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1 Introduction

The consideration of Regge behavior in Yang-Mills theories has a long history which began

in the 1970’s [1–3]. One particular application was motivated by a search for a description

of the Pomeron which respected unitarity. This led to the BFKL multi-Regge (MRK)

formalism in leading logarithm approximation (LLA) [3–7]. It turns out that the BFKL

approach with adjoint exchange of Reggeized gluons [8] is very well suited to the discussion

of the remainder functions for MHV amplitudes in the multi-Regge limit in N=4 SYM

theory, where the remainder function is defined as a contribution to be added to the BDS [9]

amplitude. A natural extension of this issue is the analysis of the MRK limit for NkMHV

amplitudes, and NMHV amplitudes in particular. This will be a central theme of this paper.

More recently there have been enormous advances in techniques for computing leading color

amplitudes in N=4 SYM theory [10–22]. An important step in this program was the BDS

ansatz for all n-point functions of planar MHV amplitudes of N=4 SYM theory [9]. The

BDS ansatz was shown to be incomplete for n > 5 point functions requiring a non-vanishing

conformal invariant remainder function R(n) at two or more loops, as shown by explicit

calculations [8, 23–30]. Further the BDS amplitude for six or more point functions in the

MRK limit does not have correct analyticity properties, as they do not exhibit certain
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Figure 1. The 2 → 4 scattering amplitude in Euclidean region.

Mandelstam cuts; those obtained from the BFKL equation for the t-channel exchange of

two or more Reggeized gluons. The MRK limit of the remainder function can be computed

from the BFKL equation for MHV amplitudes in LLA in the MRK limit, which agrees

with the explicit calculations in that limit. This agreement encourages the application of

the BFKL approach to NkMHV amplitudes, and comparison of the results to that of other

methods when available. In this paper we consider the MRK limit of NMHV amplitudes, as

well as a particular subset of NkMHV amplitudes obtained from the BFKL equations, and

compare these with results obtained by other methods. These agree whenever a comparison

is possible, and leads to new predictions to be checked against future calculations. These

BFKL results in the collinear, MRK limit exhibit close similarities with that of the OPE

methods [31–34], which therefore should be explored in more detail in the future. In this

paper we review the BFKL kinematics and the remainder function for the 2 → 4 and 3 → 3

amplitudes in the MRK limit in section 2. A detailed analysis of the NMHV amplitude for

the two-loop amplitude, and comparison to that of superconformal amplitudes is presented

in section 3. It is possible to include NkMHV amplitudes for more legs when two adjacent

legs have their helicities flipped, which involve simple modifications of the 2 → 4 case.

Further extensions of these results will be be considered in forthcoming work. Appendices

present more details of the calculation.

2 BFKL calculations

2.1 Kinematics for 2 → 4

We consider multi-Regge kinematics (MRK) of the 2 → 4 gluon MHV amplitude for p5 +

p6 → p1 + p2 + p3 + p4 scattering depicted in figure 1.

In this kinematic region all p+ ( and p−) components of the external particles are

strongly ordered

− p+6 ≃ p+1 ≫ p+2 ≫ p+3 ≫ p+4 ≃ −p+5 (2.1)
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with an inverse ordering for p−i . Helicity configurations throughout are with all momenta

outgoing. Define the cross ratios

ui =
x2i,i+4x

2
i+1,i+3

x2i,i+3x
2
i+1,i+4

; i = 1, 2, 3 (2.2)

with dual coordinates

pi = xi − xi+1. (2.3)

The MRK limit becomes in the Euclidean region

u1 → 1−, u2 → 0+, u3 → 0+, with ũ2 =
u2

1− u1
≃ O(1) and ũ3 =

u3
1− u1

≃ O(1).(2.4)

In general kinematics the remainder function has some square roots of the cross ratios in

the arguments of the polylogarithms as it was shown in ref. [25]. In the MRK limit only two

kinds of square roots survive, and they can be rationalized by choosing complex variables

w and w∗ (see ref. [35]) related to the transverse momenta components of the produced

particles

w =
(p4 + p5)p2
(p1 + p6)p3

, w∗ =
(p∗4 + p∗5)p

∗
2

(p∗1 + p∗6)p
∗
3

(2.5)

or in terms of the cross ratios1

w =
1− ũ2 − ũ3 +

√

(1− ũ2 − ũ3)2 − 4ũ2ũ3
2ũ2

,

w∗ =
1− ũ2 − ũ3 −

√

(1− ũ2 − ũ3)2 − 4ũ2ũ3
2ũ2

.

2.2 The remainder function in the Mandelstam region

The remainder function is defined as a contribution to be added to the BDS amplitude.

In the Euclidean region it vanishes in multi-Regge kinematics [8, 36, 37], but there are

some regions, which we call Mandelstam regions where the remainder function have a

divergent contribution of the order of logℓ−1 s (ℓ is the number of loops). This happens

due to the presence in those regions of so called Regge or Mandlestam cuts [8, 24], which

are not accounted for by the BDS amplitude. The Mandlestam cuts are absent in the

planar amplitudes and manifest themselves only in non-planar cases. The BDS ansatz is

formulated for the planar amplitudes and we can make it non-planar in kinematics, while

still being planar in color, flipping the produced particles as illustrated in figure 2. For the

Mandelstam region shown in figure 2 the remainder function was first calculated to leading

logarithmic accuracy in ref. [8] and given to all orders by,

R6;MHV ≃ ia

2

+∞
∑

n=−∞

∫ +∞

−∞

dν
(−1)n

ν2 + n2

4

wiν+n
2 (w∗)iν−

n
2

(

(

s45
s0

)−aEn,ν

− 1

)

, (2.6)

1The complex transverse momentum representation is the primary definition of the complex variable w.

