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1 Introduction

As researchers have widened their exploration of the space of string theory vacua in recent
years, more attention has been paid to compactifications which include D-branes and fluxes.
Much of the work being done focuses primarily on the effective theories which describe the
low-energy dynamics of such theories, and so the effects of higher-derivative corrections
to the string theory action are often ignored. Caution is required however, as there are
situations in which these contributions play a crucial role in establishing the consistency,
or inconsistency, of solutions.

For example, consider the compactification of M-theory on a Calabi-Yau four-fold with
flux. The equation of motion for the three-form potential C3 extended in the three space-
time directions gives [1] (assuming also supersymmetry of the solution)

− d ∗8 df =
1
2
G4 ∧ ∗8G4 + 4π2

∑
i

δ(8)(x− xi)− 4π2X8 + · · · , (1.1)

where f is a function related to the warp-factor, xi are the positions of space-filling M2-
branes, and X8 is a particular eight-derivative term built from four curvature tensors;
other higher-derivative terms (eight-derivative and higher) are represented by · · · . Solving
this equation locally for the warp-factor, the higher-derivative corrections are not relevant
(assuming we are in the regime where the volume of the internal space is large in Planck
units). However, if we integrate (1.1) over the internal space, then we find

0 =
1

8π2

∫
|G4|2 +NM2 −

χ

24
, (1.2)

where χ is the Euler character of the four-fold, which comes from integrating X8 over the
internal space. Thus, if we had naively ignored the higher-derivative correction, then we
would have incorrectly concluded that a supersymmetric solution would require vanish-
ing flux and no M2-branes. Conversely, when we correctly include the higher-derivative
corrections to the action, we conclude that fluxes (or branes) are a required ingredient on
most Calabi-Yau four-folds (χ is typically positive on these spaces). Thus, understanding of
these higher-derivative terms was crucial for determining the correct consistency conditions
on this class of solutions.

It is instructive to also consider another class of solutions that is related to the previous
ones by duality, in which we compactify F-theory on the Calabi-Yau four-fold [2]. In this
case, the global consistency condition (1.2) corresponds, in IIB language, to a D3-brane
tadpole and reads

0 =
∫
F3 ∧H3 +ND3 −

χ

24
. (1.3)

From the point of view of IIB string theory, the contribution χ/24 may at first appear
mysterious, since, as in M-theory, the bulk action does not receive corrections until eight
derivatives, but an eight derivative term would be too suppressed in the regime of a large,
smooth compactification to give a topological contribution when integrated over the six-
dimensional internal space of the IIB solution. The resolution is that the IIB solution also

– 2 –



J
H
E
P
0
1
(
2
0
1
2
)
1
2
7

necessarily includes D7-branes and O7-planes which wrap four-cycles of the internal space.
These brane actions can and do receive four-derivative corrections like [3–8]

δSD7 = −T7
π2(α′)2

24

∫
D7
C4 ∧ (trRT ∧RT − trRN ∧RN ) , (1.4)

and the integral of the trR2 terms over the various seven brane world-volumes precisely
reconstructs the contribution proportional to the Euler character of the four-fold.

The lesson from this example is that it is not only important to understand higher-
derivative corrections in the bulk, but that higher-derivative corrections to D-brane actions
can also play a pivotal role in determining the consistency of string compactifications;
without taking these terms properly into account, we would reach mistaken conclusions
about the space of valid constructions of string vacua.

However, terms like those in (1.4) are not the full story; there are many other terms
at the same order of derivatives which will appear in D-brane actions [9]. There are at
least two routes by which we can learn about these additional terms; we can take the
known terms such as those in (1.4) and apply T-duality, or else we can try to compute the
terms directly by evaluating scattering amplitudes. In the current work we will concentrate
on the latter approach, and in fact we will largely be laying the ground-work for a more
complete study by carefully examining many of the issues which arise when computing disc
amplitudes and using them to reconstruct space-time actions. In [10] we will use the tools
presented in this paper to present the gauge invariant completion of the four derivative
corrections to the Wess-Zumino contribution to the D-brane action found in [9]. These
interactions have also been considered by [11–19].

To compute the terms of interest, we must evaluate scattering amplitudes in which
various closed string fields interact with a D-brane.1 We will restrict ourselves to tree-
level computations, so the relevant amplitudes are given by insertions of multiple closed
string vertex operators on a world-sheet with the topology of a disc. We will study this
problem using the boundary state formalism [20–24]. In this formalism we work with the
usual vertex operators and BRST cohomology that we would use on the sphere [25], but
to account for the effect of a world-sheet boundary, we insert a boundary state |B〉 which
encodes the boundary conditions of fields in the presence of the D-brane. We also need
to include a propagator which pushes this induced boundary out to the first closed string
insertion point, and a ghost factor b0 + b̃0.

Though the boundary state itself is annihilated by the total (left- plus right-moving)
BRST charge, the extra ghost insertion is not invariant, and this fact leads to many subtle
issues which do not occur for sphere amplitudes. For example, it is not necessarily true
that BRST-exact operators decouple from disc amplitudes, and this potentially leads to
disturbing consequences. Gauge transformations of the space-time fields are represented
by shifting the corresponding vertex operators by BRST-exact pieces, so if these do not

1It is also interesting to compute the scattering of closed string fields from orientifold planes, by com-

puting string amplitudes with a crosscap instead of a boundary. It is well known how to accommodate that

situation in the boundary state formalism. We don’t work out the details in the present paper, but expect

that most of our techniques and results carry over to that case easily.
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decouple it would mean that the scattering amplitude was not gauge invariant, which
should not happen for physical quantities. A related issue is that amplitudes in the NSR
formalism are not supposed to depend upon how the total picture charge is distributed
among the various operators, but verifying this property typically relies on the decoupling
of certain BRST-exact states. So, in order to do a careful analysis of disc amplitudes with
closed string insertions, it is important to really understand these issues and whether they
affect the integrity of our answers.

The outline of this paper is as follows. In section 2 we start by constructing the
physical state vertex operators by computing the relevant BRST-cohomologies to describe
the massless fields of the superstring. This section also serves as a summary of many of
our conventions for OPEs that we will need when we proceed to compute amplitudes. In
section 3, we discuss the boundary state |B〉 and its effects on the computation, and in
particular we demonstrate how we can use |B〉 to convert all right-moving fields in the
computation into left-movers to facilitate the evaluation of the amplitude. Section 4 deals
with BRST-exact states in the amplitude and shows that they can give rise to boundary
terms that need not vanish. However, by appealing to the analyticity of the amplitude as a
function of the external momenta, we demonstrate that in a broad variety of circumstances
(we also discuss the situations where this argument fails) the boundary terms do vanish
identically. We show that this proves that the amplitudes are indeed gauge invariant and
that the result is independent of how we distribute the total picture charge. Most of
this discussion focusses on the two-point functions for simplicity. Next, in section 5 we
explicitly compute various two-point functions on the disc, and in section 6 we compare
the leading terms in the momentum expansion with predictions from supergravity and
show exact agreement.

2 Vertex operators

2.1 Notation and conventions

We start with the usual matter and ghosts on the world-sheet with OPEs on the complex
plane2

Xµ(z, z̄)Xν(w, w̄) ∼ −ηµν ln |z − w|2 ,

ψµ(z)ψν(w) ∼ ηµν

z − w
,

b(z)c(w) ∼ c(z)b(w) ∼ 1
z − w

, (2.1)

φ(z)φ(w) ∼ − ln (z − w) ,

η(z)ξ(w) ∼ ξ(z)η(w) ∼ 1
z − w

,

and similarly for the anti-holomorphic fields.

2The OPE for ψµ differs from [9] by a sign; we have changed conventions to match most of the literature

on boundary states.
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qg qP h

c 1 0 -1
b -1 0 2
η 1 -1 1
ξ -1 1 0
enφ 0 n −n (n+ 2) /2
∂Xµ 0 0 1
eik·X 0 0 k2/2
ψµ 0 0 1/2

Table 1. Left-moving fields with their ghost charge, picture charge, and conformal weight.

The (holomorphic) ghost charge qg and picture charge qP of an operator O are given
by3

[Qg,O] (0) =
∮

dz

2πi
Jg(z)O(0) = qgO(0), (2.2)

[QP ,O] (0) =
∮

dz

2πi
JP (z)O(0) = qPO(0), (2.3)

where

Jg =: cb : + : ηξ :, JP = −∂φ+ : ξη :, (2.4)

and Qg and QP are the corresponding charge operators. The charges and conformal weights
of several of these fields are listed in table 1.

Finally, in our conventions the left-moving BRST charge is given by

[QBRST ,O] (0) =
∮

dz

2πi
JBRST (z)O(0), (2.5)

where

JBRST = J0 + J1 + J2, (2.6)

J0 = c

(
−1

2
∂Xµ∂Xµ −

1
2
ψµ∂ψµ −

1
2
∂φ∂φ− ∂2φ− η∂ξ + ∂cb

)
, (2.7)

J1 = −1
2
eφηψµ∂Xµ, (2.8)

J2 =
1
4
e2φbη∂η. (2.9)

3These definitions are not universally agreed upon. Our choice of picture charge is chosen so that it

commutes with BRST charge, [QP , QBRST ] = 0. Our ghost charge satisfies [Qg, QBRST ] = QBRST , i.e. the

BRST current has ghost charge one, but this does not determine it uniquely; we could add any multiple of

JP to Jg. The precise form here is fixed by also requiring that the picture changing operators have ghost

number zero, so that they relate states or operators with the same ghost number.
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2.2 Physical states

In the closed string we have both holomorphic (left-moving) fields and their anti-holo-
morphic (right-moving) counterparts, which we denote throughout the paper with tildes.

Physical states in the closed string correspond [26–31] to classes in the semirelative
BRST-cohomology, i.e. states which are annihilated by the operator b−0 = b0 − b̃0 and by
the total BRST charge Q = QBRST + Q̃BRST , modulo states which can be written as Q
acting on something that is annihilated by b−0 . In terms of operators, we need[

b−0 , V
]

= [Q,V ] = 0, δV = [Q,U ] ,
[
b−0 , U

]
= 0. (2.10)

In practice, obtaining a complete characterization of this cohomology is difficult, espe-
cially since the b−0 condition does not factorize between the left- and right-movers. In this
section we will collect various results in the literature to explain how we have a bit more
flexibility when states have well-defined non-vanishing momentum, pµ 6= 0, and when we
only intend to insert our vertex operators into disc amplitudes, and are not worried about
arbitrary higher-genus Riemann surfaces.

2.2.1 Chiral states

Let us start with states that are purely left-moving. In this case there are two cohomologies
we can define, either that given by BRST-closed states modulo BRST-exact states, without
further restrictions, or the relative cohomology of states which are annihilated by b0. Note
that the BRST charge has picture charge zero, ghost charge one, conformal weight zero,
and zero momentum,

[QP , QBRST ] = [L0, QBRST ] = [p̂µ, QBRST ] = 0, [Qg, QBRST ] = QBRST , (2.11)

where
[p̂µ,O] (0) =

∮
dz

2πi
∂Xµ(z)O(0), (2.12)

is the momentum operator. Note that we also have

[QP , b0] = [L0, b0] = [p̂µ, b0] = 0, [Qg, b0] = −b0, (2.13)

as well as

[QP , Qg] = [QP , L0] = [QP , p̂µ] = [Qg, L0] = [Qg, p̂µ] = [L0, p̂
µ] = 0. (2.14)

Now from (2.11), (2.13), and (2.14), we see that without loss of generality we can
restrict attention to particular eigenspaces of QP , L0, and p̂µ, and we can grade the coho-
mology by ghost number. In other words, we can define spaces

CnP,λ,pµ = {V | [QP , V ] = PV, [L0, V ] = λV, [p̂µ, V ] = pµV, [Qg, V ] = nV } , (2.15)

and then define the absolute and relative chiral cohomologies,

Hn
P,λ,pµ =

{
V ∈ CnP,λ,pµ | [QBRST , V ] = 0

}
{

[QBRST , U ] |U ∈ Cn−1
P,λ,pµ

} , (2.16)
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and

Hn
R;P,pµ =

{
V ∈ CnP,0,pµ | [b0, V ] = [QBRST , V ] = 0

}
{

[QBRST , U ] |U ∈ Cn−1
P,0,pµ , [b0, U ] = 0

} . (2.17)

Note that in the relative chiral cohomology we can drop the L0 eigenvalue because
[b0, V ] = [QBRST , V ] = 0 implies that [L0, V ] = 0. In the case of the absolute chiral
cohomology, for λ 6= 0 we have for BRST-closed operators V ,

V =
[
QBRST ,

(
λ−1 [b0, V ]

)]
, (2.18)

implying that Hn
P,λ,pµ = 0 for λ 6= 0. So there too we will assume that λ = 0. We will

assume, in both cohomologies, that we have fixed P and pµ to some agreed upon values,
and we will not bother to include them as subscripts. Thus we will talk about the absolute
chiral cohomology Hn and the relative chiral cohomology Hn

R.
These two cohomologies fit together into a long exact sequence (see for example [32]),

· · · −→ Hn
R

i−→ Hn b0−→ Hn−1
R

{Q,c0}−→ Hn+1
R

i−→ Hn+1 −→ · · · , (2.19)

where the map i is simply inclusion, and the other maps indicate taking the commutator
with b0 or with {QBRST , c0} respectively. It is easy to check that the kernel of each map
is the image of the previous map.

Now we mention some results from the literature. It is possible to construct picture
changing operators

X(z) = {QBRST , 2ξ(z)} , and Y (z) = −2 : c∂ξe−2φ(z) :, (2.20)

whose zero mode pieces X0 and Y0 commute with QBRST , Qg, L0, and p̂µ, and which carry
picture charge +1 and −1 respectively, and which further satisfy

X0Y0 = Y0X0 = 1 + {QBRST , · · · } . (2.21)

Thus, these operators can be used to construct an isomorphism between the absolute
cohomology with picture P and the one with picture P + k for any k ∈ Z.

