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1 Introduction

The AdS/CFT correspondence can be used to analyse the dynamics of strongly coupled

gauge theories at finite temperature by constructing and studying black hole solutions of

D = 10 and D = 11 supergravity. The stability properties of the black hole solutions play

an important role as they are related to the thermodynamical stability properties of the

gauge theories. Typically, at the onset of an instability new black hole solutions appear

which are dual to new phases of the dual gauge theory, which may have applications to

condensed matter systems.

Several new classes of black hole solutions have been found in this way, principally in

the context of electrically charged black brane solutions of Einstein-Maxwell theory. Recall

that these are simply AdS-Reissner-Nordström (AdS-RN) black branes and are dual to field

theories at finite temperature and charge density. A prominent class of instabilities appear

after embedding the solutions into theories of gravity with additional charged fields. The

resulting instabilities lead to black brane solutions with charged hair that spontaneously

break a global abelian symmetry and hence are dual to superfluid phases. Such superfluid

black branes were first analysed in phenomenological theories of gravity [1–3] and then

in consistent truncations of D = 10, 11 supergravity [4–7]. They were first studied using

D-brane probes in [8].
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The electrically charged AdS-RN black branes can also have spatially modulated in-

stabilities leading to interesting new classes of black brane solutions that are dual to phases

which spontaneously break translation invariance. Such instabilities have been investigated

for a class of D = 5 gravity theories with a single gauge-field and a Chern-Simons cou-

pling in [9, 10] (for earlier related work see [11]). It has also been shown [12] that these

instabilities are present in the Sakai-Sugimoto model. A study of the effect of some higher

derivative corrections was made in [13].

Similar instabilities are also present in D = 4 [14]. In this case they are associated with

“striped” black brane solutions which are dual to phases with both current density waves

and charged density waves. The D = 4 theories studied in [14] have a neutral pseudo-scalar

field ϕ coupled to one or two vector fields and are of a form that is very natural in the

context of N = 2 gauged supergravity. The key couplings in the Lagrangian that drive

the instabilities are either ϕF ∧ F or ϕF ∧ G, where F,G are the field strengths of the

two vector-fields. Indeed these terms give rise to a mixing of the linearised modes via a

linear dependence on the spatial momentum on the black brane. It was also shown in [14]

how some of the D = 4 models which exhibit the spatially modulated instabilities can be

embedded into D = 10, 11 supergravity. Holographic striped instabilities were also studied

in the context of probe-branes in [15] utilising, essentially, the same mechanism.

In this paper we show that magnetically charged black brane solutions can also have

spatially modulated instabilities. We will analyse several different models, including some

top-down examples. We will first analyse black brane solutions of Einstein-Maxwell the-

ory. Recall that in D = 4 the magnetically charged black brane solutions are again the

standard AdS-RN black brane solutions, while in D = 5 they have only been constructed

numerically [16]. In both cases, at zero temperature, the solutions interpolate between

AdSD in the UV and AdSD−2 × R2 in the IR. It is natural to view the AdSD−2 region

as describing the strongly coupled dynamics of the lowest Landau-level excitations of the

D − 1 dimensional dual gauge-theory.

We will show that spatially modulated instabilities of the magnetic black branes of

Einstein-Maxwell theory can appear after embedding them in a class of D-dimensional

theories of gravity that involve two vector fields and a single scalar field φ. In these models

the key coupling in the Lagrangian that drives the instability is now φ∗F ∧G. The class of

D-dimensional theories that we consider naturally arise in N = 2 gauged-supergravity, and

we discuss some specific embeddings into D = 10, 11 supergravity. The simplest way to

test for instabilities of the finite temperature black brane solutions is to look for linearised

perturbations of the AdSD−2 × R2 limiting solution that violate the AdSD−2 BF bound.

We investigate this in section 3 and find that spatially modulated instabilities arise very

naturally within the class of models that we consider. We have not yet been able to find

examples of these instabilities within any consistent truncations of D = 10, 11 supergravity,

but we expect that they can be found.

