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1 Introduction

Relativistic Fluid dynamics is an effective large wavelength description (at length scales

much bigger than the mean free path) of certain phases of matter which at microscopic

level are described by relativistic quantum field theories. The basic equations governing

dynamics in this description are the conservation laws corresponding to the global symme-

tries of the underlying theory. More specifically, these are the conservation equations of

the stress energy tensor and charge currents. These equations are to be supplemented by

constitutive relations which expresses the stress-energy tensor and charge current in terms

of the basic fluid variables namely velocity, temperature and chemical potential.

Consistency with second law of thermodynamics has been used as a constraining prin-

ciple on the constitutive relations in fluid dynamics (see [1–8] and references therein). This

gives two kinds of relations: a) Inequality type relations on dissipative coefficients(which

contributes to entropy increase). b) Equality type relations on non dissipative coeffi-

cients(which do not contribute to entropy increase). Recently in [9, 10] it was shown

that the requirement of the existence of stationary equilibrium which is generated from a

partition function gives all the equality type relations. One of the cases that was studied

in [9] was charged fluid dynamics in 3+1 dimensions when the charge current is anomalous.

In this case, the results of Son and Surowka [2] on the chiral magnetic and chiral vorticity

flows, were recovered without making any reference to an entropy current.

In this note we study the anomalous charged fluid dynamics in 1+1 dimensions using

the equilibrium partition function. This system has earlier been studied in [11] using the

second law of thermodynamics as well as from an action point of view. In this note we

write down the equilibrium partition function for this system at zero derivative order which

reproduces the anomalous charge conservation and on comparison with the most general

constitutive relations in fluid dynamics, gives the results obtained in [11].
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2 1+1d parity violating charged fluid dynamics

Consider the parity violating charged fluids in 1+1 dimensions with background metric

and gauge field

ds2 = −e2σ(dt+ a1dx)
2 + g11dx

2

A = A0dt+A1dx
1 .

(2.1)

The equations of motion are the following anomalous conservation laws

∇µT
µν = FνλJ̃λ

∇µJ̃
µ = CǫµνFµν

∇µJ
µ =

C

2
ǫµνFµν

(2.2)

here J̃ , J are covariant and consistent currents respectively ([12], see also [9]) and C

denotes the coefficient of gauge anomaly.

The most general partition function consistent with Kaluza-Klein gauge invariance,1

diffeomorphism along the spatial direction and U(1) gauge invariance upto anomaly is

W = Winv +Wanom

Winv = C1T0

∫

A1dx− C2T0

∫

a1dx

Wanom = − C

T0

∫

A0A1dx

(2.4)

where C, C1 and C2 are constants independent of σ and A0 and

A0 = A0 + µ0, Ai = Ai −A0ai. (2.5)

Equation (2.4) is written in terms of Ai which unlike Ai, are Kaluza-Klein gauge invariant.

Under U(1) gauge transformation A0 → A0, A1 → A1 + ∂1φ, we obtain2

δWinv = 0

δWanom =
C

T0

∫

φ ∂1A0dx = −C

2

∫

d2x
√−g2 φ ǫµνFµν .

(2.6)

Table 1 lists the action of 2 dimensional C, P and T on various fields. Requiring CPT

invariance sets C1 to zero since the term with coefficient C1 is odd under CPT.

Now let us look at the most general constitutive relations allowed by symmetry in the

parity violating case at zero derivative order. At this order, there are no gauge invariant

parity odd scalar or tensor. But one can construct a gauge invariant vector3

ũµ = ǫµνuν . (2.8)

1

V
′
i = Vi − ∂iφV0, (V ′)0 = V

0 + ∂iφV
i
. (2.3)

2Since we are interested in time independent background fields, we consider only time independent gauge

transformations.
3In components the parity odd vector is

ũ0 = 0, ũ
1 = ǫ

10
u0 = ǫ

1 (2.7)

where ǫ1 = eσǫ01 = 1√
g11

.
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Field C P T CPT

σ + + + +

a1 + − − +

g11 + + + +

A0 − + + −
A1 − − − −

Table 1. Action of CPT.

The most general allowed constitutive relations allowed by symmetry in Landau frame

thus take the form

Tµν = (ǫ+ p)uµuν + pgµν

J̃µ = quµ + ξj ũ
µ.

(2.9)

2.1 Equilibrium from partition function

In this subsection we will use the equilibrium partition function (2.4) to obtain the stress

tensor and charge current at zero derivative order. Setting C1 to zero in (2.4) we have

W = − C

T0

∫

A0A1dx− C2T0

∫

a1dx (2.10)

Using the partition function (2.10) it is straightforward to compute the stress tensor

and charge current4 in equilibrium to be

T00 = 0, T 11 = 0, T 1
0 = e−σǫ1

(

−T 2
0C2 + CA2

0

)

,

J0 = Cǫ1A1e
σ, J1 = −Cǫ1e−σA0.