Unfortunately, Y0 does not commute with b0, so these operators cannot be used to
construct an isomorphism of relative cohomologies. However, for pµ 6= 0, it was shown by
Berkovits and Zwiebach [33] that one can construct an alternative operator

Y ′(z) = −2`µ : e−φψµ(z) :, where `µpµ = 1, (2.22)

whose zero mode piece Y ′0 does commute with b0 as well as QBRST , Qg, L0, and p̂µ, and
which, when restricted to the pµ 6= 0 eigenspace satisfies

X0Y
′

0 = Y ′0X0 = 1 + {QBRST , · · · } , (2.23)

where · · · is annihilated by b0. These then establish isomorphisms between Hn
R at picture

P and Hn
R at picture P + k, k ∈ Z.
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Next, we have a result due to Lian and Zuckerman [34], generalizing [35] for the bosonic
string, which shows that, again for pµ 6= 0, Hn

R = 0 unless n = 1. In fact, looking carefully
at their results, they prove this only for pictures −1, −1/2, and −3/2 (they start with a
vacuum in one of these pictures and consider only states built by acting on the vacuum
with a finite number of β and γ superghost oscillators), but combining this result with the
isomorphisms constructed by [33], we have that Hn

R = 0 for n 6= 1 in any picture and any
non-zero pµ.

If we plug the Lian-Zuckerman vanishing result into the sequence (2.19), we learn that
for pµ 6= 0, the maps

H1
R

i−→ H1, H2 b0−→ H1
R, (2.24)

are isomorphisms, and that Hn = 0 if n 6= 1, 2. The first isomorphism in particular implies
that for any BRST-closed operator V of ghost charge one, there exist operators W and U

satisfying
[b0,W ] = [b0, U ] = 0, [QBRST ,W ] = 0, (2.25)

such that
V = W + [QBRST , U ] . (2.26)

2.2.2 Closed string states

In the closed string there are three different cohomologies that arise, the absolute coho-
mology Hn, the semirelative cohomology HnS , and the relative cohomology, HnR, defined
by

Hn =
{V | [Q,V ] = 0, [QG, V ] = nV }
{[Q,U ] | [QG, U ] = (n− 1)U}

, (2.27)

HnS =

{
V | [Q,V ] =

[
b−0 , V

]
= 0, [QG, V ] = nV

}{
[Q,U ] |

[
b−0 , U

]
= 0, [QG, U ] = (n− 1)U

} , (2.28)

HnR =

{
V | [Q,V ] = [b0, V ] =

[
b̃0, V

]
= 0, [QG, V ] = nV

}
{

[Q,U ] | [b0, U ] =
[
b̃0, U

]
= 0, [QG, U ] = (n− 1)U

} , (2.29)

where we recall that Q = QBRST + Q̃BRST , b−0 = b0 − b̃0, and we define the total ghost
charge, QG = Qg + Q̃g. We assume that we are working at fixed left and right pictures P
and P̃ and fixed momentum pµ, and vanishing eigenvalues for L0 and L̃0.

With standard techniques it is easy to express Hn and HnR in terms of chiral coho-
mologies by Künneth formulae,

Hn =
∑
k+`=n

Hk ⊗ H̃`, HnR =
∑
k+`=n

Hk
R ⊗ H̃`

R. (2.30)

Using the vanishing theorems of the previous subsection, this implies that for pµ 6= 0, we
have

Hn = 0, for n 6= 2, 3, 4, and HnR = 0, for n 6= 2. (2.31)

Because the semirelative condition does not factorize between left and right, we can’t
use such a simple decomposition for the semirelative complex, which are the states of

– 8 –
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legitimate physical interest. However, there are long exact sequences [32] anologous to the
chiral (2.19),

· · · −→ HnS
i−→ Hn

b−0−→ Hn−1
S

{Q,c−0 }−→ Hn+1
S

i−→ Hn+1 −→ · · · , (2.32)

and

· · · −→ HnR
i−→ HnS

b+0−→ Hn−1
R

{Q,c+0 }−→ Hn+1
R

i−→ Hn+1
S −→ · · · . (2.33)

Plugging in our vanishing theorems we learn that, for pµ 6= 0, there are isomorphisms

H4 ∼= H3
S
∼= H2

R
∼= H2

S
∼= H2, (2.34)

and the only other nonvanishing cohmology group is H3 which can be obtained from (2.30)
or from the short exact sequence

0 −→ H3
S

i−→ H3 b−0−→ H2
S −→ 0. (2.35)

To summarize, this shows that if our purpose is simply to find the spectrum of physical
closed string states at non-zero momentum we have many choices, since there are many
cohomology groups which are isomorphic to the desired4 H2

S .
However, when we wish to insert our vertex operators into amplitudes then we need

to be more careful. The semirelative condition is imposed in order to make correlation
functions well-defined on arbitrary higher genus Riemann surfaces [26, 27, 29–31]. In
particular, if U corresponds to a state that is not annihilated by b−0 , then the BRST exact
insertion [Q,U ] is not guaranteed to decouple from amplitudes. Thus if V represents a
class in H2 with pµ 6= 0, then the last isomorphism in (2.34) guarantees that we can write

V = W + [Q,U ] ,
[
b−0 ,W

]
= 0, (2.36)

but the second term may not decouple and so they may give different results inside cor-
relation functions. However, we will argue in section 4 that for correlation functions on
the disc at generic nonzero momenta, that [Q,U ] will in fact decouple, even if U is not
annihilated by b−0 .

Our purpose in clarifying all these issues is that below we will find R-R operators in
H2 which are not in H2

S but which enjoy certain desirable properties in the context of
disc amplitudes with one R-R field and several NS-NS fields. Using H2

S , one finds that in
the (−1/2,−1/2) picture one can write R-R vertex operators which are manifestly gauge
invariant (they depend on the R-R field strength F rather than the potential C), but we
must put at least one of the NS-NS fields in an asymmetric picture and we lose the manifest
exchange symmetry between the NS-NS fields. Alternatively in the (−3/2,−1/2) picture
we can maintain the exchange symmetry, but we lose the gauge invariance and in fact must
work in a somewhat awkward gauge. However, if we are willing to relax the semirelative
condition and work with R-R operators in H2, then we can find something which combines
both of the desirable properties.

4For unintegrated vertex operators, as we are discussing here, we are almost always interested in total

ghost number two.
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2.3 Vertex operators

2.3.1 Open string

Whether we wish to compute the absolute chiral cohomology at ghost number one, H1, or
the relative chiral cohomology H1

R, we start the same way. At a given mass level, say p2 = 0,
and a given choice of picture, we can classify all possible open-string vertex operators that
have conformal weight zero and ghost number one and are constructed out of the basic
fields (these fields and their charges and weights were summarized in table 1). Suppose
we want operators of picture P . If we start with a contribution e(n+P )φ, then to get the
correct picture charge we must also include either n η’s, if n > 0, or |n| ξ’s if n ≤ 0. Then
to get the correct ghost number we need either n− 1 b’s for n > 0 or 1− n c’s for n ≤ 0.
Calculating the conformal weight in either case, we find[

b∂b · · · ∂n−2bη∂η · · · ∂n−1ηe(n+P )φ
]

=
n2 − 2Pn−

(
P 2 + 2P + 2

)
2

, n > 0,[
c∂c · · · ∂|n|c∂ξ∂2ξ · · · ∂|n|ξe(n+P )φ

]
=
n2 − 2 (P + 1)n−

(
P 2 + 2P + 2

)
2

, n ≤ 0.

We can then add more pieces which don’t change the picture charge or ghost number,
including contributions from the matter sector, additional η-ξ or b-c pairs, or derivatives
acting on any of these fields. All these contributions, however, will only increase the
conformal weight, so we need the basic contribution above to have weight less than or
equal to zero. For instance, if we want operators of picture P = −1, we have either
(n2 + 2n−1)/2 for n > 0, or (n2−1)/2 for n ≤ 0. The only viable solutions are then n = 0
or n = −1, and the corresponding possible operators are

V−1 =
[
αµce

−φψµ + βc∂c∂ξe−2φ
]
eipX . (2.37)

Imposing the condition that this is BRST closed, we find that β = 0 and pµαµ = 0. Note
that if we imposed [b0, V ] = 0 first, we would set β = 0 before considering BRST closure,
but the end result is the same.

In general, under gauge transformations vertex operators change by BRST exact op-
erators

δVP = [QBRST , UP ] , (2.38)

where UP has the same momentum and picture charge as VP , and vanishing conformal
weight and ghost charge.

Similar considerations to those above then allow us to classify all possible gauge trans-
formations. For picture −1, for example, we have only

U−1 = iλc∂ξe−2φeipX , (2.39)

generating the gauge transformations δαµ = 1
2λpµ.

Similar calculations give, for picture 0,

V0 = αµ

[
c (∂Xµ − ipνψνψµ)− 1

2
eφηψµ

]
eipX , (2.40)
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subject to p2 = 0 and pµαµ = 0. In this case

U0 = −iλeipX (2.41)

corresponding to the gauge transformations δαµ = λpµ.
In both these pictures, the absolute and relative cohomologies are identical.
For picture −3

2 , in the absolute cohomology H1 we have

V− 3
2

=
[
αAc∂c∂ξe

− 5
2
φ + iβAce

− 3
2
φ
]
SAeipX , (2.42)

subject to the conditions p2 = 0 and α/p = 0, where

/p = pµΓµ, (2.43)

and our conventions for gamma matrices are detailed in appendix A. In this case there are
gauge transformations parametrized by λA and µA, generated by the operator

U− 3
2

=
[
−2iλAc∂c∂ξ∂2ξe−

7
2
φ + 2

√
2µAc∂ξe−

5
2
φ
]
SAeipX , (2.44)

which act as
δα =

√
2λ/p, δβ = λ+ µ/p. (2.45)

If we were to work in the relative cohomology H1
R instead, then we would set α = λ = 0

above, leading to an isomorphic cohomology at nonzero momentum, but with a smaller
space of states and of gauge transformations.

Finally for picture −1
2 , we have

V− 1
2

= αAce
− 1

2
φSAeipX , (2.46)

with p2 = 0 and α/p = 0. There are no gauge transformations in this case, and the absolute
and relative cohomologies are identical.

2.3.2 Closed string

The closed string vertex operators will, of course, be (sums of) products of left- and right-
moving open string vertex operators. In the NS-NS sector, we would have

VP,P̃ (z, z̄) = εµν Ṽ
µ
P (z)V ν

P̃
(z̄)eipX(z,z̄), (2.47)

where

V µ
−1 = ce−φψµ,

V µ
0 = c (∂Xµ − ipρψρψµ)− 1

2
eφηψµ,

(2.48)

and similar expressions for the z̄ dependent contributions. In each case BRST closure
requires

p2 = 0,

pνενµ = pνεµν = 0.
(2.49)
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There are gauge transformations

δεµν = λµpν + pµζν , (2.50)

for vectors λµ and ζν satisfying pµλµ = pµζµ = 0. The operators constructed in this way
satisfy [b0, VP,P̃ ] = [̃b0, VP,P̃ ] = 0, so we can consider them as elements of H2

R, H2
S , or H2.

Working in any of these three cohomologies we could enlarge the space of operators we
consider to ones where the left and right ghost numbers were not both one (but the total
ghost number should still be two), but by the arguments of section 2.2 all such operators
would then be BRST-trivial as long as pµ 6= 0, so the ones we have written down here
completely capture the cohomology at ghost number two.

In the R-R sector, we have the (−1
2 ,−

1
2)-picture operator

V− 1
2
,− 1

2
(z, z̄) = fABV

A
− 1

2

(z)Ṽ B
− 1

2

(z̄)eipX , (2.51)

where
V A
− 1

2

= ce−
1
2
φSA (2.52)

In this case BRST implies

p2 = 0

/p
T f = f/p = 0.

(2.53)

We must take a moment now to discuss the GSO projection. In the NS-NS sector, this
is simply the requirement that (−1)F and (−1) eF , where F and F̃ are the left and right
world-sheet fermion number operators, are both equal to one when acting on a physical
state. It turns out that the NS-NS sector operators we wrote down already satisfy this
requirement. In the R-R sector, the GSO projection (we use the conventions of [36]) is
(−1)F = 1 and (−1) eF = (−1)p+1, where p is even for IIA and odd for IIB. The action of
(−1)F on R sector ground states is given by

(−1)F |P ;A〉 = (−1)P+ 1
2 (Γ11)AB |P ;B〉 , (2.54)

〈P ;A| (−1)F = (−1)P+ 1
2 (Γ11)AB 〈P ;B| .

where P ∈ Z + 1
2 is the picture and A is the spinor index. The action of (−1) eF is given by

the corresponding expressions with tildes. Thus the GSO projection on (2.51) imposes

f = (Γ11)T f = (−1)p+1 fΓ11. (2.55)

These conditions determine the choice of coefficient fAB. Indeed, there is a natural
correspondence, using the algebra of gamma matrices (Γµ)AB, between objects with two
Lorentz spinor indices and (formal sums of) space-time differential forms according to

fAB =

(
C
∑
n

1
n!
F

(n)
µ1···µnΓµ1···µn

)
AB

=
(
C /F
)
AB

, (2.56)
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We will now argue that the BRST and GSO conditions make it very natural to associate
the differential forms F (n) with the R-R field strengths. First of all, the GSO projection
immediately gives that F (n) = 0 unless p+ n is even, so we only have even forms in IIA or
odd forms in IIB. The other implication of the GSO condition is the duality relation

∗ F (n) = (−1)
1
2

(n2−n) F (10−n), (2.57)

which comes from /F = −Γ11 /F .
Turning next to the BRST conditions, it is easy to check that /pT f = f/p = 0 is

equivalent to the demand that

dF (n) = d ∗ F (n) = 0, (2.58)

for each n. Finally, since there were no BRST gauge transformations, the F (n) should be
gauge invariant quantities. It is thus very natural to associate these F (n) with the R-R
field strengths, at least up to an overall normalization which we won’t attempt to fix.

For picture (−3
2 ,−

1
2), if we work in the absolute cohomology H2, we have [20] (see also

discussions of R-R vertex operators in [37, 38])

V− 3
2
,− 1

2
(z, z̄) =

[
fAB

(
c∂c∂ξe−

5
2
φSA

)(
c̃e−

1
2

eφS̃B)+ igAB

(
ce−

3
2
φSA

)(
c̃e−

1
2

eφS̃B)] eipX ,
(2.59)

with

p2 = 0,

/p
T f = f/p = 0,

g/p = 0,

(2.60)

and where we have gauge transformations (following directly from the corresponding open
string transformations (2.45))

δf =
√

2/pT ζ,

δg = ζ + /p
Tχ,

(2.61)

for any parameters ζAB and χAB satisfying ζ/p = χ/p = 0. As before, fAB corresponds to a
gauge-invariant differential form which is closed and co-closed, so it should be proportional
to C /F .