For D = 4, where the magnetic black brane solutions are known analytically, we go

beyond the near horizon AdSD−2×R2 region in section 4, and analyse linearised instabilities

in the full geometry. More specifically we look for spatially modulated zero modes that
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appear just prior to the appearance of an instability. For some representative models that

have a spatially modulated instability in the AdSD−2×R2 region we determine the critical

temperatures at which the the zero modes appear. We will explain how these instabilities

are associated with phases that have current density waves without having charge density

waves (in contrast to the D = 4 electrically charged striped black branes of [14]).

For models that do not have a spatially modulated instability in the AdSD−2 × R2

region, it is possible that there still can be spatially modulated instabilities in the full

black brane geometry. We have analysed a model arising in the SU(3) invariant sector of

D = 4 SO(8) gauged supergravity, but our numerical results only allow us to conclude that

if the black brane has such an instability it will be at a very low temperature.

In section 5 we discuss instabilities of a different class of magnetic black brane solutions.

They arise in theories of gravity coupled to a scalar field and a single gauge field but cannot

be truncated to Einstein-Maxwell theory. We focus on models that have AdSD−2 × R2

solutions and discuss the spatially modulated instabilities.

An interesting class of AdS3×R2 and AdS2×R3 solutions of D = 5 SO(6) gauge super-

gravity, and hence type IIB supergravity, have recently been discussed in [17, 18], which

carry magnetic charges with respect to U(1)3 ⊂ SO(6). These include both supersym-

metric and non-supersymmetric examples. For the former class, an investigation of some

instabilities, including those of the type discussed in [19], was made. In section 6 we will

first present a new magnetic black brane solution in closed form that at zero temperature

and in the near horizon limit approaches the AdS2 × R3 solution of [17]. By considering

perturbations about the AdS2×R3 solution we find spatially modulated modes that violate

the AdS2 BF bound. This example thus provides a top-down setting in which magnetic

black branes exhibit spatially modulated instabilities. Interestingly it corresponds to a

phase of N = 4 SYM with both current density waves and charged density waves.

2 Models extending Einstein-Maxwell

We start with Einstein-Maxwell theory inD spacetime dimensions with Lagrangian given by

L =

[
1

2
R+ λ2 (D − 3)

]
∗ 1− 1

2
∗ F ∧ F , (2.1)

where F ≡ dA. The negative cosmological constant has been written in terms of the

constant λ for convenience. We are interested in asymptotically AdSD black brane solutions

of this theory that are supported by magnetic flux in a single R2-plane. When D = 4

these solutions are the standard magnetically charged AdS-Reissner-Nordström black brane

solutions. When D = 5 the solutions have been constructed numerically in [16]. The

solutions1 have not yet been constructed for D ≥ 6.

1When D ≥ 6 one can also have magnetic fields switched on in additional planes. The special case when

the skew eigenvalues of the two-form field strength are all equal was discussed in [16] and the solutions are

similar to the D = 4, 5 cases depending on whether D is even or odd, respectively.
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In both the D = 4 and D = 5 cases, at zero temperature, the near horizon limit

of these black brane solutions approach the magnetically charged AdSD−2 × R2 solutions

of (2.1) given by

ds2 = L2 ds2 (AdSD−2) + dx21 + dx22, L2 =
D − 3

2λ2

F =
√

2λ dx1 ∧ dx2 , (2.2)

where ds2 (AdSD−2) is the metric on a unit radius AdSD−2 space. We expect that this will

similarly be true in D ≥ 6.

We can look for instabilities of the magnetically charged black brane solutions by

analysing linearised perturbations about the AdSD−2 × R2 solutions. If the perturbations

have mass squared that violate the AdSD−2 BF bound, given by

L2M2 ≥ −(D − 3)2

4
, (2.3)

then we can conclude that the black brane solution is also unstable. In order to establish

the precise temperature at which the instability appears one needs to analyse the full finite

temperature black brane solution which, as we mentioned above, is only known in D = 4, 5.

