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1 Introduction

The QCD transition, once occured in the Early Universe, is being routinely reproduced

in the laboratory, in the ultrarelativistic heavy ion collision experiments at CERN SPS,

RHIC at Brookhaven National Laboratory, ALICE at the LHC and the future FAIR at

the GSI. The most important known qualitative feature of this transition is its cross-over

nature at vanishing baryo-chemical potential [1]. A lot of effort has been invested, both

theoretically and experimentally, in order to find observables which can unambiguously

signal the transition. As expected in a cross-over, observables follow a smooth behaviour

over the transition. The characteristic temperature of the transition depends on how one

defines it. For the renormalized chiral condensate the Wuppertal-Budapest collaboration

predicted a value around 150MeV, which was recently confirmed by hotQCD (see for their

journal publication [2]).

Correlations and fluctuations of conserved charges have been proposed long ago to

signal the transition [3, 4]. The idea is that these quantum numbers have a very different

value in a confined and deconfined system, and measuring them in the laboratory would

allow to distinguish between the two phases.

Fluctuations of conserved charges can be obtained as linear combinations of diagonal

and non-diagonal quark number susceptibilities, which can be calculated on the lattice at

zero chemical potential [5–7]. These observables can give us an insight on the nature of the

matter under study [5, 6, 8]. Diagonal susceptibilities measure the response of the quark

number density to changes in the chemical potential, and show a rapid rise in the crossover

region. At high temperatures they are expected to be large, if the quark mass is small in

comparison to the temperature. At very high temperatures diagonal susceptibilities are
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expected to approach the ideal gas limit. On the other hand, in the low-temperature phase

they are expected to be small since quarks are confined and the only states with nonzero

quark number have large masses. Agreement with the Hadron Resonance Gas (HRG)

model predictions is expected in this phase [9–13]. Non-diagonal susceptibilities give us

information about the correlation between different flavors. They are supposed to vanish

in a non-interacting quark-gluon plasma (QGP). In the approximately self-consistent re-

summation scheme of hard thermal and dense loops ref. [14] shows nonzero correlations

between different flavors at large temperatures due to the presence of flavor-mixing dia-

grams. A quantitative analysis of this observable allows one to draw conclusions about

the presence of bound states in the QGP [15]. Another observable which was proposed to

this purpose, and which can be obtained from a combination of diagonal and non-diagonal

quark number susceptibilities, is the baryon-strangeness correlator [16].

Several results exist in the literature about the study of quark number susceptibilities

on the lattice both for 2 [17–22] and 2+1 [23–25] quark flavors. However, for the first time

in this paper the susceptibilities are calculated for physical values of the quark masses and

a continuum extrapolation is performed not only for strange quark susceptibilities [26] but

also for the light quark and the non-diagonal ones. We present full results of our collabo-

ration for several of these observables, with 2+1 staggered quark flavors, in a temperature

range between 125 and 400MeV. The light and strange quark masses are set to their phys-

ical values. Lattices with Nt = 6, 8, 10, 12, 16 are used. Continuum extrapolations are

performed for all observables under study. We compare our results to the predictions of

the HRG model with resonances up to 2.5GeV mass at small temperatures, and of the

Hard Thermal Loop (HTL) resummation scheme at large temperatures, when available.

2 Observables under study

The baryon number B, strangeness S and electric charge Q fluctuations can be obtained, at

vanishing chemical potentials, from the QCD partition function. The relationships between

the quark chemical potentials and those of the conserved charges are as follows:

µu =
1

3
µB +

2

3
µQ;

µd =
1

3
µB −

1

3
µQ;

µs =
1

3
µB −

1

3
µQ − µS . (2.1)

Here the small indices u, d and s refer to up, down and strange quark numbers, which,

too, are conserved charges in QCD. The negativ sign between µs and µS reflects the −1

strangeness quantum number of the strange quark.

Starting from the QCD pressure,

p

T 4
=

1

V T 3
lnZ(V, T, µB, µS , µQ) (2.2)

we can define the moments of charge fluctuations as follows:

χBSQ
lmn =

∂ l+m+np/T 4

∂(µB/T )l∂(µS/T )m∂(µQ/T )n
. (2.3)
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In the present paper we will concentrate on the quadratic fluctuations, thus l+m+n = 2.