For the other term, writing g = C /G for a sum of differential forms G(n), the GSO
projection becomes

/G = Γ11 /G = (−1)p /GΓ11, (2.62)

which implies that we must only have terms satisfying p+ n is odd, and we must have

∗G(n) = (−1)
1
2

(n2−n+2)G(10−n). (2.63)

The BRST condition g/p = 0 becomes the constraint

dG(n) = − ∗ d ∗G(n+2). (2.64)
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The gauge transformations imply that we can make shifts (these are the gauge trans-
formations parametrized by χ)

δG(n) = dΛ(n−1), (2.65)

where the forms Λ(n−1) satisfy

dΛ(n−1) = − ∗ d ∗ Λ(n+1). (2.66)

By using the gauge transformation ζAB = −gAB we see that we can replace gAB by a
contribution to fAB given by δF (n) = 2

√
2dG(n−1). For this reason it is natural to assume

that G(n) should b proportional to the R-R potential C(n) in a specific gauge. Indeed, we
should write

fAB = 2 (1− y)
(
C /F
)
AB

, gAB =
y√
2

(
C /C
)
AB

. (2.67)

Here y is an arbitrary real parameter, and we have chosen a gauge in which dC(n−1) =
− ∗ d ∗ C(n+1), i.e.

C
(n)
µ1···µn−1νp

ν = −(n− 1)C(n−2)
[µ1···µn−2

pµn−1]. (2.68)

The overall factor of two in (2.67) ensures that amplitudes using this operator agree with
those computed using (2.51).

Our gauge transformations then act to either shift the parameter y by any amount,
using the parameter ζ, or to shift /C according to (2.65). The most convenient choice of
gauge for us is to simply take y=0, in which case we can simply write

V− 3
2
,− 1

2
(z, z̄) = fABV

A
− 3

2

Ṽ B
− 1

2

eipX , (2.69)

where
V A
− 3

2

= c∂c∂ξe−
5
2
φSA, Ṽ B

− 1
2

= c̃e−
1
2

eφS̃B. (2.70)

To prove general statements about expressions involving the vertex operator in the
asymmetric (−3

2 ,−
1
2) picture we found our result in eq. (2.69) more convenient than existing

results in the literature. The vertex operator found in ref. [37], for example, is given by
an infinite sum of ever-larger terms which makes it difficult to deal with. Moreover, the
vertex operator (2.69) depends on the field strength, not the RR potential, and so is
manifestly invariant under RR gauge transformations. This is not true for other versions
of the operator, in which computations must be done in a particular gauge.

Of course, if we want to use our vertex operators on arbitrary Riemann surfaces, then
we should work with H2

S rather than H2, and so we should be forced to take y = 1 and
disallow the gauge transformations which shift y (this would reproduce the vertex opera-
tor used in ref. [38]). However, we will demonstrate in section 4 that for two-point disc
amplitudes we encounter no problems working with the form (2.69), since the difference is
a BRST-exact operator which decouples even though it sits in the absolute, rather than
semi-relative, cohomology. Moreover, we find this operator somewhat more convenient in
calculations for a couple of reasons: we don’t have to worry about the somewhat compli-
cated gauge condition (2.68), and the traces of gamma matrices work out to be somewhat
simpler since at least one of the NS-NS fields will contribute only one or three fermions
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(because we need to take one of the eφ terms from the zero-picture operator in (2.48)) and
there is no possibility of getting four fermions from every NS-NS field.

The story for picture (−1
2 ,−

3
2) is completely analogous.

Let us conclude with some comments about extending to other amplitudes. The vertex
operators presented in this section are all one needs to evaluate two-point amplitudes on
the disc. For higher-point amplitudes, one must also make use of integrated forms of the
vertex operators which carry ghost number (0, 0) and which are easily derivable from the
fixed position operators that we have presented.

Finally, in a one-point amplitude we would need a vertex operator of higher ghost
number and we should repeat the analysis of physical states for this case. It turns out that
at these higher ghost numbers it is not possible to pick a gauge where the vertex operator
depends only on the field strength and not on the potential like we could for the ghost
number two5 operator (2.69). This is consistent with the fact that the one-point coupling
depends only on the potential and there are no propagators available to cancel the factor
of momentum which appears in the field strength.

For example, if we compute the picture (−3
2 ,−

1
2) BRST cohomology at ghost number

(2, 1), we find only one operator,(
C /C
)
AB

(
c∂ce−

3
2
φSA

)(
c̃e−

1
2

eφS̃B) eipX . (2.71)

BRST-closure requires that we work in the gauge (2.68), and there are gauge transfor-
mations we can make according to (2.65), but there is no transformation in this case to
a vertex operator which depends on the field-strength instead of the potential. This ver-
tex operator has the correct ghost charges to give a non-zero result when inserted in an
amplitude next to a boundary state without a propagator, and indeed gives the expected
one-point coupling to the brane coming from

∫
DpC

(p+1).

3 Boundary states and correlators

We will try to develop all the properties and results for our boundary states from scratch,
but some other useful references include [20–24], and the review [39].

3.1 Boundary states

We will be taking a very pragmatic view of the boundary state |B〉 as being simply an
implementation of the boundary conditions obeyed by the vertex operators. These bound-
ary conditions relate right-moving excitations to left-moving excitations, as waves hit the
boundary of the string world-sheet and reflect back. On the upper half-plane, we expect
the boundary conditions to relate a purely right-moving operator of conformal weight h to
a purely left-moving counterpart,

Õa(w̄) = η2hRabOb(w)|w=w̄. (3.1)

5Recall that in our definition of ghost number, explained in footnote 3, (2.70) gets a contribution of +2

from the c-ghosts and −1 from ξ.
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Here a and b are indices that correspond to the Lorentz representation of the operator,
and Rab is a matrix encoding the boundary conditions. The sign η = ± is included for
operators of half-integral conformal weight so that we can later sum over the two choices
when performing the GSO projection.

We will find it more useful to work not on the upper half-plane, but on the exterior
of the unit disc, |z| > 1 (this is so that we can place the boundary state at the origin and
propagate it outwards). In this case, if Õ is a primary conformal operator, then under the
mapping z = e−iw, the condition above becomes

(iz̄)h Õa(z̄) = Rabη
2h (−iz)hOb(z)||z|2=1. (3.2)

The boundary state is designed to relate an anti-holomorphic operator defined on the
exterior of the disc to a holomorphic operator defined on the interior of the disc in a way
consistent with the boundary conditions,

Õa(z̄) |B; η〉 = Rab (iηz̄)−2hOb(z̄−1) |B; η〉 . (3.3)

In the case that the operators in (3.3) correspond to free fields,

Oa(z) = Φa(z) =
∑
r∈Z−h

Φa
rz
−r−h, Õa(z̄) = Φ̃a(z̄) =

∑
r∈Z−h

Φ̃a
r z̄
−r−h, (3.4)

then (3.3) implies boundary conditions on oscillators given by

Φ̃a
r |B; η〉 = (iη)−2hRabΦ

b
−r |B; η〉 . (3.5)

Note that these expressions are valid only for primary conformal fields, and need to be
modified otherwise. For instance, the current which measures φ charge, Jφ = −∂φ, obeys

T (z)Jφ(0) ∼ 2
z3

+
Jφ(0)
z2

+
∂Jφ(0)
z

. (3.6)

Due to the z−3 term above, the transformation of Jφ under the mapping z = e−iw is given
by

Jφ(w) = −izJφ(z)− i, (3.7)

and so the action on the boundary state should be given by

J̃eφ(z̄) |B; η〉 =
(
−z̄−2Jφ(z̄−1)− 2z̄−1

)
|B; η〉 . (3.8)

From this it follows that the total left- plus right- φ charge of the boundary state must be
−2, (∮

dz

2πi
Jφ(z)−

∮
dz̄

2πi
J̃eφ(z̄)

)
|B; η〉 = −2 |B; η〉 . (3.9)

The property (3.3) essentially fixes the boundary state |B; η〉 up to multiplication by
an overall, possibly η-dependent, number. We will try to avoid using the explicit form of
|B; η〉 whenever possible, simply making repeated use of (3.3).
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We mention here one more aspect which will be of use in evaluating the correlators
below. Let us schematically write the boundary state as

|B〉 =
∑
~n,~m≥0

B~n~m |~n, ~m〉 , (3.10)

where ~n and ~m label states on the left and right respectively. We will use the label 0 for
the vacuum states, and we consider an ordering where ~n1 > ~n2 if |~n1〉 is obtained from |~n2〉
by acting with creation operators. Then, again schematically, if we act with a left-moving
annihilation operator α~r labeled by ~r > 0 we get

α~r |B〉 =
∑
~m≥0

∑
~n≥~r

B~n~m |~n− ~r, ~m〉 . (3.11)

By property (3.5), we should be able to equivalently write this in terms of a right-moving
creation operator, α̃−~r,

α̃−~r |B〉 =
∑
~n,~m≥0

B~n~m |~n, ~m+ ~r〉 . (3.12)

Comparing these two expressions for arbitrary ~r > 0, we see that the second series does not
contain the state |0, 0〉, and so in the first series we must have B~r0 = 0. We can similarly
derive that B0~r = 0. The key implication of this result is that

〈~n, 0|B〉 = B00 〈~n|0〉 , (3.13)

where B00 is just a number, or, if the vacua are degenerate, a matrix. In this case, if we
label vacua by an extra index α, then we have

〈~n, 0α|B〉 =
∑
β

(B00)βα 〈~n|0β〉 . (3.14)

This property means that in a correlator, if we first use (3.3) to rewrite all the operators
as holomorphic, we can then simply evaluate a holomorphic correlator with a vacuum as
in-state, and do not need to worry about the detailed structure of the boundary state,
except the zero-mode part which accounts for degenerate vacua.

3.2 Correlators

In this subsection we will use (3.3) to evaluate various correlators that we will need to
compute disc amplitudes, proceeding sector by sector. When we eventually compute full
amplitudes, we will find it convenient to simplify our calculations by sending the position
of the first vertex operator, z1, to infinity (the full amplitude is independent of z1). In this
limit, it is natural to absorb any spin fields and exponentials of φ or φ̃ into the out-state
using

lim
z→∞NS 〈0ψ; (0, 0)φ| : eQφ(z) :: e eQeφ(z̄) :' zQ(Q+2)z̄

eQ( eQ+2)
NS

〈
0ψ; (Q, Q̃)φ

∣∣∣ , (3.15)
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for integral Q and Q̃, and

lim
z→∞NS 〈0ψ; (0, 0)φ| : eQφ(z)SA(z) :: e eQeφ(z̄)S̃B(z̄) :

' zQ(Q+2)− 5
4 z̄

eQ( eQ+2)− 5
4R

〈
(A,B)ψ; (Q, Q̃)φ

∣∣∣ , (3.16)

for half-integral Q and Q̃.
We will now discuss some of the particular correlators that we will need in different

sectors.

3.2.1 X sector

To relate the antiholomorphic fields to the holomorphic fields we use (3.3) with Rµν = Dµ
ν ,

the diagonal matrix with entries +1 for directions along the brane and −1 for orthogonal
directions. If we use indices a, b, · · · and i, j, · · · for these tangent and normal directions
respectively, then (lowering the index with ηµν), we have Dab = ηab, Dai = Dia = 0,
Dij = −δij . Then we find for example,

∂Xµ(z̄) |B〉 = −z̄−2Dµ
ν∂X

ν(z̄−1) |B〉 . (3.17)

For exponentials we first split into holomorphic and anti-holomorphic parts,

eipX(z,z̄) = eipX(z)eip
eX(z̄), (3.18)

and then we use the boundary state to convert the anti-holomorphic piece into a holomor-
phic operator,

eip
eX(z̄) |B〉 = eipDX(z̄−1) |B〉 , (3.19)

where we assume here p2 = 0, so that the exponential has zero conformal weight.
Once we have converted all the antiholomorphic operators in a correlator into holo-

morphic ones using (3.3), then we can use (3.13) to evaluate the correlator. In this sector
there are degenerate vacua, labeled by momenta, but as usual for non-compact directions
we must have left and right momenta equal,6 and since we take the out-state to have
zero momentum (kα = 0 in the notation of (3.14)), the correlator will simply reduce to a
holomorphic correlator.

6Thus the zero-mode part of this boundary state has

B00(k, k′) = B00(k)δ10(k − k′). (3.20)

Furthermore, applying (3.5) to the momentum operator we learn that

kµB00(k) = − (Dk)µB00(k), (3.21)

which implies that B00(k) is nonzero only for momenta transverse to the brane. We won’t actually need

this result however, since we can use (3.3) to reduce everything to the case with k = 0.
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It is now straightforward to evaluate the expectation value for products of exponentials,〈
0X

∣∣∣∣ : eip1X(z1,z̄1) : · · · : eipnX(zn,z̄n) :
∣∣∣∣BX〉 (3.22)

= (2π)p+1 δp+1

(
1
2

(1 +D)
n∑
i=1

pi

)

×
n∏
k=1

(
|zk|2 − 1

)pkDpk ∏
1≤`<m≤n

|z` − zm|2p`pm |z`z̄m − 1|2p`Dpm .

Indeed the second line appears frequently enough that we shall abbreviate it with the
symbol K. The first line implements conservation of momentum along the brane; in the
transverse directions we do not have conservation of momentum.7

We will also need correlators which include explicit factors of ∂Xµ or ∂̄Xµ. Again,
we convert right-movers into left-movers using the boundary state, and then evaluate the
correlator using the usual methods. For example,〈

0X

∣∣∣∣ : eip1X(z1,z̄1) : · · · : eipn−1X(zn−1,z̄n−1) :: ∂Xµ(zn)eipnX(zn,z̄n) :
∣∣∣∣BX〉 (3.23)

=
〈

0X
∣∣∣: eip1X(z1,z̄1) : · · · : eipnX(zn,z̄n) :

∣∣∣BX〉
×
(

ip1

z1 − zn
+ · · ·+ ipn−1

zn−1 − zn
− iz̄1Dp1

znz̄1 − 1
− · · · − iz̄nDpn

|zn|2 − 1

)µ
.