We shall return to this point in section 4.

We now embed these solutions in a theory of gravity that has an additional scalar field,

φ, and a massive vector field, B, with Lagrangian

L =
1

2
R ∗ 1− V (φ) ∗ 1− 1

2
∗ dφ ∧ dφ− 1

2
t (φ) ∗ F ∧ F

− 1

2
v(φ) ∗G ∧G− 1

2
m2
v ∗B ∧B − u (φ) ∗ F ∧G (2.4)

where G ≡ dB and m2
v is a constant. The corresponding equations of motion are given by

Rµν =
2

D − 2
V gµν +m2

vBµBν + ∂µφ∂νφ+ t

(
FµρFν

ρ − 1

2 (D − 2)
gµνFρσF

ρσ

)
+ v

(
GµρGν

ρ − 1

2 (D − 2)
gµνGρσG

ρσ

)
+ 2u

(
G(µ

ρFν)ρ −
1

2 (D − 2)
gµνGρσF

ρσ

)
,

d ∗ (t F + uG) = 0 ,

d ∗ (vG+ uF )− (−1)D m2
v ∗B = 0 ,

(−1)D d ∗ dφ+ V ′ ∗ 1 +
1

2
t′ ∗ F ∧ F +

1

2
v′ ∗G ∧G+ u′ ∗ F ∧G = 0 . (2.5)

We will assume that the functions V, t, u and v have the following expansion

V (φ) = −λ2 (D − 3) +
1

2
m2
s φ

2 + · · · ,

t(φ) = 1− nφ2 + · · · ,
u(φ) = s φ+ · · · ,
v(φ) = 1 + · · · . (2.6)
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where λ,ms, n and s are constant. It is then consistent to set φ = B = 0 in the equations

of motion to recover the equations of motion of the Einstein-Maxwell theory (2.1). In

particular, both the black brane solutions (for D = 4, 5) and the AdSD−2×R2 solutions of

Einstein-Maxwell theory are solutions of this more general class of theories.

The Lagrangian (2.4) has been chosen to provide a simple setting to display spatially

modulated instabilities. There are certainly many ways in which additional fields and

interactions can be incorporated which will lead to generalisations of the instabilities that

we describe. Note that we will only be considering configurations for which F∧F = F∧G =

G ∧ G = 0 and hence various terms one might consider, such as Chern-Simons terms in

odd dimensions and coupling to pseudo-scalars in even dimensions, will not play a role.

The form of (2.4) for D = 4 is also rather natural from the point of N = 2 gauged

supergravity. Indeed we can make contact with a top-down construction this way. Recall

that D = 4 SO(8) gauge-supergravity is a consistent truncation of D = 11 supergravity. We

then consider the further consistent truncation to the SU(3) ⊂ SO(8) invariant sector which

is described by an N = 2 D = 4 supergravity theory coupled to a vector multiplet and a

hypermultiplet [20, 21]. Restricting to configurations in which F ∧F = F ∧G = G∧G = 0,

where F and G are the field strengths of the two-vector fields, it is consistent to set to zero

the four scalar fields in the hypermultiplet as well as the imaginary part of the complex

scalar field in the vector multiplet. This leads2 to a theory with two gauge fields and

a real scalar field and we obtain equations of motion as in (2.5), (2.6) with m2
s = −4,

m2
v = 0, λ2 = 6, n = −1 and s = −

√
2. This can also be obtained from the semi-

consistent U(1)4 ⊂ SO(8) truncation of [23] and one should be aware that the details will

affect the higher order terms in (2.6). For example, the sub-truncation of [23] considered

in section 2.2.2 of [22] has a Z2 symmetry which flips the sign of both φ and B but this

symmetry is absent in the SU(3) ⊂ SO(8) invariant case.

