language, some conventions have been used:

• ⊕ means orthogonal product. Unspecified products should be understood ortho-

gonal.

• ⊙ means free-angle product. The scalar product of the roots is indicated as a

subindex. Notice that in the cases in which we have used this product there is

actually no equivalent Lie lattice description: a non-orthogonal product of semi-

simple Lie algebras is not a semi-simple Lie algebra. These possibilities are written

in italics.

• ←֓ means a product with the leftmost factor.

• Equal subindices mean equal length of the roots or equal scalar products.

• A subindex in an algebra whose simple roots are of different length stands for the

squared length of the shortest simple root, e.g. G2,a means that the shortest simple

root of G2 has length squared a.

Gram matrix lattice name Lie algebra notation

1 dimension(
a
)

Ruler r SU(2)

2 dimensions(
a 0

a

)
Square tp SO(5), SU(2)a⊕ SU(2)a

(
a ±a/2

a

)
Hexagonal hp SU(3)a, G2,a

(
a 0

b

)
p-Rectangular op SU(2)a⊕ SU(2)b

(
a b

a

)
c-Rectangular oc SU(2)a⊙b SU(2)a

(
a c

b

)
Oblique mp SU(2)a⊙c SU(2)b

3 dimensions


a 0 0

a 0

a


 p-Cubic cP SO(7), SU(2)a⊕ SU(2)a⊕ SU(2)a

continued . . .
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Gram matrix lattice name Lie algebra notation



a a/2 a/2

a a/2

a


 f-Cubic cF SU(4), Sp(6)




a −a/3 −a/3

a −a/3

a


 i-Cubic cI (none)




a ±a/2 0

a 0

b


 p-Hexagonal hP [SU(3)a or G2,a]⊕ SU(2)b




a b b

a b

a


 r-Hexagonal hR SU(2)a⊙b SU(2)a⊙b SU(2)a⊙b ←֓




a 0 0

a 0

b


 p-Tetragonal tP [SU(2)a⊕ SU(2)a or SO(5)]⊕ SU(2)b




a+ 2b −a −b

a+ 2b −b

a+ 2b


 i-Tetragonal tI (no simple expr.)




a 0 0

b 0

c


 p-Orthorhombic oP SU(2)a⊕ SU(2)b⊕ SU(2)c




a c 0

a 0

b


 c-Orthorhombic oC SU(2)a⊙c SU(2)a⊕SU(2)b




a+ b a b

a+ c c

b+ c


 f-Orthorhombic oF (no simple expr.)




a+ b+ c −a −b

a+ b+ c −c

a+ b+ c


 i-Orthorhombic oI (no simple expr.)




a c 0

b 0

d


 p-Monoclinic mP SU(2)a⊙c SU(2)b⊕SU(2)d




a c d

a d

b


 c-Monoclinic mC SU(2)a⊙c SU(2)a⊙d SU(2)b⊙d ←֓




a d f

b e

c


 Triclinic aP SU(2)a⊙d SU(2)b⊙e SU(2)c⊙f ←֓

Table 8: List of Bravais types in 1, 2 and 3 dimensions, together with possible root lattice expres-

sions. The following prefixes and suffixes are used for the lattice names: p primitive, c centered (in

2D) or base-centered (in 3D), f face-centered, i body-centered, and r rhombohedral.
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Figure 6. Graph of Bravais types embeddings in 2D and 3D.

In general, Bravais types with two or more parameters in the form space contain as

specific cases other types with a lower number of parameters. For example, if we set the

off diagonal parameter to zero in the two-dimensional oblique lattice (mp) (i.e. we take

the basis vectors to be orthogonal), we get a p-rectangular (op) lattice. If we set now the

diagonal elements of the form space to be equal (i.e. we take the basis vectors to have

equal length), we get a square lattice (tp). These three lattices form the embedding chain

tp→֒op→֒mp.

A graph containing all of the existing embeddings of that kind in two and three di-

mensions can be seen in figure 6. For further information about this topic, the standard

reference is [55].

B Two-dimensional orbifolds

In order to illustrate some of the concepts addressed in this paper, we reproduce here the

list of all possible two-dimensional space groups, also known as wallpaper groups. They are

well-known, and their classification can be found for instance in [13].

The possible orders m of (irreducible) point group elements in n dimensions are given

by the equation

φ(m) ≤ n , (B.1)

where φ is the Euler φ-function. For dimension two, this leaves only elements with order

in {1, 2, 3, 4, 6} as possible point group elements. In six dimensions, this gets extended to

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 18}. Nevertheless, in dimensions n ≥ 2, one can find point

group elements with order m such that φ(m) > n. This can be realized by building a

point group element as the direct sum of two point group elements of dimensions that add

up to n. In that case, the order of the point group element would obviously be the least

common multiple of the orders of the factors. For example, in six dimensions there exist

point groups with elements of order 30, which are a direct sum of a four-dimensional order

10 element and a two-dimensional order 3 element.

As discussed in section 3, one can classify the 17 two-dimensional space groups by their

Q-classes. Those can be found in table 9. There, Dn is the dihedral group of order 2n
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label of # of # of affine

Q-class Z-classes classes

id 1 1

Z2–I 1 1

Z2–II 2 3

Z2 × Z2
∼= D2 2 4

Z4 1 1

Z2 ⋉ Z4
∼= D4 2 2

Z3 1 1

Z2 ⋉ Z3
∼= S3

∼= D3 2 2

Z6 1 1

Z2 ⋉ Z6
∼= D6 1 1

Table 9. Q-classes in two dimensions.

and Sn is the symmetric group of order n!. In table 10 the specific information of every

affine class is shown: the Q-, Z- and affine class to which they belong, its Bravais type

of lattice (cf. table 8), its orbifolding group generators in augmented matrix notation and

a name, description and image of its topology. The augmented matrix of some element

ge = (ϑe, λiei) ∈ S is given by

ge =

(
ϑe λi

0 1

)
, (B.2)

using the lattice basis e. This matrix acts on an augmented vector (x, 1) by simple matrix-

vector multiplication.

Q–Z–aff. class

lattice

generators name & description image

id–1–1

Oblique

Torus

Manifold

Z2–I–1–1

Oblique



−1 0 0

0 −1 0

0 0 1




Pillow

Orbifold, 4 singularities

with cone-angle π

Z2–II–1–1

p-Rectangular




1 0 0

0 −1 0

0 0 1




Pipe

Manifold, 2 boundaries

Z2–II–1–2

p-Rectangular




1 0 1/2

0 −1 0

0 0 1




Klein bottle

Manifold, non-orientable

continued . . .
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Q–Z–aff. class

lattice

generators name & description image

Z2–II–2–1

c-Rectangular




0 1 0

1 0 0

0 0 1




Möbius strip

Manifold, non-orientable,

1 boundary

Z2 × Z2–1–1

p-Rectangular



−1 0 0

0 −1 0

0 0 1


 ,




1 0 0

0 −1 0

0 0 1




Rectangle

Manifold, 1 boundary

Z2 × Z2–1–2

p-Rectangular



−1 0 0

0 −1 0

0 0 1


 ,




1 0 0

0 −1 1/2

0 0 1




Cut pillow

Orbifold, 2 singularities

with cone-angle π, 1

boundary

Z2 × Z2–1–3

p-Rectangular



−1 0 0

0 −1 0

0 0 1


 ,




1 0 1/2

0 −1 1/2

0 0 1




Cross–cap pillow

Orbifold, 2 singularities

with cone-angle π

Z2 × Z2–2–1

c-Rectangular



−1 0 0

0 −1 0

0 0 1


 ,




0 1 0

1 0 0

0 0 1




Jester’s hat

Orbifold, 1 singularity

with cone-angle π, 1

boundary

Z4–1–1

Square




0 −1 0

1 0 0

0 0 1




Triangle pillow

Orbifold, 2 singularities

with cone-angle π/2, 1 sin-

gularity with cone-angle π

Z2 ⋉ Z4–1–1

Square




1 0 0

0 −1 0

0 0 1


 ,




0 −1 0

1 0 0

0 0 1




Triangle

Manifold, one boundary, 1

angle of π/2 and 2 of π/4

Z2 ⋉ Z4–1–2

Square




1 0 1/2

0 −1 1/2

0 0 1


 ,




0 −1 0

1 0 0

0 0 1




Jester’s hat

Orbifold, 1 singularity

with cone-angle π/2, 1

boundary

Z3–1–1

Hexagonal




0 −1 0

1 −1 0

0 0 1




Triangle pillow

Orbifold, 3 singularities

with cone-angle 2π/3

Z2 ⋉ Z3–1–1

Hexagonal




0 −1 0

−1 0 0

0 0 1


 ,




0 −1 0

1 −1 0

0 0 1




Triangle

Manifold, 3 boundary, all

angles π/3

continued . . .
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Q–Z–aff. class

