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1 Introduction

The gauge/string duality [1–3] has become an essential framework for the study of strongly-

coupled systems, in which perturbative quantum field theory techniques cannot be suc-

cessfully applied. Particularly, during the last decade, and with remarkable results,

gauge/string duality techniques have been applied to study properties of strongly cou-

pled SYM plasmas. In a certain temperature range, these idealized systems can perhaps

provide a qualitative guide to the quark-gluon plasma (QGP) which is produced as a result

of heavy ion collisions at RHIC and the LHC. Some references discussing the phenomenol-

ogy of the QGP are [4–10]. For a summary of the results of the Pb-Pb ion collisions carried

out recently at the LHC, see [11], and for an interesting discussion of the predictions of

heavy ion collisions at the LHC we refer the reader to [12].

While the work involving the gauge/string duality in the top-down sense mainly deals

with highly symmetric field theories, the real world at low energies is governed by QCD.

One of the most challenging aspects of studying the experimentally-produced QGP is how

to deform the gravity backgrounds available in string theory in order to break some of

the symmetries of the dual field theories, thus bringing them closer to QCD. Another

approach is to improve the AdS/CFT results for highly symmetric theories, in order to

understand those theories better despite their differences with QCD, in the hope that one

can extract universal properties, or make statements that apply to a wide class of strongly-

coupled field theories. In this work, we adopt this approach, focussing our study on the

hydrodynamics, and in particular charge transport, in N = 4 SYM theory at finite yet

strong ’t Hooft coupling.

The hydrodynamic regime of the N = 4 SYM plasma has been studied extensively over

the past decade. Using the rules developed in references [13, 14], the two-point correlators

for the energy-momentum tensor Tµν , and the R-charge vector currents Jµ in the low-

momentum (hydrodynamic) regime have been computed. The transport coefficients of

both energy-momentum and charge were extracted from the two-point functions, yielding
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the viscosity [15–17] and the R-charge conductivity [14, 16, 18–20]. The work done in

these references pertained to the large N limit (where N is the rank of the gauge group,

i.e. for an infinite number of colour degrees of freedom), and infinite ’t Hooft coupling (λ).

Therefore, the gravitational dual in which the work was carried out was given by zeroth

order solutions of type IIB supergravity, i.e. the gravity backgrounds were computed to

zeroth order in α′, consistent with the assertion that the λ → ∞ limit in the field theory

corresponds to the α′ → 0 limit on the gravity side. Precisely, the solutions obtained from

the minimal quadratic type IIB supergravity action, correct to O(α′0), are perturbed in the

directions which source the relevant boundary operator, obtaining an O(α′0) action for the

supergravity perturbation. The equations of motion derived from this action are solved,

thus obtaining the correlators of operators of N = 4 SYM theory at infinite ’t Hooft

coupling. In the case of N = 4 SYM plasma, the O(α′0) ten-dimensional supergravity

background is the product of an AdS5-Schwarzschild black hole and a five-sphere, with a

constant Ramond-Ramond five-form field strength and a constant dilaton. All N = 4 SYM

correlators obtained by perturbing this background are correct at infinite ’t Hooft coupling.

A natural question to then ask is the following: what are leading order finite-coupling

corrections to the hydrodynamic transport coefficients in N = 4 SYM plasma? These turn

out to arise at order λ−3/2, and to compute them from supergravity one must include O(α′3)

corrections to the minimal supergravity action. This was carried out for the shear viscosity

and the mass-density diffusion constant in [21–27]. As mentioned above, momentum-

transport is governed by correlators of the energy-momentum tensor Tµν , the dual field

of which is hµν , which is the graviton of the AdS theory, where µ, ν are both in the AdS

factor of the bulk geometry.

In this article, we wish to compute the O(λ−3/2) corrections to the electrical conduc-

tivity of the plasma, obtained from the correlators of Jµ, the dual field to which is Aµ,

one of the SO(6) gauge fields in the five-dimensional AdS theory. The ten-dimensional

parents of these gauge fields are hµa, where µ is in the AdS factor, and a is in the S5.

To obtain the corrections to the correlators of Jµ, we must therefore compute the equa-

tions of motion of hµa starting from the ten-dimensional type IIB supergravity action plus

the O(α′3) string theory corrections. The schematic form of the O(α′3) corrections is

C4 + C3T + C2T 2 + CT 3 + T 4, where C is the ten-dimensional Weyl tensor, while the

rank-6 tensor T is defined in terms of the Ramond-Ramond five-form field strength and its

covariant derivative. The big difference between this computation and the equivalent one

for the shear viscosity is that, as shown in [21–27], the only operator that affects the tensor

fluctuations hµν (and hence the shear viscosity) is the operator C4, which only involves

the metric in ten dimensions. For the fluctuations hµa which govern charge-transport, on

the other hand, we must include the full set of O(α′3) operators listed above, which makes

the problem much more challenging. In our recent work [28], we considered this problem

from a general viewpoint, without performing the dimensional reduction explicitly.1,2 In

1Previously we also have studied vector fluctuations on the O(α′3)-corrected metric for short distances

compared to the inverse of the plasma equilibrium temperature [29].
2Corrections to the holographic conductivity from certain higher-dimensional operators were considered

in [26, 30].
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the work we present in this article, we compute the exact and full correction to the elec-

trical conductivity at order O(λ−3/2). We find that the conductivity is enhanced by the

corrections, giving:

σ(λ) = σ∞

(

1 +
ζ(3)

8

14993

9
λ−3/2

)

, (1.1)

where σ∞ is the conductivity at infinite ’t Hooft coupling, and ζ(3) ∼ 1.202 is the Riemann

Zeta function. In the next section, we briefly discuss the interpretation of this quantity

as the electrical conductivity of the plasma, before explaining in detail how we obtained

this result.