In terms of quark numbers (NX) our observables read:1

χX
2 =

1

V T 3
〈N2

X〉 (2.4)

and on the correlators among different charges or quark flavors:

χXY
11 =

1

V T 3
〈NXNY 〉, (2.5)

where X and Y are one of u, d and s. Given the relationships between chemical poten-

tials (2.1) the diagonal susceptibilities of the conserved charges can be obtained from quark

number susceptibilities in the following way:

χB
2 =

1

9

[

χu
2 + χd

2 + χs
2 + 2χus

11 + 2χds
11 + 2χud

11

]

,

χQ
2 =

1

9

[

4χu
2 + χd

2 + χs
2 − 4χus

11 + 2χds
11 − 4χud

11

]

,

χI
2 =

1

4

[

χu
2 + χd

2 − 2χud
11

]

,

χS
2 = χs

2 . (2.6)

If we do not wish to take further derivatives, we can take all three chemical potentials

(u, d, s) to zero. In this case, for our 2+1 flavor framework nothing distinguishes between

the u and d derivative: this gives slightly simplified formulae:

χB
2 =

1

9

[

2χu
2 + χs

2 + 4χus
11 + 2χud

11

]

,

χQ
2 =

1

9

[

5χu
2 + χs

2 − 2χus
11 − 4χud

11

]

,

χI
2 =

1

2

[

χu
2 − χud

11

]

. (2.7)

The baryon-strangeness correlator, which was proposed in ref. [16] as a diagnostic to

understand the nature of the degrees of freedom in the QGP, has the following expression

in terms of quark number susceptibilities:

CBS = −3
〈NBNS〉

〈N2
S〉

= 1 +
χus
11 + χds

11

χs
2

. (2.8)

3 Details of the lattice simulations

3.1 The lattice action

The lattice action is the same as we used in [27, 28], namely a tree-level Symanzik improved

gauge, and a stout-improved staggered fermionic action (see ref. [29] for details). The stout-

smearing [30] yields an improved discretization of the fermion-gauge vertex and reduces

1For simplicity we inculde the normalization 1/T 2 in the definition of χX

2 and χXY

11 . In refs. [26–28] we

used the notation χX

2 /T 2 for the same observable.
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Figure 1. The statistics used in this study. The number of trajectories exceeds 105 for several

temperatures. Each bar refers to the respective color-coded lattice resolution in a 10MeV wide

temperature bin. We analyzed the gauge configurations after every tenth trajectroy with 128

pairs of random sources (256 at Nt = 16) with the same physical quark masses that we had in

the simulation.

a staggered artefact, the so-called taste violation. (Analogously to ours, an alternative

link-smearing scheme, the HISQ action [31] suppresses the taste breaking in a similar way.

The latter is used by the hotQCD collaboration in their latest studies [2]). Taste symmetry

breaking is a discretization error which is important mainly in the low temperature phase.

In the continuum limit the physical spectrum is fully restored.

In analogy with what we did in refs. [27, 28], we set the scale at the physical point

by simulating at T = 0 with physical quark masses [28] and reproducing the kaon and

pion masses and the kaon decay constant. This gives an uncertainty of about 2% in the

scale setting.

For details about the simulation algorithm, renormalization and a discussion on the

cut-off effects we refer the reader to [28, 32].

3.2 Finite temperature ensembles

The compact Euclidean spacetime of temperature T and three-volume V is discretized

on a hypercubic lattice with Nt and Ns points in the temporal and spatial directions,

respectively:

T =
1

Nta
, V = (Nsa)

3, (3.1)

where a is the lattice spacing. At fixed Nt, the temperature can be set by varying the

lattice spacing. This implies varying the bare parameters of the lattice action accordingly,

keeping the pion and kaon (Goldstone) masses at their physical values. In other words, all

our simulation points lie on the line of constant physics, determined at zero temperature

in our earlier works [27, 28]. For every given Nt we keep the geometry fixed, such that the

aspect ratio is ∼ 3.

For the present analysis we use five lattice spacings for each temperature in the transi-

tion region, corresponding to the temporal resolutions Nt = 6, 8, 10, 12 and 16. We enriched

our existing set of temperatures since refs. [26, 33] and four-folded the statistics at Nt = 16.
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We save a configuration every tenth trajectory in a hybrid monte carlo stream with unit

trajectory length. The statistics used in this analysis is given in figure 1, summed in bins

of 10MeV.