lattice

generators name & description image

Z2 ⋉ Z3–2–1

Hexagonal




0 1 0

1 0 0

0 0 1


 ,




0 −1 0

1 −1 0

0 0 1




Jester’s hat

Orbifold, 1 singularity

with cone-angle 2π/3, 1

boundary

Z6–1–1

Hexagonal




1 −1 0

1 0 0

0 0 1




Triangle pillow

Orbifold, 3 singularities

with cone-angles 2π/3, π/3

and π

Z2 ⋉ Z6–1–1

Hexagonal




0 1 0

1 0 0

0 0 1


 ,




1 −1 0

1 0 0

0 0 1




Triangle

Manifold, 1 boundary,

with angles π/2, π/3 and
π/6

Table 10: List of all possible two-dimensional orbifolds. Q-classes are separated by

double lines.

Sometimes it is of interest to know the fundamental groups of the resulting orbifolds.

Among the two-dimensional space groups, most of the fundamental groups are trivial with

the following exceptions: the torus has a fundamental group of (Z)2, the pipe and the

Möbius strip Z, the cross-cap pillow (a projective plane) Z2 and the Klein bottle’s one is

its own space group, with group structure

S =
{
anbm | m,n ∈ Z , b a = a−1 b

}
. (B.3)

C Tables

C.1 Abelian point groups

Q– Z– affine generators of G

class class class,

(P ) (Λ) breaking contributions to (h(1,1), h(2,1)) from U and T sectors (h(1,1), h(2,1))

Z3 1 1 (θ, 0)

local (9, 0)U + (27, 0)T1 (36, 0)

Z4 1 1 (θ, 0)

local (5, 1)U + (16, 0)T1 + (10, 6)T2 (31, 7)

2 1 (θ, 0)

local (5, 1)U + (16, 0)T1 + (6, 2)T2 (27, 3)

3 1 (θ, 0)

local (5, 1)U + (16, 0)T1 + (4, 0)T2 (25, 1)

continued . . .
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Q– Z– affine generators of G

class class class,

(P ) (Λ) breaking contributions to (h(1,1), h(2,1)) from U and T sectors (h(1,1), h(2,1))

Z6–I 1 1 (θ, 0)

local (5, 0)U + (3, 0)T1 + (15, 0)T2 + (6, 5)T3 (29, 5)

2 1 (θ, 0)

local (5, 0)U + (3, 0)T1 + (15, 0)T2 + (2, 1)T3 (25, 1)

Z6–II 1 1 (θ, 0)

local (3, 1)U + (12, 0)T1 + (6, 3)T2 + (8, 4)T3 + (6, 3)T4 (35, 11)

2 1 (θ, 0)

local (3, 1)U + (12, 0)T1 + (6, 3)T2 + (4, 0)T3 + (6, 3)T4 (31, 7)

3 1 (θ, 0)

local (3, 1)U + (12, 0)T1 + (3, 0)T2 + (8, 4)T3 + (3, 0)T4 (29, 5)

4 1 (θ, 0)

local (3, 1)U + (12, 0)T1 + (3, 0)T2 + (4, 0)T3 + (3, 0)T4 (25, 1)

Z7 1 1 (θ, 0)

local (3, 0)U + (7, 0)T1 + (7, 0)T2 + (7, 0)T4 (24, 0)

Z8–I 1 1 (θ, 0)

local (3, 0)U + (4, 0)T1 + (10, 0)T2 + (6, 3)T4 + (4, 0)T5 (27, 3)

2 1 (θ, 0)

local (3, 0)U + (4, 0)T1 + (10, 0)T2 + (4, 1)T4 + (4, 0)T5 (25, 1)

3 1 (θ, 0)

local (3, 0)U + (4, 0)T1 + (10, 0)T2 + (3, 0)T4 + (4, 0)T5 (24, 0)

Z8–II 1 1 (θ, 0)

local (3, 1)U + (8, 0)T1 + (3, 1)T2 + (8, 0)T3 + (6, 4)T4

+(3, 1)T6 (31, 7)

2 1 (θ, 0)

local (3, 1)U + (8, 0)T1 + (2, 0)T2 + (8, 0)T3 + (4, 2)T4

+(2, 0)T6 (27, 3)

Z12–I 1 1 (θ, 0)

local (3, 0)U + (3, 0)T1 + (3, 0)T2 + (2, 1)T3 + (9, 0)T4

+(4, 3)T6 + (3, 0)T7 + (2, 1)T9 (29, 5)

2 1 (θ, 0)

local (3, 0)U + (3, 0)T1 + (3, 0)T2 + (1, 0)T3 + (9, 0)T4

+(2, 1)T6 + (3, 0)T7 + (1, 0)T9 (25, 1)

Z12–II 1 1 (θ, 0)

local (3, 1)U + (4, 0)T1 + (1, 0)T2 + (8, 0)T3 + (3, 2)T4

+(4, 0)T5 + (4, 2)T6 + (3, 2)T8 + (1, 0)T10 (31, 7)

Z2 × Z2 1 1 (θ, 0),(ω, 0)

local (3, 3)U + (16, 0)T0,1 + (16, 0)T1,0 + (16, 0)T1,1 (51, 3)

2
(

θ, 1
2
e2
)

,(ω, 0)

local (3, 3)U + (8, 8)T0,1 + (8, 8)T1,1 (19, 19)

3
(

θ, 1
2
(e2 + e6)

)

,(ω, 0)
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Q– Z– affine generators of G

class class class,

(P ) (Λ) breaking contributions to (h(1,1), h(2,1)) from U and T sectors (h(1,1), h(2,1))

non-local (3, 3)U + (8, 8)T0,1 (11, 11)

4
(

θ, 1
2
(e2 + e6)

)

,
(

ω, 1
2
e4
)

non-local (3, 3)U (3, 3)

2 1 (θ, 0),(ω, 0)

local (3, 3)U + (12, 4)T0,1 + (8, 0)T1,0 + (8, 0)T1,1 (31, 7)

2
(

θ, 1
2
e3
)

,(ω, 0)

local (3, 3)U + (8, 8)T0,1 + (4, 4)T1,1 (15, 15)

3
(

θ, 1
2
(e3 + e6)

)

,(ω, 0)

non-local (3, 3)U + (8, 8)T0,1 (11, 11)

4 (θ, 0),
(

ω, 1
2
e5
)

non-local (3, 3)U + (4, 4)T1,0 + (4, 4)T1,1 (11, 11)

5
(

θ, 1
2
e3
)

,
(

ω, 1
2
e5
)

non-local (3, 3)U + (4, 4)T1,1 (7, 7)

6
(

θ, 1
2
(e3 + e6)

)