3.2.2 bc sector

Applying (3.3) here gives

c̃(z̄) |B〉 = −z̄2c(z̄−1) |B〉 , b̃(z̄) |B〉 = z̄−4b(z̄−1) |B〉 , (3.24)

or simply
c̃n |B〉 = −c−n |B〉 , b̃n |B〉 = b−n |B〉 . (3.25)

The boundary state which implements these relations is given by8

|Bbc〉 = exp

[ ∞∑
n=1

(
c−nb̃−n − b−nc̃−n

)] c0 + c̃0

2
c1c̃1 |0bc〉 . (3.26)

Because of the insertion of (b0 + b̃0) in front of the boundary state, it is actually simpler
to just list the correlator that we will need,〈

0bc
∣∣∣c(z1)c̃(z̄1)c(z2)c̃(z̄2)

(
b0 + b̃0

)∣∣∣Bbc〉 = |z1 − z2|2
(
|z1z2|2 − 1

)
, (3.27)〈

0bc
∣∣∣c∂c(z1)c̃(z̄1)c(z2)

(
b0 + b̃0

)∣∣∣Bbc〉 = z̄1 (z1 − z2)2 , (3.28)〈
0bc
∣∣∣c∂c(z1)c̃(z̄1)c̃(z̄2)

(
b0 + b̃0

)∣∣∣Bbc〉 = (z̄1 − z̄2)
(
z2

1 z̄1z̄2 − 1
)
. (3.29)

7Alternatively, we can think of the D-brane itself, or equivalently the boundary state, as carrying mo-

mentum in the transverse directions, as in the previous footnote.
8Again, as throughout this work we are not fixing the overall normalization of the amplitudes, including

the normalization of the boundary state.
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3.2.3 φ sector

In this sector we will evaluate correlators which are products of exponentials of φ or φ̃.
Since e eQeφ is a primary operator of dimension −1

2Q̃(Q̃+2), we can use our techniques above
to convert it to an exponential of φ. Indeed, (3.3) with Rφφ = 1 will yield

e
eQeφ(z̄) |B; η〉 = (iηz̄)

eQ( eQ+2) e eQφ(z̄−1) |B; η〉 . (3.30)

In this sector there are degenerate vacua labeled by the the picture P . From (3.9), the
only non-zero matrix elements of B00 will be those correspond to total picture charge −2.
After converting all of the anti-holomorphic exponentials into holomorphic ones, we will
pick out only the piece with picture (Q̃1,−2 − Q̃1). To make use of (3.14) we still need
the constants B00(Q̃1,−2− Q̃1). There is an overall constant which we cannot determine,
but by imposing consistency between pictures (the freedom to have rewritten e eQ1

eφ(z̄1) as a
holomorphic insertion, one can show that

B00(Q̃1,−2− Q̃1) ∼ (iη)( eQ1−a)( eQ1−a+2) , (3.31)

where a is a constant that should be an integer in the NS sector or half-integer in the R
sector. We have a choice of what value of a to take in each sector; we will choose a = −1
and a = −1/2 in the NS and R sector respectively.

Taking all of this into account, we can then derive the correlator of an arbitrary number
of exponentials of φ and φ̃,〈

Q1, Q̃1

∣∣∣: eQ2φ(z2) :: e eQ2
eφ(z̄2) : · · · : eQnφ(zn) :: e eQneφ(z̄n) :

∣∣∣Bφ; η
〉

=

(iη)( eQ1−a)( eQ1−a+2)+
Pn
k=2

eQk( eQk+2) eiπ( eQ1−a)(2+Q1+ eQ1)

(
n∏
k=2

z−Qk
eQ1

k z̄−
eQkQ1

k

(
|zk|2−1

)−Qk eQk)

×

 ∏
1<i<j≤n

(zi − zj)−QiQj (z̄j − z̄i)−
eQi eQj (ziz̄j − 1)−Qi

eQj (1− z̄izj)−
eQiQj

 , (3.32)

3.2.4 ηξ sector

This sector will be dealt with on a case by case basis, and we will make use of (3.3) with
R = 1, so that

η̃(z̄) |B〉 = −z̄−2η(z̄−1) |B〉 , ξ̃(z̄) |B〉 = ξ(z̄−1) |B〉 . (3.33)

3.2.5 ψ sector

For NS sector amplitudes, there are not degenerate vacua, so up to an undetermined
normalization we will simply use our rule to convert ψ̃µ into ψµ using (3.3),

ψ̃µ(z̄) |B; η〉NS = −iηz̄−1 (Dψ)µ (z̄−1) |B; η〉NS , (3.34)

and then use the OPE (2.1), so for example

NS

〈
0ψ
∣∣∣ψµ(z1)ψ̃ν(z̄2)

∣∣∣Bψ; η
〉
NS

=
−iηDµν

z1z̄2 − 1
. (3.35)
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In the R sector, there are zero modes ψµ0 , and by (3.5) these should obey

ψ̃µ0 |B; η〉R = −iη (Dψ)µ0 |B; η〉R . (3.36)

These zero modes lead to degenerate vacua labeled by spinor indices A, B, etc (see our
spinor and gamma matrix conventions in appendix A). Let us write

M(η)AB = (B00)AB . (3.37)

Since the zero modes of ψ and ψ̃ act on R ground states as

ψµ0 |A,B〉 =
1√
2

(Γµ)AC |C,B〉 , ψ̃µ0 |A,B〉 =
1√
2

(Γ11)AC (Γµ)BD |C,D〉 , (3.38)

we can rewrite (3.36) as

(Γ11)TM(η)Γµ = −iηDµ
ν (Γν)TM(η). (3.39)

It is not difficult to check that this relation is solved by

M(η) = (iη)p CΓ0 · · ·Γp (P+ − iηP−) , (3.40)

with
P± =

1
2

(1± Γ11) , (3.41)

CAB is an antisymmetric charge-conjugation matrix, and we have assumed that the Dp-
brane is extended in the directions 0 through p. The boundary conditions only fix M(η)
up to an overall, possibly η-dependent constant. We have chosen the prefactor (iη)p for
later convenience.

This, along with the holomorphic expectation values for products of ψ between R
ground states, leads to the result

R 〈A,B |ψ
µ1(z1) · · ·ψµn(zn)|Bψ; η〉R = (−1)n+1 2−

n
2 (z1 · · · zn)−

1
2

×
{[

Γµ1···µnC−1M(η)C−1
]AB +

z1 + z2

z1 − z2
ηµ1µ2

[
Γµ3···µnC−1M(η)C−1

]AB
+ · · ·+ z1 + z2

z1 − z2

z3 + z4

z3 − z4
ηµ1µ2ηµ3µ4

[
Γµ5···µnC−1M(η)C−1

]AB + · · ·
}
, (3.42)

where · · · represent all other possible contractions, with appropriate signs from anticom-
muting the fermions or the gamma matrices. Then any desired correlator can be obtained
by first using (3.34) and then using (3.42).

As examples we have

R 〈(A,B)ψ |ψµ(z)|Bψ; η〉R =
1√
2z

[
ΓµC−1M(η)C−1

]AB
, (3.43)

and

R

〈
A,B

∣∣∣ψµ(z)ψ̃νψ̃ρ(z̄)
∣∣∣Bψ; η

〉
R

= − 1
2z̄
√

2z
Dν

σD
ρ
τ

{[
ΓµστC−1M(η)C−1

]AB
+
|z|2 + 1
|z|2 − 1

(
ηµσ

[
ΓτC−1M(η)C−1

]AB − ηµτ [ΓσC−1M(η)C−1
]AB)}

. (3.44)
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3.3 Evaluating the traces

From the ψ correlators in the R-R sector above, we will find our amplitudes include traces
of the form

Tµ1···µn = fAB
[
Γµ1···µnC−1M(η)C−1

]AB = Tr
[
fC−1M(η)TC−1

(
Γ[µn

)T
· · ·
(

Γµ1]
)T]
(3.45)

Using the explicit form of M(η) from (3.40), the relation (A.3), and writing f = C /F , this
becomes

Tµ1···µn = (iη)p (−1)
1
2

(p2−p+n2+n) Tr
[
/F (P− − iηP+) Γ0···pΓµ1···µn] . (3.46)

If we now bring in the fact that the GSO projection on R-R field strengths implies /FΓ11 =
(−1)p+1 /F , we find (for instance by separately evaluating for p even and p odd)

Tµ1···µn = (−1)
1
2

(n2+n) Tr
[
/FΓ0···pΓµ1···µn] . (3.47)

Finally, if we use a to denote indices along the brane and i to denote transverse indices,
then the trace picks out only the field strength of degree p+1+`−k and we have explicitly

T a1···aki1···i` = (−1)
1
2

(p2+p+k2+k)+p`+1 32
(p+ 1− k)!

εa1···ak
b1···bp+1−k

F b1···bp+1−ki1···i` . (3.48)

3.4 GSO projection

Finally, we should apply the GSO projection to our boundary states before inserting them
into amplitudes. In the NS sector, this means taking

|B〉NS =
1 + (−1)F

2
1 + (−1)

eF
2

|B; +〉NS , (3.49)

where F and F̃ are the left-moving and right-moving world-sheet fermion numbers, and in
the R sector we take

|B〉R =
1 + (−1)F

2
1 + (−1)p+1 (−1)

eF
2

|B; +〉R . (3.50)

In appendix B we show that in our conventions the fermion numbers act on the bound-
ary states as

(−1)F |B; η〉NS = − |B;−η〉NS , (−1)
eF |B; η〉NS = − |B;−η〉NS , (3.51)

and
(−1)F |B; η〉R = |B;−η〉R , (−1)

eF |B; η〉R = (−1)p+1 |B;−η〉R . (3.52)

These then imply that the correct GSO-projected boundary states are

|B〉NS =
1
2

(|B; +〉NS − |B;−〉NS) , (3.53)

and
|B〉R =

1
2

(|B; +〉R + |B;−〉R) . (3.54)
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3.5 Amplitudes

Finally, inside amplitudes we must also insert a ghost factor (b0 + b̃0) and a propagator
which pushes the boundary out to the first insertion point, so the total state is given by(

b0 + b̃0

)∫
|w|>max{1/|zi|}

d2w

|w|2
w−L0w̄−

eL0 |B〉 . (3.55)

Here zi are the insertion points of the various operators. Some of these may be integrated
over (for three- or higher-point functions), in which case the w integration as defined should
be taken as the inner-most integral.

4 BRST-exact states

We will now discuss certain features of amplitudes on the disc. We will show that BRST-
exact operators do not necessarily decouple from such amplitudes. However, we will then
demonstrate that if all the operators in the amplitude correspond to states with generic
momenta, so that we can use analytic continuation of momenta to do the computation, then
the BRST-exact states do decouple and the amplitude should be gauge invariant. With
this result we can also show that, under the same assumptions, the amplitude does not
depend on how we distribute picture charge. We will show these results for the two-point
functions on the disc, since those are the ones relevant in the current paper, but most of
these arguments will carry forward to higher-point functions [10].

To construct the two-point function, we insert a pair of BRST-closed operators at
arbitrary fixed positions on the sphere, and also insert the appropriate boundary state
along with a ghost factor (b0 + b̃0) and a propagator which extends the boundary state
out to the first operator insertion. We can use the conformal group of the sphere to fix
the position of the boundary state insertion at z = 0 on the complex plane, and then the
amplitude is written〈

V (1)(z1, z̄1)V (2)(z2, z̄2)(b0 + b̃0)
∫
|w|>max(1/|z1|,1/|z2|)

d2w

|w|2
w−L0w̄−

eL0

∣∣∣∣∣B
〉
. (4.1)

We can then pull the integration to the left and use the relation

wL0w̄
eL0O(z, z̄)w−L0w̄−

eL0 = whw̄
ehO(zw, z̄w̄), (4.2)

for an operator O of conformal weight (h, h̃), to express the amplitude as∫
|w|>max(1/|z1|,1/|z2|)

d2w

|w|2
〈
V (1)(wz1, w̄z̄1)V (2)(wz2, w̄z̄2)

(
b0 + b̃0

)∣∣∣B〉 . (4.3)

Let’s consider the situation in which |z1| > |z2| and V (1) is BRST-exact,

V (1)(z, z̄) = {Q,Λ(z, z̄)} , (4.4)
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where Λ(z, z̄) is a local operator of weight (0, 0) and total ghost number one. We can then
compute∫

|w|>1/|z2|

d2w

|w|2
〈
{Q,Λ(wz1, w̄z̄1)}V (2)(wz2, w̄z̄2)

(
b0 + b̃0

)
|B
〉

(4.5)

=
∫
|w|>1/|z2|

d2w

|w|2
〈

Λ(wz1, w̄z̄1)V (2)(wz2, w̄z̄2)
(
L0 + L̃0

)
|B
〉

= −
∫
|w|>1/|z2|

d2w

|w|2

(
w
∂

∂w
+ w̄

∂

∂w̄

)〈
Λ(wz1, w̄z̄1)V (2)(wz2, w̄z̄2)|B

〉
,

where we used the fact that, for an operator of weight (0, 0),[
L0 + L̃0,O(wz, w̄z̄)

]
=
(
wz∂ + w̄z̄∂̄

)
O(wz, w̄z̄) =

(
w
∂

∂w
+ w̄

∂

∂w̄

)
O(wz, w̄z̄). (4.6)

We also used the fact that {
Q, b0 + b̃0

}
= L0 + L̃0, (4.7)

and that the boundary state is annihilated by the total BRST charge Q. If we now switch
to polar coordinates, w = reiθ/z2, then we have

2i
∫ 2π

0
dθ

∫ ∞
1

dr
∂

∂r

〈
Λ(reiθz1/z2, re

−iθz1/z2)V (2)(reiθ, re−iθ)|B
〉

= 2i
∫ 2π

0
dθ
〈

Λ(reiθz1/z2, re
−iθz1/z2)V (2)(reiθ, re−iθ)|B

〉 ∣∣∣r=∞
r=1

. (4.8)

If |z1| > |z2| but V (2) is the BRST-exact operator, we get a similar expression,

2i
∫ 2π

0
dθ
〈
V (1)(reiθz1/z2, re

−iθz1/z2)Λ(reiθ, re−iθ)|B
〉 ∣∣∣r=∞

r=1
. (4.9)

In order to argue that BRST-exact states decouple from the disc amplitude then,
we need to argue that the boundary contributions above vanish, and this will require an
additional assumption on the operators appearing in the amplitude. In particular, we will
assume that V (1) and V (2) carry momentum p1 and p2 respectively, i.e. V (1) is constructed
from eip1X(z1,z̄1) multiplied by fields which do not depend on the constant mode of Xµ(z, z̄),
and similarly V (2) is constructed with eip2X . In this familiar situation, the amplitude
produces a delta function enforcing momentum conservation along the brane,

δp+1(p1 +Dp1 + p2 +Dp2), (4.10)

and thus on-shell the only invariants which can be constructed from these momenta are

s = p1Dp1, t = p1p2. (4.11)

The remaining combinations can be expressed in terms of s and t as

p1Dp2 = −s− t, p2Dp2 = s. (4.12)
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In addition to the delta function, the OPEs of the exponential factors amongst them-
selves produces a universal factor

K =
(
|z1|2 − 1

)s (|z2|2 − 1
)s |z1 − z2|2t |z1z̄2 − 1|−2s−2t . (4.13)

All the remaining OPEs in the amplitude will combine to multiply K by a rational function
of the insertion positions, i.e. the ratio of two polynomials9 in z1, z2, z̄1, and z̄2.