– 3 –



J
H
E
P
0
1
(
2
0
1
3
)
0
6
8

p
1

p
2

p
3

p
4

p
5

p
6

Figure 2. Mandelstam region for 2 → 4 amplitude.

where En,ν is the eigenvalue of the BFKL equation in the adjoint representation

En,ν = −1

2

|n|
ν2 + n2

4

+ ψ

(

1 + iν +
|n|
2

)

+ ψ

(

1− iν +
|n|
2

)

− 2ψ(1), (2.7)

where ψ(z) = Γ′(z)/Γ(z) and a = g2N/8π2. The continuation to the Mandelstam region

is u1 = e−2πi|u1|. The expression in eq. (2.6) predicts the leading log remainder function

to any loop order

R6;MHV =
∞
∑

ℓ=2

aℓR
(ℓ)
6;MHV . (2.8)

At two loops it was calculated in refs. [8, 38]

R
(2) LLA
6;MHV = − iπ

2
log

(

s23
s0

)

log |1 + w|2 log
∣

∣

∣

∣

1 +
1

w

∣

∣

∣

∣

2

(2.9)

and at three loops in ref. [39]

R
(3) LLA
6;MHV =

iπ

4
log2

(

s23
s0

)(

log |w|2 log2 |1+w|2− 2

3
log3 |1+w|2− 1

4
log2 |w|2 log |1+w|2

+
1

2
log |w|2 (Li2 (−w)+Li2 (−w∗))−Li3 (−w)−Li3 (−w∗)

)

(2.10)

At the leading logarithmic level the energy scale s0 is arbitrary and among other possible

choices we prefer

s23
s0

=
1√
u2u3

, (2.11)

which follows from the requirement of Regge factorization and agreement with next-to-

leading corrections at three loops as shown in ref. [40].

In the MHV 2 → 4 amplitude in Regge kinematics, the helicity of the colliding particles

is not changed, which limits the number of the possible helicity configurations to either
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++++−− or +−−+−− (and their conjugates). In both cases the leading log remainder

function is the same. For the NMHV case in MRK one can change a helicity of one of the

produced particles p2 or p3, and it is sufficient to consider only one case, as all other cases

are obtained by complex conjugation of the complex w variable. Here we consider in more

detail the ++−+−− helicity configuration, where the produced particle p3 has opposite

helicity to that of the MHV case. The all orders leading logarithm NMHV remainder

function is given by

RLLA
6;NMHV ≃ − ia

2

+∞
∑

n=−∞

∫ +∞

−∞

dν
(−1)n

(iν + n
2 )

2
wiν+n

2 (w∗)iν−
n
2

(

(

s23
s0

)−aEn,ν

− 1

)

. (2.12)

Note that eq. (2.12) can be obtained from eq. (2.6) by making the following substitution

in the integrand

1

−iν + n
2

→ − 1

iν + n
2

, (2.13)

which follows from the fact that to leading order in MRK the impact factors for gluons

with opposite helicities are related by χ(ν, n) → χ∗(−ν,−n) (see appendix A for more

details). It also follows from the above property of the impact factors that to the leading

logarithmic order
∫

dw∗ w

w∗

∂

∂w
RNMHV = RMHV (2.14)

for the helicity configuration under discussion. The two loop NMHV remainder function

in the leading logarithmic approximation is calculated in the appendix B and given by

R
(2) LLA
NMHV ≃ iπ

2
log

(

s23
s0

){

1

1 + w∗

(

log |w|2 log(1 + w∗)− Li2(−w) + Li2(−w∗)
)

+
1

1 + 1
w∗

(

log
1

|w|2 log
(

1 +
1

w∗

)

− Li2

(

− 1

w

)

+ Li2

(

− 1

w∗

))}

(2.15)

It is convenient to define the ratio function

PNMHV =
ANMHV

AMHV
, (2.16)

which to leading logarithmic order can be written as

PLLA
NMHV ≃ RLLA

NMHV −RLLA
MHV (2.17)

From eq. (2.6) and eq. (2.12) and the fact that

− 1

(iν + n
2 )

2
− 1

ν2 + n2

4

= − 1

ν2 + n2

4

n

iν + n
2

(2.18)

allows us to write a compact expression for the ratio function in leading logarithmic ap-

proximation

PLLA
6 NMHV ≃ − ia

2

+∞
∑

n=−∞

∫ +∞

−∞

dν
(−1)n

ν2 + n2

4

n

iν + n
2

wiν+n
2 (w∗)iν−

n
2

(

s23
s0

)−aEn,ν

. (2.19)
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Note that we dropped the minus unity in the brackets in eq. (2.12) because, in contrast to

the remainder function, the ratio function is well defined also at one loop. This is due to

the fact that the divergences at n = ν = 0 cancel between the MHV and the NMHV parts

resulting in a finite answer also at one loop

P(1) LLA
6 NMHV ≃ iπ

1

1 + w∗
log |1 + w|2 + iπ

w∗

1 + w∗
log

∣

∣

∣

∣

1 +
1

w

∣

∣

∣

∣

2

(2.20)

= −iπ 1

1 + w∗
log ũ2 − iπ

w∗

1 + w∗
log ũ3.

At two loops we have

P(2) LLA
6 NMHV ≃ iπ

2
log

(

s23
s0

){

1

1 + w∗

(

log |w|2 log(1 + w∗)− Li2(−w) + Li2(−w∗)
)

+
1

1 + 1
w∗

(

log
1

|w|2 log
(

1 +
1

w∗

)

− Li2

(

− 1

w

)

+ Li2

(

− 1

w∗

))}

+
iπ

2
log

(

s23
s0

)

log |1 + w|2 log
∣

∣

∣

∣

1 +
1

w

∣

∣

∣

∣

2

(2.21)

3 NMHV at two loops

In this section we consider the NMHV superamplitude at two loops derived by Dixon,

Drummond and Henn in ref. [41]. It is convenient to define the ratio function P, which

relates all possible helicity configurations of the external particles to the MHV superam-

plitude

A = AMHV × P. (3.1)

The expansion of P in Grassmann variables gives the corresponding type of amplitudes

P = 1 + PNMHV + PN2MHV + . . .+ PMHV . (3.2)

We focus on the six particle amplitude, where at the tree level the ratio function can be

expressed in terms of dual superconformal “R-invariants” as follows [42, 43]