,
(

ω, 1
2
e5
)

non-local (3, 3)U (3, 3)

3 1 (θ, 0),(ω, 0)

local (3, 3)U + (8, 0)T0,1 + (8, 0)T1,0 + (8, 0)T1,1 (27, 3)

2
(

θ, 1
2
e6
)

,(ω, 0)

local (3, 3)U + (4, 4)T0,1 + (4, 4)T1,0 (11, 11)

3
(

θ, 1
2
e6
)

,
(

ω, 1
2
e5
)

non-local (3, 3)U + (4, 4)T1,0 (7, 7)

4
(

θ, 1
2
(e4 + e6)

)

,
(

ω, 1
2
e5
)

non-local (3, 3)U (3, 3)

4 1 (θ, 0),(ω, 0)

local (3, 3)U + (10, 6)T0,1 + (4, 0)T1,0 + (4, 0)T1,1 (21, 9)

2 (θ, 0),
(

ω, 1
2
e4
)

non-local (3, 3)U + (2, 2)T1,0 + (2, 2)T1,1 (7, 7)

5 1 (θ, 0),(ω, 0)

non-local (3, 3)U + (8, 0)T0,1 + (8, 0)T1,0 + (8, 0)T1,1 (27, 3)

2
(

θ, 1
2
e4
)

,(ω, 0)

non-local (3, 3)U + (4, 4)T0,1 + (4, 4)T1,1 (11, 11)

3
(

θ, 1
2
(e2 + e3)

)

,(ω, 0)

local (3, 3)U + (4, 4)T0,1 + (4, 4)T1,0 + (4, 4)T1,1 (15, 15)

4
(

θ, 1
2
e4
)

,
(

ω, 1
2
e5
)

non-local (3, 3)U + (4, 4)T1,1 (7, 7)

5
(

θ, 1
2
(e4 + e6)

)

,
(

ω, 1
2
e5
)

non-local (3, 3)U (3, 3)

6 1 (θ, 0),(ω, 0)

local (3, 3)U + (6, 2)T0,1 + (4, 0)T1,0 + (6, 2)T1,1 (19, 7)

2 (θ, 0),
(

ω, 1
2
e5
)

non-local (3, 3)U + (2, 2)T1,0 + (4, 4)T1,1 (9, 9)
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Q– Z– affine generators of G

class class class,

(P ) (Λ) breaking contributions to (h(1,1), h(2,1)) from U and T sectors (h(1,1), h(2,1))

3
(

θ, 1
2
e6
)

,
(

ω, 1
2
e5
)

non-local (3, 3)U + (2, 2)T1,0 (5, 5)

7 1 (θ, 0),(ω, 0)

local (3, 3)U + (6, 2)T0,1 + (4, 0)T1,0 + (4, 0)T1,1 (17, 5)

2 (θ, 0),
(

ω, 1
2
e6
)

non-local (3, 3)U + (2, 2)T1,0 + (2, 2)T1,1 (7, 7)

8 1 (θ, 0),(ω, 0)

local (3, 3)U + (4, 0)T0,1 + (4, 0)T1,0 + (4, 0)T1,1 (15, 3)

9 1 (θ, 0),(ω, 0)

non-local (3, 3)U + (6, 2)T0,1 + (4, 0)T1,0 + (4, 0)T1,1 (17, 5)

2 (θ, 0),
(

ω, 1
2
e6
)

non-local (3, 3)U + (2, 2)T1,0 + (2, 2)T1,1 (7, 7)

3
(

θ, 1
2
(e2 + e3)

)

,(ω, 0)

local (3, 3)U + (4, 4)T0,1 + (2, 2)T1,0 + (2, 2)T1,1 (11, 11)

10 1 (θ, 0),(ω, 0)

non-local (3, 3)U + (4, 0)T0,1 + (4, 0)T1,0 + (4, 0)T1,1 (15, 3)

2
(

θ, 1
2
(e1 + e2)

)

,(ω, 0)

local (3, 3)U + (2, 2)T0,1 + (2, 2)T1,0 + (2, 2)T1,1 (9, 9)

11 1 (θ, 0),(ω, 0)

local (3, 3)U + (3, 1)T0,1 + (3, 1)T1,0 + (3, 1)T1,1 (12, 6)

12 1 (θ, 0),(ω, 0)

non-local (3, 3)U + (4, 0)T0,1 + (4, 0)T1,0 + (4, 0)T1,1 (15, 3)

2
(

θ, 1
2
(e5 + e6)

)

,(ω, 0)

non-local (3, 3)U + (2, 2)T0,1 + (2, 2)T1,0 + (2, 2)T1,1 (9, 9)

Z2 × Z4 1 1 (θ, 0),(ω, 0)

local (3, 1)U + (4, 0)T0,1 + (10, 0)T0,2 + (4, 0)T0,3 + (12, 0)T1,0

+(16, 0)T1,1 + (12, 0)T1,2 (61, 1)

2
(

θ, 1
2
(e1 + e2)

)

,
(

ω, 1
2
(e1 + e2)

)

local (3, 1)U + (2, 2)T0,1 + (6, 4)T0,2 + (2, 2)T0,3 + (8, 0)T1,1

+(4, 4)T1,2 (25, 13)

3
(

θ, 1
2
(e1 + e2 + e4 + e5)

)

,
(

ω, 1
2
(e1 + e2 + e4 + e5)

)

local (3, 1)U + (2, 2)T0,1 + (6, 4)T0,2 + (2, 2)T0,3 + (8, 0)T1,1 (21, 9)

4
(

θ, 1
2
e4
)

,
(

ω, 1
2
e4
)

local (3, 1)U + (10, 0)T0,2 + (8, 0)T1,0 + (8, 0)T1,1 + (8, 0)T1,2 (37, 1)

5
(

θ, 1
2
(e1 + e2 + e4)

)

,
(

ω, 1
2
(e1 + e2 + e4)

)

local (3, 1)U + (6, 4)T0,2 + (8, 0)T1,0 + (4, 4)T1,2 (21, 9)

6
(

θ, 1
2
(e1 + e2 + e4 + e5 + e6)

)

,

non-local
(

ω, 1
2
(e1 + e2 + e4 + e5 + e6)

)

(3, 1)U + (6, 4)T0,2 + (8, 0)T1,1 (17, 5)

2 1 (θ, 0),(ω, 0)

local (3, 1)U + (4, 0)T0,1 + (8, 2)T0,2 + (4, 0)T0,3 + (8, 0)T1,0
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Q– Z– affine generators of G

class class class,

(P ) (Λ) breaking contributions to (h(1,1), h(2,1)) from U and T sectors (h(1,1), h(2,1))

+(16, 0)T1,1 + (8, 0)T1,2 (51, 3)

2
(

θ, 1
2
e6
)

,
(

ω, 1
2
e6
)

local (3, 1)U + (8, 2)T0,2 + (4, 0)T1,0 + (8, 0)T1,1 + (4, 0)T1,2 (27, 3)

3
(

θ, 1
2
(e1 + e2)

)

,
(

ω, 1
2
(e1 + e2)

)

local (3, 1)U + (2, 2)T0,1 + (6, 4)T0,2 + (2, 2)T0,3 + (8, 0)T1,1 (21, 9)

4
(

θ, 1
2
(e1 + e2 + e6)

)

,
(

ω, 1
2
(e1 + e2 + e6)

)

non-local (3, 1)U + (6, 4)T0,2 + (8, 0)T1,1 (17, 5)

5
(

θ, 1
2
(e3 + e4)

)

,
(

ω, 1
2
(e3 + e4)

)

local (3, 1)U + (2, 2)T0,1 + (8, 2)T0,2 + (2, 2)T0,3 + (4, 0)T1,0

+(8, 0)T1,1 + (4, 0)T1,2 (31, 7)