If we plug these results into the amplitude (4.3), and use variables of integration
where the range of the radial integral is from one to infinity, then near r = 1 we have
approximately (for some integer n determined by the other contractions in the amplitude)

∼
∫

1
dr (r − 1)s+n , (4.14)

which only converges for Re(s) > −n− 1. At the other end of the range we have (for some
integer m)

∼
∫ ∞

dr r−2t+m, (4.15)

which only converges for Re(t) > (m + 1)/2. Outside of this range of s and t the integral
diverges and we cannot make sense of our usual expression. Fortunately, we expect the
physical amplitude to be an analytic function of the momenta p1 and p2. Thus we can first
complexify the momenta and then continue to the region where the integral converges;
once we find the answer we’re looking for, we can extrapolate back to the region where
the integral failed to converge. Note that with complex momenta we can perform the
continuation while remaining on shell. For instance, with a Lorentzian brane we have
s = p2

1 − 2pi1p
i
1, where i indexes the transverse directions. We can stay on-shell, p2

1 = 0,
and send s to be something with sufficiently positive real part, as long as we let pi1 have
sufficiently large imaginary parts.

The same results will hold for the boundary terms of (4.8); they will be given by either

∼ (r − 1)s+n
′
|r=1, or ∼ r−2t+m′ |r=∞. (4.16)

Since we expect the result to be analytic in s and t, and since the result is clearly zero if s
and t have sufficiently large real parts, it follows that the result must be zero identically.

Let us comment briefly on a couple of situations where this line of reasoning is not
available. If either state is prevented from carrying generic momentum (it could happen
that the spectrum of physical states gets a enhanced at zero-momentum for example)
then we can’t use the argument as presented. There are also situations where the vertex
operators can carry generic momenta, and the amplitude is still expected to be an analytic
function of those momenta, but where some momentum invariant vanishes for kinematic
reasons. For example, in the case of a D9-brane, momentum conservation and the on-shell
condition forces s = t = 0. And in the case of a D-instanton we can have arbitrary t (after
continuation), but s = −p2

1 = 0. In these situations it may be that the integral diverges

9Individual OPEs in R sectors can produce factors with half-integral exponents, but if all the vertex

operators satisfy the GSO projection, then the final OPE result will involve only integer exponents.
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for all on-shell momenta, regardless of how we try to analytically continue. We shall not
discuss these cases further in the present work.

To finish off this section, we shall show that, as a corollary to the decoupling of generic
BRST-exact states, the two-point function is independent of the distribution of picture
charge. In the RNS formalism, picture changing is implemented by X0 (or X̃0), which is
the zero mode of the local operator

X(z) =
∑
n∈ZZ

Xnz
−n = {Q, 2ξ(z)} (4.17)

= :
(

2c∂ξ + eφψµ∂Xµ −
1
2
∂bηe2φ − b∂ηe2φ − bη∂φe2φ

)
(z) : .

Note that X(z) is not BRST-exact because the field ξ(z) is not included in our algebra of
free fields, but ∂X(z) = {Q, 2∂ξ(z)} is BRST-exact. Given a BRST-closed physical state
VP (z, z̄) of left-moving picture P , we define

VP+1(z, z̄) = X0VP (z, z̄) =
∮
|w|=|z|+ε

dw

2πiw
X(w)VP (z, z̄), (4.18)

for some small ε > 0. It can be verified that VP+1 has picture P + 1, has the correct
weight and ghost number to be a physical state, is BRST-closed, and is BRST-exact if
and only if10 VP is BRST-exact. Thus to redistribute the left-moving picture charge in an
amplitude, whether on the sphere or on the disc, we have simply to repeatedly commute
copies of X0 through operators to move it to the position we want.

Each time we commute X0 through one of our operators, we pick up a contribution

[X0, VP (z, z̄)] =
∮
|w−z|<ε

dw

2πiw
X(w)V (z)

=
∮
|w−z|<ε

dw

2πiw

(
X(w0) +

∫ w

w0

du∂X(u)
)
VP (z, z̄)

=

{
Q, 2

∮
|w−z|<ε

dw

2πiw

∫ w

w0

du∂ξ(u)VP (z, z̄)

}

=

{
Q, 2

∮
|w−z|<ε

dw

2πiw
ξ(w)VP (z, z̄)

}
. (4.19)

Similar expressions can be derived for the lowering operator, and the right-moving opera-
tors.

Since this shows that the additional contribution from redistributing the picture charge
is BRST-exact, and since we have already shown that BRST-exact states decouple for
generic momenta, we see that we can freely move the picture charge around as long as we
keep the total left- and right-picture charges fixed.

Finally, we would like to argue that on the disc we can also move picture charge from
the left to the right. But in fact this is also straight-forward, and requires only the facts

10This statement should only hold at generic momenta [33], which is of course the case we are interested

in here. We would like to thank Nathan Berkovits for useful correspondence on this topic.
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that [
X0, b0 + b̃0

]
=
[
X̃0, b0 + b̃0

]
= 0, and X0 |B〉 = X̃0 |B〉 . (4.20)

With these we see that we can always move the operator X0 to the right, generating BRST-
exact terms along the way, convert it into X̃0 when it hits the boundary state, and then
move it to the left to the desired position, again possibly generating BRST-exact states as
it commutes back through the operators. Since under our assumptions all those BRST-
exact states decouple, we can freely redistribute picture charge however we like, as long as
we keep the total charge constant at −2.

5 Two-point functions on the disc

In this section we will compute the disc amplitudes corresponding to two closed strings
interacting with the D-brane using the formalism that we have developed in the previous
sections, paying close attention to the steps needed to compare different pictures and to
reconstruct the effective action on the brane. Our results agree with earlier computations
in the literature [40–43].

5.1 Two NS-NS fields

To begin, let us start with two NS-NS fields with polarization tensors ε1µν and ε2µν

and momenta p1 and p2, which we take to be physical on-shell states. All the possible
combinations of momenta can be expressed in terms of two invariants,

s = p1Dp1 and t = p1p2. (5.1)

Putting the first operator in the (−1,−1)-picture and the second one in the (0, 0)-
picture, the amplitude is

〈V−1,−1V0,0〉 = N Γ(1 + s)Γ(1 + t)
Γ(1 + s+ t)

(
a1 +

a2

s
+
a3

t
+ a4

s

t
+ a5

t

s

)
. (5.2)

Here we have use the result that∫
|w|2>1

d2w |w|a
(

1− 1
|w|2

)b
= π

Γ(−1− a
2 )Γ(1 + b)

Γ(−a
2 + b)

, (5.3)

which can be easily obtained using polar coordinates. The overall normalization is

N = i (2π)p+2 δp+1 (pa1 + pa2) , (5.4)

and the explicit expressions for the coefficients ai are

a1 = −Tr(ε1D)Tr(ε2D) + Tr(ε1Dε2D)− Tr(ε1ε
T
2 )

a2 = Tr(ε1D)p1 (Dε2D − ε2) p1 +Dp1

[
ε1Dε2 −

1
2
εT1 ε2 −

1
2
ε1ε

T
2

]
Dp2 + (1↔ 2)

a3 =
[
− (p1ε2p1)Tr(ε1D) + p2ε1Dε2p1 + (1↔ 2)

]
+Dp1

[
ε2ε

T
1 + εT2 ε1 − (1↔ 2)

]
Dp2

a4 = −Tr(ε1ε
T
2 )

a5 = −Tr(ε1D)Tr(ε2D). (5.5)
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This is the result for the two point function of two NS-NS fields with arbitrary polarizations.
This result is obviously symmetric under the interchange of the two NS-NS operators.
To facilitate the comparison with supergravity we will quote next how (5.2) simplifies
for different polarizations which can be anti-symmetric ε(B)

µν = Bµν , symmetric traceless
ε

(h)
µν = hµν or pure trace ε(Φ) = Φ√

8
(ηµν − lµpν − lνpµ), with lµp

µ = 1.
The coefficients (5.5) vanish if one of the polarizations is symmetric and the other

anti-symmetric. As a result the only non-vanishing amplitudes are 〈ΦΦ〉, 〈Φh〉, 〈hh〉 and
〈BB〉. Explicitly

〈ΦΦ〉 = NΦ1Φ2

[
s

t
+

1
2

(p− 3)2

(
1 +

t

s

)]
〈Φh〉 = N (p− 3)√

2
Φ
[
2haa +

4
s
haip

a
1p
i
1 +

1
t

(
habp

a
1p
b
1 + 2haipa1p

i
1 + hijp

i
1p
j
1

)
+

2t
s
haa

]
,

〈hh〉 = N
{

4ha1ah
b
2b + 4hai1 h2ai +

8
s

(
ha1ah2bip

b
1p
i
1 − h1aih

b
2bp

a
1p
i
2 − 2hi1ah2bip

a
1p
b
1

)
+
s

t

(
hab1 h2ab + 2hai1 h2ai + hij1 h2ij

)
+

1
t

[
2ha1a

(
h2bcp

b
1p
c
1 + 2h2bip

b
1p
i
1 + h2ijp

i
1p
j
1

)
+ 2

(
h1abp

a
1p
b
1 − 2h1aip

a
1p
i
2 + h1ijp

i
2p
j
2

)
hc2c − 4ha1bh2acp

b
1p
c
1 − 4ha1ih2ajp

j
1p
i
2

− 8hi1ah2bip
a
1p
b
1 − 4hi1ah2ijp

a
1p
j
1 + 4hi1jh2aip

a
1p
j
2

]
+ 4

t

s
ha1ah

b
2b

}
,

〈BB〉 = N
[
2Bab

1 B2ab + 2Bij
1 B2ij −

16
s
Ba

1bB2acp
b
1p
c
1 +

s

t

(
Bab

1 B2ab + 2Bai
1 B2ai +Bij

1 B2ij

)
− 4
t

(
2Ba

1bB2acp
b
1p
c
1 +Ba

1bB2aip
b
1p
i
1 −Ba

1iB2abp
b
1p
i
2

+B1aiB2b
ipa1p

b
1 +Bi

1jB2ikp
k
1p
j
2

) ]
(5.6)

In section 6.1, we will describe in detail the supergravity interpretation of the 〈ΦΦ〉 corre-
lator, and the comparison for the others appears in appendix C.1. We will pay particular
attention to the origin of the poles in the s and t parameters.

Since the fields above must be physical on-shell states, we need p2
1 = p2

2 = 0 and
ε1µνp

ν
1 = ε1 νµp

ν
1 = ε2µνp

ν
2 = ε2 νµp

ν
2 = 0, and we also have momentum conservation, (p1 +

p2)a = 0. To eliminate the ambiguities due to these conditions we have made systematically
the following replacements,

pa2 = −pa1,
ε1µip

i
1 = −ε1µap

a
1,

ε1 iµp
i
1 = −ε1 aµp

a
1, (5.7)

ε2µip
i
2 = ε2µap

a
1,

ε2 iµp
i
2 = ε2 aµp

a
1.

5.2 One R-R and one NS-NS field

We will consider the vertex operators with pictures (-1/2,-1/2) and (-1,0), first. Then we
will consider the pictures (-1/2,-1/2) and (0,-1) and verify explicitly that the results are
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independent of the choice of picture. In section 6 we will show how to obtain the result from
the string amplitude from interactions in space-time and on the D-brane. The amplitude
is

〈V− 1
2
,− 1

2
V−1,0〉 =

iπ

2
√

2
Γ(t+ 1)Γ(s+ 1)

Γ(t+ s+ 1)

{
−1
t

(εD)µν (Dp2)ρ T
µνρ+[

−2
s

(εDp2)µ +
2
t

(εp1)µ −
2r
st

[
tr (εD) (Dp2)µ − (p2DεD)µ

]]
Tµ
}

(5.8)

The traces Tµ··· are given in section 3.3, and we have defined the useful combination

r = t+
s

2
. (5.9)

Now let us try to reduce this to the on-shell results. We will list the contributions
according to the degree of the RR field involved:

• Consider first F (p−2). The only possible term would come from the Tµνρ term above
and would be proportional to

εa1···ap+1εa1a2p2 a3F
(p−2)
a4···ap+1 , (5.10)

but this is zero since p2 a3 = −p1 a3 , and antisymmetrizing with F then gives dF ∧ε =
0, since F is closed.

• Next we have F (p). In order to make full use of the on-shell and physical state
conditions, we will split all indices into along the brane and transverse to the brane,
and we need to agree to always make certain substitutions:

p2 a → −p1 a,

εµip
i
2 → εµap

a
1,

εiµp
i
2 → εaµp

a
1, (5.11)

Cµ1···µnip
i
1 → −Cµ1···µnap

a
1.

Also, whenever we have indices of C which are along the brane and which are not
contracted by the volume form of the brane (like the index a on the right hand side
of the bottom line of (5.11)), then we will rewrite C using substitutions like

1
(p− 2)!

εa1···ap+1Ca1···ap−2b =
3

(p− 1)!
εc1···cp+1Cc1···cp−1δ

[ap−1

b δ
ap
cp δ

ap+1]
cp+1 . (5.12)

The possible contractions of momenta in this scheme are also quite constrained,

pa1p1 a = −pi1p1 i = −pa1p2 a = pa2p2 a = −pi2p2 i =
s

2
, pi1p2 i = r. (5.13)

Employing all these substitutions[ 1
(p− 1)!