2 Plasma conductivity

We would like to compute the electrical conductivity of the SU(N) N = 4 SYM plasma

in the large N limit. We mean the following [20]: the N = 4 SYM theory has a global

SU(4) R-symmetry group. Focus on a U(1) subgroup of this SU(4) symmetry, which, being

global, does not come with any gauge fields. Then, let us gauge this U(1) group, and couple

the newly-introduced U(1) gauge-field minimally to the SYM Lagrangian with coupling e,

in the usual way. We also make the U(1) gauge-field dynamical by adding its kinetic term

to the action. We call this theory SYM-EM, following the notation of [20]. The current

which couples to the U(1) gauge field is Jem
µ , and to leading order in the coupling e, is

given by J3
µ (where the superscript 3 simply signifies that this is the R-symmetry current

in the un-gauged U(1) direction) plus some terms which are subleading in e. Therefore,

to leading order in e and to full non-perturbative order in λ (the ’t Hooft coupling of the

N = 4 SYM theory), the two-point function of Jem
µ is given by the two-point function of

the R-symmetry currents J3
µ calculated entirely in the N = 4 SYM theory. The problem

thus simplifies to computing the two-point function of the R-symmetry currents Jµ.

The quantity we are interested in is the retarded correlator of R-symmetry currents at

non-zero frequency ω and vanishing three-momentum ~q, defined by

Rµν(ω, ~q = 0) = −i

∫

d4x eiωt Θ(t) < [Jµ(x), Jν(0)] > , (2.1)

where Θ(t) is the usual Heaviside function, and Jµ(x) is the conserved current associated

with the relevant U(1) subgroup of the R-symmetry group. The brackets denote the ex-

pectation value considered as a thermal average over the statistical ensemble of an N = 4

SYM plasma at equilibrium temperature T . Setting the electromagnetic coupling to be e,

the electrical conductivity σ of the plasma is given by

σ = − lim
ω→0

Im
e2

ω
Rxx(ω, ~q = 0) . (2.2)

Our aim in this work is to derive the conductivity σ, working in the holographic dual

model, and including the full set of O(α′3) corrections to type IIB supergravity. In the

next section, we define the ten-dimensional corrected background and describe in detail

the field which is dual to the current Jµ, the vector perturbation Aµ. We then derive the

equations of motion for the Ax component of the U(1) gauge field, and use their solution

to obtain the plasma conductivity corrected to O(λ−3/2).
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3 Setting the holographic dual background

The type IIB supergravity action corrected to O(α′3) is given by:

SIIB = S0
IIB + Sα′

IIB , (3.1)

where S0
IIB denotes the minimal (two-derivative) type IIB supergravity action, and Sα′

IIB

encodes the corrections. The minimal action S0
IIB contains the Einstein-Hilbert action

coupled to the dilaton and the Ramond-Ramond five-form field strength

S0
IIB =

1

2κ210

∫

d10x
√
−G

[

R10 −
1

2
(∂φ)2 − 1

4.5!
(F5)

2

]

. (3.2)

The leading ’t Hooft coupling corrections, on the other hand, are accounted for by the

following schematic action [24, 31]

Sα′

IIB =
R6

2κ210

∫

d10x
√
−G

[

γe−
3

2
φ
(

C4 + C3T + C2T 2 + CT 3 + T 4
)

]

, (3.3)

where γ provides the dependence on the ’t Hooft coupling λ through the definition γ ≡
1
8 ζ(3) (α′/R2)3, with R4 = 4πgsNα′2. Setting λ = g2YMN ≡ 4πgsN , we get γ = 1

8 ζ(3) 1
λ3/2 .

The C4 term is a dimension-eight operator, defined by the following contractions

C4 = Chmnk Cpmnq C
rsp

h Cq
rsk +

1

2
ChkmnCpqmnC

rsp
h Cq

rsk , (3.4)

where Cq
rsk is the Weyl tensor. We define the tensor T as:

Tabcdef = i∇aF
+
bcdef +

1

16

(

F+
abcmnF

+
def

mn − 3F+
abfmnF

+
dec

mn
)

, (3.5)

where the r.h.s. must be antisymmetrized in [a, b, c] and [d, e, f ] and symmetrized with

respect to interchange of abc ↔ def [31], and in addition we have

F+ =
1

2
(1 + ∗)F5 . (3.6)

The dual to N = 4 SU(N) SYM plasma at infinite ’t Hooft coupling and infinite N is the

following maximally-symmetric solution of the equations of motion of the minimal action

S0
IIB: an AdS5-Schwarzschild black hole multiplied by a five-sphere. The five-form field

strength is the volume form on the sphere ǫ, with N units of flux through the sphere. This is

a solution of the equations of motion arising from the action S0
IIB of eq. (3.2). The current

operator of the SYM theory Jµ(x) is dual to the s-wave mode of the vectorial fluctuation

on this background, and we shall denote it by Aµ. In order to obtain the Lagrangian for

the vectorial perturbation in this background, we have to construct a consistent perturbed

Ansatz for both the metric and the Ramond-Ramond five-form field strength, such that

a proper U(1) subgroup of the R-symmetry group is obtained [32, 33]. As shown in the

previous references, the consistent perturbation Ansatz yields the minimal U(1) gauge field

kinetic term in the AdS5-Schwarzschild black-hole geometry. Therefore, by studying the

bulk solutions of the Maxwell equations in the AdS5-Schwarzschild black hole with certain
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boundary conditions, we can obtain the retarded correlation functions [13, 14, 20] of the

operator Jµ(x). We wish to carry out this program using the fully-corrected action SIIB.