6
(

θ, 1
2
(e3 + e4 + e6)

)

,
(

ω, 1
2
(e3 + e4 + e6)

)

local (3, 1)U + (8, 2)T0,2 + (4, 0)T1,0 + (8, 0)T1,1 + (4, 0)T1,2 (27, 3)

3 1 (θ, 0),(ω, 0)

local (3, 1)U + (2, 0)T0,1 + (6, 0)T0,2 + (2, 0)T0,3 + (6, 0)T1,0

+(12, 0)T1,1 + (8, 2)T1,2 (39, 3)

2
(

θ, 1
2
(e5 + e6)

)

,
(

ω, 1
2
(e5 + e6)

)

local (3, 1)U + (1, 1)T0,1 + (4, 2)T0,2 + (1, 1)T0,3 + (2, 2)T1,0

+(8, 0)T1,1 (19, 7)

3
(

θ, 1
2
e4
)

,
(

ω, 1
2
e4
)

local (3, 1)U + (6, 0)T0,2 + (4, 0)T1,0 + (8, 0)T1,1 + (6, 2)T1,2 (27, 3)

4
(

θ, 1
2
(e4 + e5 + e6)

)

,
(

ω, 1
2
(e4 + e5 + e6)

)

local (3, 1)U + (4, 2)T0,2 + (2, 2)T1,0 + (8, 0)T1,1 (17, 5)

5
(

θ, 1
2
(e1 + e3)

)

,
(

ω, 1
2
e1
)

local (3, 1)U + (3, 1)T0,2 + (8, 0)T1,1 + (4, 4)T1,2 (18, 6)

6
(

θ, 1
2
(e1 + e3 + e5 + e6)

)

,

non-local
(

ω, 1
2
(e1 + e5 + e6)

)

(3, 1)U + (3, 1)T0,2 + (8, 0)T1,1 (14, 2)

4 1 (θ, 0),(ω, 0)

local (3, 1)U + (2, 0)T0,1 + (6, 0)T0,2 + (2, 0)T0,3 + (6, 0)T1,0

+(12, 0)T1,1 + (6, 0)T1,2 (37, 1)

2
(

θ, 1
2
e6
)

,
(

ω, 1
2
e6
)

local (3, 1)U + (6, 0)T0,2 + (4, 0)T1,0 + (8, 0)T1,1 + (4, 0)T1,2 (25, 1)

3
(

θ, 1
2
(e1 + e2 + e3 + e4)

)

,

local
(

ω, 1
2
(e1 + e2 + e3 + e4)

)

(3, 1)U + (1, 1)T0,1 + (4, 2)T0,2 + (1, 1)T0,3 + (8, 0)T1,1 (17, 5)

4
(

θ, 1
2
(e1 + e2 + e3 + e4 + e6)

)

non-local
(

ω, 1
2
(e1 + e2 + e3 + e4 + e6)

)

(3, 1)U + (4, 2)T0,2 + (8, 0)T1,1 (15, 3)

5
(

θ, 1
2
(e3 + e4)

)

,
(

ω, 1
2
(e2 + e4 + e5)

)

local (3, 1)U + (3, 1)T0,2 + (2, 2)T1,0 + (8, 0)T1,1 (16, 4)

5 1 (θ, 0),(ω, 0)
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Q– Z– affine generators of G

class class class,

(P ) (Λ) breaking contributions to (h(1,1), h(2,1)) from U and T sectors (h(1,1), h(2,1))

local (3, 1)U + (3, 1)T0,1 + (7, 3)T0,2 + (3, 1)T0,3 + (4, 0)T1,0

+(12, 0)T1,1 + (4, 0)T1,2 (36, 6)

2
(

θ, 1
2
e6
)

,
(

ω, 1
2
e6
)

local (3, 1)U + (7, 3)T0,2 + (2, 0)T1,0 + (8, 0)T1,1 + (2, 0)T1,2 (22, 4)

6 1 (θ, 0),(ω, 0)

local (3, 1)U + (2, 0)T0,1 + (6, 0)T0,2 + (2, 0)T0,3 + (6, 0)T1,0

+(12, 0)T1,1 + (6, 0)T1,2 (37, 1)

2
(

θ, 1
2
(e4 + e5)

)

,
(

ω, 1
2
(e4 + e5)

)

local (3, 1)U + (1, 1)T0,1 + (4, 2)T0,2 + (1, 1)T0,3 + (2, 2)T1,0

+(8, 0)T1,1 + (2, 2)T1,2 (21, 9)

3
(

θ, 1
2
e6
)

,
(

ω, 1
2
e6
)

local (3, 1)U + (6, 0)T0,2 + (4, 0)T1,0 + (8, 0)T1,1 + (4, 0)T1,2 (25, 1)

4
(

θ, 1
2
(e4 + e5 + e6)

)

,
(

ω, 1
2
(e4 + e5 + e6)

)

local (3, 1)U + (4, 2)T0,2 + (2, 2)T1,0 + (8, 0)T1,1 + (2, 2)T1,2 (19, 7)

5
(

θ, 1
2
e2
)

,
(

ω, 1
2
(e1 + e3)

)

non-local (3, 1)U + (3, 1)T0,2 + (8, 0)T1,1 (14, 2)

7 1 (θ, 0),(ω, 0)

local (3, 1)U + (2, 0)T0,1 + (5, 1)T0,2 + (2, 0)T0,3 + (4, 0)T1,0

+(12, 0)T1,1 + (4, 0)T1,2 (32, 2)

2
(

θ, 1
2
e6
)

,
(

ω, 1
2
e6
)

local (3, 1)U + (5, 1)T0,2 + (2, 0)T1,0 + (8, 0)T1,1 + (2, 0)T1,2 (20, 2)

3
(

θ, 1
2
(e3 + e4 + e5)

)

,
(

ω, 1
2
(e3 + e5)

)

local (3, 1)U + (4, 0)T0,2 + (2, 0)T1,0 + (8, 0)T1,1 + (2, 0)T1,2 (19, 1)

8 1 (θ, 0),(ω, 0)

local (3, 1)U + (1, 0)T0,1 + (4, 0)T0,2 + (1, 0)T0,3 + (4, 1)T1,0

+(10, 0)T1,1 + (4, 1)T1,2 (27, 3)

2
(

θ, 1
2
(e1 + e3)

)

,
(

ω, 1
2
e2
)

local (3, 1)U + (2, 0)T0,2 + (8, 0)T1,1 + (2, 2)T1,2 (15, 3)

3
(

θ, 1
2
(e1 + e3)

)

,
(

ω, 1
2
(e2 + e5)

)

non-local (3, 1)U + (2, 0)T0,2 + (8, 0)T1,1 (13, 1)

9 1 (θ, 0),(ω, 0)

local (3, 1)U + (2, 0)T0,1 + (5, 1)T0,2 + (2, 0)T0,3 + (4, 0)T1,0

+(12, 0)T1,1 + (4, 0)T1,2 (32, 2)

2
(

θ, 1
2
e6
)

,
(

ω, 1
2
e6
)

local (3, 1)U + (5, 1)T0,2 + (2, 0)T1,0 + (8, 0)T1,1 + (2, 0)T1,2 (20, 2)

3
(

θ, 1
2
(e1 + e2 + e4 + e5)

)

,
(

ω, 1
2
(e1 + e2 + e4 + e5)

)

local (3, 1)U + (1, 1)T0,1 + (5, 1)T0,2 + (1, 1)T0,3 + (2, 0)T1,0

+(8, 0)T1,1 + (2, 0)T1,2 (22, 4)

