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1 Introduction

In lattice QCD, masses, energies and vacuum-to-hadron matrix elements are extracted

from the large time asymptotics of Euclidean two-point correlation functions. Convergence

to ground state matrix elements and energies proceeds with a rate of order exp(−∆(A) t)

where ∆(A) is the energy difference of the first excited state and the ground state in the

hadron channel characterized by a set of quantum numbers A.

Hadron-to-hadron matrix elements of the type 〈A|ĥw|B〉 require us to consider in

addition three-point functions, which contain two time separations,

C(3)(t2, t1) = 〈O(A)(t2 + t1)hw(t1) [O(B)]∗(0)〉 (1.1)

– 1 –



J
H
E
P
0
1
(
2
0
1
2
)
1
4
0

and the corrections to asymptotic behavior are O( exp(−∆(A) t2), exp(−∆(B) t1) ). Hence

one wants both t1 and t2 to be large. On the other hand, at large times the statistical errors

of the Monte Carlo estimates typically increase: the noise-to-signal ratio grows with a rate

exp(δ(A)t2 + δ(B)t1), where δ(i) is a positive energy difference. It is therefore necessary to

compromise between the two sources of error. This compromise represents an important

limitation to the achievable overall precision (statistical and systematic).

As an example, consider the nucleon axial coupling gA. For this application, ∆(A) =

∆(B) due to isospin symmetry and δ(A) = δ(B) ≈ mnucleon − 3
2mπ [4, 5].1 Due to the

symmetry, t1 = t2 is optimal in this simple but relevant example and

• t1 = t2 � 1/∆(A) ≈ 0.5 fm is required to keep systematic corrections due to excited

states small

• but statistical errors become too large beyond a time t = O(1/δ(A)) = O(1 fm).2

Numerical results have been shown for this particular example in the reviews [8, 9] and

recently in refs. [3, 10].

As a remedy one may try to reduce either the statistical uncertainties or the contami-

nation by excited states. A general idea for reducing statistical fluctuations is to integrate

over part of the configuration space analytically or by a multilevel algorithm [11–13]. In

the pure gauge theory, a reduction of the growth of statistical errors as a function of time

has successfully been achieved by multilevel algorithms [11, 13] as well as by symmetry

constrained Monte Carlo [14, 15], but it appears difficult to make further progress in this

direction for QCD with dynamical fermions. More radically, in lower-dimensional models a

complete rewriting of the path integral led to simulation methods where errors can be kept

constant at large time in specific channels [16]. Returning to more moderate gains, in the

Heavy Quark Effective Theory (HQET) one is in a special situation because δ(A) is power

divergent and depends strongly on the discretization. An optimization of the discretization

of HQET yielded a much reduced δ(A) [7]. Despite these advances, we do not have a true

solution of the signal-to-noise problem either in QCD or in HQET. It is therefore important

to efficiently exploit the information present in an available set of gauge fields. In particu-

lar, due to translational invariance it is possible to construct volume-averaged estimators

which should have reduced variance compared to those in which one of the fields has a fixed

position. This requires the stochastic estimation of the all-to-all quark propagator [17–20]

rather than the traditional calculation of a point-to-all propagator, and given the afore-

mentioned exponential growth of signal-to-noise in Euclidean time, it is essential to “dilute

the noise sources” (notation of [19]) such that each has support only on a single time-slice.

It is then natural to try to reduce the systematic corrections due to excited states. As

a first step, one improves the interpolating fields O(A), usually by smearing (see section 2).

In this way one may reduce the prefactor of exp(−∆(A) t2).

1Another example of interest is the B∗Bπ coupling where ∆(A) = ∆(B) due to heavy quark spin sym-

metry and the energy difference δ(A) = δ(B) is discussed in [6, 7].
2For our numbers we consider pion masses above the physical one. Close to the physical point the

situation is somewhat worse.
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But in ref. [21] it has been pointed out that by considering N interpolating fields and

the Generalized Eigenvalue Problem (GEVP), one can construct a time-dependent effective

GEVP-optimized interpolating field where the gap ∆(A) is enhanced to

∆(A) = E
(A)
N+1 − E

(A)
n . (1.2)

Besides raising the relevant gap for the ground state n = 1 by a considerable amount,

excited states n > 1 can then also be reached in each channel! This was demonstrated to

work very well for a decay constant in HQET, i.e. a matrix element of the type 〈f |ĥw|0〉.
In this work we show that it is also very advantageous for non-vacuum matrix elements.

Moreover, we present a new formula, which involves the 3-point matrix correlation

function and the GEVP eigenpairs. There is a summation over the intermediate time

t1 with t = t1 + t2 held fixed. We consider now the “symmetric case” when initial and

final states are related by a symmetry transformation (e.g. for gA), since the general case

without the symmetry is more complicated as we will explain in the following sections.

When ∆(A)t� 1, the corrections to the matrix element are reduced

from C exp(−∆(A) t/2) (fixed t1 = t2 = t/2 GEVP)

to C ′∆(A) t exp(−∆(A) t) (“summed” GEVP) ,

with some coefficients C,C ′ given by matrix elements which are usually unknown. The N =

1 case of the general formula reduces to the summed 3-point function that has previously

been used in early investigations of the nucleon sigma term [1] and gA [22]. The improve-

ment of the convergence rate to the ground state has recently been emphasized in [2, 3].

Let us leave aside the prefactors C,C ′, about which little can be said on general grounds.

The remaining time-dependent factors satisfy ∆(A) t exp(−∆(A) t) < exp(−∆(A) t/2) for all

t. Furthermore, when one is in the asymptotic regime ∆(A) t� 1 the gain becomes signifi-

cant: the “summed” GEVP method requires approximately half the total time separation

for the same size systematic corrections.