(r
t
εa1a2 − 8r

st
εa1

bp
b
1p
a2
1 −

2
t
εa1

ip
i
1p
a2
1

)
Ca3···ap+1

+
(−1)p+1

(p− 2)!
1
t
εa1a2pa3

1 p
i
2C

a4···ap+1
i

]
εa1···ap+1 . (5.14)

In this case ε is anti-symmetric and the result vanishes if ε is symmetric; only the
B-field interacts with C(p−1), as expected.
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• Next we turn to F (p+2). Following the same procedure we find a result proportional
to{(−1)p+1

(p+ 1)!

[r2

st

(
εbb − ε

j
j

)
+

4r
st
εbip

b
1p
i
1 +

1
t
εijp

i
1p
j
1

]
Ca1···ap+1

+
1
p!

[ r
st
pa1

1 p
i
2

(
εbb − ε

j
j

)
+

4r
st
εb
ipa1

1 p
b
1 −

r

t
εa1i +

1
t
εa1

jp
j
1p
i
2 +

1
t
εijp

a1
1 p

j
1

]
Ca2···ap+1

i

+
(−1)p

(p− 1)!
1
t
εa1ipa2

1 p
j
2C

a3···ap+1
ij

}
εa1···ap+1 . (5.15)

This time only symmetric polarizations (graviton and dilaton) can contribute.

• The remaining couplings involve F (p+4) and are necessarily of the form

1
(p+ 1)!

1
t
εa1···ap+1Fa1···ap+1ijkε

ijpk2. (5.16)

We would like to compare this to a computation done in picture (-1/2,-1/2) and (0,-1).
In this picture the amplitude is

〈V− 1
2
,− 1

2
V0,−1〉 =

iπ

2
√

2
Γ(t+ 1)Γ(s+ 1)

Γ(t+ s+ 1)

{1
t

(εD)µν p2 ρT
µνρ (5.17)

+
[

2
s

(p2DεD)µ −
2
t

(p1εD)µ +
2r
st

[
tr (εD) p2µ − (εDp2)µ

]]
Tµ
}

There are a couple of ways we can compare this amplitude to (5.8). We could separate all
of the indices into tangent or normal to the brane world-volume, and then make use of the
rules (5.11) to see that we do indeed get identical results for on-shell amplitudes. There is
also a more direct comparison which is worth sketching out, however. There is a certain Z2

symmetry enjoyed by the string world-sheet theory with boundary conditions given by our
Dp-brane. This is the symmetry which acts by world-sheet parity Ω, reflection σ9−p in the
space-time directions normal to the brane, and for certain values of p carries an additional
sign for left-moving space-time fermion number, (−1)FL . Explicitly the generator is given
by

g =

{
Ωσ9−p (−1)FL , for p = −1, 2, 3, 6, 7,

Ωσ9−p, for p = 0, 1, 4, 5, 8, 9.
(5.18)

If we were to quotient the theory by this symmetry, we would be effectively creating an
Op-plane on top of the Dp-brane. Here we don’t wish to perform the quotient, but wish to
use the fact that g acts as

(pn)µ 7→ (Dpn)µ ,

εµν 7→ D ρ
µ D

σ
ν εσρ =

(
DεTD

)
µν
, (5.19)

F
(p+2k)
µ1···µp+2k

7→ (−1)k+1D ν1
µ1
· · ·D νp+2k

µp+2k F
(p+2k)
ν1···νp+2k

.

One can then verify using (3.48) that g sends

Tµ1···µn 7→ (−1)
n+1

2 Tµ1···µn . (5.20)
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It is straightforward to then check that under (5.19) and (5.20) the result (5.17) is mapped
into the result (5.8).

It is of course expected that the two pictures agree, in light of the arguments in section 4
but it is interesting to see the mechanism. Let us also consider the same computation in the
(−3

2 ,−
1
2)-(0, 0) picture, where we take the y = 0 gauge (2.69) for the R-R vertex operator.

Recall that this version of the vertex operator only lived in the absolute cohomology since
it was annihilated by b̃0 but not by b0. In order to get a nonzero contribution we must
have total φ and φ̃ charge of −2, which means we must take from the NS-NS (0, 0) picture
operator either the term with eφ or the term with e

eφ. In each case we can evaluate
the ghost and superghost correlators, reducing the amplitude to correlators in the matter
sectors alone. In the latter case, the entire contribution vanishes in the limit z1 → ∞,
while in the former case we are left with〈

0
∣∣∣2 (C /F )AB c∂ce− 5

2
φ∂ξSAc̃e−

1
2

eφS̃Beip1X(z1, z̄1)

×− 1
2
εµνe

φηψµc̃
(
∂̄Xν − ipρψ̃ρψ̃ν

)
eip2X(z2, z̄2)

∣∣∣∣B; η
〉
R

=
(
C /F
)
AB

εµνz
1
2
2 z̄2

〈
A,B

∣∣∣eip1X × ψµ (∂̄Xν − ipρψ̃ρψ̃ν
)
eip2X(z2, z̄2)

∣∣∣BX,ψ; η
〉
R
. (5.21)

But this result precisely matches what we get in the (−1
2 ,−

1
2)-(−1, 0) picture compu-

tation,〈
0
∣∣∣(C /F )AB ce− 1

2
φSAc̃e−

1
2

eφS̃Beip1X(z1z̄1)

×ce−φψµc̃
(
∂̄Xν − ipρψ̃ρψ̃ν

)
eip2X(z2, z̄2)

∣∣∣B; η
〉
R

=
(
C /F
)
AB

εµνz
1
2
2 z̄2

〈
A,B

∣∣∣eip1X × ψµ (∂̄Xν − ipρψ̃ρψ̃ν
)
eip2X(z2, z̄2)

∣∣∣BX,ψ; η
〉
R
. (5.22)

So the two pictures will certainly agree. Note that this argument easily extends to in-
clude any number of additional integrated operators in the (0, 0) picture, since these are
independent of the ghosts and superghosts.

6 Comparison with space-time Lagrangian

6.1 Two NS-NS fields

We will now show how the correlators of (5.6) can be obtained by evaluating field theory
diagrams (parts of this computation have appeared before, in [40–43]). We will work to
leading order in momenta, meaning that we will take only the leading constant term in the
expansion

Γ(1 + s)Γ(1 + t)
Γ(1 + s+ t)

= 1− π2

6
st+ ζ(3)st (s+ t) + · · · . (6.1)

Let’s begin with 〈ΦΦ〉. We will show that in supergravity three diagrams contribute to
this amplitude, as shown in figure 1. These three diagrams correspond to a contact term
on the brane, an interaction in the bulk which produces a graviton, which is then absorbed
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Φ

Φ

Φ

Φ

Φ

Φ

h X

Figure 1. Dilaton two point function.

by the brane, or a process where each dilaton hits the brane and they exchange a scalar
field on the brane. These three diagrams are then related to the amplitude by

〈Φ1Φ2〉 ∼ Φ1Φ2

{(
δ

δΦ1

δ

δΦ2
Sp+1

)
+ i

(
δ

δΦ1

δ

δΦ2

δ

δhµν
S10

)
G(h)
µν,ρσ

(
δ

δhρσ
Sp+1

)
+i
(

δ

δΦ1

δ

δXi
Sp+1

)
G(X) ij

(
δ

δΦ2

δ

δXj
Sp+1

)}
. (6.2)

Here the objects G(h) and G(X) are propagators for the graviton and the scalar field on the
brane respectively, and the three terms above represent the three diagrams of the figure.

We will be working with fields whose kinetic terms are canonically normalized, so it is
easy to list the propagators of all the fields we need in the bulk

G(Φ) =
−i
p2
,

G(h)
µν,ρσ =

−i
2p2

(
ηµρηνσ + ηµσηνρ −

1
4
ηµνηρσ

)
,

G(B)
µν,ρσ =

−i
2p2

(ηµρηνσ − ηµσηνρ) , (6.3)

(6.4)

and on the brane

G
(A)
ab =

−i
q2
ηab,

G(X) ij =
−i
q2
δij , (6.5)

where the momentum qa lies only along the brane. Here we have chosen specific gauges for
the propagators G(h), G(B), and G(A), but the physical amplitude should not depend on
these choices. We will mention some useful relations for the graviton propagator,

G
(h)
ab,cdη

cd = i
p− 7
16t

ηab, G
(h)
ai,bcη

bc = 0, G
(h)
ij,abη

ab = i
p+ 1
16t

δij . (6.6)

Now we need to convert the NS-NS sector of the bulk action and the DBI action on the
brane into forms where all fluctuating fields are canonically normalized. In string frame,
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the bulk action is given by

S10 =
1

2κ2

∫
d10x

√
−Gs e−2Φs

(
Rs + 4∂µΦs∂µΦs −

1
12
Hµνρ
s Hs µνρ

)
, (6.7)

where we use a subscript s for string frame. To use the propagators above, we need to
change variables as follows,

Gs µν = eΦs/2Gµν , Φs =
√

2κΦ, Bs = 2κB, (6.8)

which converts the action to

S10 =
∫
d10x
√
−G

(
1

2κ2
R− 1

2
∂µΦ∂µΦ− 1

6
e−
√

2κΦHµνρHµνρ

)
. (6.9)

If additionally we write
Gµν = ηµν + 2κhµν , (6.10)

then Φ, hµν , Bµν are all canonically normalized and have the propagators (6.3).
The DBI action in string frame is

S
(DBI)
p+1 = −µp

∫
dp+1xe−Φs

[
−det

(
gs +Bs + 2πα′Fs

)]1/2 (6.11)

= −µp
∫
dp+1xe

p−3

2
√

2
κΦ
[
−det

(
g + 2κe−

1√
2
κΦ
B +

1
√
µp
e
− 1√

2
κΦ
F

)]1/2

.

Here we have switched to a canonically normalized gauge field. We will also use Xi
s =

Xi/
√
µp for the same reason. We work in a gauge in which Xa(x) = xa (where Xµ are the

scalars describing the embedding of the brane into space-time, and xa are the coordinates
on the world-volume), so only Xi(x) are propagating fields. The bulk fields have been
pulled back to the brane, so for example we use (up to rescaling the Xi)

Φ = Φ(X) = Φ(x) +Xi∂iΦ(x) +
1
2
XiXj∂i∂jΦ(x) + · · · , (6.12)

and

gab = Gab(X) +Gai(X)∂bXi(x) +Gbi(X)∂aXi(x) +Gij(X)∂aXi(x)∂bXj(x)

= ηab + ∂aX
i∂bXi + 2κ

(
hab +Xi∂ihab + hai∂bX

i + hbi∂aX
i

+
1
2
XiXj∂i∂jhab +Xj∂jhai∂bX

i +Xj∂jhbi∂aX
i + hij∂aX

i∂bX
j + · · ·

)
. (6.13)

Expanding Sp+1 to the order we need, we find

Sp+1 =
∫
dp+1x

{
−1

2
∂aXi∂aXi −

1
4
F abFab − µpκ

(
p− 3
2
√

2
Φ + haa

)
−µpκ2

(
(p− 3)2

16
Φ2 +

p− 3
2
√

2
Φhaa +

1
2
haah

b
b − habhab +BabBab

)
−√µpκ

(
p− 3
2
√

2
∂iΦXi + ∂ihaaXi + 2hai∂aXi + 2Bab∂aAb

)
+ · · ·

}
. (6.14)
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From these actions we can derive the variations we need11

δ

δΦ1

δ

δΦ2
Sp+1 = −µpκ2 (p− 3)2

8
,

δ

δΦ1

δ

δΦ2

δ

δhµν
S10 = κtηµν − κ (pµ1p

ν
2 + pν1p

µ
2 ) , (6.15)

δ

δhab
Sp+1 = −µpκηab,

δ

δhai
Sp+1 =

δ

δhij
Sp+1 = 0,

δ

δΦ1

δ

δXi
Sp+1 = −i√µpκ

p− 3
2
√

2
p1 i.

We have assumed that Φ1 and Φ2 are on-shell states with momenta p1 and p2 respectively,
but we of course do not assume that the fields corresponding to internal lines are on-shell.

Now we can plug these results into (6.2) to find

〈Φ1Φ2〉 ∼ Φ1Φ2

{
−µpκ2 (p− 3)2

8
+ i (κtηµν − κ (pµ1p

ν
2 + pν1p

µ
2 ))G(h)

µν,ab

(
−µpκηab

)
+i
(
−i√µpκ

p− 3
2
√

2
p1 i

)
G(X) ij

(
−i√µpκ

p− 3
2
√

2
p2 j

)}
= −µpκ2Φ1Φ2

{
(p− 3)2

8
− p− 7

16t
((p+ 1) t+ s)− p+ 1

16t
((7− p) t− s)

+
(p− 3)2

8
t+ s/2
s/2

)
(6.16)

= −1
2
µpκ

2Φ1Φ2

{
s

t
+

(p− 3)2

2

(
1 +

t

s

)}
.

Up to an overall normalization factor which we have not tried to determine carefully, this
is in perfect agreement with (5.6).

The other three nonvanishing amplitudes can be treated similarly, using (schematically)

〈Φh〉 ∼ Φh
{(

δ

δΦ
δ

δh
Sp+1

)
+ i

(
δ

δΦ
δ

δh

δ

δΦ
S10

)
G(Φ)

(
δ

δΦ
Sp+1

)
+i
(
δ

δΦ
δ

δX
Sp+1

)
G(X)

(
δ

δh

δ

δX
Sp+1

)}
,

〈hh〉 ∼ h1h2

{(
δ

δh1

δ

δh2
Sp+1

)
+ i

(
δ

δh1

δ

δh2

δ

δh
S10

)
G(h)

(
δ

δh
Sp+1

)
+i
(

δ

δh1

δ

δX
Sp+1

)
G(X)

(
δ

δh2

δ

δX
Sp+1

)}
, (6.17)

〈BB〉 ∼ B1B2

{(
δ

δB1

δ

δB2
Sp+1

)
+ i

(
δ

δB1

δ

δB2

δ

δΦ
S10

)
G(Φ)

(
δ

δΦ
Sp+1

)
+i
(

δ

δB1

δ

δB2

δ

δh
S10

)
G(h)

(
δ

δh
Sp+1

)
+i
(

δ

δB1

δ

δA
Sp+1

)
G(A)

(
δ

δB2

δ

δA
Sp+1

)}
.