P(0)
NMHV = R1;35 +R1;36 +R1;46. (3.3)

It is useful to introduce the momentum twistors Zi and supertwistors Zi [44]

Zi = (Zi|χi), Z
R=α,α̇
i = (λαi , x

βα̇
i λiβ), χ

A
i = θαAi λiα (3.4)

with

(abcd) = ǫRSTUZ
R
a Z

S
b Z

T
c Z

U
d , (3.5)

where one defines dual coordinates by

pαα̇i = λαi λ̃
α̇
i = xαα̇i − xαα̇i+1, qαAi = λαi η

A
i = θαAi − θαAi+1. (3.6)

– 6 –
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The R-invariants can be written compactly in terms of momentum twistors using

[abcde] =
δ4(χa(bcde) + cyclic)

(abcd)(bcde)(cdea)(deab)(eabc)
(3.7)

and

Rr;ab = [r, a− 1, a, b− 1, b]. (3.8)

For the six particle amplitude there are six different invariants. For simplicity one can label

them by (t), using the momentum twistor t that is absent from the five arguments in the

brackets, e.g.

(1) ≡ [23456]. (3.9)

Using the identity between the invariants [43]

(1)− (2) + (3)− (4) + (5)− (6) = 0 (3.10)

we can write the NMHV amplitude (3.3) as

P(0)
NMHV = (6) + (4) + (2) = (1) + (3) + (5). (3.11)

The loop contributions are taken into account dressing (t) by functions of the dual

conformal invariants ui
2 [41]

PNMHV =
1

2

{

[(1)+(4)]V (u1, u2, u3)+[(2)+(5)]V (u2, u3, u1)+[(3)+(6)]V (u3, u1, u2)

+ [(1)−(4)] Ṽ (y1, y2, y3)−[(2)−(5)] Ṽ (y2, y3, y1)+[(3)−(6)] Ṽ (y3, y1, y2)
}

,

(3.12)

where

yi =
ui − z+
ui − z−

(3.13)

are given by

z± =
1

2

[

−1 + u1 + u2 + u3 ±
√
∆
]

, ∆ = (1− u1 − u2 − u3)
2 − 4u1u2u3. (3.14)

The functions V and Ṽ represent parity conserving and parity violating amplitudes respec-

tively and obey the symmetry properties

V (u3, u2, u1) = V (u1, u2, u3), Ṽ (y3, y2, y1) = −Ṽ (y1, y2, y3) (3.15)

2We use ui notation to avoid any confusion with complex variables w and w∗. Our cross ratios are

related to the ones in ref. [41] by u1 = u, u2 = v and u3 = w. The variables yi are identified as follows

y1 = yu, y2 = yv and y3 = yw.

– 7 –
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and are functions of the coupling constant

V (a) =
∞
∑

ℓ=0

aℓV (ℓ), Ṽ (a) =
∞
∑

ℓ=0

aℓṼ (ℓ). (3.16)

At tree level

V (0) = 1, Ṽ (0) = 0 (3.17)

and at one loop we have [16, 43, 45, 46]

V (1)(u1, u2, u3) =
1

2

[

− log u1 log u3 + log(u1u3) log u2 + Li2(1− u1) (3.18)

+Li2(1− u2) + Li2(1− u3)− 2ζ2

]

,

Ṽ (1)(ui, uj , uk) = 0, (3.19)

while at two loops both V (2) and Ṽ (2) are non-vanishing and were calculated in ref. [41].

In the present study we check the analytic properties of V (1), V (2) and Ṽ (2) going to

the Mandelstam region and show that they correctly reproduce the BFKL calculations to

leading logarithmic accuracy.

3.1 Multi-Regge kinematics in the Euclidean region

In this section we consider multi-Regge kinematics of eq. (2.4) for 2 → 4 scattering and

perform an analytic continuation of V and Ṽ to the corresponding Mandelstam region in

figure 2 reproducing the BFKL leading log calculations at one and two loops.

In multi-Regge kinematics yi are functions of only the complex variables w and w∗

y1 → 1, y2 → ỹ2 =
1 + w∗

1 + w
, y3 → ỹ3 =

1 + 1
w

1 + 1
w∗

. (3.20)

Before discussing the Mandelstam region, we investigate the Regge behavior of the

function V and Ṽ at one loop in the Euclidean region

V (1)(u1, u2, u3) ≃ 1

2
log u2 log u3, (3.21)

V (1)(u3, u1, u2) ≃ −1

2
log u2 log u3,

V (1)(u2, u3, u1) ≃ +
1

2
log u2 log u3

and two loops3

V (2)(u1, u2, u3) ≃ 1

16
log2 u2 log

2 u3, (3.22)

V (2)(u3, u1, u2) ≃ − 1

16
log2 u2 log

2 u3,

V (2)(u2, u3, u1) ≃ 1

16
log2 u2 log

2 u3

Ṽ (2)(yi, yj , yk) ≃ 0.

3We calculate the asymptotics of V and Ṽ from the symbol in ref. [41], which captures only “pure”

functions and not terms of lower transcendentality, such as ζ2 or those multiplied by a power of π.
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We immediately notice a very disturbing feature of V , namely, that they are badly divergent

in the MRK of eq. (2.4) because

log u2 log u3 ≃ log2 δ + log δ log(ũ2ũ3) +O(1), (3.23)

where (see also eq. (2.11))

δ =
√
u2u3 = (1− u1)

√

ũ2ũ3 → 0 (3.24)

is the only small parameter along with finite ũ2 and ũ3. From Regge theory we expect

all such divergences in the Euclidean region to cancel between them. This implies the

condition

[(1) + (4)] + [(2) + (5)]− [(3) + (6)] = 0, (3.25)

which we check later by explicit calculation of the R-invariant in eq. (3.7). The function

Ṽ is zero at one loop and vanishing at two loops in MRK

3.2 The Mandelstam region

We consider the Mandelstam region illustrated in figure 2, where we flip two produced

particles. The analytic continuation for the 2 → 4 scattering, which takes one from the

Euclidean region to the Mandelstam region is given by

u1 = |u1|e−i2π, u2 = |u2|, u3 = |u3|. (3.26)

After the analytic continuation eq. (3.26) the functions V at one loop in MRK read

V (1)(u1, u2, u3) → V (1)(u1, u2, u3) + iπ log δ − i3π

2
log ũ2 +

iπ

2
log ũ3 (3.27)

V (1)(u3, u1, u2) → V (1)(u3, u1, u2)− iπ log δ +
iπ

2
log ũ2 −

iπ

2
log ũ3

V (1)(u2, u3, u1) → V (1)(u2, u3, u1) + iπ log δ +
iπ

2
log ũ2 −

i3π

2
log ũ3.