10 1 (θ, 0),(ω, 0)

local (3, 1)U + (1, 0)T0,1 + (4, 0)T0,2 + (1, 0)T0,3 + (3, 0)T1,0

+(10, 0)T1,1 + (3, 0)T1,2 (25, 1)
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Q– Z– affine generators of G

class class class,

(P ) (Λ) breaking contributions to (h(1,1), h(2,1)) from U and T sectors (h(1,1), h(2,1))

2 (θ, 0),
(

ω, 1
2
e6
)

local (3, 1)U + (2, 0)T0,2 + (1, 1)T1,0 + (8, 0)T1,1 + (1, 1)T1,2 (15, 3)

Z2 × Z6–I 1 1 (θ, 0),(ω, 0)

local (3, 1)U + (1, 0)T0,1 + (4, 1)T0,2 + (6, 0)T0,3 + (4, 1)T0,4

+(1, 0)T0,5 + (8, 0)T1,0 + (8, 0)T1,1 + (8, 0)T1,2 + (8, 0)T1,3 (51, 3)

2
(

θ, 1
2
e4
)

,
(

ω, 1
2
e4
)

local (3, 1)U + (4, 1)T0,2 + (4, 1)T0,4 + (4, 2)T1,0 + (6, 0)T1,1

+(6, 0)T1,2 + (4, 2)T1,3 (31, 7)

2 1 (θ, 0),(ω, 0)

local (3, 1)U + (1, 0)T0,1 + (4, 1)T0,2 + (4, 2)T0,3 + (4, 1)T0,4

+(1, 0)T0,5 + (4, 0)T1,0 + (8, 0)T1,1 + (8, 0)T1,2 + (4, 0)T1,3 (41, 5)

2
(

θ, 1
2
e6
)

,
(

ω, 1
2
e6
)

local (3, 1)U + (4, 1)T0,2 + (4, 1)T0,4 + (2, 0)T1,0 + (6, 0)T1,1

+(6, 0)T1,2 + (2, 0)T1,3 (27, 3)

Z2 × Z6–II 1 1 (θ, 0),(ω, 0)

local (3, 0)U + (2, 0)T0,1 + (9, 0)T0,2 + (6, 0)T0,3 + (6, 0)T1,0

+(2, 0)T1,1 + (6, 0)T1,3 + (2, 0)T1,4 (36, 0)

2 1 (θ, 0),(ω, 0)

local (3, 0)U + (2, 0)T0,1 + (9, 0)T0,2 + (2, 0)T0,3 + (2, 0)T1,0

+(2, 0)T1,1 + (4, 2)T1,3 + (2, 0)T1,4 (26, 2)

3 1 (θ, 0),(ω, 0)

local (3, 0)U + (2, 0)T0,1 + (9, 0)T0,2 + (2, 0)T0,3 + (2, 0)T1,0

+(2, 0)T1,1 + (2, 0)T1,3 + (2, 0)T1,4 (24, 0)

4 1 (θ, 0),(ω, 0)

local (3, 0)U + (2, 0)T0,1 + (9, 0)T0,2 + (2, 0)T0,3 + (2, 0)T1,0

+(2, 0)T1,1 + (2, 0)T1,3 + (2, 0)T1,4 (24, 0)

Z3 × Z3 1 1 (θ, 0),(ω, 0)

local (3, 0)U + (9, 0)T0,1 + (9, 0)T0,2 + (9, 0)T1,0 + (27, 0)T1,1

+(9, 0)T1,2 + (9, 0)T2,0 + (9, 0)T2,1 (84, 0)

2
(

θ, 1
3
(2e5 + e6)

)

,
(

ω, 1
3
(e5 + 2e6)

)

local (3, 0)U + (3, 3)T0,1 + (3, 3)T0,2 + (3, 3)T1,0 + (9, 0)T1,1

+(3, 3)T2,0 (24, 12)

3
(

θ, 1
3
(2e1 + e2 + 2e5 + e6)

)

,
(

ω, 1
3
(e1 + 2e2 + e5 + 2e6)

)

local (3, 0)U + (3, 3)T0,1 + (3, 3)T0,2 + (9, 0)T1,1 (18, 6)

4
(

θ, 1
3
(2e1 + e2 + 2e3 + e4 + 2e5 + e6)

)

,

non-local
(

ω, 1
3
(e1 + 2e2 + e3 + 2e4 + e5 + 2e6)

)

(3, 0)U + (9, 0)T1,1 (12, 0)

2 1 (θ, 0),(ω, 0)

local (3, 0)U + (5, 2)T0,1 + (5, 2)T0,2 + (3, 0)T1,0 + (15, 0)T1,1

+(3, 0)T1,2 + (3, 0)T2,0 + (3, 0)T2,1 (40, 4)

2
(

θ, 1
3
(2e5 + e6)

)

,
(

ω, 1
3
(e5 + 2e6)

)
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Q– Z– affine generators of G

class class class,

(P ) (Λ) breaking contributions to (h(1,1), h(2,1)) from U and T sectors (h(1,1), h(2,1))

local (3, 0)U + (1, 1)T1,0 + (9, 0)T1,1 + (1, 1)T1,2 + (1, 1)T2,0

+(1, 1)T2,1 (16, 4)

3
(

θ, 1
3
(2e3 + e4)

)

,
(

ω, 2
3
(e1 + e2 + e4)

)

local (3, 0)U + (3, 3)T0,1 + (3, 3)T0,2 + (9, 0)T1,1 (18, 6)

4
(

θ, 1
3
(e1 + 2e2 + 2e3 + e6)

)

,

non-local
(

ω, 1
3
(2e1 + e2 + e4 + e5 + e6)

)

(3, 0)U + (9, 0)T1,1 (12, 0)

3 1 (θ, 0),(ω, 0)

local (3, 0)U + (3, 0)T0,1 + (3, 0)T0,2 + (3, 0)T1,0 + (15, 0)T1,1

+(3, 0)T1,2 + (3, 0)T2,0 + (3, 0)T2,1 (36, 0)

2
(

θ, 1
3
(e3 + 2e4)

)

,
(

ω, 1
3
(2e1 + 2e2 + e3 + e4)

)

local (3, 0)U + (9, 0)T1,1 + (1, 1)T1,2 + (1, 1)T2,1 (14, 2)

3
(

θ, 1
3
(2e1 + e2 + 2e3 + e4 + e5 + 2e6)

)

non-local
(

ω, 1
3
(e1 + 2e2 + e3 + 2e4 + 2e5 + e6)

)

(3, 0)U + (9, 0)T1,1 (12, 0)

4 1 (θ, 0),(ω, 0)

local (3, 0)U + (3, 0)T0,1 + (3, 0)T0,2 + (3, 0)T1,0 + (15, 0)T1,1

+(3, 0)T1,2 + (3, 0)T2,0 + (3, 0)T2,1 (36, 0)

2
(

θ, 1
3
(e2 + 2e3)

)

,
(

ω, 1
3
(2e2 + e3)

)

local (3, 0)U + (1, 1)T0,1 + (1, 1)T0,2 + (1, 1)T1,0 + (9, 0)T1,1

+(1, 1)T1,2 + (1, 1)T2,0 + (1, 1)T2,1 (18, 6)

3
(

θ, 1
3
(e1 + e3 + 2e4 + 2e5)

)

,

non-local
(

ω, 1
3
(2e1 + 2e2 + e4 + 2e5 + 2e6)

)

(3, 0)U + (9, 0)T1,1 (12, 0)

5 1 (θ, 0),(ω, 0)

local (3, 0)U + (1, 0)T0,1 + (1, 0)T0,2 + (1, 0)T1,0 + (11, 0)T1,1

+(1, 0)T1,2 + (1, 0)T2,0 + (1, 0)T2,1 (20, 0)