3.3 Fluctuations from the lattice

The fluctuations of interest are derivatives of the free energy with respect to the chemical

potential of a conserved charge. This guarantees the finiteness of the lattice observables,

thus no renormalization is necessary.

A derivative of the partition function can be written in terms of Seff , the action with

all fermionic degrees of freedom already integrated out, as follows:

∂i logZ =
1

Z

∫

DU∂ie
−Seff = 〈Ai〉 . (3.2)

When we take further derivatives, the following chain rule applies:

∂i∂j logZ = 〈AiAj〉 − 〈Ai〉 〈Aj〉+ δij 〈Bi〉 . (3.3)

Here i indicates the variable of the derivative, the chemical potential µi in this case,

with i = u, d, or s. Ai and Bi are the first and second derivatives of Seff without the factor

e−Seff . Their ensemble averages are calculated with the same weight used for generating

the configurations.

In our case Ai and Bi are

Ai =
1

4
trM−1

i M ′
i , (3.4)

Bi =
1

4
tr
(

M ′′
i M

−1
i −M ′

iM
−1
i M ′

iM
−1
i .

)

. (3.5)

with Mi = mi + /D is the fermion operator with the bare mass mi, that we also used for

generating these configurations. M ′
i and M ′′

i stand for its first and second derivatives with

respect to µi, respectively. The pre-factor 1
4
is required by the staggered formulation of

the single flavor trace. These derivatives are mass independent. In the lattice simulation

as well as in the subsequent analysis, the bare mass is the only parameter that identifies a

particular type of quark. The B, Q and S quantum numbers are provided by eq. (2.1).

Ref. [5, 6] describes a stochastic technique for calculating the traces in eqs. (3.4)

and (3.5). The traces are rewritten in terms of inner products of random sources. The

most expensive part of the present analysis is the calculation of the trace in eq. (3.4), which

contains disconnected contributions and appears in almost all susceptibilities as χud. It

required 128 pairs of random sources per configuration (256 for Nt = 16). For each pair of

sources one needs two inversions of the fermion matrix with the light quark mass.

3.4 Continuum extrapolation

With five lattice spacings per temperature we are in the position to go beyond the simplest

form of continuum extrapolation and fit a second order polynomial in a2. Especially at low

temperatures, such fit is indeed necessary, as the coarser lattices have corrections beyond
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 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.005  0.01  0.015  0.02  0.025  0.03

1/Nt
2

χU

T=130 MeV
T=180 MeV

Figure 2. Examples of our continuum extrapolations. Here we show χU , an observable severely hit

both by taste breaking and by the cut-off effects in the one-link staggered dispersion relation. The

data points suggest a quadratic fit in 1/N2

t . Here we give three possible fits both below and above

the transition temperature. The solid, dashed and dash-dotted curves represent the fits on the finest

five, four and three lattices, respectively. The uncentainty related to this choice is incorporated in

the systematic error (see main text). The statistical errors are much smaller than the size of the

points, nevertheless the fits provide reasonable χ2 values.

the a2 term. In general, a continuum fit benefits from higher order terms, but this also

introduces ambiguities, such as whether it is appropriate to keep the coarsest point in the

continuum extrapolation. The answer to this question is obtained by performing all possible

extrapolations, and weighting them by the resulting goodness of the fit. Accordingly, we

varied the number of included lattice spacings and made a linear and a quadratic fit in

a2. We double the number of such choices by considering extrapolations of the inverse

fluctuations (1/χ) too, and then taking the inverse of the corresponding continuum result.

There is another source of systematic error: the interpolation ambiguity. The ensem-

bles were not taken exactly at the same temperatures for different Nt values, and the spline

fit on the data for a given Nt depends on the node points. We take two choices of the node

points into the analyses (selecting the original temperature values with either even or odd

indices). In most cases the two interpolations agree within statistical errors. We incorpo-

rated the systematic error from this source into the statistical error of the interpolating

data points prior to the continuum fit. We selected the temperature range for each data

set such that a consistent interpolation is possible.