In D = 5 the model (2.4) also arises in Roman’s N = 4+ SU(2) × U(1) gauged

supergravity theory [24], which is a consistent truncation of type IIB [25] and D = 11

supergravity [26]. We will use the action for Roman’s theory given in eq. (2.14) of [26].

We set m = 1, C = F 1 = F 2 = 0 and restrict to configurations in which the Chern-

Simons terms can be set to zero. We then define X = e
1√
3
φ

and also G→
√

2
3

(
F −

√
2G
)
,

F 3 →
√

2
3

(√
2F +G

)
to obtain equations of motion as in (2.5), (2.6) with n = −4/3,

m2
s = −4, m2

v = 0, λ =
√

3 and s = −2
√

2
3 . It is interesting to point out that starting with

the consistent truncation of SO(6) gauged supergravity given in [27], we obtain a model

with the same parameters. Indeed, starting with the action in eq (2.7) of [27], which is

only valid for configurations in which the Chern-Simons terms play no role, one can set

ϕi = 0 and either β = 0, A1 = A2 or β = 3α, A1 = A3.

2E.g. set ρ = χ = 0 in eq. (2.22) of [22].
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3 Instabilities of magnetic AdSD−2 × R2

In the models extending Einstein-Maxwell theory with Lagrangian (2.4), we consider the

following simple perturbation about the AdSD−2 × R2 solution (2.2):

φ = δφ (xα) cos (kx1) , B = δB (xα) sin (kx1) dx2 , (3.1)

where xα are coordinates on AdSD−2 and k is a constant.3 Introducing the vector v =

(δφ, δB) we find that, at linearised order, the equations of motion (2.5) expanded around

the solution (2.2) yield

�D−2v − L2M2v = 0 , (3.2)

where �D−2 is the Laplacian of the unit radius AdSD−2 and the mass matrix is given by

M2 =

(
m̃2
s + k2

√
2λs k√

2λs k m2
v + k2

)
, (3.3)

with m̃2
s ≡ m2

s − 2λ2n. Let us first consider no spatial modulation i.e. k = 0. We see that

just as in the D = 4, purely electric case studied in [14], if n is positive and large enough,

the BF bound (2.3) can be violated leading to an instability. We have not been able to

find any top-down examples where this occurs.

We now consider k 6= 0. The eigenvalues of the mass matrix (3.3) are given by

m2
± = k2 +

1

2

(
m̃2
s +m2

v

)
± 1

2

√
(m̃2

s −m2
v)

2 + 8k2s2λ2 . (3.4)

We deduce that if

2s2λ2 >
∣∣m̃2

s −m2
v

∣∣ , (3.5)

the branch m2
− develops a minimum at

kmin =
1

2
√

2 sλ

√
4s4λ4 − (m̃2

s −m2
v)

2 , (3.6)

with

m2
min =

1

2

(
m̃2
s +m2

v

)
− 1

8s2λ2
(
m̃2
s −m2

v

)2 − 1

2
s2λ2 , (3.7)

and it is possible for this to violate the AdSD−2 BF bound (2.3).

We now investigate whether these instabilities of AdSD−2×R2 are present in the top-

down models we discussed above. First consider the SU(3) invariant sector of D = 4 SO(8)

gauged supergravity which has m2
s = −4, m2

v = 0, λ2 = 6, n = −1 and s = −
√

2. This

gives rise to L2m2
min = −2/9 (at k 6= 0) which is very close to but does not violate the

AdS2 BF bound of −1/4. For the D = 5 Romans theory we have n = −4/3, m2
s = −4,

m2
v = 0, λ =

√
3 and s = −2

√
2
3 . We find L2m2

min = −3/4 (at k 6= 0) which again does not

violate the AdS3 BF bound of −1. In the appendix we will discuss some other top down

constructions which are similar to (2.4) but involve a second scalar field; we find that they

also do not lead to a violation of the AdSD−2 BF bound (2.3).