As pointed out in the introduction, this program has already been carried out for the

tensor fluctuations hµν dual to the energy momentum tensor Tµν [21, 23, 34], yielding the

viscosity and mass-diffusion constant of the SYM plasma.

To begin the computation of the O(α′3) equations of motion of the gauge field Aµ dual

to the current Jµ, we must first describe the effects of Sα′

IIB on the geometry of the gravita-

tional dual to the SYM plasma. Firstly, we note that the higher curvature corrections do

not modify the metric at zero temperature [35]. This is simply the statement that the SYM

theory is fully conformal at all orders at zero temperature, and so the gravitational dual

must necessarily reflect this preserved conformality. The situation at finite temperature is

rather different. In references [36, 37], the effect of the string theory leading corrections to

the metric were investigated, focussing upon the study of their corrections to thermody-

namic quantities of the five-dimensional AdS-Schwarzschild black hole. The corrections to

the metric were revisited in references [38–40]. Remarkably, Myers, Paulos and Sinha [24]

have shown that the metric itself is only corrected by C4, a consequence of the fact that

the tensor T vanishes on the uncorrected supergravity solution. The corrected metric is

given by [36, 37, 39]

ds2 =
(r0
R

)2 1

u

(

−f(u)K2(u) dt2 + d~x2
)

+
R2

4u2f(u)
P 2(u) du2 + R2L2(u) dΩ2

5 , (3.7)

where f(u) = 1 − u2 and R is the radius of the AdS5 and the five-sphere. The AdS-

boundary is at u = 0 and the black hole horizon is at u = 1. For the AdS5 coordinates we

use indices m, where m = {(µ = 0, 1, 2, 3), 5}. We have

K(u) = exp [γ (a(u) + 4b(u))] , P (u) = exp [γ b(u)] , L(u) = exp [γ c(u)] , (3.8)

where the exponents are given by:

a(u) = −1625

8
u2 − 175u4 +

10005

16
u6 ,

b(u) =
325

8
u2 +

1075

32
u4 − 4835

32
u6 ,

c(u) =
15

32
(1 + u2)u4 . (3.9)

Finally, we have the following expression for the extremality parameter r0:

r0 =
πTR2

(1 + 265
16 γ)

, (3.10)

where T is identified as the physical equilibrium temperature of the plasma. Having ob-

tained the corrected metric, the next step is to deduce the appropriate perturbation Ansätze

for the vectorial fluctuations Aµ of the corrected supergravity background. Notice that the

vector perturbation enters the perturbed metric in addition to the perturbed F5 solution,

which means that all the operators inside Sα′

IIB can influence the calculation. The plan

– 5 –
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is to formulate the perturbation Ansätze, correct to linear order in γ and plug them into

SIIB. Due to the fact that we are working to linear order in γ, we must insert the fully

corrected Ansätze into the S0
IIB piece, but it is sufficient to insert the O(γ0) Ansätze into

Sα′

IIB because the latter part of the action carries an explicit factor of γ. In the remainder

of this section, we will describe the perturbation Ansätze and display the result of inserting

them into S0
IIB. The insertion of the perturbation Ansätze into Sα′

IIB will be described in

the next section.

The metric Ansatz reads as follows

ds2 =

[

gmn +
4

3
R2L(u)2AmAn

]

dxmdxn + R2L(u)2 dΩ2
5 +

4√
3
R2L(u)2

×
(

sin2 y1 dy3 + cos2 y1 sin2 y2 dy4 + cos2 y1 cos2 y2 dy5
)

Am dxm , (3.11)

where dΩ2
5 is metric of the unit five-sphere given by

dΩ2
5 = dy21 + cos2 y1 dy

2
2 + sin2 y1 dy

2
3 + cos2 y1 sin2 y2 dy

2
4 + cos2 y1 cos2 y2 dy

2
5 .