Z3 × Z6 1 1 (θ, 0),(ω, 0)

local (3, 0)U + (1, 0)T0,1 + (5, 0)T0,2 + (4, 1)T0,3 + (5, 0)T0,4

+(1, 0)T0,5 + (6, 0)T1,0 + (6, 0)T1,1 + (15, 0)T1,2 + (6, 0)T1,3

+(6, 0)T1,4 + (6, 0)T2,0 + (3, 0)T2,1 + (6, 0)T2,2 (73, 1)

2
(

θ, 1
3
(e3 + 2e4)

)

,
(

ω, 1
3
(2e3 + e4)

)

local (3, 0)U + (4, 1)T0,3 + (2, 1)T1,0 + (4, 0)T1,1 + (5, 0)T1,2

+(4, 0)T1,3 + (2, 1)T1,4 + (2, 1)T2,0 + (1, 0)T2,1 + (2, 1)T2,2 (29, 5)

2 1 (θ, 0),(ω, 0)

local (3, 0)U + (1, 0)T0,1 + (3, 1)T0,2 + (4, 1)T0,3 + (3, 1)T0,4

+(1, 0)T0,5 + (3, 0)T1,0 + (6, 0)T1,1 + (9, 0)T1,2 + (6, 0)T1,3

+(3, 0)T1,4 + (3, 0)T2,0 + (3, 0)T2,1 + (3, 0)T2,2 (51, 3)

2
(

θ, 1
3
(e5 + 2e6)

)

,
(

ω, 1
3
(2e5 + e6)

)

local (3, 0)U + (4, 1)T0,3 + (1, 0)T1,0 + (4, 0)T1,1 + (5, 0)T1,2

+(4, 0)T1,3 + (1, 0)T1,4 + (1, 0)T2,0 + (1, 0)T2,1 + (1, 0)T2,2 (25, 1)
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Q– Z– affine generators of G

class class class,

(P ) (Λ) breaking contributions to (h(1,1), h(2,1)) from U and T sectors (h(1,1), h(2,1))

Z4 × Z4 1 1 (θ, 0),(ω, 0)

local (3, 0)U + (4, 0)T0,1 + (9, 0)T0,2 + (4, 0)T0,3 + (4, 0)T1,0

+(12, 0)T1,1 + (12, 0)T1,2 + (4, 0)T1,3 + (9, 0)T2,0

+(12, 0)T2,1 + (9, 0)T2,2 + (4, 0)T3,0 + (4, 0)T3,1 (90, 0)

2
(

θ, 1
2
(e5 + e6)

)

,(ω, 0)

local (3, 0)U + (2, 0)T0,1 + (7, 0)T0,2 + (2, 0)T0,3 + (2, 0)T1,0

+(4, 0)T1,1 + (8, 0)T1,2 + (7, 0)T2,0 + (8, 0)T2,1 + (9, 0)T2,2

+(2, 0)T3,0 (54, 0)

3
(

θ, 1
2
(e1 + e2 + e5 + e6)

)

,(ω, 0)

local (3, 0)U + (2, 0)T0,1 + (5, 0)T0,2 + (2, 0)T0,3 + (4, 0)T1,1

+(4, 0)T1,2 + (7, 0)T2,0 + (8, 0)T2,1 + (7, 0)T2,2 (42, 0)

4
(

θ, 1
2
(e1 + e2 + e4 + e5 + e6)

)

,
(

ω, 1
2
(e3 + e4)

)

local (3, 0)U + (5, 0)T0,2 + (4, 0)T1,1 + (4, 0)T1,2 + (5, 0)T2,0

+(4, 0)T2,1 + (5, 0)T2,2 (30, 0)

2 1 (θ, 0),(ω, 0)

local (3, 0)U + (3, 0)T0,1 + (6, 1)T0,2 + (3, 0)T0,3 + (2, 0)T1,0

+(8, 0)T1,1 + (8, 0)T1,2 + (2, 0)T1,3 + (6, 0)T2,0 + (10, 0)T2,1

+(6, 0)T2,2 + (2, 0)T3,0 + (2, 0)T3,1 (61, 1)

2
(

θ, 1
2
(e1 + e4)

)

,
(

ω, 1
2
(e1 + e3)

)

local (3, 0)U + (1, 1)T0,1 + (4, 1)T0,2 + (1, 1)T0,3 + (4, 0)T1,1

+(4, 0)T1,2 + (3, 0)T2,0 + (4, 0)T2,1 + (3, 0)T2,2 (27, 3)

3
(

θ, 1
2
e6
)

,
(

ω, 1
2
(e5 + e6)

)

local (3, 0)U + (6, 1)T0,2 + (1, 0)T1,0 + (6, 0)T1,1 + (6, 0)T1,2

+(1, 0)T1,3 + (4, 0)T2,0 + (4, 0)T2,1 + (4, 0)T2,2 + (1, 0)T3,0

+(1, 0)T3,1 (37, 1)

4
(

θ, 1
2
(e1 + e4 + e6)

)

,
(

ω, 1
2
(e1 + e3 + e5 + e6)

)

local (3, 0)U + (4, 1)T0,2 + (4, 0)T1,1 + (4, 0)T1,2 + (3, 0)T2,0

+(4, 0)T2,1 + (3, 0)T2,2 (25, 1)

3 1 (θ, 0),(ω, 0)

local (3, 0)U + (2, 0)T0,1 + (5, 0)T0,2 + (2, 0)T0,3 + (2, 0)T1,0

+(8, 0)T1,1 + (8, 0)T1,2 + (2, 0)T1,3 + (5, 0)T2,0 + (8, 0)T2,1

+(5, 0)T2,2 + (2, 0)T3,0 + (2, 0)T3,1 (54, 0)

2
(

θ, 1
2
(e1 + e2 + e3 + e5)

)

,
(

ω, 1
2
(e3 + e4 + e5 + e6)

)

local (3, 0)U + (1, 0)T0,1 + (3, 0)T0,2 + (1, 0)T0,3 + (4, 0)T1,1

+(4, 0)T1,2 + (4, 0)T2,0 + (6, 0)T2,1 + (4, 0)T2,2 (30, 0)

4 1 (θ, 0),(ω, 0)

local (3, 0)U + (2, 0)T0,1 + (5, 0)T0,2 + (2, 0)T0,3 + (2, 0)T1,0

+(8, 0)T1,1 + (8, 0)T1,2 + (2, 0)T1,3 + (5, 0)T2,0 + (8, 0)T2,1

+(5, 0)T2,2 + (2, 0)T3,0 + (2, 0)T3,1 (54, 0)

2
(

θ, 1
2
e2
)

,
(

ω, 1
2
(e1 + e2)

)

local (3, 0)U + (1, 0)T0,1 + (5, 0)T0,2 + (1, 0)T0,3 + (1, 0)T1,0
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Q– Z– affine generators of G

class class class,

(P ) (Λ) breaking contributions to (h(1,1), h(2,1)) from U and T sectors (h(1,1), h(2,1))

+(6, 0)T1,1 + (6, 0)T1,2 + (1, 0)T1,3 + (5, 0)T2,0 + (6, 0)T2,1

+(5, 0)T2,2 + (1, 0)T3,0 + (1, 0)T3,1 (42, 0)

3
(

θ, 1
2
(e2 + e5 + e6)

)

,
(

ω, 1
2
(e2 + e4 + e5)

)

local (3, 0)U + (2, 1)T0,2 + (4, 0)T1,1 + (4, 0)T1,2 + (2, 1)T2,0

+(4, 0)T2,1 + (2, 1)T2,2 (21, 3)

5 1 (θ, 0),(ω, 0)

local (3, 0)U + (1, 0)T0,1 + (3, 0)T0,2 + (1, 0)T0,3 + (1, 0)T1,0

+(6, 0)T1,1 + (6, 0)T1,2 + (1, 0)T1,3 + (3, 0)T2,0 + (6, 0)T2,1

+(3, 0)T2,2 + (1, 0)T3,0 + (1, 0)T3,1 (36, 0)