This procedure has (with few exceptions) preferred the full quartic fit over four or five

points in the transition region, and a suppressed quartic term fit for T > 200MeV. In most

cases the reciprocal fit was preferred over the original variant.

Systematic errors are defined through the central 68.2% of the weighted distribution

of all analyses, following our collaboration’s standard technique c.f. [34, 35]. For simplicity,

we give our results with the sum of the statistical and the symmetrized systematic errors.

The continuum bands in the results section correspond to this combined error around a
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central value. In most cases the systematic error dominates. For χus and CBS the two

types of errors are of equal magnitude. The actual smallness of χud makes the relative

combined error grow beyond 50%, thus we dropped this observable from our result list.

We give one example of our interpolation strategy in figure 2. We plot the measured

χu
2 values with statistical errors for two different temperatures. The data points seem to

lie on a parabola, when plotted as a function of a2 ∼ 1/N2
t . We give three fits for each of

the selected temperatures to indicate the spread of the possible continuum results.

As discussed in ref. [33] one can use the tree level improvement program for observables.

Independently whether one used it or not the results are the same (c.f. figure 8 of ref. [33]).

For simplicity we use in the present paper the direct method and do not apply the tree

level improvement for our observables when we extrapolate to the continuum limit. The

improvement factors for the various Nt discretizations (c6 = 1.517, c8 = 1.283, c10 = 1.159,

c12 = 1.099, c16 = 1.054) are merely used here for plotting the raw lattice data.

4 Results

The first observables we discuss are the diagonal light and strange quark number suscep-

tibilities: their behavior as functions of the temperature is shown in the two panels of

figure 3. The different symbols correspond to different values of Nt, from 8 to 16. The

red band is the continuum extrapolation, obtained from the unimproved data, not from

the improved ones. The continuum extrapolation is performed through a parabolic fit in

the variable (1/Nt)
2, over five Nt values from 6 to 16. The band shows the spread of the

results of other possible fits, as discussed in section 3.4. The comparison between the im-

proved data and the continuum bands in the figure shows the success of the improvement

program throughout the entire temperature range. But even the unimproved data could

be easily fitted for a continuum limit, the combined errors are below 3% in the deconfined

phase. Both observables show a rapid rise in a certain temperature range, and reach ap-

proximately 90% of the ideal gas value at large temperatures. However, the temperature

around which the susceptibilities rise is approximately 15-20MeV larger for strange quarks

than for light quarks. In addition, the light quark susceptibility shows a steeper rise with

temperature, compared to the strange quark one. As expected, they approach each other

at high temperatures. The effect more evident in figure 4: in the left panel we show the

continuum extrapolation of both susceptibilities on the same plot. In the right panel we

show the ratio χs/χu: it reaches 1 only around 300MeV, while for smaller temperatures it

is < 1. It is worth noticing that all these observables agree with the corresponding HRG

model predictions for temperatures below the transition.

The pattern of temperature dependence is strongly related the actual quark mass. The

difference between the light and strange susceptibilities here with physical masses is more

pronounced than in earlier works with not so light pions (see e.g. ref. [23–25]).

The non-diagonal us susceptibility measures the degree of correlation between different

flavors. This observable vanishes in the limit of an ideal, non-interacting QGP. However,

Hard Thermal and Dense Loop framework provides a non-vanishing value for this corre-

lation also at large temperatures [14]. We show our result in figure 5. χus
11 is non-zero
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 0
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χ 2
u

T [MeV]

SB limit

Nt=6

Nt=8

Nt=10

Nt=12

Nt=16

cont.

HRG

HTL

 0

 0.2

 0.4

 0.6

 0.8

 1

 150  200  250  300  350  400

χ 2
s

T [MeV]

SB limit

Nt=6

Nt=8

Nt=10

Nt=12

Nt=16

cont.

HRG

Figure 3. Left panel: diagonal light quark susceptibility as a function of the temperature. Right

panel: diagonal strange quark susceptibility as a function of the temperature. In both panels, the

different symbols correspond to different Nt values. The red band is the continuum extrapolation.

The black curve is the HRG model prediction for these observables. The dashed line shows the

ideal gas limit. The light blue band in the left panel is the HTL prediction taken from ref. [14].