Since we are only interested in the terms which are quadratic in the gauge-field perturbation

we can write the F5 Ansatz as follows

F5 = − 4

R
ǫ +

R3L(u)3√
3

(

3
∑

i=1

dµ2
i ∧ dφi

)

∧ ∗F2 , (3.12)

where F2 = dA is the Abelian field strength and ǫ is a deformation of the volume form of

the metric of the AdS5-Schwarzschild black hole. We stress that we are not interested in the

part of F5 which does not contain the vector perturbations, as we are only concerned with

the quadratic action of Aµ. The Hodge dual ∗ is taken with respect to the ten-dimensional

metric, while ∗ denotes the Hodge dual with respect to the five-dimensional metric piece

of the black hole. In addition, we have the usual definitions for the coordinates on the S5

µ1 = sin y1 , µ2 = cos y1 sin y2 , µ3 = cos y1 cos y2 ,

φ1 = y3 , φ2 = y4 , φ3 = y5 . (3.13)

Inserting these Ansätze into eq. (3.2), and discarding all the higher (massive) Kaluza-Klein

harmonics of the five-sphere, we get the following action for the zero-mode Abelian gauge

field Am

SSUGRA
IIB = − Ñ2

64π2R

∫

d4x du
√−g L7(u) gmp gnq Fmn Fpq . (3.14)

In the previous equation, the Abelian field strength is defined as Fmn = ∂mAn−∂nAm, the

partial derivatives are ∂m = ∂/∂xm, while xm = (t, ~x, u), where t and ~x = (x1, x2, x3) are

the Minkowski four-dimensional spacetime coordinates, and g ≡ det(gmn), where gmn is

the metric of AdS5-Schwarzschild black hole. The factor of L(u)7 arises straightforwardly

from the dimensional reduction [16], and the volume of the five-sphere has been included

in Ñ .

The next step is to obtain the effect of the eight-derivative corrections of eq. (3.3). As

in [28], it is sufficient to use the uncorrected Ansätze at this point, i.e. eqs. (3.11) and (3.12)

in the limit γ → 0, so taking L(u),K(u), P (u) → 1 and ǫ → ǫ. We carry this out in the

next section.
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4 ’t Hooft corrections to the R-charge conductivity

We here insert the Ansätze in eqs. (3.11) and (3.12) (with γ → 0) into Sα′

IIB. We begin

by explicitly writing all the various operators comprising Sα′

IIB. For this purpose it is

convenient to use the definitions given by Paulos [31] which can be explicitly written from

eq. (3.3) as

Sα′

IIB =
R6

2κ210

∫

d10x
√
−G [γe−

3

2
φ (C4 + C3T + C2T 2 + CT 3 + T 4)]

≡ 1

86016

R6

2κ210

∑

i

ni

∫

d10x
√
−G [γe−

3

2
φMi] , (4.1)

where the coefficients ni are found in [31]. The first important point to keep in mind is that

we are only interested in terms quadratic in the gauge field Aµ. We therefore expand the

tensors C and T as follows: C = C0 +C1 +C2, and T = T0 + T1 + T2, where the subindex

labels the number of times that the Abelian gauge field occurs. The second important

point to note is that the tensor T0 vanishes for the background considered here (and for

any direct-product background which contains a five-dimensional Einstein manifold as the

internal space), as proved by [24]. Therefore, we may write T = T1 +T2. This immediately

means that the terms CT 3 and T 4 cannot contribute to the quadratic action for the gauge

field Aµ and so we discard them in what follows.

For C4 there are two contributions which can be written as:

C4 = −43008

86016
CabcdCabefCceghCdgfh + CabcdCaecfCbgehCdgfh , (4.2)

where repeated indices mean usual Lorentz contractions. The contributions from this term

can be schematically written as C3
0C2 and C2

0C
2
1 .

Next we consider terms of the form C3 T

C3T =
3

2
CabcdCaefgCbfhiTcdeghi . (4.3)

The possible contributions from these terms are of the form C2
0C1T1 and C3

0T2. We have

explicitly checked that the C3
0T2 term is zero, so that the only contribution here is C2

0C1T1.
For the operators C2T 2, there are a few contractions:

C2T 2 =
1

86016
× (30240CabcdCabceTdfghijTefhgij + 7392CabcdCabefTcdghijTefghij

−4032CabcdCaecfTbeghijTdfghij − 4032CabcdCaecfTbghdijTeghfij
−118272CabcdCaefgTbcehijTdfhgij − 26880CabcdCaefgTbcehijTdhifgj
+112896CabcdCaefgTbcfhijTdehgij − 96768CabcdCaefgTbcheijTdfhgij) .

(4.4)

The contributions here are of the form C2
0T 2

1 .

What we must now do is clear: compute the ten-dimensional Weyl tensor C to

quadratic order in the gauge field Ax, and compute T1. We separate the latter into

T1 = ∇F5 + T̄ , where

(∇F5)abcdef = i∇aF
+
bcdef , (4.5)

– 7 –
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and a second piece which does not contain covariant derivatives

T̄abcdef =
1

16

(

F+
abcmnF

+
def

mn − 3F+
abfmnF

+
dec

mn
)

. (4.6)

We can recast the definition of F+ above as a sum of an electric and magnetic components

F+ = F(e) + F(m). For the electric part we have

F(e) = − 4

R
ǫ +

R3

√
3

(

3
∑

i=1

dµ2
i ∧ dφi

)

∧ ∗F2 , (4.7)

where the ∗ indicates the Hodge dual with respect to the AdS5-Schwarzschild black hole

metric. It is convenient to split the electric part into a background piece plus a fluctuation

piece: F(e) = F
(0)
(e) + F

(f)
(e) , and similarly for the magnetic terms. Then, in components, we

can write:

(F
(0)
(e) )µνρσδ = − 4

R

√−g ǫµνρσδ , (4.8)

where as before g is the determinant of the AdS piece of the metric. The Hodge dual of

the previous equation gives

(F
(0)
(m))abcde = − 4

R
R5

√
detS5ǫabcde . (4.9)