We note that the cancelation of undesired iπ log δ terms is guaranteed by the condi-

tion eq. (3.25) on the R-invariants. Indeed, projecting (t) onto the + + − + −− helicity

configuration, relevant for 2 → 4 scattering in the multi-Regge kinematics, we obtain

(1) → 1

1 + w∗
, (5) → w∗

1 + w∗
, (6) → 1, (2) → 0, (3) → 0, (4) → 0, (3.28)

which agrees with the condition for the cancelation of large logarithms in eq. (3.25). In-

serting eq. (3.28) in the ratio function P in eq. (3.12) at tree level we get P = 14 and at

one loop we reproduce the BFKL result of eq. (2.20), namely

P(1) LLA
6 NMHV ≃ −iπ 1

1 + w∗
log ũ2 − iπ

w∗

1 + w∗
log ũ3. (3.29)

4The tree level result was anticipated by Del Duca [48].
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At two loops the analytic continuation of V and Ṽ is performed using the prescription

for the symbol introduced in ref. [47]. The relative simplicity of the symbol after the

analytic continuation allows us to find a corresponding function up to possible “non-pure”

functions, such as ζ2 or those are built of powers of π times pure functions, and thus are

beyond the accuracy of the leading logarithmic approximation considered in the present

study. Each individual V contains undesired large logarithm terms of the order iπ log3 δ,

but those cancel in sum leaving only reasonable subleading logarithmic terms of the order

iπ logℓ−1 δ (ℓ is the number of loops). The functions Ṽ have only “good” leading log terms

and thus we have

V (2)(u1, u2, u3)+V
(2)(u3, u1, u2) →−iπ

2
log δ log2 ũ2−

iπ

2
log δ log ũ2 log ũ3+O(1), (3.30)

V (2)(u2, u3, u1) + V (2)(u3, u1, u2) → − iπ
2

log δ log2 ũ3 −
iπ

2
log δ log ũ2 log ũ3 +O(1),

Ṽ (2)(y1, y2, y3) → iπ log δ

(

1

2
log |w|2 log 1 + w

1 + w∗
+ Li2(−w)− Li2(−w∗)

)

+O(1).

Inserting eq. (3.30) and eq. (3.28) into the expression for the ratio function in eq. (3.12)

we get

P(2)LLA
6NMHV =

1

2

1

1+w∗

(

V (2)(u1, u2, u3)+V
(2)(u3, u1, u2)+Ṽ

(2)(y1, y2, y3)−Ṽ (2)(y3, y1, y2)
)

+
1

2

w∗

1+w∗

(

V (2)(u2, u3, u1)+V
(2)(u3, u1, u2)+Ṽ

(2)(y2, y3, y1)−Ṽ (2)(y3, y1, y2)
)

≃ − iπ
2

log δ

{

1

1+w∗

(

−log |w|2 log(1+w)+log2 |1+w|2−Li2(−w)+Li2(−w∗)
)

+
1

1+ 1
w∗

(

−log
1

|w|2 log
(

1+
1

w

)

+log2
∣

∣

∣

∣

1+
1

w

∣

∣

∣

∣

2

−Li2

(

−1

w

)

+Li2

(

− 1

w∗

)

)}

(3.31)

which reproduces the BFKL result in eq. (2.21). The overall minus sign is due to the fact

that log(s23/s0) = − log δ.

It is worth emphasizing that the first two lines of eq. (3.31) represent a general structure

valid to any loop order in the leading logarithm approximation. It is unambiguously fixed

by properties of V and Ṽ in eq. (3.15), the target-projectile symmetry as well as the proper

collinear limit as follows. In the multi-Regge kinematics of eq. (2.4) the variables ui and

yi can be written as

u1 → 1, u2 →
1− u1
|1 + w|2 , u3 →

1− u1

|1 + 1
w
|2 , y1 → 1, y2 →

1 + w∗

1 + w
, y3 →

1 + 1
w

1 + 1
w∗

. (3.32)

The target-projectile symmetry means that the result is invariant under an exchange of

the colliding particles in figure 2, which implies5 w ↔ 1/w∗ and thus

u1 ↔ u1, u2 ↔ u3, y2 ↔ y3. (3.33)

5Here we took into account the fact that the produced particles having +− helicity configuration should

have −+ helicities to preserve the target-projectile symmetry after the exchange of the colliding particles.
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This fixes the combination of V and Ṽ in the brackets in eq. (3.31), but leaves some

freedom of assigning this combination to either 1/(1 +w∗) or 1/(1 + 1
w∗ ). It is resolved by

demanding of a proper collinear limit, i.e. any function which multiplies 1/(1+w∗) should

vanish for |w| → 0. The overall coefficient is fixed by the tree level expression. The above

arguments are valid to any loop order determining the general structure of the first two

lines in eq. (3.31) for + +−+−− helicity configuration.

In a similar way we checked the other + − + + −− helicity configuration for the

2 → 4 amplitude as well, and found the analytic continuation of V and Ṽ to be consistent

with BFKL calculations for the 3 → 3 amplitude for helicity configurations + + + − −−,

+−+−+− and their conjugates. In the leading logarithm approximation the 3 → 3 case

differs from the 2 → 4 case only by the sign

PLLA
2→4 NMHV = −PLLA

3→3 NMHV = PLLA
6 NMHV (3.34)

for PLLA
6 NMHV in eq. (2.19). The same is true also for the MHV and NMHV remainder

functions.