 0

 0.2

 0.4

 0.6

 0.8

 1

 150  200  250  300  350  400

T [MeV]

χ2
u cont.

χ2
s cont.

 0

 0.2

 0.4

 0.6

 0.8

 1

 150  200  250  300  350  400

χ 2
s /χ

2u

T [MeV]

SB limit

cont.

HRG

Figure 4. Left panel: direct comparison between the continuum limit of light and strange quark

susceptibilities. Right panel: ratio χs
2
/χu

2
as a function of the temperature. The red band is the

lattice continuum result. The black, solid curve is the HRG model prediction. The dashed line

indicates the ideal gas limit.

in the entire temperature range under study. It has a dip in the crossover region, where

the correlation between u and s quarks turns out to be maximal. It agrees with the HRG

model prediction in the hadronic phase. This correlation stays finite and large for a cer-

tain temperature range above Tc. A quantitative comparison between lattice results and

predictions for a purely partonic QGP state can give us information about bound states

survival above Tc [15].

Quadratic baryon number, electric charge and isospin fluctuations can be obtained

from the above partonic susceptibilities through eqs. (2.7). We show our results for these

observables in figure 6 and in the left panel of figure 7. In the low-temperature, hadronic

phase we have a very good agreement with the HRG model predictions. In the crossover

region these quantities all show a rapid rise with temperature, in analogy with what already

observed for the light and strange quark susceptibilities. At large temperature they reach
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HRG

Figure 5. Non-diagonal u-s correlator as a function of the temperature. The different symbols

correspond to different Nt values. The red curve is the continuum extrapolated result. The black

curve is the HRG model prediction. The dashed line indicates the ideal gas limit for this observable.

 0
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 1
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χ 2
I
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Nt=6
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cont.
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χ 2
Q
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Nt=12

Nt=16

cont.

HRG

Figure 6. Left panel: isospin susceptibility as a function of the temperature. Right panel: electric

charge susceptibility as a function of the temperature. In both panels, the different dots correspond

to different Nt values. The red band is the continuum extrapolation. The black curve is the HRG

model prediction for these observables. The dashed line shows the ideal gas limit.

approximately 90% of their respective ideal gas values. A comparison between all diagonal

susceptibilities, rescaled by their corresponding Stefan-Boltzmann limits, is shown in the

right panel of figure 7, from which it is evident that they all show similar features in

their temperature dependence, even if the temperature at which they rise is larger for the

strangeness and baryon number susceptibilities.

The baryon-strangeness correlator CBS defined in eq. (2.8) was proposed long ago [16]

as a diagnostic for strongly interacting matter. It is supposed to be equal to one for a

non-interacting QGP, while it is temperature-dependent and generally smaller than one in

a hadronic system. We show our result for this observable in figure 8. At the smallest
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i=Q

i=u

i=B

i=s

Figure 7. Left: quadratic fluctuation of baryon number as a function of the temperature. The

different symbols correspond to different Nt values, the red band is the continuum extrapolation

and the black, solid curve is the HRG model result. The ideal gas limit is shown by the black,

dashed line. Right: comparison between all diagonal susceptibilities, rescaled by the corresponding

ideal gas limit, as functions of the temperature.

 0

 0.2

 0.4
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C
B
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SB limit

Nt=6
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cont.

HRG

Figure 8. Baryon-strangeness correlator as a function of the temperature. The different symbols

correspond to different Nt values, the red band is the continuum extrapolation and the black, solid

curve is the HRG model result. The ideal gas limit is shown by the black, dashed line.

temperatures it agrees with the HRG model result, and it shows a rapid rise across the

transition. It reaches the ideal gas limit much faster than the other observables under

study, yet there is a window of about 100MeV above Tc, where its value is still smaller

than one. In analogy with χus
11, this observable also gives us information on bound state

survival above Tc.