For the conductivity, we are free to restrict ourselves to the Ax(u) component of the

Abelian field. Thus, F2 has only one component, namely Fux(u). We write F = dA =
1
2!Fµν/

√
3 dxµ ∧ dxν , obtaining for the fluctuation of the electric part:

(F
(f)
(e) )yiyjtyz = −R3

√
3

bij
2

√
g (2FuxG

xxGuu)ǫyiyjtyz , (4.10)

where the pairs (ij) are (13), (14), (15), (24) and (25). The bij functions are:

b13 = 2 sin y1 cos y1 , b14 = −2 sin2 y2 sin y1 cos y1 , b15 = −2 cos2 y2 sin y1 cos y1 ,

b24 = 2 cos2 y1 sin y2 cos y2 , b25 = −2 cos2 y1 sin y2 cos y2 . (4.11)

For the fluctuations of the magnetic part we have

F
(f)
(m) =

√

−G10 F̃ (u)GttGyy Gzz× (4.12)

(m13ǫuxy2y4y5 + m14ǫuxy2y3y5 + m15ǫuxy2y3y4 + m24ǫuxy1y3y5 + m25ǫuxy1y3y4) ,

where G10 is the determinant of the full ten-dimensional metric and for conciseness we

have defined

F̃ (u) = −R3

√
3

1

2

√−g (2FuxG
xxGuu) . (4.13)

The functions mij are given by

m13 = − 4

R4
sin(2y2) cos4 y1 , m14 = − 8

R4
sin2 y1 cos2 y1 sin y2 cos y2 ,

m15 =
8

R4
sin2 y1 cos2 y1 sin y2 cos y2 ,

m24 = − 8

R4
cos2 y2 sin y1 cos y1 , m25 = − 8

R4
cos y1 sin y1 sin2 y2 . (4.14)

– 8 –
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We are now in a position to put all the ingredients together. We plug the Ansatz into

Sα′

IIB, multiply by the determinant of the metric, then integrate out the coordinates of the

five-sphere. Setting f(u) = 1 − u2 as above, the result for the covariant derivative piece

(the C2(∇F5)
2 arising from C2T 2 operator) is:

LC2(∇F+)2 = −u4

9
[(11839 − 30773u2 + 25278u4)A′2

x

−2u f(u) (9401u2 − 6229)A′
xA

′′
x + 3773u2 f(u)2 (A′′

x)2] . (4.15)

On the other hand, for the terms from C3T , we get

LC3T1 = −112u4

3
f(u) (A′

x)2 . (4.16)

Similarly for the terms from C2T 2 arising from the T̄ piece of the tensor, we obtain

LC2F 2
+

=
830u4

3
f(u) (A′

x)2 . (4.17)

Finally, for C4 we obtain

LC4 = −u4

3

(

4 (14 − 67u2 + 78u4)A′2
x + 4u f(u) (28 − 53u2)A′

xA
′′
x + 33u2 f(u)2 (A′′

x)2
)

.

(4.18)

We can therefore write the total Lagrangian coming directly from the dimension-eight

operators in Sα′

IIB as

L(C4+T )4 = c1 LC2(∇F+)2 + c2 LC2F 2
+

+ c3 LC3T1 + c4 LC4 , (4.19)

where all the coefficients ci = 1 and we include them for the purpose of keeping track of the

effects of every term in the final expression for the electrical conductivity. The Lagrangian

in eq. (4.19) must be augmented by the terms coming from S0
IIB, that is, the kinetic term

of eq. (3.14). Once that term is added, we are left with the following Lagrangian, whose

equations of motion must be derived and solved:

Stotal = − Ñ2r20
16π2R4

∫

d4k

(2π)4

∫ 1

0
du
[

(B1 + γBW )A′
kA

′
−k + γEWA′′

kA
′′
−k + γFWA′′

kA
′
−k

]

,

(4.20)

where we have introduced the following Fourier transform of the field Ax

Ax(t, ~x, u) =

∫

d4k

(2π)4
e−iωt+iqz Ak(u) . (4.21)

There are also a number of boundary terms that must be included for this higher-derivative

Lagrangian to make sense, and this is discussed in detail in [21, 28, 29]. In the Lagrangian

of eq. (4.20), the coefficient B1 arises directly from the kinetic term F 2. The subscript W
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indicates that the particular coefficient comes directly from the eight-derivative corrections.

We have

B1 =
K(u)f(u)L7(u)

P (u)
,

BW = −u4

9

(

12c4
[

14 − 67u2 + 78u4
]

+c1
[

11839 − 30773u2 + 25278u4
]

+ [336c3 − 2490c2] f(u)
)

,

EW = −11

9
[9c4 + 343c1]u

6f(u)2 ,

FW =
2

9
u5f(u)

(

6c4
[

53u2 − 28
]

+ c1
[

9401u2 − 6229
])

. (4.22)

We note that the equation of motion arising from (a more general version of) this La-

grangian was solved in [28] following [21], so we will be very brief in what follows. We

also stress that the behaviour of the solution at the black-hole horizon is unchanged by the

finite coupling corrections (once it is expressed in terms of the physical temperature and

the physical momentum), consistently with the findings of [28]. The solution therefore has

the following form:

Ak(u) = A0(u) + γA1(u) = [1 − u]−δ (φ0(u) + γφ1(u)) , (4.23)

where δ = iω/(4πT ). Using this Ansatz and following the work of [28], the full solution of

the equations of motion to linear order in γ and δ is:

Ak(u) = [1 − u]−δ

(

C + δ

{

D + C

(

1 + γ

[

185

4
+ 2β

])

u

})

, (4.24)

where C,D drop out of the final result, and we shall reveal β shortly. We must obtain the

on-shell action for this solution. The form of the functions BW , EW , FW means that the

on-shell action reduces to [28]

Son-shell =
Ñ2r20

16π2R4

∫

d4k

(2π)4
[

B1A
′
kA−k

]

∣

∣

∣

u=0
. (4.25)

Evaluating the previous equation, and differentiating twice with respect to the boundary

value of the gauge field, we obtain that the conductivity of the large N limit of strongly-

coupled SU(N) N = 4 SYM plasma is corrected by the following factor:

1 + γ (β − 10) ,

where

β =
12797

9
c1 +

2490

9
c2 −

336

9
c3 +

44

3
c4 . (4.26)

Setting the coefficient ci to their actual numerical value (= 1), we obtain the following final

expression for the conductivity

σ(λ) = σ∞

(

1 +
ζ(3)

8
C λ−3/2

)

, (4.27)
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where the conductivity at infinite ’t Hooft coupling is

σ∞ = e2
N2T

16π
, (4.28)

where e is the electric charge, and C is given by

C =
14993

9
≈ 1665.89 , (4.29)

For λ = 100 the correction ζ(3)
8 14993/9λ−3/2 gives 0.25031, which is a 25 percent enhance-

ment of the electrical conductivity compared with its value at infinite ’t Hooft coupling.

For λ = 1000, the enhancement reduces to just under one percent.

Also notice that for lower values of λ, for example 5, the correction gives a very

large number 22.39, which does not make any sense since these values of the coupling are

well below the limit where we can trust our results which are limited to consider O(α′3)

corrections only. In order to study small values of the coupling, one should also consider

O(α′5) (and probably higher order) corrections, and finite 1/N corrections which go like

the string coupling gs. These corrections are not known even for the AdS5-Schwarzschild

black hole ×S5 metric, and they would certainly make the present calculation prohibitively

complicated, at least within present-day available gauge/string duality techniques.

5 Discussion and concluding remarks

In this article, we computed the finite ’t Hooft coupling corrections to the conductivity

of the large N limit of the strongly-coupled SU(N) N = 4 SYM plasma. The correc-

tions start at O(λ−3/2) and enhance the conductivity from its value at infinite strong

coupling. In our previous work [28], we analysed the effect of the O(α′3) dimension-eight

operators on the vector fluctuations of the supergravity metric, through an examination

of the possible gauge-field operators that can arise in the AdS theory, after integrating

out the internal compact space. We found that the most general initial set of 720 five-

dimensional gauge-invariant operators containing two powers of the gauge-field Aµ can be

reduced by symmetry to only 26 operators.3 The operators are of the schematic form

C̃2F 2
2 and C̃2(∇F2)

2, where C̃ stands for the AdS5 Weyl tensor and F2 for the gauge field

strength (containing Aµ above). One can easily show that the Lagrangian obtained above

in eq. (4.20) is entirely consistent with the operators obtained in [28]. Furthermore, in [28]

we showed that the functional behaviour of the solution of Aµ at the black-hole horizon is

unchanged, provided the physical parameters of the N = 4 SYM theory are used. To be

more explicit, the solution of Aµ always takes the form

Ax(u) = [1 − u]−δ (φ0(u) + γφ1(u)) ,

where φ0,1 are regular at the horizon, and the index δ is always given by δ = iω/(4πT ),

where ω and T are the physical frequency of the perturbation, and T the physical tem-

perature of the plasma. Again, our results in this work are entirely consistent with this

3Part of the computation presented in reference [28], concerning the reduction to the set of independent

operators was performed using the programme Cadabra [41, 42].
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observation. We view the agreement between our present work and that of [28] as a good

check on the correctness of our result for the conductivity.

Before moving on we should also compare the result of our calculation with the trend

one expects from weak-coupling computations of charge-transport coefficients. The elec-

trical conductivity of a weakly coupled N = 4 SYM plasma was calculated in [20], using

the techniques used of [43]. The result of reference [20] is

σ = 1.28349
e2(N2 − 1)T

λ2[−1
2 lnλ + a]

, (5.1)

where a is an O(1) constant which was not explicitly evaluated in [20]. For perturbative

values of the ’t Hooft coupling, this expression implies that decreasing the ’t Hooft coupling

should increase the conductivity. This trend is confirmed by our result in eq. (4.27). The

physical reason here is that at weak-coupling the mean free path for particle collisions in

the plasma increases, leading to more efficient charge-transport.

We now turn to a brief comparison between our results and lattice QCD calculations.