The analytic continuation to the Mandelstam region for the 3 → 3 amplitude is given

by [8, 49]

u1 = |u1|ei2π, u2 = |u2|e−iπ, u3 = |u3|e−iπ (3.35)

and the multi-Regge kinematics reads

u1 → 1+, u2 → 0+, u3 → 0+, with ũ2 =

∣

∣

∣

∣

u2
1− u1

∣

∣

∣

∣

≃ O(1) and ũ3 =

∣

∣

∣

∣

u3
1− u1

∣

∣

∣

∣

≃ O(1).

(3.36)

Note that in the 3 → 3 case 1 − u1 is negative resulting in the difference of the real part

between 3 → 3 and 2 → 4 remainder functions as discussed in the next section.

Using the property in eq. (2.14) and the three loop remainder function in eq. (2.10)

we calculate the three loop leading log remainder function in eq. (2.12)

R
(3) LLA
6;NMHV ≃ iπ

4
log2 δ

(

1

1 + w∗
f3(w,w

∗) +
1

1 + 1
w∗

f3

(

1

w
,
1

w∗

)

)

, (3.37)

where6

f3(w,w
∗) = −1

2
log2 |w|2 log(1 + w∗) + log(−w)

(

log2(1 + w∗)− log2(1 + w)
)

(3.38)

+2ζ2 log |1 + w|2 + 1

2
log |w|2

(

Li2(−w)− Li2(−w∗)
)

−2 log |1 + w|2Li2(−w)− 2Li3(1 + w)− 2Li3(1 + w∗) + 4ζ3.

The leading log ratio function is then found from eq. (2.10) and eq. (2.17)

P(3)
6 NMHV ≃ R

(3) LLA
6;NMHV −R

(3) LLA
6;MHV (3.39)

6We appreciate Dixon, Duhr and Pennington [57] for pointing out a typo in the sigh of the second term

of eq. (3.38).
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There is an ambiguity related to the indefinite integral in eq. (2.14), which is resolved by

demanding the singlevaluedness and proper collinear behavior of R
(3) LLA
NMHV (see appendix B

for more details).

Eqs. (3.37)–(3.39) present a prediction to be checked against an eventual 3-loop cal-

culation of V (3) and Ṽ (3).

4 Real part of the remainder function

In this section we calculate the real part of the remainder function at the next-to-leading

logarithm order. The leading logarithm contribution to the remainder function is pure

imaginary, of the order logℓ−1 δ (ℓ is the number of loops) and comes entirely from the

Mandelstam cut. The real part appears only at the next-to-leading logarithm level of the

order of logℓ−2 and originates from both Mandelstam cuts and Regge poles as it was shown

in ref. [50]. There is no full separation between poles and cuts in the remainder function

due to the fact that the BDS amplitude, lacking the entire contributions from Mandelstam

cuts, still has some residual terms which can be assigned to Mandelstam cuts. Those are

removed from the remainder function by introducing a phase ∆ extracted from the BDS

amplitude at one loop

∆ =
γK
8

log ũ2ũ3 =
γK
8

log
|w|2

|1 + w|4 , (4.1)

where γK ≃ 4a and a = g2Nc/8π
2 are the cusp anomalous dimension and the coupling

constant respectively. Thus one can write [39, 50] the dispersion relation for the real and

imaginary part of the remainder function for the 2 → 4 amplitude

eiπ∆R2→4 = cosπωab + i

∫ +i∞

−i∞

dω

2πi
f(ω)e−iπω|δ|−ω (4.2)

and the 3 → 3 scattering

e−iπ∆R3→3 = cosπωab − i

∫ +i∞

−i∞

dω

2πi
f(ω)|δ|−ω. (4.3)

The phase ∆ removes the residual cut terms of the BDS amplitude from the remainder

function and the last term in eq. (4.2) and eq. (4.3) restores the correct Mandelstam cut

contribution. The Regge poles are accounted for by the cosπωab term with

ωab =
γK
8

log
ũ3
ũ2

=
γK
8

log |w|2. (4.4)

To the leading logarithm order for the MHV amplitude the function f(ω) is determined

from eq. (2.6) as

i

∫ +i∞

−i∞

dω

2πi
fLLAMHV (ω)|δ|−ω =

ia

2

+∞
∑

n=−∞

∫ +∞

−∞

dν
(−1)n

ν2 + n2

4

wiν+n
2 (w∗)iν−

n
2 δaEn,ν , (4.5)
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and the next-to-leading corrections to f(ω) were found in refs. [39, 40]. The phase coefficient

e−iπω in the integrand of eq. (4.2) makes the real part of remainder function to obtain

contributions from the imaginary part substituting

log δ → log δ + iπ (4.6)

in the leading logarithm terms of the same loop order, whereas the phase ∆ gives the

contribution to the real part from the imaginary leading logarithm terms of the previous

loop order. For example, expanding eq. (4.2) to the second order in a one obtains

a2ℜ
(

R
(2);NLLA
2→4; MHV

)

≃ −iπ∆R(1);LLA
2→4; MHV − π2ω2

ab

2
+
π2δ2

2
+R

(2);LLA
2→4; MHV |log δ→iπ ≃ 0 (4.7)

provided the one loop remainder function R
(1);LLA
2→4; MHV is set to be zero. In eq. (4.7) the

Regge pole and Mandelstam cut contributions cancel out resulting in the zero real part

for the MHV remainder at two loops for the 2 → 4 scattering amplitude. For the 3 → 3

case in eq. (4.3) the mixing phase e−iπω is absent in the integrand, and thus we have a

non-vanishing real part

a2ℜ
(

R
(2);NLLA
3→3; MHV

)

≃ −iπ∆R(1);LLA
3→3; MHV − π2ω2

ab

2
+
π2δ2

2
=
π2

2
log |1 + w|2 log

∣

∣

∣

∣

1 +
1

w

∣

∣

∣

∣

2

.