2
(

θ, 1
2
(e3 + e4)

)

,
(

ω, 1
2
(e1 + e2 + e3 + e6)

)

local (3, 0)U + (1, 0)T0,2 + (4, 0)T1,1 + (4, 0)T1,2 + (1, 0)T2,0

+(4, 0)T2,1 + (1, 0)T2,2 (18, 0)

Z6 × Z6 1 1 (θ, 0),(ω, 0)

local (3, 0)U + (1, 0)T0,1 + (4, 0)T0,2 + (4, 0)T0,3 + (4, 0)T0,4

+(1, 0)T0,5 + (1, 0)T1,0 + (2, 0)T1,1 + (4, 0)T1,2 + (4, 0)T1,3

+(2, 0)T1,4 + (1, 0)T1,5 + (4, 0)T2,0 + (4, 0)T2,1 + (9, 0)T2,2

+(4, 0)T2,3 + (4, 0)T2,4 + (4, 0)T3,0 + (4, 0)T3,1 + (4, 0)T3,2

+(4, 0)T3,3 + (4, 0)T4,0 + (2, 0)T4,1 + (4, 0)T4,2 + (1, 0)T5,0

+(1, 0)T5,1 (84, 0)

Table 11: Summary of the classification of all six-dimensional N = 1 SUSY preserving Abelian toroidal

orbifolds. The nomenclature for the Q-classes is the common one in the literature (cf. e.g. [9]). The twists

θ and ω correspond to the twist vectors listed in table 2 and Tk,ℓ labels the twisted sector θkωℓ.
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Figure 7. Statistics of the Hodge numbers for the 138 Abelian toroidal orbifolds of table 11.
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C.2 Non-Abelian point groups

label of Q-class carat twists # of conj.

GAPID index from SU(3) classes

S3

[6, 1]
2262




−1 0 0

0 0 1

0 1 0


 ,




1 0 0

0 e−2π i 1
3 0

0 0 e2π i 1
3


 3

D4

[8, 3]
4682




−1 0 0

0 0 1

0 1 0


 ,




−1 0 0

0 −1 0

0 0 1


 5

Q8 (N = 2)

[8, 4]
5750




1 0 0

0 0 1

0 −1 0


 ,




1 0 0

0 −i 0

0 0 i


 5

Dic3 (N = 2)

[12, 1]
3374




1 0 0

0 0 1

0 −1 0


 ,




1 0 0

0 e−2π i 1
3 0

0 0 e−2π i 1
3


 6

A4

[12, 3]
4893




0 1 0

0 0 1

1 0 0


 ,




−1 0 0

0 1 0

0 0 −1


 4

D6

[12, 4]
2258




−1 0 0

0 0 1

0 1 0


 ,




1 0 0

0 e2π i 1
6 0

0 0 e−2π i 1
6


 6
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label of Q-class carat twists # of conj.

GAPID index from SU(3) classes

Z8 ⋊ Z2

[16, 6]
6222




−i 0 0

0 0 1

0 −i 0


 ,




−1 0 0

0 −1 0

0 0 1


 10

QD16

[16, 8]
5650




1 0 0

0 0 e−2π i 1
8

0 e−2π i 3
8 0


 ,




−1 0 0

0 0 1

0 1 0


 7

(Z4 × Z2)⋊ Z2

[16, 13]
5645




−1 0 0

0 0 1

0 1 0


 ,




−1 0 0

0 −1 0

0 0 1


 ,




−1 0 0

0 −i 0

0 0 −i


 10

Z3 × S3

[18, 3]
4235




1 0 0

0 e−2π i 1
3 0

0 0 e2π i 1
3


 ,




e2π i 1
6 0 0

0 0 e−2π i 1
3

0 e−2π i 1
3 0


 9

Frobenius T7

[21, 1]
2935




0 1 0

0 0 1

1 0 0


 ,




e2π i 4
7 0 0

0 e2π i 2
7 0

0 0 e2π i 1
7


 5

Z3 ⋊ Z8

[24, 1]
6266




−i 0 0

0 0 1

0 −i 0


 ,




1 0 0

0 e−2π i 1
3 0

0 0 e2π i 1
3


 12

SL(2, 3)−I

[24, 3]
6743




e2π i 2
3 0 0

0 −1
2(e

2π i 2
3 + e2π i 11

12 ) 1
2(e

2π i 2
3 + e2π i 11

12 )

0 −1
2(e

2π i 2
3 − e2π i 11

12 ) −1
2(e

2π i 2
3 − e2π i 11

12 )


 ,




1 0 0

0 0 1

0 −1 0


 7
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label of Q-class carat twists # of conj.

GAPID index from SU(3) classes

SL(2, 3)−II (N = 2)

[24, 3]
5669




1 0 0

0 −1
2(1 + i) 1

2(1 + i)

0 −1
2(1− i) −1

2(1− i)


 ,




1 0 0

0 0 1

0 −1 0


 7

Z4 × S3

[24, 5]
3414




−1 0 0

0 0 1

0 1 0


 ,




−1 0 0

0 e2π i 5
12 0

0 0 e2π i 1
12


 12

(Z6 × Z2)⋊ Z2

[24, 8]
3408




−1 0 0

0 0 1

0 1 0


 ,




−1 0 0

0 e−2π i 1
3 0

0 0 e−2π i 1
6


 9

Z3 ×D4

[24, 10]
4326




−1 0 0

0 −1 0

0 0 1


 ,




e2π i 1
6 0 0

0 0 e−2π i 1
3

0 e−2π i 1
3 0


 15

Z3 ×Q8

[24, 11]
6735




1 0 0

0 −i 0

0 0 i


 ,




e−2π i 1
3 0 0

0 0 e−2π i 1
3

0 e2π i 1
6 0


 15

S4

[24, 12]
4895




0 1 0

0 0 1

1 0 0


 ,




1 0 0

0 0 1

0 −1 0


 5

∆(27)

[27, 3]
2864




0 1 0

0 0 1

1 0 0


 ,




1 0 0

0 e2π i 1
3 0

0 0 e−2π i 1
3


 11
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label of Q-class carat twists # of conj.

GAPID index from SU(3) classes

(Z4 × Z4)⋊ Z2

[32, 11]
6337




−i 0 0

0 0 1

0 −i 0


 ,




−1 0 0

0 0 1

0 1 0


 14

Z3 × (Z3 ⋊ Z4)

[36, 6]
4353




1 0 0

0 e−2π i 1
3 0

0 0 e2π i 1
3


 ,




e−2π i 1
3 0 0

0 0 e−2π i 1
3

0 e2π i 1
6 0


 18

Z3 ×A4

[36, 11]
2875




0 1 0

0 0 1

1 0 0


 ,




e−2π i 1
6 0 0

0 e2π i 1
3 0

0 0 e−2π i 1
6


 12

Z6 × S3

[36, 12]
4356




e2π i 1
6 0 0

0 0 e−2π i 1
3

0 e−2π i 1
3 0


 ,




1 0 0

0 e2π i 1
6 0

0 0 e−2π i 1
6


 18

∆(48)

[48, 3]
2774




0 1 0

0 0 1

1 0 0


 ,




1 0 0

0 −i 0

0 0 i


 8

GL(2, 3)

[48, 29]
5713




1 0 0

0 −1
2(1− i) 1

2(1− i)

0 −1
2(1 + i) −1

2(1 + i)


 ,




−1 0 0

0 1
2(e

2π i 1
8 + e2π i 3

8 ) −1
2(e

2π i 1
8 − e2π i 3

8 )

0 −1
2(e

2π i 1
8 − e2π i 3

8 ) 1
2(e

2π i 1
8 + e2π i 3

8 )


 8

SL(2, 3)⋊ Z2

[48, 33]
5712




1 0 0

0 0 1

0 −1 0


 ,




−1 0 0

0 −1
2(1− i) 1

2(1− i)

0 1
2(1 + i) 1

2(1 + i)


 14
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label of Q-class carat twists # of conj.