We relegate the details to appendix C.1.
11We are ignoring the delta functions enforcing momentum conservation which also come from these

variations, and which would be identical to the delta functions which emerge from the disc amplitudes;

these would be easy to restore, but since we did not carefully keep track of the overall normalization

constant of the disc amplitudes, this restoration would not gain us anything.
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6.2 One R-R and one NS-NS field

We will need one more propagator, for R-R fields in the bulk,

G
(C(n))
µ1···µn,ν1···νn =

−i
n!p2

(ηµ1ν1 · · · ηµnνn ± perms) . (6.18)

A useful relation is that

G
(C(p+1))
a1···ap+1,b1···bp+1

εb1···bp+1 =
−i
pµpµ

εa1···ap+1 , G
(C(p+1))
iµ1···µp,a1···ap+1

= 0. (6.19)

The conventional way of writing the bulk action for the R-R fields in either type IIA
or IIB is inconvenient for our purposes for several reasons - we use duality to eliminate the
higher degree potentials Cn, n > 4, we have to deal with both kinetic terms and Chern-
Simons terms for the remaining fields, and in IIB we have to impose the self-duality of F (5)

by hand. There is an alternative formulation which suits our purposes much better and is
known as the democratic formulation [44],

S10 = − 1
8κ2

∫
d10x

√
−Gs

∑
n

∣∣∣dC(n)
s +Hs ∧ C(n−2)

s

∣∣∣2 , (6.20)

where for an (n+ 1)-form we use the notation

|ωn+1|2 =
1

(n+ 1)!
ωµ1···µn+1ωµ1···µn+1 . (6.21)

Notice that there are no Chern-Simons terms when the action is written this way. However,
in this formulation we have to impose the duality constraints by hand. In principle, when
varying the action with respect to one of the R-R potentials, we should first rewrite all
occurrences of the dual potential in terms of the one we are interested in, and then take
the variation. In practice, this simply means that we get an extra factor of two from the
action above, and we can proceed as if each of our bulk vertices comes from the variation
of a term

S10 ⊃ −
1

4κ2

∫
d10x

√
−Gs

∣∣∣dC(n)
s +Hs ∧ C(n−2)

s

∣∣∣2 (6.22)

in the action.12

To convert to normalized kinetic terms we need to define

C
(n)
s µ1···µn =

√
2κC(n)

µ1···µn , (6.24)

and the action above becomes

S10 = −1
2

∫
d10x
√
−G

∑
n

e
4−n√

2
κΦ
∣∣∣dC(n) + 2κH ∧ C(n−2)

∣∣∣2 . (6.25)

12It is easy to check using the conventional action that this procedure works for low-degree potentials,

for instance in IIB we have a term

− 1

4κ2

Z
d10x
√
−Gs

˛̨̨
dC(2)

s + C(0)
s Hs

˛̨̨2
, (6.23)

and for either the C(2)C(2)h or C(2)C(0)B bulk vertices, this is the only contribution.
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Meanwhile, the Wess-Zumino part of the brane action becomes

Sp+1 =
√

2µpκ
∫
Ce

2κB+ 1√
µp
F

=
∫
dp+1xεa1···ap+1

{ √
2µpκ

(p+ 1)!
C

(p+1)
a1···ap+1 +

√
2µpκ2

(p− 1)!
C

(p−1)
a1···ap−1Bapap+1

+

√
2µpκ

(p+ 1)!
∂iC

(p+1)
a1···ap+1Xi +

√
2µpκ
p!

C
(p+1) i
a1···ap ∂ap+1Xi

+

√
2µpκ

(p− 1)!
C

(p−1)
a1···ap−1∂apAap+1 + · · ·

}
. (6.26)

With these preliminaries, we can compute the expected contributions to the amplitudes
of section 5.2, namely 〈C(p+3)B〉, 〈C(p−1)B〉, 〈C(p+1)Φ〉, and 〈C(p+1)h〉. The computations
are straightforward but long, so we again leave the details to an appendix, C.2. There it
can be verified that these field theory computations exactly agree13 with the disc amplitude
computations, up to an overall normalization (but, again with the same normalization for
all four of the non-vanishing two-point functions).
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A Gamma matrix conventions

We define flat space gamma matrices (Γµ)AB which obey

{Γµ,Γν} = 2ηµν , (A.1)

and we write Γµ1···µn = Γ[µ1Γµ2 · · ·Γµn] for antisymmetrized products of gamma matrices.
We also define

Γ11 = Γ0···9 = − 1
10!

εµ1···µ10Γµ1···µ10 , (A.2)

(note that we use ε0···9 = 1, so ε0···9 = −1).
The matrix CAB is an antisymmetric charge conjugation matrix which we use for raising

and lowering spinor indices. It satisfies the useful identities

CΓµC−1 = − (Γµ)T , CΓ11C−1 = − (Γ11)T . (A.3)

13This clarifies a confusion regarding the string theory amplitude computation of the
R
C ∧ B coupling

mentioned in [7, 45].
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B Computation of (−1)F on the boundary state

The operator (−1)F commutes with everything outside of the ψ and φ sectors, so we
shall ignore those other sectors (which are also independent of η). Then we will use the
correlators of section 3.2 to argue that (3.51) and (3.52) hold. We won’t work through the
complete details, but rather sketch how this can be done.

In the NS sector, we use the fact that (−1)F acts as −1 on the −1-picture vacuum,
and anticommutes with left moving fermions, to establish for example〈

−1,−1
∣∣∣(−1)F

∣∣∣B; η
〉
NS

= −1 = −〈−1,−1|B;−η〉NS , (B.1)

and〈
−1,−1

∣∣∣ψµ(z1)ψ̃ν(z̄2) (−1)F
∣∣∣B; η

〉
NS

=
−iηDµν

z1z̄2 − 1
(B.2)

= −
〈
−1,−1

∣∣∣ψµ(z1)ψ̃ν(barz2)
∣∣∣B;−η

〉
NS

,

It is not difficult to show that correlators with arbitrary many ψ, ψ̃, φ, and φ̃ insertions
will obey similar expressions and thus that

(−1)F |B; η〉NS = − |B;−η〉NS . (B.3)

The right-moving fermion number works exactly the same way, and one finds also

(−1)
eF |B; η〉NS = − |B;−η〉NS . (B.4)

In the R sector, we will make use of (2.54) to proceed in a similar fashion,〈
−1

2
,−3

2
;A,B

∣∣∣(−1)F
∣∣∣B; η

〉
R

= −iη
[
Γ11C−1M(η)C−1

]AB
,〈

−3
2
,−1

2
;A,B

∣∣∣(−1)F
∣∣∣B; η

〉
R

= −
[
Γ11C−1M(η)C−1

]AB
, (B.5)〈

−1
2
,−3

2
;A,B

∣∣∣(−1)
eF ∣∣∣B; η

〉
R

= iη
[
C−1M(η)C−1ΓT11

]AB
,〈

−3
2
,−1

2
;A,B

∣∣∣(−1)
eF ∣∣∣B; η

〉
R

=
[
C−1M(η)C−1ΓT11

]AB
.

Using (3.40), we have

Γ11C−1M(η) = −C−1M(−η), M(η)C−1ΓT11 = (−1)p+1M(−η)C−1, (B.6)

which, comparing with〈
−1

2
,−3

2
;A,B|B; η

〉
R

= −iη
[
C−1M(η)C−1

]AB
, (B.7)〈

−3
2
,−1

2
;A,B|B; η

〉
R

=
[
C−1M(η)C−1

]AB
, (B.8)

implies that all of (B.5) are consistent with

(−1)F |B; η〉R = |B;−η〉R , (−1)
eF |B; η〉R = (−1)p+1 |B;−η〉R . (B.9)

One can show that similar expressions hold for all correlators, which establishes (B.9).
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C Details of field theory computations

C.1 Two NS-NS fields

In this section we will do the detailed field theory computations for the amplitudes involving
two NS-NS fields interacting with a type II Dp-brane.

We start with the interaction between a dilaton Φ and a graviton hµν .

〈Φh〉 ∼ Φhµν

{(
δ

δΦ
δ

δhµν
Sp+1

)
+ i

(
δ

δΦ
δ

δhµν

δ

δΦ
S10

)
G(Φ)

(
δ

δΦ
Sp+1

)
+i
(
δ

δΦ
δ

δXi
Sp+1

)
G(X) ij

(
δ

δhµν

δ

δXj
Sp+1

)}
. (C.1)

In order to use this formula we need to compute some variations of the bulk and brane
actions (note that we already computed δΦδXSp+1 in section 6.1),

hµν
δ

δΦ
δ

δhµν
Sp+1 = −µpκ2 p− 3

2
√

2
haa,

hµν
δ

δΦ
δ

δhµν

δ

δΦ
S10 = 2κhµνp1µp1 ν ,

δ

δΦ
Sp+1 = −µpκ

p− 3
2
√

2
, (C.2)

hµν
δ

δhµν

δ

δXi
Sp+1 = i

√
µpκ (−haap2 i + 2haip2 a) ,

It is important to emphasize that we assume in these expressions that external states
(though not the propagating internal lines of course) are on-shell, so we drop terms such
as hµµ or hµνp2 ν . Plugging these results into (C.1), we get

Φ
{
−µpκ2 p− 3

2
√

2
haa + ihµν (−κtηµν + κ (2pµ1p

ν
1 + pµ1p

ν
2 + pµ2p

ν
1))
−i
2t

(
−µpκ

p− 3
2
√

2

)
+i
(
−i√µpκ

p− 3
2
√

2
p1 i

)
−iδij

s/2
(
−i√µpκp2 jh

a
a + 2i

√
µpκp

a
2haj

)}
= −µpκ2 p− 3

2
√

2
Φ
{

1
t
hµνp

µ
1p

ν
1 +

2t
s
haa +

4
s
haip

a
1p
i
1 + 2haa

}
, (C.3)

in precise agreement with (5.6), including the same normalization constant as in the 〈ΦΦ〉
amplitude of section 6.1.

Next we turn to the interaction of two gravitons,

〈hh〉 ∼ h1µνh2 ρσ

{(
δ

δh1µν

δ

δh2 ρσ
Sp+1

)
+ i

(
δ

δh1µν

δ

δh2 ρσ

δ

δhτλ
S10

)
G

(h)
τλ,ωϕ

(
δ

δhωϕ
Sp+1

)
+i
(

δ

δh1µν

δ

δXi
Sp+1

)
G(X) ij

(
δ

δh2 ρσ

δ

δXj
Sp+1

)}
. (C.4)

The additional variations we will need are

h1µνh2 ρσ
δ

δh1µν

δ

δh2 ρσ
Sp+1 = µpκ

2
(
−ha1 ahb2 b + 2hab1 h2 ab

)
, (C.5)
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and the cubic graviton interaction from the Einstein-Hilbert term in the bulk,

h1 ρσh2 τλ
δ

δh1 ρσ

δ

δh2 τλ

δ

δhµν
S10 = κ

[
−3thρσ1 h2 ρση

µν + 2hρσ1 h τ
2 ρ p1 τp2ση

µν

+4th(µ|ρ|
1 h

ν)
2 ρ + 2hµν1 hρσ2 p1 ρp1σ + 2hρσ1 hµν2 p2 ρp2σ − 4h(µ|ρ|

1 h
ν)σ
2 p1σp2 ρ

−4h(µ|ρ
1 h

σ|
2 ρ p

ν)
1 p1σ − 4hρσ1 h

(µ
2 ρp

ν)
2 p2σ + 2hρσ1 h2 ρσ (pµ1p

ν
1 + pµ2p

ν
2) + 2hρσ1 h2 ρσp

(µ
1 p

ν)
2

]
,

where we again emphasize that we assume that the external gravitons h1 and h2 are on-
shell. Then 〈hh〉 becomes

µpκ
2
(
−ha1 ahb2 b + 2hab1 h2 ab

)
+ µpκ

2 p− 7
16t

[−3t (p+ 1)hµν1 h2µν

+2 (p+ 1)hµν1 h ρ
2µ p1 ρp2 ν + 4thaµ1 h2 aµ + 2ha1 ah

µν
2 p1µp1 ν + 2hµν1 ha2 ap2µp2 ν

−4haµ1 h ν
2 a p1 νp2µ + 4haµ1 h ν

2µ p1 νp2 a + 4hµν1 ha2µp1 ap2 ν + shµν1 h2µν

]
+ µpκ

2 p+ 1
16t

[
−3t (9− p)hµν1 h2µν + 2 (9− p)hµν1 h ρ

2µ p1 ρp2 ν + 4thiµ1 h2 iµ

−2ha1 ah
µν
2 p1µp1 ν − 2hµν1 ha2 ap2µp2 ν − 4hiµ1 h

ν
2 i p1 νp2µ − 4haµ1 h ν

2µ p1 νp2 a

−4hµν1 ha2µp1 ap2 ν + (2t− s)hµν1 h2µν

]
− µpκ2 2

s

[(
t+

s

2

)
ha1 ah

b
2 b + 2ha1 ah

bi
2 p1 bp1 i + 2hai1 h

b
2 bp2 ap2 i + 4hai1 h

b
2 ip1 bp2 a

]
= −µpκ2

{
1
t

[s
2
hµν1 h2µν + ha1 ah

µν
2 p1µp1 ν + hµν1 ha2 ap2µp2 ν + 2hab1 h

c
2 a p1 cp2 b

−2hai1 h
j

2 a p1 jp2 i + 4hai1 h
b

2 i p1 bp2 a + 2hai1 h
j

2 i p1 jp2 a + 2hij1 h
a
2 ip1 ap2 j

]
+

1
s

[
2tha1 ah

b
2 b + 4ha1 ah

bi
2 p1 bp1 i + 4hai1 h

b
2 bp2 ap2 i + 8hai1 h

b
2 ip1 bp2 a

]
+2ha1 ah

b
2 b + 2hai1 h2 ai

}
, (C.6)

once again in precise agreement with (5.6).
Finally we turn to the interaction of two B-fields with the brane,

〈BB〉 ∼ B1µνB2 ρσ

{(
δ

δB1µν

δ

δB2 ρσ
Sp+1

)
+ i

(
δ

δB1µν

δ

δB2 ρσ

δ

δΦ
S10

)
G(Φ)

(
δ

δΦ
Sp+1

)
+i
(

δ

δB1µν

δ

δB2 ρσ

δ

δhτλ
S10

)
G

(h)
τλ,ωϕ

(
δ

δhωϕ
Sp+1

)
+i
(

δ

δB1µν

δ

δAa
Sp+1

)
G

(A)
ab

(
δ

δB2 ρσ

δ

δAb
Sp+1

)}
. (C.7)

We need vertices on the brane

B1µνB2 ρσ
δ

δB1µν

δ

δB2 ρσ
Sp+1 = −2µpκ2Bab

1 B2 ab, (C.8)

and
B1µν

δ

δB1µν

δ

δAa
Sp+1 = 2i

√
µpκB

ab
1 p2 b, (C.9)
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and bulk interactions

B1µνB2 ρσ
δ

δB1µν

δ

δB2 ρσ

δ

δΦ
S10 = −

√
2κtBµν

1 B2µν + 2
√

2κBµν
1 B ρ

2µ p1 ρp2 ν , (C.10)

and

B1 ρσB2 τλ
δ

δB1 ρσ

δ

δB2 τλ

δ

δhµν
S10 = κ

[
tBρσ

1 B2 ρση
µν − 2Bρσ

1 B τ
2 ρ p1 τp2ση

µν (C.11)

−2Bρσ
1 B2 ρσp

(µ
1 p

ν)
2 − 4tB(µ|ρ|

1 B
ν)
2 ρ + 4B(µ|ρ|

1 B
ν)σ
2 p1σp2 ρ

−4B(µ|ρ
1 B

σ|
2 ρ p1σp

ν)
2 − 4Bρσ

1 B
(µ
2 ρp

ν)
1 p2σ

]
.