The derivation of the formula for the matrix element, as well as the associated correc-

tion terms, proceeds roughly as follows. We start from the GEVP expression for the energy

levels, in a theory with degeneracy E(A) = E
(B)
n , and augment the theory by a “source”

term εĥw in the Hamiltonian. The matrix element 〈A,n|ĥw|B,n〉 is then obtained as a

derivative with respect to ε of the effective (time dependent) energy level at ε = 0. This

idea is worked out in section 3. In section 4, we report tests of the method for a toy model

and also in a quenched QCD/HQET calculation. There we revisit the GEVP for energy

levels, using the overlaps computed in the quenched case to fix the parameters of the toy

model and examining the convergence of energies in the model. As we will discuss in the

conclusions, we expect our method to be advantageous in a number of applications. First

we set up the notation and describe the standard GEVP method of ref. [21].

2 Matrix elements from Euclidean correlators

In this section we define the problem more precisely and describe the “standard” solution

as well as the one using the GEVP.

– 3 –
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We want to compute a matrix element of a local operator ĥw(x),

Mmn = 〈A,m|ĥw(0)|B,n〉 , (2.1)

where m,n ≥ 1 label the excitations in each channel. The quantum numbers A and B

associated with exact symmetries of the (lattice) Hamiltonian including e.g. momentum or

flavors charges remain implicit inM. For the lattice Hamiltonian derived from the transfer

matrix, we have Ĥ|A,m〉 = E
(A)
m |A,m〉. We take the finite (space-) volume normalization

of states 〈A,m|A,m〉 = 1, which is easily related to the relativistic one.

The matrix elements are computed from correlation functions

C
(3)
ij (t2, t1) = 〈O(A)

i (t2 + t1)hw(t1) [O(B)
j (0)]∗〉 (2.2)

C
(A)
ij (t) = 〈O(A)

i (t) [O(A)
j (0)]∗〉 , C

(B)
ij (t) = 〈O(B)

i (t) [O(B)
j (0)]∗〉 (2.3)

whereO(B)
j (t) are interpolating fields localized on a time-slice t with j enumerating different

fields. They carry the quantum numbers B in the usual way. We now turn to different

ways of analyzing the correlation functions.

2.1 Standard ratios

We consider m = n = 1 for describing the “standard” method, since it is largely restricted

to ground states. One defines a ratio

R(t2, t1) =
C

(3)
ij (t2, t1)

[C
(A)
ii (t)C

(B)
jj (t)]1/2

exp
(

(Eeff
B (t)− Eeff

A (t))(t1 − t2)/2
)

(2.4)

for fixed i, j with

t = t2 + t1 , Eeff
A (t) = −∂t log(C

(A)
ii (t)) , Eeff

B (t) = −∂t log(C
(B)
jj (t)) .

Our lattice derivative is defined as ∂tf(t) = 1
a [f(t+ a)− f(t)]. When the sectors (A) and

(B) are related by a symmetry of the theory, the exponential factor in eq. (2.4) is unity, as

Eeff
A (t) = Eeff

B (t).

Many variations of the ratio are possible, e.g. replacing Eeff
A (t) → Eeff

A (t1). The

ratio has a quantum mechanical representation (based on the transfer matrix of the

lattice theory)3

R(t2, t1) = M11 + c1 exp(−(E
(A)
2 − E(A)

1 )t2) + c2 exp(−(E
(B)
2 − E(B)

1 )t1) + . . . .
(2.5)

These correction terms have already been mentioned in the introduction. Note that re-

placing O(A)
j →

∑
k α

(A)
k O

(A)
k and O(B)

i →
∑

k α
(B)
k O

(B)
k with a specific choice of fixed

coefficients α does not change anything in this formula except for modifying the prefactors

c1, c2. Instead, in the following section we turn to the use of the GEVP in order to change

the exponential rates of the correction terms.

3For simplicity, we everywhere neglect terms which decay exponentially with the time extent of

the lattice.
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2.2 Summed ratios

An improved asymptotic convergence is provided by the effective matrix element

Msummed
11 (t) = −∂ta

∑
t1

R(t− t1, t1) = M11 + O(t∆ e−t∆) , (2.6)

∆ = Min(E
(A)
2 − E(A)

1 , E
(B)
2 − E(B)

1 ) . (2.7)

Eq. (2.7) can be seen by explicit summation over t1 of the transfer matrix representation of

eq. (2.4) and it is the N = 1 case of eq. (2.15) (taking the limit t0 → t). For the degenerate

case E
(A)
n = E

(B)
n it has been used long ago [1, 22] and its improved convergence rate has

recently been emphasized in refs. [2, 3]. In ref. [3] the generalization to non-degenerate

spectra was introduced.

2.3 GEVP improvement

We here summarize ref. [21] and apply it to the present case. We assume that we have

N linearly independent fields Oj , with couplings to the low lying states. The labels A,B

are dropped where statements independent of the channel are made. The GEVP [23]

([C vn]i =
∑N

j=1Cij [vn]j),

C(t) vn(t, t0) = λn(t, t0)C(t0)vn(t, t0) , (2.8)

constructed from the matrices C(A), C(B) at times t > t0 yields effective energies [24]

Eeff
n (t, t0) = −∂t log(λn(t, t0)) (2.9)

which converge as [21]

Eeff
n (t, t0) = En + O(exp(−∆N+1,n t)) , ∆N+1,n = EN+1 − En (2.10)

provided one takes t0 ≥ t/2, which we use here.4

The starting point for computing matrix elements is an operator (in each channel)

which satisfies [21]

Âeff
n (t)|0〉 = |n〉+ O(exp(−∆N+1,n t)) . (2.11)

With the definitions

vn(t) ≡ vn(t+ a, t) , (u,w) =

N∑
i=1

u∗iwi (2.12)

Rn(t) = (vn(t) , C(t) vn(t))−1/2 exp(Eeff
n (t+ a, t) t/2) , (2.13)

the explicit construction of Âeff
n (t) is given by

[Âeff
n (t)]† = e−ĤtRn(t) (vn(t) , Ô†). (2.14)

4For fixed t0 one has Eeff
n (t, t0) = En + O(exp(min(∆n+1,n,∆n,n−1)t)) instead [24].

– 5 –



J
H
E
P
0
1
(
2
0
1
2
)
1
4
0

With respect to [21] we have here made a specific choice for the relation of t0 and t, denoting

the resulting vn as vn(t) with a single argument.