GAPID index from SU(3) classes

∆(54)

[54, 8]
2897




−1 0 0

0 0 −1

0 −1 0


 ,




0 1 0

0 0 1

1 0 0


 ,




0 e2π i 1
3 0

0 0 e−2π i 1
3

1 0 0


 10

Z3 × SL(2, 3)

[72, 25]
6988




1 0 0

0 −1
2(1 + i) 1

2(1 + i)

0 −1
2(1− i) −1

2(1− i)


 ,




e−2π i 1
3 0 0

0 0 e−2π i 1
3

0 e2π i 1
6 0


 21

Z3 × ((Z6 × Z2)⋊ Z2)

= Z3 ×GAPID [24, 8]

[72, 30]

4533




e2π i 1
6 0 0

0 0 e−2π i 1
3

0 e−2π i 1
3 0


 ,




−1 0 0

0 e−2π i 1
3 0

0 0 e2π i 1
3


 27

Z3 × S4

[72, 42]
2924




0 1 0

0 0 1

1 0 0


 ,




e−2π i 1
3 0 0

0 0 e−2π i 1
3

0 e2π i 1
6 0


 15

∆(96)

[96, 64]
2802




0 1 0

0 0 1

1 0 0


 ,




0 i 0

1 0 0

0 0 i


 10

SL(2, 3)⋊ Z4

[96, 67]
6512




1 0 0

0 −1
2(1− i) 1

2(1− i)

0 −1
2(1 + i) −1

2(1 + i)


 ,




−i 0 0

0 −1
2(1 + i) 1

2(1− i)

0 1
2(1− i) −1

2(1 + i)


 16

Σ(36φ)

[108, 15]
2806




−1
3(e

2π i 1
3 + 2e−2π i 1

3 ) −1
3(e

2π i 1
3 + 2e−2π i 1

3 ) 1
3(2e

2π i 1
3 + e−2π i 1

3 )
1
3(2e

2π i 1
3 + e−2π i 1

3 ) −1
3(e

2π i 1
3 + e−2π i 1

3 ) 1
3(2e

2π i 1
3 + e−2π i 1

3 )
1
3(2e

2π i 1
3 + e−2π i 1

3 ) −1
3(e

2π i 1
3 + e−2π i 1

3 ) −1
3(e

2π i 1
3 + 2e−2π i 1

3 )


 ,




0 1 0

0 0 1

1 0 0


 14
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label of Q-class carat twists # of conj.

GAPID index from SU(3) classes

∆(108)

[108, 22]
2810




0 1 0

0 0 1

1 0 0


 ,




e−
2π i
6 0 0

0 e−
2π i
3 0

0 0 −1


 20

PSL(3, 2)

[168, 42]
2934




1
18

(
−5 + 4i

√
7
)

1
36

(
11 + 5i

√
7
)

1
18

(
−1− 4i

√
7
)

− 1
36 i

(
−25i +

√
7
)

−1
9 i

(
−i +

√
7
)

1
36 i

(
23i +

√
7
)

1
18

(
−1 + 2i

√
7
)

1
36

(
−5− 11i

√
7
)

1
18

(
7− 2i

√
7
)


 ,




−1 0 0

0 0 1

0 1 0


 6

Σ(72φ)

[216, 88]
2846




1
6

(
3 + i

√
3
)

e2π i 5
12√
3

− i√
3

1
6

(
3 +

√
3 i
)

− i√
3

e2π i 5
12√
3

1
6

(
3 +

√
3 i
)

1
6

(
3 +

√
3 i
)

1
6

(
3 +

√
3 i
)


 , 16




− i√
3

1
6

(
3 +

√
3 i
)

− i√
3

1
6

(
3 +

√
3 i
)

− i√
3

− i√
3

1
6

(
3 +

√
3 i
)

1
6

(
3 +

√
3 i
)

e2π i 5
12√
3




∆(216)

[216, 95]
2851




0 1 0

0 0 1

1 0 0


 ,




1 0 0

0 0 1

0 −1 0


 ,




0 e2π i 1
3 0

0 0 e−2π i 1
3

1 0 0


 19

Table 12: Summary of the classification of all non-Abelian point groups with N ≥ 1

SUSY. The GAPID [N,M ] consists of two numbers: the first number N gives the order of

the discrete group (i.e. the number of elements) and the second number consecutively enu-

merates discrete groups of a certain order. The number of conjugacy classes c corresponds

to c− 1 twisted sectors for the heterotic orbifold compactification.

–
49

–
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[52] R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional String

Compactifications with D-branes, Orientifolds and Fluxes, Phys. Rept. 445 (2007) 1

[hep-th/0610327] [INSPIRE].

[53] W. Plesken and W. Hanrath, The lattices of six-dimensional Euclidean space,

Math. Comp. 43 (1984) 573.

[54] A.K. Lenstra, H.W. Lenstra and L. Lovasz, Factoring polynomials with rational coefficients,

Mathematische Annalen 261 (1982) 515.

[55] T. Hahn ed., International tables for crystallography, volume A, Springer (2005).

– 52 –

http://dx.doi.org/10.1088/1126-6708/2000/06/012
http://arxiv.org/abs/hep-th/0002227
http://inspirehep.net/search?p=find+EPRINT+hep-th/0002227
http://dx.doi.org/10.1016/j.physletb.2008.08.054
http://arxiv.org/abs/0807.4384
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.4384
http://dx.doi.org/10.1016/j.physletb.2005.12.042
http://arxiv.org/abs/hep-th/0512149
http://inspirehep.net/search?p=find+EPRINT+hep-th/0512149
http://dx.doi.org/10.1016/j.physletb.2005.05.007
http://arxiv.org/abs/hep-th/0501070
http://inspirehep.net/search?p=find+EPRINT+hep-th/0501070
http://dx.doi.org/10.1007/JHEP05(2012)127
http://arxiv.org/abs/1112.1097
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.1097
http://dx.doi.org/10.1007/JHEP06(2012)113
http://arxiv.org/abs/1202.1757
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.1757
http://dx.doi.org/10.1016/j.nuclphysb.2005.02.008
http://arxiv.org/abs/hep-th/0411131
http://inspirehep.net/search?p=find+EPRINT+hep-th/0411131
http://arxiv.org/abs/1205.1228
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.1228
http://dx.doi.org/10.1016/0550-3213(89)90037-0
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B316,391
http://dx.doi.org/10.1088/1126-6708/2005/10/065
http://arxiv.org/abs/hep-th/0406102
http://inspirehep.net/search?p=find+EPRINT+hep-th/0406102
http://dx.doi.org/10.1007/JHEP04(2012)121
http://arxiv.org/abs/1202.6366
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.6366
http://dx.doi.org/10.1088/1126-6708/2006/01/004
http://arxiv.org/abs/hep-th/0510170
http://inspirehep.net/search?p=find+EPRINT+hep-th/0510170
http://dx.doi.org/10.1088/1126-6708/2007/01/031
http://arxiv.org/abs/hep-th/0606109
http://inspirehep.net/search?p=find+EPRINT+hep-th/0606109
http://dx.doi.org/10.1088/1126-6708/2008/07/052
http://arxiv.org/abs/0806.3039
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.3039
http://dx.doi.org/10.1016/j.physrep.2007.04.003
http://arxiv.org/abs/hep-th/0610327
http://inspirehep.net/search?p=find+EPRINT+hep-th/0610327
http://dx.doi.org/10.1090/S0025-5718-1984-0758205-5
http://dx.doi.org/10.1007/BF01457454