3Note that the background has F ∧ F = 0 and that the perturbation satisfies F ∧G = G ∧G = 0.
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4 Instabilities of D = 4 magnetic AdS-RN black branes

In this section we analyse spatially modulated instabilities of the full magnetic black brane

solutions in the models of section 2. More precisely, we look for zero modes that appear at

the onset of instabilities. Since the D = 5 magnetic black brane solutions are only known

numerically, we restrict our considerations to D = 4.

Fixing the cosmological constant by setting λ2 = 6 the D = 4 magnetic black brane

solution of Einstein-Maxwell theory is the AdS-RN solution given by

ds2 = −f dt2 +
dr2

f
+ r2

(
dx2 + dy2

)
,

F = r+ dx ∧ dy , (4.1)

where

f = 2r2 −
(

2r2+ +
1

2

)
r+
r

+
1

2

r2+
r2
. (4.2)

The zero temperature limit of this black hole is obtained when r+ = 1/
√

12 and we

note that (2.2) can be recovered as the near horizon limit after rescaling the spatial

coordinates by r+.

4.1 First order perturbations

For simplicity, we now assume that m2
s = −4 and m2

v = 0 which covers the case of N = 8

gauged supergravity. To construct the zero modes we consider the perturbation

φ = δφ (r) cos (kx) , B = δB (r) sin (kx) dy . (4.3)

The equations of motion (2.5) then yield

1

r2
∂r
(
r2f∂rδφ

)
+

[
4− k2

r2
+
nr2+
r4

]
δφ− skr+

r4
δB = 0 ,

∂r (f∂rδB)− k2

r2
δB − skr+

r2
δφ = 0 . (4.4)

At the horizon r = r+ we impose the boundary conditions

δφ = φ0 +O (r − r+) , δB = b0 +O (r − r+) . (4.5)

Since we are dealing with a linear and homogeneous system of equations, we can use a

scaling symmetry to set φ0 = 1. At infinity, on the other hand, we have the asymptotic

expansion

δφ =
φ1
r

+
φ2
r2

+ · · · , δB = b0 +
b1
r

+ · · · . (4.6)

We are only interested in zero modes that spontaneously break translation invariance so we

shall demand b0 = 0. Note that since we have chosen m2
v = 0, the massless gauge-field is

– 7 –
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Figure 1: Plots of critical temperatures T versus k for the existence of normalisable zero

modes about the D = 4 magnetically charged AdS-RN black brane solutions in the models

of section 2. All cases have m2
s = −4 and m2

v = 0. The left frame has n = −1 and, from

the top going down, s = 2, 1.9, 1.8, 1.7. The right frame has s =
√

2 and, from the top

going down, n = −0.25,−0.375,−0.5,−0.675. Note that N = 8 gauged supergravity has

n = −1 and s =
√

2.

dual to a conserved current jB in the dual field theory. For definiteness, we will assume that

φ is dual to an operator Oφ with dimension ∆ = 1, as it is in SO(8) gauged supergravity

when we quantise with maximal supersymmetry, and thus we will also demand that φ2 = 0.

We have solved numerically the differential equations with these boundary conditions

for two particular models, and determined the critical temperature as a function of k at

which the spatially modulated zero modes appear. We have displayed some of our results

in figure 1. The first frame has n = −1 and various values of s = 2, 1.9, 1.8, 1.7 and the

second frame has s =
√

2 and various values of n = −2/8,−3/8,−4/8,−5/8. All of these

cases have a violation of the AdS2 BF bound in the IR at finite values of k. Note that

the values n = −1 and s = −
√

2 are relevant for the magnetic black brane embedded in

the SU(3) invariant sector of D = 4 N = 8 gauged supergravity. Unfortunately we have

not been able to stabilise our numerics for these values. All that we can conclude is that

if there is an instability for these values of n, s it will be at very low temperatures indeed,

as indicated by the figures.