Firstly, the calculation above obviously has its own value, without any reference to phe-

nomenology, but as we mentioned in the introduction, our ultimate aim is to make contact

with the real world, and make tentative statements about the QCD plasma produced at

RHIC and the LHC. Any such statement in the context of our work must of course be

taken with a set of caveats and qualifiers, owing to the disparities between N = 4 SYM

theory and QCD. Indeed, these theories are very different at zero temperature and weak

coupling. However, for a temperature T above the QCD phase-transition temperature Tc

but not significantly higher, both the QCD plasma and the N = 4 SYM plasma behave like

strongly-coupled ideal fluids. Moreover, there are some results from lattice QCD implying

that the thermodynamical properties of QCD are reasonably well approximated by con-

formal dynamics in a range of temperatures from about 2Tc up to some high temperature

(for a discussion on numerical results from lattice QCD in comparison with N = 4 SYM

theory, see [44, 45] and references therein). The closeness of the shear viscosity to entropy

density ratio observed in RHIC, and that computed from the gauge/gravity duality, also

lends support to the idea that there is a parametric region where one can learn about the

hydrodynamical properties of QCD by studying the hydrodynamics of N = 4 SYM.

With this tentative philosophy in mind, it is possible to make contact with QCD lattice

calculations to some extent. We must take into account that in those calculations N = 3

and there are other differences with respect to the large N limit of N = 4 SYM plasma.

There is a recent estimation of the conductivity given by Aarts et al [46]. That paper finds

σ ∼ 0.4 e2 T , above the deconfinement transition temperature Tc of quenched lattice QCD.

Assuming that the conductivity scales with N2, and setting N = 3, a naive insertion of

σ ∼ 0.4 e2 T in our formula eq. (4.27) gives λ = 34.52. A more recent lattice calculation by

Ding et al [47] obtained 1/3 e2 T ≤ σ ≤ e2 T from the vector current correlation function

for light valence quarks in the deconfined phase of quenched lattice QCD at T = 1.45Tc.

Using these values in our formula eq. (4.27) yields 14.39 ≤ λ ≤ 43.86. It is worth noting

that from lattice computations at temperatures about 1.5 to 2 Tc, the values of αs are
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thought to be around 0.3 to 0.4, based on heavy quark potentials.4 These values of αs give

a value λ about 15. While this is of course a naive comparison which must be taken in the

context of the many caveats outlined above, it is nonetheless pleasing that our value for

the conductivity falls close to those obtained from lattice QCD.

The results we present here have many interesting extensions. Firstly, observe that the

electrical conductivity is an extensive quantity that depends on the number of degrees of

freedom N in the theory, so it is not the best quantity for comparing charge-transport in

different theories. A more useful quantity for this purpose is the charge-diffusion constant

D, which is found to be 1/(2πT ) in the large N limit of N = 4 SYM plasma at infinite ’t

Hooft coupling [14]. This quantity is obtained from the first pole of the Rzz correlator.

Another very interesting quantity that can be obtained from the current two-point

function Rxx is the photoemission rate of the plasma [20]. Computing the finite-coupling

corrections to this quantity would involve obtaining and solving the equations of Ax for

the whole range of light-like momenta (ω = |~q|).
A final observation concerns the behaviour of the holographic conductivity obtained

here as we change the internal compactification space of the ten-dimensional dual. We

remind the reader that the work of [24, 25] proved that the corrections to the shear viscosity

to entropy density ratio were independent of the internal compactification space for a large

class of holographic duals. Here we computed the corrections to the conductivity using the

simplest compactification space S5. It would be very interesting to investigate the impact of

the compactification space on the corrections computed here, and whether the universality

of momentum transport posited in [24, 25] is operative for charge transport too.
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[32] M. Cvetič et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions,

Nucl. Phys. B 558 (1999) 96 [hep-th/9903214] [INSPIRE].

[33] A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and

catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [INSPIRE].

[34] A. Sinha and R.C. Myers, The Viscosity bound in string theory,

Nucl. Phys. A 830 (2009) 295C–298C [arXiv:0907.4798] [INSPIRE].

[35] T. Banks and M.B. Green, Nonperturbative effects in AdS5 × S5 string theory and D = 4

SUSY Yang-Mills, JHEP 05 (1998) 002 [hep-th/9804170] [INSPIRE].

[36] S.S. Gubser, I.R. Klebanov and A.A. Tseytlin, Coupling constant dependence in the

thermodynamics of N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 534 (1998) 202

[hep-th/9805156] [INSPIRE].

[37] J. Pawe lczyk and S. Theisen, AdS5 × S5 black hole metric at O(alpha-prime**3),

JHEP 09 (1998) 010 [hep-th/9808126] [INSPIRE].

[38] S. de Haro, A. Sinkovics and K. Skenderis, On a supersymmetric completion of the R4 term

in IIB supergravity, Phys. Rev. D 67 (2003) 084010 [hep-th/0210080] [INSPIRE].

[39] S. de Haro, A. Sinkovics and K. Skenderis, On α′ corrections to D-brane solutions,

Phys. Rev. D 68 (2003) 066001 [hep-th/0302136] [INSPIRE].

[40] K. Peeters and A. Westerberg, The Ramond-Ramond sector of string theory beyond leading

order, Class. Quant. Grav. 21 (2004) 1643 [hep-th/0307298] [INSPIRE].

[41] K. Peeters, A Field-theory motivated approach to symbolic computer algebra,

Comput. Phys. Commun. 176 (2007) 550 [cs/0608005] [INSPIRE].

[42] K. Peeters, Introducing Cadabra: A Symbolic computer algebra system for field theory

problems, hep-th/0701238 [INSPIRE].