(4.8)

The absence of e−iπω in eq. (4.3) allows us to make all loop prediction for the following

object [49]

ℜ
(

e−iπ∆R3→3

)

= cosπωab, (4.9)

which is valid also in the strong coupling region.

The dispersion relations eq. (4.2) and eq. (4.3) remain valid also for the NMHV re-

mainder functions, because in the derivation no assumption was made about the helicity

configuration of the produced particles. The real part of the 2 → 4 next-to-leading ratio

function is given by

ℜ(PNLLA
2→4 ) ≃ −iπ∆PLLA

2→4 + PLLA
2→4 |log δ→log δ+iπ − PLLA

2→4 (4.10)

≃ −iπ∆PLLA
6 + PLLA

6 |log δ→log δ+iπ − PLLA
6 ,

and for 3 → 3 scattering it reads

ℜ(PNLLA
3→3 ) ≃ iπ∆PLLA

3→3 ≃ −iπ∆PLLA
6 (4.11)

for the leading logarithm ratio function PLLA
6 in eq. (2.19). The contributions of the Regge

poles cosωab completely cancel out in the ratio function having the same sign in eq. (4.7)

and eq. (4.8).

The last two terms in eq. (4.10) can be written as

PLLA
6 |log δ→log δ+iπ−PLLA

6 ≃ a2π

2

+∞
∑

n=−∞

∫ +∞

−∞

dν
(−1)n
ν2+ n2

4

n

iν+ n
2

wiν+n
2 (w∗)iν−

n
2En,ν δ

aEn,ν .

(4.12)
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Figure 3. One of the Mandelstam regions for 2 → 5 amplitude in which the remainder function

reduces to the 2 → 4 case with redefined momenta.

We checked that the V and Ṽ of ref. [41] correctly reproduce the real parts of the 2 → 4 and

3 → 3 remainder functions at two loops. Expressions in eq. (4.10) and eq. (4.11) together

with eqs. (3.31)–(3.39) give a prediction for the next-to-leading real part of the remainder

at three loops.

5 More legs

In this section we consider NkMHV in the leading log approximation with more external

gluons. We start our discussion with the 2 → 5 amplitude, where we have three produced

particles with momenta p2, p3 and p4. In multi-Regge kinematics the number of possible

helicity configurations is limited due to the fact that the colliding particles have eikonal

vertices and as a result their helicities stay the same. In the convention where all momenta

are outgoing this implies that helicities of particles with p1 and p7 should have opposite

sign, and the same for gluons with p5 and p6. The helicities of the produced particles

with momenta p4, p5 and p6 are arbitrary. The 2 → 5 MHV amplitude was considered in

refs. [51, 52] and it was shown that its leading log remainder function can be written as a

sum of two 2 → 4 remainder functions. This happens due to some cancelations between

propagators and effective vertices for particles of the same helicity. Unfortunately this is

not the case with NMHV amplitudes, but one can consider Mandelstam regions, where only

two adjacent particles are flipped and then the remainder function is given by the same

expression as for 2 → 4 case in eq. (2.12) with redefined s23/s0 and w. For example, when

we flip produced particles with momenta p2 and p3 as depicted in figure 3 for ++−++−−
helicity configuration we get

RLLA;+−
7;2;NMHV ≃ − ia

2

+∞
∑

n=−∞

∫ +∞

−∞

dν
(−1)n

(iν + n
2 )

2
w′iν+n

2 (w′∗)iν−
n
2

(

(

s45
s′0

)−aEn,ν

− 1

)

, (5.1)

where the cross ratios are as in eq. (2.2), but with i = 1 to 7;

s23
s′0

=
1√
u6u7

, (5.2)

– 14 –



J
H
E
P
0
1
(
2
0
1
3
)
0
6
8

and7

w′ ≡ (p5 + p6)p2
(p7 + p1)p3

=
1− ũ6 − ũ7 +

√

(1− ũ6 − ũ7)2 − 4ũ6ũ7
2ũ6

(5.3)

for

ũ1 =
u6

1− u1
, ũ7 =

u7
1− u1

. (5.4)

The multi-Regge kinematics for 2 → 5 scattering implies

1− u1 ∝ δ, 1− u2 ∝ δ, 1− u5 ∝ δ2, δ → 0 (5.5)

and the rest of cross ratios are of the order of δ.

In this case the ratio function to leading log accuracy is given by

PLLA;+−
7;2;NMHV ≃ − ia

2

+∞
∑

n=−∞

∫ +∞

−∞

dν
(−1)n

ν2 + n2

4

n

iν + n
2

w′iν+n
2 (w′∗)iν−

n
2

(

s23
s′0

)−aEn,ν

. (5.6)

The corresponding analytic continuation reads

u1 = |u1|e−i2π, u3 = |u3|e−iπ, u4 = |u4|e+iπ, (5.7)

while the other cross ratios remain the same.

In a similar way we can find the ratio function for many other Mandelstam regions,

where only two adjacent particles are flipped. The problem reduces to a proper redefinition

of the energy scale s0, the complex variable w and the analytic continuation done case by

case.

The NMHV superamplitudes for n = 7 were considered in refs. [42, 53, 54], which

can be analyzed analogously to that of n = 6. This is a project for future work. It worth

emphasizing that the ratio function for the Mandelstam regions, where we flip two adjacent

particles, in the leading order does not depend on the helicities of the all other particles.

More detailed discussion on this topic will be presented by us elsewhere.

6 Conclusions

The multi-Regge limit (MRK) for N=4 SYM NMHV amplitudes were considered in two dif-

ferent formulations: the BFKL formalism for multi-Regge amplitudes in leading logarithm

approximation, and superconformal N=4 SYM amplitudes. It was shown that the two ap-

proaches agreed in explicit calculations in leading logarithm approximation to two loops for

the six-point gluon amplitudes. Predictions were made for three loop six point NMHV am-

plitudes and two-loop seven-point NMHV amplitudes in leading logarithm approximation

from the BFKL point of view. Comparisons with similar calculations from superconfor-

mal amplitudes should strengthen the connection between these two methods. Another

approach to computing the remainder functions is that of the operator product expansion

7Here pi denotes the complex transverse momenta.
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(OPE) developed by Alday, Gaiotto, Maldacena, Sever, and Vieira (AGMSV) [31–33, 55].