We can then obtain the desired matrix element

Mmn =Meff
mn(t2, t1) + O(exp(−∆

(A)
NA+1,m t1), exp(−∆

(B)
NB+1,n t2)) (2.15)

from

Meff
mn(t2, t1) = 〈0|[Âeff

n (t2)](A) ĥw [[Âeff
n (t1)](B)]†|0〉

= (v(A)
m (t2), C(3)(t2, t1)v(B)

n (t1))R(A)
m (t2)R(B)

n (t1) . (2.16)

Here we have reintroduced the labels A,B. Eq. (2.16) reduces to eq. (2.4) for NA = 1 = NB,

but taking NA, NB larger improves the convergence and enables access to excited states.

As before, one can formulate a simpler effective matrix element when (A) and (B) are

related by a symmetry and only the m = n matrix elements are required. The symme-

try means

Eeff,B
n (t, t0) = Eeff,A

n (t, t0) , v(A)
n (t, t0) = v(B)

n (t, t0) (2.17)

for all t, t0 and n. The ratio (remember that we use the shorthand v
(A)
n (t) = v

(A)
n (t+ a, t))

Meff′
nn (t2, t1) =

(v
(A)
n (t2), C(3)(t2, t1)v

(A)
n (t1))

(v
(A)
n (t2), C(A)(t2 + t1)v

(A)
n (t1))

(2.18)

satisfies eq. (2.15) as well but may have reduced statistical errors. The leading error is

minimized by the choice t2 = t1.

3 Improved method: sGEVP

Here we combine the improvement by summation of section 2.2 with the GEVP of sec-

tion 2.3.

3.1 Symmetric case

We consider the symmetric case eq. (2.17) and drop the labels A and B. As derived in

appendix A, the effective matrix element

Meff,s
nn (t, t0) = −∂t

{
|(un , [K(t)[λn(t, t0)]−1 −K(t0)]un)|

(un, C(A)(t0)un)

}
, (3.1)

Kij(t) ≡ a
∑
t1

C
(3)
ij (t− t1, t1) , un ≡ vn(t, t0) (3.2)

converges to the exact matrix element as

Meff,s
nn (t, t0) = Mnn + O(∆N+1,n t exp(−∆N+1,n t)) . (3.3)

The formula assumes t0 ≥ t/2 and the exact size of the corrections does in general depend

on how we choose t0, e.g. t0 = t−a vs. t0/t = fixed. We shall demonstrate in section 4 that

the corrections in eq. (3.1) are very small generically. The label “s” stands for summed,

since Kij(t) is a 3-point function summed over one argument.

– 6 –
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3.2 Asymmetric case

In the situation when eq. (2.17) is not satisfied or if we want a matrix element Mmn with

n 6= m, we first define the estimator for the difference E
(B)
n − E(A)

m ,

Σ(t, t0) = Eeff,B
n (t, t0)− Eeff,A

m (t, t0)
t→∞∼ E(B)

n − E(A)
m (3.4)

as well as the energy shifted correlation function

Dij(t, t0) = e−tΣ(t,t0)C
(A)
ij (t) . (3.5)

The summed three-point function is then defined by

Kij(t, t0) = a
∑
t1

e−(t−t1)Σ(t,t0)C
(3)
ij (t− t1, t1) . (3.6)

Everywhere we take t0 ≥ t/2. An approximation to the matrix element is

Meff,s
mn (t, t0) = −∂t

{
|(um(t, t0) , [K(t, t0)[λ

(B)
n (t, t0)]−1 −K(t0, t0)]wn(t, t0))|

[(um(t, t0), D(A)(t0)um(t, t0))(wn(t, t0), C(B)(t0)wn(t, t0))]1/2

}
,

(3.7)

with

D(t)um(t, t0) = λ̃m(t, t0)D(t0)um(t, t0) , (3.8)

C(B)(t)wn(t, t0) = λ(B)
n (t, t0)C(B)(t0)wn(t, t0) . (3.9)

We have observed numerically that in the case of Σ(t, t0) 6= 0, it converges as

Meff,s
mn (t, t0) = Mmn + O(∆ t exp(−∆ t0)) , (3.10)

see section 4. The gap ∆ is given by the minimum one in the two channels,

∆ = Min
(
E

(A)
NA+1 − E

(A)
m , E

(B)
NB+1 − E

(B)
n

)
. (3.11)

Since the exponential convergence is now governed by t0, there is no obvious advantage

compared to eq. (2.16) unless one takes t0 ≈ t. If statistical precision is good enough to

allow for such large t0, 3-point functions and 2-point functions with a maximal time extent

of t are sufficient to obtain a convergence rate of O(∆ t exp(−∆ t)) as in the symmetric

case. Eq. (3.10) has not been proved formally, but our numerical investigation of toy

models leaves little doubt that it is correct.

4 Demonstrations

We carry out two sets of demonstrations of how the various estimators for matrix ele-

ments work. First we consider toy models, prescribing spectra and matrix elements and

do not take statistical errors into account. We construct “difficult” (large corrections due

to excited states) and “easy” toy models. The second set of experiments is a quenched

computation of the B∗Bπ-coupling, where realistic statistical errors are present.

– 7 –
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4.1 Models

4.1.1 Definition of the models

We first specify the spectra in dimensionless form. Two different ones are used below,

r0E
(l)
n = n , r0E

(h)
n = 1.1× n . (4.1)

The length factor r0 is in principle arbitrary, setting the overall scale of the theory, but

we think of it as r0 ≈ 0.5fm. Level splittings of around 1/r0 are realistic in QCD, as the

particle data book and lattice computations show.

Next the overlaps

ψin = 〈0|Oi|n〉 (4.2)

need to be fixed. In our HQET applications (see section 4.2), we use spatially smeared

quark fields to construct the fields Oi. We computed their overlaps ψin for n = 1, . . . , 5

and i = 1, . . . 7 using the GEVP “creation operator” [Âeff
n (t)]†. For details we refer to the

following section. Here we just take the approximate matrix

ψS =

0.92 0.03 −0.10 −0.01 −0.02

0.84 0.40 0.03 −0.06 0.00

0.56 0.56 0.47 0.26 0.04

 (4.3)

corresponding to smearing levels 1, 4, 7 which is typically done in practice [25]. We observed

a strong decay of the overlaps ψS
in with increasing n which suggests that a truncation with

ψin = 0 for n > 5 is realistic at reasonable time separations of the correlation functions,

say t > r0/2. In any case, what we discuss here remains a model, but we expect it to be

quite realistic.