[43] P.B. Arnold, G.D. Moore and L.G. Yaffe, Transport coefficients in high temperature gauge

theories. 1. Leading log results, JHEP 11 (2000) 001 [hep-ph/0010177] [INSPIRE].

– 15 –

http://dx.doi.org/10.1103/PhysRevD.79.041901
http://arxiv.org/abs/0806.2156
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.2156
http://dx.doi.org/10.1016/j.physletb.2008.10.003
http://arxiv.org/abs/0808.1837
http://inspirehep.net/search?p=find+EPRINT+arXiv:0808.1837
http://dx.doi.org/10.1088/1126-6708/2009/06/006
http://arxiv.org/abs/0903.2834
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.2834
http://dx.doi.org/10.1103/PhysRevD.80.025002
http://arxiv.org/abs/0903.3244
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.3244
http://dx.doi.org/10.1007/JHEP10(2010)068
http://arxiv.org/abs/1006.5480
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.5480
http://dx.doi.org/10.1007/JHEP04(2010)012
http://arxiv.org/abs/0912.4704
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.4704
http://dx.doi.org/10.1103/PhysRevD.79.066003
http://arxiv.org/abs/0811.4195
http://inspirehep.net/search?p=find+EPRINT+arXiv:0811.4195
http://dx.doi.org/10.1088/1126-6708/2008/10/047
http://arxiv.org/abs/0804.0763
http://inspirehep.net/search?p=find+EPRINT+arXiv:0804.0763
http://dx.doi.org/10.1016/S0550-3213(99)00419-8
http://arxiv.org/abs/hep-th/9903214
http://inspirehep.net/search?p=find+EPRINT+hep-th/9903214
http://dx.doi.org/10.1103/PhysRevD.60.064018
http://arxiv.org/abs/hep-th/9902170
http://inspirehep.net/search?p=find+EPRINT+hep-th/9902170
http://dx.doi.org/10.1016/j.nuclphysa.2009.09.028
http://arxiv.org/abs/0907.4798
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.4798
http://dx.doi.org/10.1088/1126-6708/1998/05/002
http://arxiv.org/abs/hep-th/9804170
http://inspirehep.net/search?p=find+EPRINT+hep-th/9804170
http://dx.doi.org/10.1016/S0550-3213(98)00514-8
http://arxiv.org/abs/hep-th/9805156
http://inspirehep.net/search?p=find+EPRINT+hep-th/9805156
http://dx.doi.org/10.1088/1126-6708/1998/09/010
http://arxiv.org/abs/hep-th/9808126
http://inspirehep.net/search?p=find+EPRINT+hep-th/9808126
http://dx.doi.org/10.1103/PhysRevD.67.084010
http://arxiv.org/abs/hep-th/0210080
http://inspirehep.net/search?p=find+EPRINT+hep-th/0210080
http://dx.doi.org/10.1103/PhysRevD.68.066001
http://arxiv.org/abs/hep-th/0302136
http://inspirehep.net/search?p=find+EPRINT+hep-th/0302136
http://dx.doi.org/10.1088/0264-9381/21/6/022
http://arxiv.org/abs/hep-th/0307298
http://inspirehep.net/search?p=find+EPRINT+hep-th/0307298
http://dx.doi.org/10.1016/j.cpc.2007.01.003
http://arxiv.org/abs/cs/0608005
http://inspirehep.net/search?p=find+J+Comp.Phys.Commun.,176,550
http://arxiv.org/abs/hep-th/0701238
http://inspirehep.net/search?p=find+EPRINT+hep-th/0701238
http://dx.doi.org/10.1088/1126-6708/2000/11/001
http://arxiv.org/abs/hep-ph/0010177
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0010177


J
H
E
P
0
1
(
2
0
1
2
)
1
1
4

[44] H. Liu, K. Rajagopal and U.A. Wiedemann, Wilson loops in heavy ion collisions and their

calculation in AdS/CFT, JHEP 03 (2007) 066 [hep-ph/0612168] [INSPIRE].

[45] J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/String

Duality, Hot QCD and Heavy Ion Collisions, arXiv:1101.0618 [INSPIRE].

[46] G. Aarts, C. Allton, J. Foley, S. Hands and S. Kim, Spectral functions at small energies and

the electrical conductivity in hot, quenched lattice QCD, Phys. Rev. Lett. 99 (2007) 022002

[hep-lat/0703008] [INSPIRE].

[47] H.-T. Ding, A. Francis, O. Kaczmarek, F. Karsch, E. Laermann and W. Soeldner,, Thermal

dilepton rate and electrical conductivity: An analysis of vector current correlation functions

in quenched lattice QCD, Phys. Rev. D 83 (2011) 034504 [arXiv:1012.4963] [INSPIRE].

– 16 –

http://dx.doi.org/10.1088/1126-6708/2007/03/066
http://arxiv.org/abs/hep-ph/0612168
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0612168
http://arxiv.org/abs/1101.0618
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.0618
http://dx.doi.org/10.1103/PhysRevLett.99.022002
http://arxiv.org/abs/hep-lat/0703008
http://inspirehep.net/search?p=find+EPRINT+hep-lat/0703008
http://dx.doi.org/10.1103/PhysRevD.83.034504
http://arxiv.org/abs/1012.4963
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.4963

	Introduction
	Plasma conductivity
	Setting the holographic dual background
	't Hooft corrections to the R-charge conductivity
	Discussion and concluding remarks