These then lead to an amplitude

− 2µpκ2Bab
1 B2 ab + µpκ

2 p− 3
4
√

2t

[√
2tBµν

1 B2µν − 2
√

2Bµν
1 B ρ

2µ p1 ρp2 ν

]
+ µpκ

2 p− 7
16t

[
(p+ 1) tBµν

1 B2µν − 2 (p+ 1)Bµν
1 B ρ

2µ p1 ρp2 ν + sBµν
1 B2µν

−4tBaµ
1 B2 aµ + 4Baµ

1 B ν
2 a p1 νp2µ − 4Baµ

1 B ν
2µ p1 νp2 a − 4Bµν

1 Ba
2µp1 ap2 ν

]
+ µpκ

2 p+ 1
16t

[
(9− p) tBµν

1 B2µν − 2 (9− p)Bµν
1 B ρ

2µ p1 ρp2 ν − (2t+ s)Bµν
1 B2µν

−4tBiµ
1 B2 iµ + 4Biµ

1 B
ν

2 i p1 νp2µ − 4Biµ
1 B

ν
2µ p1 νp2 i − 4Bµν

1 Bi
2µp1 ip2 ν

]
− µpκ2 8

s
Bab

1 B
c

2 a p1 cp2 b

= −µpκ2

{
1
t

[s
2
Bµν

1 B2µν + 4Bab
1 B

c
2 a p1 cp2 b + 2Bab

1 B
i

2 a p1 ip2 b + 2Bai
1 B

b
2 a p1 bp2 i

+2Bai
1 B

b
2 ip1 bp2 a − 2Bij

1 B
k

2 i p1 kp2 j

]
+

8
s
Bab

1 B
c

2 a p1 cp2 b +Bab
1 B2 ab +Bij

1 B2 ij

}
. (C.12)

Comparing with (5.6), it is gratifying to note that all the two-point functions agree.

C.2 One NS-NS and one R-R field

Here we give the details for the field theory computations of two-point functions involving
one R-R potential and one NS-NS field. The first one is〈

C(p+3)B
〉
∼ iC(p+3)

µ1···µp+3Bνρ

(
δ

δC
(p+3)
µ1···µp+3

δ

δBνρ

δ

δC
(p+1)
σ1···σp+1

S10

)

×G(C(p+1))
σ1···σp+1,τ1···τp+1

(
δ

δC
(p+1)
τ1···τp+1

Sp+1

)
. (C.13)

Since only one diagram contributes, the only variations we need to compute are the one-
point contact term

δ

δC
(p+1)
a1···ap+1

Sp+1 =
√

2µpκ
(p+ 1)!

εa1···ap+1 , (C.14)
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and the bulk interaction

C
(p+3)
ν1···νp+3Bρσ

δ

δC
(p+3)
ν1···νp+3

δ

δBρσ

δ

δC
(p+1)
µ1···µp+1

S10

= κ

[
1

(p+ 1)!
C

(p+3) νρ
µ1···µp+1 (tBνρ − 2B σ

ν p1σp2 ρ)−
1
p!
C

(p+3) νρσ
[µ1···µp B|νρ|p1µp+1]p2σ

]
. (C.15)

We can now evaluate the amplitude 〈C(p+3)B〉 as

µpκ
2

√
2t
εa1···ap+1

{
1

(p+ 1)!
C

(p+3) ij
a1···ap+1

(
tBij + 2Bb

ip1 bp2 j − 2B k
i p1 kp2 j

)
− 1
p!

[
C

(p+3) bij
a1···ap

(
2Bbip1 ap+1p2 j +Bijp1 ap+1p2 b

)
+ C

(p+3) ijk
a1···ap Bijp1 ap+1p2 k

]}
=
µpκ

2

√
2t
εa1···ap+1

{
1

(p+ 1)!
C

(p+3) ij
a1···ap+1

(
rBij − 2B k

i p1 kp2 j

)
− 1
p!
C

(p+3) ijk
a1···ap Bijp1 ap+1p2 k

}
. (C.16)

Recall that we have defined r = t + s
2 . This expression can be rewritten as something

proportional to 1
tF

(p+4) ijk
a1···ap+1 Hijk in agreement with (5.16).

Next we turn to the 〈C(p−1)B〉 amplitude, which is the only one in this section which
receives contributions from three different diagrams,

〈
C(p−1)B

〉
∼ C(p−1)

µ1···µp−1Bνρ

{(
δ

δC
(p−1)
µ1···µp−1

δ

δBνρ
Sp+1

)

+i

(
δ

δC
(p−1)
µ1···µp−1

δ

δBνρ

δ

δC
(p+1)
σ1···σp+1

S10

)
G

(C(p+1))
σ1···σp+1,τ1···τp+1

(
δ

δC
(p+1)
τ1···τp+1

Sp+1

)

+i

(
δ

δC
(p−1)
µ1···µp−1

δ

δAa
Sp+1

)
G

(A)
ab

(
δ

δBνρ

δ

δAb
Sp+1

)}
. (C.17)

As usual, we need to compute some contact terms,

C
(p−1)
µ1···µp−1Bνρ

δ

δC
(p−1)
µ1···µp−1

δ

δBνρ
Sp+1 =

√
2µpκ2

(p− 1)!
εa1···ap+1C

(p−1)
a1···ap−1Bapap+1 , (C.18)

C
(p−1)
µ1···µp−1

δ

δC
(p−1)
µ1···µp−1

δ

δAa
Sp+1 = i

√
2µpκ

(p− 1)!
εb1···bpaC

(p−1)
b1···bp−1

p2 bp , (C.19)

as well as a bulk interaction

C
(p−1)
ν1···νp−1Bρσ

δ

δC
(p−1)
ν1···νp−1

δ

δBρσ

δ

δC
(p+1)
µ1···µp+1

S10

= κ

[
1

(p− 1)!
C

(p−1)
µ1···µp−1

(
−tBµpµp+1 + 2B ν

µp p1 |ν|p2µp+1

)
+

1
(p− 2)!

C
(p−1) ν
[µ1···µp−2

Bµp−1µpp2µp+1]p2 ν

]
. (C.20)
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Plugging into the amplitude, we find

√
2µpκ2εa1···ap+1

{
1

(p− 1)!
C

(p−1)
a1···ap−1Bapap+1

+
1
2t

[
1

(p− 1)!
C

(p−1)
a1···ap−1

(
−tBapap+1 + 2B b

ap p1 bp2 ap+1 + 2B i
ap p1 ip2 ap+1

)
+

1
(p− 2)!

(
C

(p−1) b
a1···ap−2 Bap−1app2 ap+1p2 b + C

(p−1) i
a1···ap−2 Bap−1app2 ap+1p2 i

)]
+

4
s

1
(p− 1)!

C
(p−1)
a1···ap−1B

b
ap p1 bp2 ap+1

}
=
√

2µpκ2εa1···ap+1

{
1

(p− 1)!
C

(p−1)
a1···ap−1

(
r

2t
Bapap+1 −

4r
st
B b
ap p1 ap+1p1 b −

1
t
B i
ap p1 ap+1p1 i

)
− 1

(p− 2)!
C

(p−1) i
a1···ap−2 Bap−1app1 ap+1p2 i

}
. (C.21)

This result agrees with the amplitude (5.14).
Finally, we have the couplings to C(p+1). In each case there is no direct contact term

but there are two contributing diagrams, in the t channel and s channel respectively. For
the dilaton we have〈

C(p+1)Φ
〉
∼ C(p+1)

µ1···µp+1Φ

{
i

(
δ

δC
(p+1)
µ1···µp+1

δ

δΦ
δ

δC
(p+1)
ν1···νp+1

S10

)

×G(C(p+1))
ν1···νp+1,ρ1···ρp+1

(
δ

δC
(p+1)
ρ1···ρp+1

Sp+1

)

+i

(
δ

δC
(p+1)
µ1···µp+1

δ

δXi
Sp+1

)
G(X) ij

(
δ

δΦ
δ

δXj
Sp+1

)}
. (C.22)

The requisite variations are

C
(p+1)
µ1···µp+1

δ

δCµ1···µp+1

δ

δXi
Sp+1 = i

√
2µpκεa1···ap+1

(
1

(p+1)!
C

(p+1)
a1···ap+1p1 i−

1
p!
C

(p+1)
a1···apip1 ap+1

)
,

(C.23)
and

C
(p+1)
ν1···νp+1

δ

δC
(p+1)
ν1···νp+1

δ

δΦ
δ

δC
(p+1)
µ1···µp+1

S10

=
p− 3√

2
κ

[
1

(p+ 1)!
tC

(p+1)
µ1···µp+1 −

1
p!
C

(p+1) ν
[µ1···µp p1µp+1]p2 ν

]
. (C.24)

These lead to an amplitude

(p− 3)µpκ2Φεa1···ap+1

{
1
2t

[
1

(p+ 1)!
tC

(p+1)
a1···ap+1 −

1
p!
C

(p+1) b
a1···ap p1 ap+1p2 b

− 1
p!
C

(p+1) i
a1···ap p1 ap+1p2 i

]
+

1
s

[
1

(p+ 1)!
rC

(p+1)
a1···ap+1 −

1
p!
C

(p+1) i
a1···ap p1 ap+1p2 i

]}
= (p− 3)µpκ2Φεa1···ap+1

{
1

(p+ 1)!
r2

st
C

(p+1)
a1···ap+1 −

1
p!
r

st
C

(p+1) i
a1···ap p1 ap+1p2 i

}
. (C.25)

– 42 –



J
H
E
P
0
1
(
2
0
1
2
)
1
2
7

And for the coupling of C(p+1) to a graviton we have〈
C(p+1)h

〉
∼ C(p+1)

µ1···µp+1hνρ

{
i

(
δ

δC
(p+1)
µ1···µp+1

δ

δhνρ

δ

δC
(p+1)
σ1···σp+1

S10

)

×G(C(p+1))
σ1···σp+1,τ1···τp+1

(
δ

δC
(p+1)
τ1···τp+1

Sp+1

)

+i

(
δ

δC
(p+1)
µ1···µp+1

δ

δXi
Sp+1

)
G(X) ij

(
δ

δhνρ

δ

δXj
Sp+1

)}
. (C.26)

The only variation we’re missing is

C
(p+1)
ν1···νp+1hρσ

δ

δC
(p+1)
ν1···νp+1

δ

δhρσ

δ

δC
(p+1)
µ1···µp+1

S10 = 2κ
[

1
(p+ 1)!

C
(p+1)
µ1···µp+1h

νρp1 νp1 ρ

+
1
p!
C

(p+1) ν
[µ1···µp

(
thµp+1]ν − h

ρ
µp+1] p1 ρp2 ν − h ρ

|ν| p1µp+1]p1 ρ

)
− 1

(p− 1)!
C

(p+1) νρ
[µ1···µp−1

hµp|ν|p1µp+1]p2 ρ

]
. (C.27)

Then the amplitude is given by

√
2µpκ2εa1···ap+1

{
1
t

[
1

(p+ 1)!
C

(p+1)
a1···ap+1h

µνp1µp1 ν

+
1
p!
C

(p+1) µ
a1···ap

(
thap+1µ − h ν

ap+1
p1 νp2µ − h ν

µ p1 ap+1p1 ν

)
− 1

(p− 1)!
C

(p+1) µν
a1···ap−1 hapµp1 ap+1p2 ν

]
+

2
s

[
1

(p+ 1)!
C

(p+1)
a1···ap+1

(
rhbb + 2hbip1 bp1 i

)
− 1
p!
C

(p+1) i
a1···ap

(
hbbp1 ap+1p2 i + 2hbip1 ap+1p1 b

)]}
=
√

2µpκ2εa1···ap+1

{
1

(p+ 1)!
C

(p+1)
a1···ap+1

(
2r2

st
hbb +

4r
st
hbip1 bp1 i +

1
t
hijp1 ip1 j

)
+

1
p!
C

(p+1) i
a1···ap

(
r

t
hap+1i −

1
t
h j
ap+1

p1 jp2 i −
2r
st
hbbp1 ap+1p2 i

−4r
st
hbip1 ap+1p1 b −

1
t
h j
i p1 ap+1p1 j

)
− 1

(p− 1)!
1
t
C

(p+1) ij
a1···ap−1 hapip1 ap+1p2 j

}
. (C.28)

By substituting the polarizations for the dilaton or graviton into (5.15) we can check that
both of the field theory results above also agree with the disc amplitude computation.

Since all two-point functions agree between the string and field theory computations
(at lowest derivative order), we feel justified in expressing some confidence in the techniques
which we have outlined in this paper.
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