The matrix ψS represents a relatively comfortable situation which we may not always

have. For that reason we also construct a more challenging case

ψC
in|n≤3 =

0.9 0.1 −0.1

0.8 0.4 0.2

0.6 0.6 0.5

 ψC
in|4≤n≤20 =

 −1/(3n2)

2n−2 − (2n)−3/2

1/(n− 1)

 (4.4)

with a slow decay in n. We set ψin = 0 for n > 20.

With the model matrix elements (again we note that these are not completely

unrealistic)

Mnn = 0.7
6

n+ 5
, Mn,n+m =

Mnn

3m
for m > 0 , (4.5)

and assuming the sectors A,B to be related by a symmetry,

C
(A)
ij (t) =

∑
n

ψS
in(ψS)∗jne−E

(l)
n t = C

(B)
ij (t) , (4.6)

the model is completely defined. In particular we have

C
(3)
ij (t2, t1) =

∑
n,m

ψS
ine−E

(l)
n t2Mnme−E

(l)
m t1 (ψS)∗jm . (4.7)

– 8 –
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Figure 1. Corrections of eq. (2.9). The ground state n = 1 is plotted in red and has the small

corrections. The first excitation (blue) is above. Dotted lines are for t0 = r0/5, while dashed lines

are t0 = t/2 and full lines t0 = t − a. Shown on the left is the model Sl and on the right Cl. The

dashed-dotted lines show the corrections of the standard effective mass of the correlator C22 which

approaches the ground state energy.

We refer to this model as SlSl. Replacing ψS by ψC defines the model ClCl and finally

with ψS, E
(l)
n for channel A and ψC, E

(h)
n for channel B we define the model SlCh. In other

words we have the following table.

model ψ(A) ψ(B) E
(A)
n E

(B)
n

SlSl ψS ψS E
(l)
n E

(l)
n

ClCl ψC ψC E
(l)
n E

(l)
n

SlCh ψS ψC E
(l)
n E

(h)
n

4.1.2 Energies from the GEVP

The corrections of the effective energies extracted from the GEVP, eq. (2.9), compared to

the exact energies is shown in Fig. 1. We see how t0 ≥ t/2 accelerates the convergence. As

expected Cl is a more challenging situation with larger corrections. One also sees that at

short time (t/r0 ≤ 2) the dependence on t0 is typically not very dramatic. This feature has

been observed in a number of practical applications [25, 26]. Still, it appears dangerous to

rely on this in general. In the left hand plot, we also observe the difference of the GEVP

and a standard effective mass (dashed-dotted line). Here C22 is shown (the corrections for

C11 are quite a bit smaller).

4.1.3 Matrix elements

Let us start with the easiest situation, the extraction of ground state matrix elements

m = n = 1 in the symmetric case. These are shown for two models in Fig. 2. The labeling
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Figure 2. Effective ground state matrix elements, model SlSl on the left and model ClCl on the

right, both shown as a function of the total time-separation of the 3-point function. On the left

side, the sGEVP estimates for t0 = t/2 and t0 = t− a can’t be distinguished in the figure. For the

non-GEVP cases we show two different interpolating fields, Ok, k = 1, 2.

of the different estimates is as follows:

“ratio” dotted, black eq. (2.4) with t1 = t2 = t/2

“summed” dashed, black eq. (2.6)

“GEVP” dashed-dotted, red eq. (2.18) with t1 = t2 = t/2

“sGEVP” blue eq. (3.1)

The scale of the y-axis covers a variation of 10%. On the x-axis in this and the following

figures we have for each method considered the total time extent of the 3-point functions

since in a MC computation this generically governs the statistical accuracy. The graphs

illustrate that the improved asymptotics of the sGEVP estimate (compared to the GEVP

and the single operators) (N = 1) go hand in hand with smaller corrections at moderate

time separations, t ≈ r0 . . . 2r0.5 Among the estimates which do not use a GEVP, the

summed method is generically better, at least when t is not too small.

Diagonal (m = n) matrix elements for the degenerate case are shown in Fig. 3 on the

left. For n > 1 only GEVP and sGEVP can be used for a systematic computation. Even

though the scale of the y-axis is enlarged, we observe that sGEVP also works rather well

for determining excited states. Note that with a GEVP with N = 3 states (as is used

here), the convergence of the m = n = 3 matrix elements is rather slow, but we show them

anyway for illustration. It is strongly recommended to use a larger N in a real computation

of M33 if statistical errors allow.

On the right of Fig. 3, we show the matrix elements M12. Here the sGEVP means

eq. (3.7) with the energy shifts. The improvement compared to the standard application

of the GEVP, eq. (2.18), is present but is not as impressive as on the left side, where no

5Recall that the gaps of the models are ∆n+1,n = 1/r0.
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Figure 4. Effective ground state matrix element M11 (left) and M12 in model SlCh.

energy shifts are needed. We do not show levels above n = 2 since there a larger GEVP

would be recommended as we discussed for the diagonal case.

Finally, consider the situation where the spectra of the A sector and the B sector are

different, as in the model SlCh. Example applications are B → π transitions or elastic

form factors with momentum transfer. On the left side of Fig. 4 the M11 matrix element

is shown. We again observe an impressive advantage of the GEVP methods, in particular

of sGEVP over the standard ratio eq. (2.4). On the right side of the figure we studyM12,

where eq. (2.4) is not applicable. In this particular case, the amplitudes of the corrections

of the GEVP effective matrix elements are relatively small and interfere destructively. It

therefore happens to be more accurate than sGEVP for a range of t.