For a given model, at the highest critical temperature Tc at which a static normalisable

zero mode appears (the maxima of the curves in figure 1), a new branch of black brane

solutions appear. This new branch will have a spatial modulation fixed by kc, where kc is

the critical wave-number corresponding to Tc. These black branes, assuming that they are

thermodynamically preferred, describe a spatially modulated phase in the dual field theory

in which, near Tc,

〈Oφ〉 ∼ cos kcx , 〈jBy 〉 ∼ sin kcx , (4.7)

where Oφ is the operator dual to φ and jB is the current dual to B. In particular, there

is a current density wave. In [14], spatially modulated instabilities of electrically charged
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black-branes were studied. At first order, current density waves were observed and then

at second order, charged density waves. We now show that this does not occur for the

magnetically charged black branes being considered here.

4.2 Second order perturbations

We now consider the second order perturbations. We find that a consistent set of equations

is obtained if we take

φ = ε [δφ (r) cos (kx)] + ε2
[
φ(0)(r) + φ(1)(r) cos (2kx)

]
,

By = ε [δB (r) sin (kx)] + ε2
[
b(1)y (r) sin (2kx)

]
,

δgtt = ε2
[
h
(0)
tt (r) + h

(1)
tt (r) cos (2kx)

]
,

δgxx = ε2
[
h(0)xx (r) + h(1)xx (r) cos (2kx)

]
,

δgyy = ε2
[
h(0)yy (r) + h(1)yy (r) cos (2kx)

]
,

δAy = ε2
[
a(1)y (r) sin (2kx)

]
, (4.8)

where ε is a small parameter that can be taken to be ε2 = (T − Tc)/Tc. Expanding

the equations of motion (2.5) to O
(
ε2
)

we obtain a set of ordinary differential equations.

The functions φ(α), b
(α)
y , h

(α)
xx , h

(α)
yy and a

(α)
y satisfy a system of inhomogeneous second

order equations, the function h
(0)
tt satisfies a first order inhomogeneous equation while an

algebraic equation completely determines h
(1)
tt .

Thus, at second order, we see that in the dual field theory the stress tensor is becoming

spatially modulated, as expected. Furthermore, the current, jA, dual to the gauge-field

A, is also becoming spatially modulated. For the branch appearing at Tc with modulation

fixed by kc we have

〈jAy 〉 ∼ sin 2kcx , (4.9)

and hence the current density wave for jA has half the period of that for jB. The absence

of At and Bt terms in (4.8) implies that there are no CDWs as commented above.

4.3 The non-linear ansatz

We can also investigate the structure of the spatially modulated black brane solutions by

finding a consistent ansatz that contain the solutions. Concretely, we consider

ds2 = −e2α(r,x) dt2 + dr2 + e2β1(r,x) dx2 + e2β2(r,x) dy2 ,

A = a (r, x) dy, B = b (r, x) dy, φ = φ (r, x) . (4.10)

This includes the magnetic black brane background (4.1) as well as the perturbations

considered in (4.8) after a simple redefinition of the coordinate r. Note, in particular, that

this anstaz is not associated with CDWs.

To see that it is a well defined ansatz, we proceed as follows. We first find that the

equations of motion for the matter fields leads to three pde’s, second order in r and x, for

– 9 –



J
H
E
P
0
1
(
2
0
1
2
)
0
6
1

the three functions a (r, x) , b (r, x) , φ (r, x). We next observe that if we write the Einstein’s

equations in the form Eµν = 0, then there are five non-trivial components. The equations

Ett = Exx = Eyy = 0 can also be written as three pdes, second order in r and x, for the

three functions α(r, x), β1(r, x), β2(r, x). This leaves two more equations Err = Erx = 0.