For convenience we tabulate our continuum results in table 1.
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T [MeV] χI
2/T

2 χU
2 /T

2 χQ
2 /T

2 χS
2 /T

2 χB
2 /T

2 χus
11/T

2 CBS

125 0.432(92) 0.268(39) 0.239(45) 0.085(37) 0.019(2) -0.0331(157) 0.2492(811)

130 0.481(87) 0.311(19) 0.269(44) 0.101(10) 0.027(8) -0.0376(80) 0.3442(492)

135 0.523(78) 0.359(15) 0.300(42) 0.124(15) 0.040(12) -0.0397(87) 0.4426(573)

140 0.566(59) 0.405(22) 0.327(34) 0.155(16) 0.055(15) -0.0438(112) 0.5040(355)

145 0.614(40) 0.448(30) 0.358(27) 0.190(19) 0.070(13) -0.0457(127) 0.5672(484)

150 0.641(34) 0.496(36) 0.376(17) 0.226(16) 0.087(11) -0.0469(118) 0.6416(442)

155 0.669(41) 0.548(24) 0.400(22) 0.261(20) 0.106(12) -0.0447(77) 0.7090(278)

160 0.696(25) 0.580(29) 0.420(20) 0.295(28) 0.124(8) -0.0407(74) 0.7575(152)

165 0.722(28) 0.618(21) 0.440(18) 0.346(26) 0.143(7) -0.0357(42) 0.8024(160)

170 0.747(20) 0.659(15) 0.460(14) 0.400(21) 0.160(5) -0.0320(28) 0.8398(163)

175 0.753(28) 0.699(17) 0.480(19) 0.441(23) 0.179(6) -0.0293(27) 0.8697(133)

180 0.780(31) 0.733(17) 0.499(18) 0.491(23) 0.194(6) -0.0277(28) 0.8931(89)

185 0.799(24) 0.760(16) 0.502(15) 0.533(21) 0.207(6) -0.0241(14) 0.9132(59)

190 0.810(17) 0.770(13) 0.513(10) 0.568(18) 0.218(5) -0.0227(21) 0.9317(38)

200 0.827(15) 0.799(15) 0.530(10) 0.636(15) 0.235(5) -0.0197(22) 0.9457(35)

220 0.860(13) 0.844(14) 0.561(9) 0.732(20) 0.259(4) -0.0151(17) 0.9616(52)

240 0.881(18) 0.868(16) 0.578(12) 0.791(22) 0.273(6) -0.0107(11) 0.9741(46)

260 0.890(16) 0.880(15) 0.586(11) 0.823(20) 0.282(5) -0.0073(10) 0.9822(54)

280 0.895(12) 0.888(12) 0.592(8) 0.845(12) 0.287(4) -0.0052(7) 0.9866(30)

300 0.900(14) 0.895(15) 0.596(9) 0.861(15) 0.291(5) -0.0040(6) 0.9889(27)

320 0.904(15) 0.900(16) 0.600(10) 0.873(15) 0.294(5) -0.0033(8) 0.9905(22)

340 0.908(14) 0.905(15) 0.603(9) 0.882(14) 0.297(5) -0.0028(11) 0.9920(20)

360 0.911(14) 0.908(14) 0.605(9) 0.889(14) 0.299(5) -0.0024(9) 0.9932(34)

380 0.913(15) 0.911(15) 0.607(10) 0.894(16) 0.300(5) -0.0018(10) 0.9943(39)

400 0.915(16) 0.913(17) 0.608(11) 0.899(16) 0.302(5) -0.0012(11) 0.9953(36)

Table 1. In this table we list the results of our continuum extrapolations. We indicated the sum

of the statistical and symmetrized systematic errors around the central value.

5 Conclusions

In this paper we have presented the continuum results of our collaboration on diagonal and

non-diagonal quark number susceptibilities, in a system with 2+1 staggered dynamical

quark flavors with physical masses, in a temperature range between 125 and 400MeV. The

continuum extrapolations were based on Nt = 6, 8, 10, 12 and 16 lattices. We calculated

the systematic errors by varying over the ambiguities of the possible extrapolations.

All observables consistently show a very good agreement with the HRG model predic-

tions for temperatures below the transition.

The diagonal fluctuations have some common features: they all show a rapid rise in

the crossover region, and reach approximately 90% of the corresponding ideal gas value at

large temperatures. The rise of both strange quark and baryon number susceptibilities is

– 11 –
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shifted to temperatures about 20MeV higher than those for light quark, charge and isospin

susceptibilities. Non-diagonal flavor and charge correlators remain different from their

ideal gas values for a certain window of temperatures above the transition. This pattern

encourages further studies to explore the possibility of bound state survival above Tc.
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