In conclusion, the study of the models shows that the asymptotic convergence formulae

also provide a very good estimate of the relative advantages of the different methods at

intermediate t. In particular, consider first the degenerate case. The comparison of the
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asymptotic behavior, Meff,s
nn (t, t0) −Mnn ∼ O(t∆ exp(−t∆)) vs. Meff

nn(t0, t0) −Mnn ∼
O(t∆ exp(−t0∆)) suggests that t0 ≈ t is needed to reach similar accuracy in the two cases

and indeed we find this generically to be the case. One then needs the 3-point functions

at twice the total time separation in GEVP compared to sGEVP. In the non-degenerate

case, the convergence is governed by t0 in both GEVP and sGEVP. Here a very significant

improvement is the change from a standard ratio eq. (2.4) to GEVP or sGEVP, see the

left of Fig. 4. The right side of that figure shows that sGEVP yields considerable further

improvement over GEVP when a large t0 is chosen.

4.2 The B∗Bπ-coupling in the quenched approximation

In the static approximation for the b-quark, the B∗Bπ-coupling is denoted by ĝ. It is

a leading order low energy constant in the heavy meson chiral Lagrangian [27–29] . As

such, it is of considerable interest for chiral extrapolations of lattice results, employing a

systematic expansion in 1/mb and m2
π/(8π

2F 2
π ). The bare matrix element is6

ĝ = 1
2〈B

0(0)|Ak(0)|B∗+k (0)〉 , Aµ(x) = ψd(x)γµγ5ψu(x) (4.8)

with |B∗k(0)〉 polarized along the k-axis, see also [2, 30]. Note that here we use the nor-

malization of states 〈B(p)|B(p)〉 = 〈B∗k(p)|B∗k(p)〉 = 2L3, which corresponds to the non-

relativistic one in the infinite volume limit. We do not include the renormalization factor

of the axial current anywhere.

Our interpolating fields for B and B∗ are related by the exact spin symmetry of

the static approximation and are generated by gauge-covariant Gaussian wave functions

inserted between the static and the light quark field. Such gauge invariant interpolating

fields were introduced in ref. [22]. We use exactly the ones of ref. [2] with width rwf/r0 =

0.36, 0.51, 0.62, 0.71, 0.87, 1.01, 1.13 (eq. (2.5) of ref. [2]). For the present demonstration

we work in the quenched approximation and the light quark mass is set to the mass of

the strange as in [25]. An ensemble of one hundred gauge configurations is used on a

32× 163 lattice with spacing a ≈ 0.1fm and statistical errors are kept small by an all-to-all

method [19] in combination with the static action “HYP2” [7] as done previously [2]. Here

we use one hundred fully time-diluted noise sources per configuration.

4.2.1 Approximate overlaps

We first pick five fields Oi from our set with rwf/r0 = 0.36, 0.51, 0.62, 0.71, 1.13. With the

operator eq. (2.14) we can then compute the overlaps

ψin = 〈0|Oi|n〉 = ψin(t) + O(exp(−(EN+1 − En)t) (4.9)

ψin(t) = 〈0|Ôi Âeff
n (t)|0〉 =

∑
j

Cij(t)[vn]j(t)Rn(t) (4.10)

where n = 1, . . . , 5 labels the excitations. The normalization of the fields Oi is irrelevant

for all applications, but in order to have the interpretation of an overlap, we choose the

6We thank Fabio Bernardoni for discussions on the effective theory and a check of the normalization of

ĝ.
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Figure 5. Overlaps for the static B-meson interpolating fields. Column n refers to state n, row 1

to the local (time component of the) axial current. Rows 2-4 correspond to the three interpolating

fields used in our GEVP computation of ĝ with radii rwf/r0 = 0.36 , 0.62 , 1.13 respectively.
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Figure 6. The matrix element ĝ as a function of t/r0. Left: sGEVP estimate eq. (3.1) with

t0 = t/2, right: GEVP estimate with t0 = t/2. The error band is our best estimate determined

previously with very high statistics [2].

normalization such that Cii(0) = 1. In this case a value of one for ψ2
in means that Ôi|0〉 =

|n〉 without corrections, i.e. 100% overlap. Furthermore, we fix the signs by the convention

ψin > 0 for the value i which maximizes |ψin| at fixed n.

Figure 5 shows examples of ψin(t). Even if these are not precision determinations

of the overlaps, they show interesting features. The local field shown in the first row

has considerable overlap with all states considered. It is a bad interpolating field for

ground state physics. However the other fields with reasonable radii display a rather

strong decay of the overlaps with growing n, indicating that the smeared fields provide a

good basis of interpolating fields which couple little to excited states. Indeed, this figure

demonstrates that these wave functions considerably reduce the overlaps to high excited

states. Conversely, this also means that high excited states are difficult to access with

these fields.
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eq. (2.4). On the top the interpolating field with the biggest overlap with the ground state is shown

(rwf = 1.13 r0). The bottom two figures are for rwf = 0.62 r0.
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Figure 8. Standard plateau plot for ĝ. The ratio R(t − t1, t1) is considered as a function

of t1/r0 with t fixed at t = 2.14r0. The latter is the value used in the so far most complete

determination [31], while earlier t/r0 ≈ 4 was used on a lattice with a = 0.2 fm [32]. Left: wave-

function with rwf = 1.13 r0, right: rwf = 0.62 r0.

Reading off approximate plateau values, we extract the model ψS for section 4.1. This

model yields a qualitative understanding of the corrections. We believe that computing

overlaps as done here may also be very useful for understanding the systematic errors

in present extractions of nucleon matrix elements, namely the question of the magnitude

of excited state contamination. Given an approximate knowledge of the spectrum, this

contamination can be roughly estimated when the overlaps are known. Indeed, let us
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Figure 9. The diagonal matrix elements ĝnn as a function of t/r0. Left: sGEVP estimate eq. (3.1)

with t0 = t/2, right: GEVP estimate with t0 = t/2. An N = 3 GEVP is used. The matrix elements

are seen to be ordered ĝn+1,n+1 < ĝnn.

apply our approximate knowledge of ψ1n < 0.1 for n > 1, together with the plausible

assumption that matrix elementsMmn are of roughly the same magnitude asM11. Then,

at time separations t = r0 and for the best wave function, excited states make rather small

corrections of order 0.1e−1, i.e. of the order of a few per cent. Therefore the matrix element

ĝ is a rather easy test case and all methods should be successful.