(2.12)

The covariant current (J̃µ) can be obtained from the consistent current (Jµ) by an appro-

priate shift as follows

J̃µ = Jµ + J
µ
sh, J

µ
sh = CǫµνAν . (2.13)

In components the covariant current is then

J̃0 = 0, J̃1 = −2Ce−σǫ1A0. (2.14)

2.2 Equilibrium from hydrodynamics

We are interested in the stationary equilibrium solutions to conservation equations corre-

sponding to the constitutive relations (2.9). The equilibrium solution in the parity even

4

T00 = −

T0e
2σ

√

−g(p+1)

δW

δσ
, T

i
0 =

T0
√

−g(p+1)

(

δW

δai

−A0
δW

δAi

)

,

T
ij = −

2T0
√

−g(p+1)

g
il
g
jm δW

δglm
, J0 = −

e2σT0
√

−g(p+1)

δW

δA0
, J

i =
T0

√

−g(p+1)

δW

δAi

. (2.11)

where, for instance, the derivative w.r.t. A0 is taken at constant σ, ai, Ai, g
ij , T0 and µ0. See [9] for details.
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Type Data Evaluated at equilibrium

T = T0e
−σ, µ = e−σA0, uµ = u

µ
K

Scalars None None

Vectors uµ δ
µ
0 e

−σ

Pseudo-Vectors ǫµνu
ν ǫ1

Tensors None None

Table 2. Zero derivative fluid data.

Scalars None

Vectors none , none

Pseudo-Vectors ǫ1f(σ,A0)

Tensors None

Table 3. Zero derivative background data.

sector in background (2.1) at zero derivative order is

uµ = u
µ

(0) = e−σ(1, 0), T = T0e
−σ, µ = A0e

−σ. (2.15)

Since there are no gauge invariant parity odd scalars in table 3, temperature and chemical

potential do not receive any correction. However, the fluid velocity in equilibrium receives

correction as

uµ = u
µ

(0) + bǫµνu(0)ν . (2.16)

From (2.9), (2.15) and (2.16) we get the parity odd correction to the equilibrium stress

tensor and charge current, which receive contribution from correction to the constitutive

relations as well as from correction to the equilibrium fluid velocity, to be

δT00 = δJ0 = δT ij = 0,

δT 1
0 = −eσ(ǫ+ P )bǫ1,

δJ̃1 = (qb+ ξj)ǫ
1.

(2.17)

2.3 Constraints on hydrodynamics

Comparing the non trivial components of the equilibrium stress tensor and charge current

of (2.12) and (2.17) we find that the coefficient of velocity correction (2.16) is

b = − T 2

ǫ+ p

(

−C2 + Cν2
)

(2.18)

and the coefficient in correction to charge current (2.9) is

ξj = C

(

qµ2

ǫ+ p
− 2µ

)

− C2
qT 2

ǫ+ p
. (2.19)

where ν = µ
T
= A0

T0
.

The expressions (2.19) agree exactly with the results of [11] based on the requirement

of positivity of the entropy current and effective action.
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2.4 The entropy current

The equilibrium entropy can be obtained from the partition function using

S =
∂

∂T0
(T0 logZ)

= −2C2T0

∫ √
g11ǫ

1a1dx .

(2.20)

In this subsection we determine the constraints on the hydrodynamical entropy current

J
µ
S from the requirement that (2.20) agree with the local integral

S =

∫

dx
√−g2J

0
S . (2.21)

The most general form of the entropy current allowed by symmetry,5 at zero derivative

order is

J
µ
S = suµ + ξsũ

µ + hǫµνAν , (2.22)

where h is a constant.

The parity odd correction to the entropy current in equilibrium, which receives con-

tributions both from correction to the hydrodynamical entropy current and equilibrium

velocity, is given by

J0
S |correction = sδu0 + ξsũ

0 + hǫ01A1. (2.23)

Now using

ν =
A0

T0
, δu0 = −a1δu

1 = −bǫ1a1, ũ0 = −ǫ1a1

the correction to the hydrodynamical entropy in equilibrium is given by

∫

dx
√−g2J

0
s |correction =

∫

dx eσ
(

(−sb− ξs)ǫ
1a1 + hǫ1(A1 +A0a1)

)

. (2.24)

Comparing this expression with (2.20) and using (2.19) we find

ξs = C
sµ2

ǫ+ p
+ C2T

(

1 +
ρµ

ǫ+ p

)

, h = 0. (2.25)

This result is in precise agreement with those of [11].

3 Conclusion

To conclude, for 1 + 1d parity violating charged fluid in a time independent background

with anomaly one can write down a local equilibrium partition function and the constraints

obtained on the constitutive relations by demanding consistency with this partition func-

tion are in agreement with those obtained from a local form of entropy increase principle.

In [9], by demanding the existence of a partition function it was noted that, for first order

5Let us note that the entropy current need not be gauge invariant, see [9] for more details.
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2 + 1d parity violating charged fluid and second order 3 + 1d uncharged fluid, one ob-

tains weaker constraints on the non dissipative part of the entropy current as compared to

that obtained by demanding entropy increase. However, for the case of first order 3 + 1d

charged fluid with anomaly, the entropy current obtained in both ways agree so is also for

1 + 1d anomalous case, as shown in this note. It would be interesting to check this for an

anomalous fluid in arbitrary dimensions.
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