In particular Sever, Vieira, and Wang [34] rederive the one-loop NMHV six-point ampli-

tudes from the OPE point of view. There appears to be a connection between the OPE

methods and the BFKL results when compared in the collinear, multi-Regge limits as

shown in ref. [56]. It would be interesting to find the precise relationship between the two

points of view, as this could offer additional insights into this class of problems.

After this paper was posted Dixon, Duhr and Pennington [57] presented an extension

of the 2 → 4 MHV and NMHV amplitudes in the MRK limit to 10-loops using single-valued

harmonic polylogarithms as a basis. Another interesting manuscript was recently written

by J. Pennington [58], where he extends the analysis to higher loops. Both ref. [57] and

ref. [58] confirm the results of present paper.
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A Impact factors in the BFKL approach

In this section we find the leading order impact factor needed for calculating the NMHV

amplitude in leading logarithm approximation. We adopt the momenta convention of

ref. [8] because our analysis is tightly related to discussion presented in chapters 2 and 5

of ref. [8]. Firstly we note that the effective production vertex Cµ(q2,q1) can be written

in a very compact way for a definite helicity of the produced particles

Cµ(q2,q1)eµ(k1) =
√
2
q2q

∗
1

k1
, (A.1)

where we introduce the complex transverse momenta

k = kx + iky, k∗ = kx − iky. (A.2)

Following the lines of chapter 2 of ref. [8] we readily find that the impact factors for the

opposite helicities are related by complex conjugation in momentum space (see eq. (13) of

ref. [8]) and thus we have

Φ+
2 =

k2(k
′ − q2)

q2(k
′ − k2)

, Φ−
2 =

k∗2(k
∗′ − q∗2)

q∗2(k
∗′ − k∗2)

. (A.3)

The impact factor has to be convolved with the BFKL Green function (see eqs. (84)-(92)

of ref. [8])

χ±
2 =

∫

d2k′

2π

|q2|2
|k′|2|q2 − k′|2

(

q2 − k′

k′

)iν+n
2

(

q∗2 − k∗
′

k∗′

)iν−n
2

Φ±
2 . (A.4)
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It is easy to see from eq. (A.4) that the impact factors for different helicities are related by

χ−(ν, n) = (χ+(−ν,−n))∗ (A.5)

rather than a simple conjugation. The χ+
2 in eq. (A.4) was calculated in ref. [8]

χ+
2 = −1

2

1

iν − n
2

(

q∗3
k∗2

)iν−n
2

(

q3
k2

)iν+n
2

(A.6)

and eq. (A.5) implies eq. (2.13) resulting in difference of the integral representations of

the leading logarithm MHV and NMHV remainder functions in eq. (2.6) and eq. (2.12)

respectively.

B Leading logarithm NMHV remainder functions at one, two and three

loops

In this section we calculate the leading logarithm ratio function in eq. (2.19) given by

PLLA
6 NMHV ≃ − ia

2

+∞
∑

n=−∞

∫ +∞

−∞

dν
(−1)n

ν2 + n2

4

n

iν + n
2

wiν+n
2 (w∗)iν−

n
2

(

s23
s0

)−aEn,ν

. (B.1)

In contrast to the remainder function for the NMHV amplitude in eq. (2.12), the ratio

function is finite even at one loop because the IR divergences cancel between the MHV and

NMHV remainder functions. Technically, the divergence of the type
∫

dν/ν2 is absent here

due to the presence of n in the numerator, which makes the whole expression to vanish at

n = 0.

We start with the one loop case

P(1) LLA
6 NMHV ≃ − i

2

+∞
∑

n=−∞

∫ +∞

−∞

dν
(−1)n

ν2 + n2

4

n

iν + n
2

wiν+n
2 (w∗)iν−

n
2 (B.2)

and calculate P(1) LLA
6 NMHV using the Cauchy theorem as follows. We assume |w| > 1 and close

the integration contour in the upper semiplane. Then we have poles at ν = in/2 for which

n > 0, and poles at ν = −in/2 for which n < 0. The residues at poles ν = in/2 give

− iπ
∞
∑

n=1

(w∗)−n

n
(1 + n log |w|2) = iπ log(1 + w∗) +

iπ

1 + w∗
logw − iπ w∗

1 + w∗
logw∗,(B.3)

while from poles at ν = −in/2 we have

iπ
−1
∑

n=−∞

wn

n
= iπ log

(

1 +
1

w

)

. (B.4)

Adding the two contributions we have

P(1) LLA
6 NMHV ≃ iπ

1

1 + w∗
log |1 + w|2 + iπ

w∗

1 + w∗
log

∣

∣

∣

∣

1 +
1

w

∣

∣

∣

∣

2

. (B.5)
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We notice that P(1) LLA
6 NMHV can be written as

P(1) LLA
6 NMHV ≃ iπ

1 + w∗
f̃1(w,w

∗) +
iπ

1 + 1
w∗

f̃1

(

1

w
,
1

w∗

)

, (B.6)

where

f̃1(w,w
∗) = log |1 + w|2. (B.7)

The functions 1/(1 + w∗) and 1/(1 + 1
w∗ ) are related to R-invariants and are universal for

all loops. Thus the problem of calculating the ratio function reduces to finding f̃ℓ(w,w
∗),

where ℓ is the number of loops. By virtue of eq. (2.17), the function f̃ℓ(w,w
∗) includes

the MHV remainder function and it is useful to introduce a redefined function fℓ(w,w
∗)

defined by

fℓ(w,w
∗) = f̃ℓ(w,w

∗)− fMHV
ℓ (w,w∗), (B.8)

where fMHV
ℓ (w,w∗) is the corresponding MHV contribution. The function fℓ(w,w

∗) can

be found from fMHV
ℓ (w,w∗) using the property of the leading logarithm NMHV remainder

functions in eq. (2.14)