4.2.2 The matrix element ĝ

In this section we show numerical results for ĝ, computed with the various methods intro-

duced above. The GEVP estimates for the ground state, displayed in Fig. 6, exhibit no

corrections exceeding 2% once t = r0 has been reached. For smaller t, sGEVP has smaller

corrections than GEVP. However, at large times the statistical errors are increasing faster

for sGEVP.

For this particular matrix element and for the best interpolating field, the corrections

for the summed ratio (Fig. 7, top) are somewhat larger than those of the standard ratio and

again the summed method suffers from larger statistical errors at large times. However, in

the case of a less optimal interpolating field (bottom of Fig. 7), the summed ratio exhibits

its superiority.

For comparison, we also show the frequently used analysis where t is kept fixed (here at

a value used previously in determinations of ĝ [31]) and one looks for a plateau as a function

of t1. With our precision one can observe the lack of a plateau in Fig. 8 for rwf = 0.62 r0,

but with errors at a 1% level a false “plateau” would be observed for t/4 ≤ t1 ≤ 3t1/4.

This demonstrates the danger inherent in this method. The left hand side of the figure

shows that for ĝ a plateau with the correct height is obtained for a larger smearing radius.

4.2.3 Excited state matrix elements ĝnm

For excited state matrix elements, Fig. 9, only the GEVP estimates are applicable. They

appear to work quite well for the first excitation and also for the second excitation a

reasonable estimate can be obtained. The sGEVP again seems superior, as the deviations
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Figure 10. The off-diagonal matrix element ĝ12 as a function of t/r0. Left: sGEVP estimate

eq. (3.1) with t0 = t− a, right: GEVP estimate with t0 = t/2− a. An N = 3 GEVP is used.

from our estimated asymptotic values are smaller. Figure 10 demonstrates these same

features for an off-diagonal matrix element.

5 Conclusions

In this paper we have introduced the GEVP method with summation, denoted sGEVP,

and we have examined several alternative methods for computing hadron-to-hadron matrix

elements. They have rather different asymptotic corrections due to excited states:

ratio eq. (2.4) : exp(−∆2,1t/2) (just ground state)

summed ratio eq. (2.6) : t∆2,1 exp(−t∆2,1) (just ground state)

GEVP eq. (2.16) : exp(−∆N+1,1t/2)

sGEVP eq. (3.1) : t∆N+1,1 exp(−t∆N+1,1) (equal energy case)

sGEVP eq. (3.7) : t∆ exp(−t0∆) (general case)

In the last case, ∆ is given by eq. (3.11) and one will typically use t0 = t/2. The form of

the leading correction term of sGEVP is derived in the appendix for the equal energy case,

while for the general one we deduced it from the numerical investigation of toy models. The

GEVP correction term is known from [21] and for “ratio” and “summed ratio” it follows

directly from the transfer matrix representation.

We investigated two toy models constructed to be quite representative for heavy-light

meson matrix elements. In these models, the asymptotic forms of the corrections have

been found to be a good guideline for the behavior at intermediate values of t, of the order

t = (2− 3)r0. In particular we found that generically sGEVP has the smallest systematic

errors, followed by GEVP. As a rule of thumb, sGEVP requires half the time separation of

GEVP for the same systematic accuracy.

A Monte Carlo computation of the B∗Bπ coupling ĝ confirms our findings in the models

concerning the systematic errors. In addition it allows us to make statements about the

statistical errors which have to be balanced with systematic ones due to excited states.

Statistical errors grow more quickly as a function of t for sGEVP compared to GEVP, but

a comparison at roughly the same amount of excited state contamination corresponds to a

– 16 –



J
H
E
P
0
1
(
2
0
1
2
)
1
4
0

m n Meff
mn(t, t) Meff,s

mn (t, t/2) Meff,s
mn (t, t− a)

1 1 0.004 0.003 0.003

2 1 0.010 0.013 0.009

2 2 0.032 0.012 0.013

3 3 0.063 0.012 0.012

Table 1. Statistical errors of various estimators for ĝmn =Mmn for t ≈ r0.

factor two between the values of t. A comparison at roughly fixed systematic error is shown

in table 1. We observe a minor difference for the ground state in advantage for sGEVP

and the ratio of errors grows up to a factor five in the error for M33 for the considered

matrix element.

In the comparison of the different methods, one also has to consider the numerical

effort to compute the effective matrix elements. We assume that one wants to control the

corrections by computing the t-dependence of the estimators. In the summed cases, eq. (2.6)

and eq. (3.1), this can often be done with a fixed number of quark propagator computations

yielding a result for all t, by computing sequential propagators. The computation of ĝ is

such a case. In fact, since we have used a full all-to-all computation with “time dilution”

(in the notation of [19]), also the GEVP estimate is obtained at the same expense. In

contrast, if one only uses translation invariance on a time slice (“time-slice-to-all”), and for

example varies t, keeping t1 = t2 = t/2 in eq. (2.4) or eq. (2.18), then the required number

of propagator computations is proportional to the number of t-values considered. In this

situation the sGEVP method has an additional advantage.

Taking statistical and excited state errors as well as the effort into account, sGEVP

seems to be the overall most accurate, safe and efficient method. Given the difficulty in

evaluating relevant correlation functions at large time separations and assessing the sys-

tematic errors, it still appears advisable to compare the different approaches in most cases.

In our opinion the sGEVP method (and maybe the GEVP method) should be applied

to nucleon matrix elements such as gA or moments of structure functions, where large

time separations are difficult to reach [3, 8–10] and it is non-trivial to estimate possible

contamination by excited states. In order to appreciate the last point, recall that in the

standard ratio method, the systematic error drops like exp(−∆2,1t/2). In order to see such

a term, one has to change t to t′ such that the error term changes appreciably, say by a

factor of three. One then needs t′ − t ≈ 2/∆2,1 ≈ 1 fm.7 The summed ratio reduces this

requirement by a factor of about two and the GEVP methods by a larger factor. This

gains security in the detection of possible systematic errors.

7We here again assume a gap of around 400 MeV. Close to the chiral limit lower energy states with a

gap of 2mπ exist, but probably have small overlaps with the typically considered interpolating fields.
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A Derivation of the sGEVP method

Here we give a derivation of the formulae of section 3.1.

A.1 Linear perturbation of the original theory

We are here interested in the matrix element Mnn assuming the degeneracy of sectors

A and B via eq. (2.17) and ĥw(x)† = ĥw(x).8 To arrive at an expression for the matrix

element, we augment the original theory with Hamiltonian Ĥ (defined through the transfer

matrix) by adding a perturbation term with strength ε,

Ĥ(ε) = Ĥ + ε ĥw(0) . (A.1)

The twofold degenerate levels with energy E
(A)
n = E

(B)
n ≡ En are then split to E±n (ε).

From standard degenerate perturbation theory one has

E±n (ε) = En ± εMnn + O(ε2) (A.2)

with eigenstates |±, n〉 = [|B,n〉 ± |A,n〉]/
√

2 and

Mnn = E′n(0) ≡ d

dε
E+
n (ε)

∣∣∣∣
ε=0

. (A.3)

A.2 GEVP in the augmented theory

The desired E′n(0) is efficiently computed with a GEVP method as follows. We combine

the interpolating fields O(A)
i ,O(B)

j from section 2

Oi(t) = O(A)
i (t) , i = 1 . . . N, Oi+N (t) = O(B)

i (t) , i = 1 . . . N . (A.4)

Since A,B correspond to different sectors (e.g. different flavours) we have 〈A,m|O(B)
i |0〉 =

0 = 〈B,n|O(A)
i |0〉 . Expanding the path integral to first order9 in ε one then sees immedi-

ately that the combined 2N × 2N matrix correlation function

Cij(t, ε) = 〈Oi(t)O†j(0)〉 (A.5)

8The operator ĥw(x) typically comes from the expansion of the electroweak hamiltonian density in terms

of 1/MW , but other applications are possible. For example the field hw(x) representing ĥw(x) in the path

integral may be hw(x) = A+
k (x) + A−k (x), with A±k (x) = ψ(x)τ±γkγ5ψ, with τ± the raising and lowering

Pauli matrices in SU(2) flavor space. In this case, the matrix elements sought are the B∗Bπ coupling ĝ or

the nucleon axial coupling gA.
9See for example [21], section 3.2.
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has a simple block structure,

C(t, ε) =

(
C(A)(t) εK(t)

εK(t)† C(A)(t)

)
+ O(ε2) (A.6)

up to first order in ε. The entries C(A) = C(B) were defined in eq. (2.3) and K in eq. (3.2).

The generalized eigenvalues λn, eq. (2.8), determine effective energies

Eeff
n (t, t0, ε) = −∂t log(λn(t, t0, ε)). (A.7)

In the augmented theory, an extra argument ε has been added to λn for clarity. Eq. (2.10)

describes the corrections by which En(t, t0, ε) differ from the exact energy levels. Differen-

tiating that equation with respect to ε yields

Eeff
n
′
(t, t0) ≡ d

dε
Eeff
n (t, t0, ε)

∣∣∣∣
ε=0

=Mnn + O(∆N+1,nt exp(−∆N+1,n t)) . (A.8)

It remains to give an explicit expression for Eeff
n
′
(t, t0) in terms of the correlation

functions, which is equivalent to a solution of the GEVP to first order in ε. The 2N × 2N

GEVP equation, C(t, ε)vn(t, t0, ε) = λn(t, t0, ε)C(t0, ε)vn(t, t0, ε), separates into the two

independent ones

[C(A)(t)± εK(t)]u±n (t, t0, ε) = λ±n (t, t0, ε)[C
(A)(t0)± εK(t0)]u±n (t, t0, ε) (A.9)

with v±n = 1√
2

(
u±n
±u±n

)
. The expansion of such a GEVP in ε was written down in [21] with

the intention that ε is given by the HQET expansion parameter. We here just use the

solution. Its first order term in ε yields the desired matrix element in the form eq. (3.1) in

terms of the generalized eigenvectors un of the lowest order (ε = 0) GEVP of size N ×N
in a single channel A.
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References

[1] L. Maiani, G. Martinelli, M. Paciello and B. Taglienti, Scalar densities and baryon mass

differences in lattice QCD with Wilson fermions, Nucl. Phys. B 293 (1987) 420 [INSPIRE].

[2] ALPHA collaboration, J. Bulava, M. Donnellan and R. Sommer, The B∗Bπ coupling in the

static limit, PoS(LATTICE 2010)303 [arXiv:1011.4393] [INSPIRE].

[3] S. Capitani, M. Della Morte, B. Knippschild and H. Wittig, Systematic errors in extracting

nucleon properties from lattice QCD, PoS(LATTICE 2010)147.

[4] G.P. Lepage, The analysis of algorithms for lattice field theory, in From actions to answers,

T. DeGrand and D. Toussaint eds., World Scientic, Singapore (1989).
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[24] M. Lüscher and U. Wolff, How to calculate the elastic scattering matrix in two-dimensional

quantum field theories by numerical simulation, Nucl. Phys. B 339 (1990) 222 [INSPIRE].