RNMHV =

∫

dw
w∗

w

∂

∂w∗
RMHV (B.9)

and demanding singlevaluedness and proper collinear behavior. At two loops we read out

from eq. (2.9)

fMHV
2 (w,w∗) = log |1 + w|2 log

∣

∣

∣

∣

1 +
1

w

∣

∣

∣

∣

2

(B.10)

and then using eq. (B.9) obtain

∫

dw
w∗

w

∂

∂w∗
fMHV
2 (w,w∗) =

1

1 + w∗

(

log |w|2 log(1 + w∗)− 1

2
log2(1 + w∗)− Li2(−w)

)

+
w∗

1 + w∗

(

1

2
log2w + logw∗ logw − logw log(1 + w∗) + Li2(−w)

)

+ F (w∗), (B.11)

where F (w∗) is some arbitrary function of only w∗. We fix F (w∗) by demanding single-

valuedness for w being rotated by an arbitrary phase φ and w∗ rotated by −φ. The best

way to see how this determines F (w∗) is to inspect the first term in eq. (B.11), namely the

function

log |w|2 log(1 + w∗)− 1

2
log2(1 + w∗)− Li2(−w). (B.12)

Its symbol reads

w ⊗ (1 + w∗) + (1 + w)⊗ w + w∗ ⊗ (1 + w∗) + (1 + w∗)⊗ w (B.13)

+(1 + w∗)⊗ w∗ − (1 + w∗)⊗ (1 + w∗),
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and the analytic continuation is done clipping the first entry [47]. In particular, for w < 1

w ⊗ (1 + w∗) → w ⊗ (1 + w∗) + iφ (1 + w∗) (B.14)

and the last term cancels in eq. (B.13) against

w∗ ⊗ (1 + w∗) → w∗ ⊗ (1 + w∗)− iφ (1 + w∗). (B.15)

For w > 1 we have also

(1 + w)⊗ w → (1 + w)⊗ w + iφ w +
(iφ)2

2
(B.16)

and the last two terms cancel against

(1 + w∗)⊗ w → (1 + w∗)⊗ w − iφ w − (iφ)2

2
. (B.17)

This cancelation does not happen for (1+w∗)⊗w∗ and −(1+w∗)⊗ (1+w∗) in eq. (B.13),

and we can use the freedom of choosing F (w∗) to remove those. Thus we are left with

w ⊗ (1 + w∗) + (1 + w)⊗ w + w∗ ⊗ (1 + w∗) + (1 + w∗)⊗ w, (B.18)

which matches

f2(w,w
∗) = log |w|2 log(1 + w∗)− Li2(−w) + Li2(−w∗) (B.19)

up to a constant, which can be shown to be zero by demanding eq. (B.18) to be vanishing

as |w| → 0 in the collinear limit. Now we readily write the answer for the leading logarithm

remainder function at two loops

R
(2) LLA
NMHV ≃ iπ

2
log

(

s23
s0

)

{

1

1 + w∗
f2(w,w

∗) +
1

1 + 1
w∗

f2

(

1

w
,
1

w∗

)

}

. (B.20)

We checked this result by a direct calculation using the Cauchy theorem.

We apply the same procedure to the three loop NMHV remainder function. Firstly,

we read out from eq. (2.10)

fMHV
3 (w,w∗) = log |w|2 log2 |1 + w|2 − 2

3
log3 |1 + w|2 − 1

4
log2 |w|2 log |1 + w|2

+
1

2
log |w|2 (Li2 (−w) + Li2 (−w∗))− Li3 (−w)− Li3 (−w∗) (B.21)

and then calculate
∫

dw
w∗

w

∂

∂w∗
fMHV
3 (w,w∗) =

1

1+w∗

{

1

2
log |w|2 log(1+w∗)−log(−w) log |1+w|2

−1

2
log |w|2 Li2(−w)−2 log |1+w|2Li2(1+w)+

1

2
logw Li2(−w∗)+2Li3(1+w)+F (w

∗)

}

+
w∗

1+w∗

{

. . .
}

, (B.22)
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where the last term is irrelevant for the present discussion because it can be found as the

function which multiplies 1/(1 + w∗). Analyzing the symbol of

1

2
log |w|2 log(1 + w∗)− log(−w) log |1 + w|2 − 1

2
log |w|2 Li2(−w) (B.23)

−2 log |1 + w|2Li2(1 + w) +
1

2
logw Li2(−w∗) + 2Li3(1 + w)

we see that to ensure the singlevaluedness of the expression one should add to it the

following symbol

− 1

2
w∗ ⊗ (1 + w∗)⊗ w∗ − 2w∗ ⊗ (1 + w∗)⊗ (1 + w∗)− (1 + w∗)⊗ w∗ ⊗ w∗, (B.24)

which corresponds to

1

2
logw∗ Li2(−w∗) + 2 Li3(1 + w∗). (B.25)

This determines F (w∗) in eq. (B.22) up to a constant, which is fixed to by demanding the

entire expression to vanish in the collinear limit |w| → 0. Thus we have

F (w∗) =
1

2
logw∗ Li2(−w∗) + 2 Li3(1 + w∗)− 4ζ3 (B.26)

and then

f3(w,w
∗) = −1

2
log2 |w|2 log(1 + w∗) + log(−w)

(

log2(1 + w∗)− log2(1 + w)
)

(B.27)

+2ζ2 log |1 + w|2 + 1

2
log |w|2

(

Li2(−w)− Li2(−w∗)
)

−2 log |1 + w|2Li2(−w)− 2Li3(1 + w)− 2Li3(1 + w∗) + 4ζ3.

for the NMHV remainder function at three loops in the leading logarithm approximation

R
(3) LLA
6;NMHV ≃ iπ

4
log2 δ

(

1

1 + w∗
f3(w,w

∗) +
1

1 + 1
w∗

f3

(

1

w
,
1

w∗

)

)

. (B.28)
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