– 20 –

http://dx.doi.org/10.1103/PhysRevD.50.4639
http://arxiv.org/abs/hep-lat/9403028
http://inspirehep.net/search?p=find+EPRINT+hep-lat/9403028
http://dx.doi.org/10.1088/1126-6708/2005/08/051
http://dx.doi.org/10.1088/1126-6708/2005/08/051
http://arxiv.org/abs/hep-lat/0506008
http://inspirehep.net/search?p=find+EPRINT+hep-lat/0506008
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(LAT2009)018
http://arxiv.org/abs/1002.0925
http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.0925
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(LATTICE 2010)001
http://arxiv.org/abs/1011.3660
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.3660
http://dx.doi.org/10.1016/j.physletb.2011.09.002
http://dx.doi.org/10.1016/j.physletb.2011.09.002
http://arxiv.org/abs/1108.1076
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.1076
http://dx.doi.org/10.1016/0370-2693(83)90930-9
http://inspirehep.net/search?p=find+J+PHLTA,B128,418
http://dx.doi.org/10.1016/0550-3213(90)90313-3
http://dx.doi.org/10.1016/0550-3213(90)90313-3
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B334,581
http://dx.doi.org/10.1088/1126-6708/2001/09/010
http://arxiv.org/abs/hep-lat/0108014
http://inspirehep.net/search?p=find+EPRINT+hep-lat/0108014
http://dx.doi.org/10.1016/j.cpc.2009.03.009
http://arxiv.org/abs/0806.2601
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.2601
http://dx.doi.org/10.1007/JHEP05(2011)056
http://arxiv.org/abs/1012.2562
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.2562
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(LATTICE 2010)020
http://arxiv.org/abs/1009.0657
http://inspirehep.net/search?p=find+EPRINT+arXiv:1009.0657
http://dx.doi.org/10.1016/0920-5632(95)00201-J
http://arxiv.org/abs/hep-lat/9411024
http://inspirehep.net/search?p=find+EPRINT+hep-lat/9411024
http://dx.doi.org/10.1103/PhysRevD.59.074503
http://arxiv.org/abs/hep-lat/9810021
http://inspirehep.net/search?p=find+EPRINT+hep-lat/9810021
http://dx.doi.org/10.1016/j.cpc.2005.06.008
http://dx.doi.org/10.1016/j.cpc.2005.06.008
http://arxiv.org/abs/hep-lat/0505023
http://inspirehep.net/search?p=find+EPRINT+hep-lat/0505023
http://dx.doi.org/10.1103/PhysRevD.83.114505
http://arxiv.org/abs/1104.3870
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.3870
http://dx.doi.org/10.1088/1126-6708/2009/04/094
http://dx.doi.org/10.1088/1126-6708/2009/04/094
http://arxiv.org/abs/0902.1265
http://inspirehep.net/search?p=find+EPRINT+arXiv:0902.1265
http://dx.doi.org/10.1016/S0370-2693(89)80034-6
http://dx.doi.org/10.1016/S0370-2693(89)80034-6
http://inspirehep.net/search?p=find+J+Phys.Lett.,B227,266
http://dx.doi.org/10.1016/0550-3213(83)90674-0
http://dx.doi.org/10.1016/0550-3213(83)90674-0
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B215,433
http://dx.doi.org/10.1016/0550-3213(90)90540-T
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B339,222


J
H
E
P
0
1
(
2
0
1
2
)
1
4
0

[25] Alpha collaboration, B. Blossier et al., HQET at order 1/m: II. Spectroscopy in the

quenched approximation, JHEP 05 (2010) 074 [arXiv:1004.2661] [INSPIRE].

[26] J.J. Dudek, R.G. Edwards, N. Mathur and D.G. Richards, Charmonium excited state

spectrum in lattice QCD, Phys. Rev. D 77 (2008) 034501 [arXiv:0707.4162] [INSPIRE].

[27] G. Burdman and J.F. Donoghue, Union of chiral and heavy quark symmetries, Phys. Lett. B

280 (1992) 287 [INSPIRE].

[28] M.B. Wise, Chiral perturbation theory for hadrons containing a heavy quark, Phys. Rev. D

45 (1992) 2188 [INSPIRE].

[29] T.-M. Yan et al., Heavy quark symmetry and chiral dynamics, Phys. Rev. D 46 (1992) 1148

[Erratum ibid. D 55 (1997) 5851] [INSPIRE].

[30] UKQCD collaboration, G. de Divitiis et al., Towards a lattice determination of the B* B pi

coupling, JHEP 10 (1998) 010 [hep-lat/9807032] [INSPIRE].

[31] D. Becirevic, B. Blossier, E. Chang and B. Haas, g(B∗Bπ)-coupling in the static heavy quark

limit, Phys. Lett. B 679 (2009) 231 [arXiv:0905.3355] [INSPIRE].

[32] H. Ohki, H. Matsufuru and T. Onogi, Determination of B∗Bπ coupling in unquenched QCD,

Phys. Rev. D 77 (2008) 094509 [arXiv:0802.1563] [INSPIRE].

– 21 –

http://dx.doi.org/10.1007/JHEP05(2010)074
http://arxiv.org/abs/1004.2661
http://inspirehep.net/search?p=find+EPRINT+arXiv:1004.2661
http://dx.doi.org/10.1103/PhysRevD.77.034501
http://arxiv.org/abs/0707.4162
http://inspirehep.net/search?p=find+EPRINT+arXiv:0707.4162
http://dx.doi.org/10.1016/0370-2693(92)90068-F
http://dx.doi.org/10.1016/0370-2693(92)90068-F
http://inspirehep.net/search?p=find+J+Phys.Lett.,B280,287
http://dx.doi.org/10.1103/PhysRevD.45.R2188
http://dx.doi.org/10.1103/PhysRevD.45.R2188
http://inspirehep.net/search?p=find+J+Phys.Rev.,D45,2188
http://dx.doi.org/10.1103/PhysRevD.46.1148
http://inspirehep.net/search?p=find+J+Phys.Rev.,D46,1148
http://dx.doi.org/10.1088/1126-6708/1998/10/010
http://arxiv.org/abs/hep-lat/9807032
http://inspirehep.net/search?p=find+EPRINT+hep-lat/9807032
http://dx.doi.org/10.1016/j.physletb.2009.07.031
http://arxiv.org/abs/0905.3355
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.3355
http://dx.doi.org/10.1103/PhysRevD.77.094509
http://arxiv.org/abs/0802.1563
http://inspirehep.net/search?p=find+EPRINT+arXiv:0802.1563

	Introduction
	Matrix elements from Euclidean correlators
	Standard ratios
	Summed ratios 
	GEVP improvement 

	Improved method: sGEVP 
	 Symmetric case 
	Asymmetric case

	Demonstrations 
	Models
	Definition of the models
	Energies from the GEVP 
	Matrix elements

	The B*B pi-coupling in the quenched approximation
	Approximate overlaps
	The matrix element hat-g
	Excited state matrix elements hat g(nm)


	Conclusions
	Derivation of the sGEVP method  
	Linear perturbation of the original theory
	GEVP in the augmented theory 