However, the Bianchi identities give two relations

e−β1∂r

(
eα+β1+β2Erx

)
= −∂x

(
eα−2β1+β2Exx

)
+

1

2
eα+β2

(
Ett ∂xe

−2α − Eyy ∂xe−2β2
)
,

∂r

(
eα+β1+β2Err

)
= −∂x

(
eα−β1+β2Erx

)
+

1

2
eα+β1+β2

(
Ett∂re

−2α−Eyy∂re−2β2−Exx∂re−2β1
)
. (4.11)

From these we observe that if the three equations Ett = Exx = Eyy = 0 are satisfied

everywhere, then we also have Err = Erx = 0 everywhere provided that we just demand

that Err = Erx = 0 on a Cauchy surface r = r0. Thus, the ansatz leads to a well defined

set of equations, and in particular, will lead to solutions with spatially modulated current

density waves without charge density waves.

5 Instabilities of AdSD−2 × R2 in other models

We now briefly discuss instabilities of magnetic solutions in models that involve a scalar

field coupled to just a single gauge-field which, unlike the models considered above, cannot

be truncated to Einstein-Maxwell theory. We consider the Lagrangian

L =
1

2
R ∗ 1− V (φ) ∗ 1− 1

2
∗ dφ ∧ dφ− 1

2
t (φ) ∗ F ∧ F (5.1)

and note that the equations of motion can be obtained from (2.4), (2.5). We now consider

more general V, t than the expansions given in (2.6) and we note, in particular, that if V ′(0)

or t′(0) are non-zero then we cannot consistently set φ = 0 in the equations of motion.

Particular examples of these models have been considered in the context of AdS/CMT

from a different point of view in [28–30].

What is of interest here is that for certain V, t these models can have magnetically

charged asymptotically AdSD black branes that approach AdSD−2 × R2 in the IR at zero

temperature. It would go beyond the scope of this paper to make a detailed analysis of these

magnetic black brane solutions. Instead we will focus on the AdSD−2 × R2 solutions and

see how spatially modulated instabilities can show up as perturbations that have imaginary

AdSD−2 scaling dimensions.

We first note that the equations of motion to (5.1) admit the magnetically4 charged

AdSD−2 × R2 solution with constant scalar field, φ = φ0, and

ds2 = L2 ds2 (AdSD−2) + dx21 + dx22, L2 = − (D − 3)t′ (φ0)

2V ′ (φ0) t (φ0)
,

F =

(
−2V ′ (φ0)

t′ (φ0)

)1/2

dx1 ∧ dx2 , (5.2)

4An analogous analysis can be carried out for electrically charged AdS2 × RD−2 solutions.
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provided that

t′ (φ0)V (φ0) = (D − 3)V ′ (φ0) t (φ0) ,

t′ (φ0)V
′ (φ0) < 0 , t (φ0) > 0 . (5.3)

We have not yet found a top-down embedding of such solutions, but we expect that they

can be found.

We next consider spatially modulated instabilities of this solution. Let us write the

metric on the unit radius AdSD−2 space as

ds2(AdSD−2) = ρ2(−dt2 + dyadya) +
dρ2

ρ2
(5.4)

Restricting to D = 4 for simplicity, we consider the time independent linear perturbation

given by

δgtt = ρ2htt (ρ) cos (kx1) , δgxixi = hii (ρ) cos (kx1) ,

δφ = w (ρ) cos (kx1) , δA = a (ρ) sin (kx1) dx2 . (5.5)

After substituting into the equations of motion for (5.1), we find that we can solve an

algebraic equation to obtain htt. This then leads to a second order differential equation

for the 4-vector v ≡ (h11, h22, w, a) whose coefficients involve the data {t(φ0), V (φ0), t
′(φ0),

V ′(φ0), t
′′(φ0), V

′′(φ0)} and k. These equations admit modes of the form v = v0ρ
δ where

v0 is a constant vector and δ is the scaling dimension. By suitable choice of the data it is

simple to obtain complex values for δ,with k 6= 0, which corresponds to a violation of the

AdSD−2 BF bound.

6 An instability in type IIB supergravity

We now consider instabilities of magnetic black brane solutions within SO(6) D = 5 gauged

supergravity and hence within type IIB supergravity. In fact the solutions will lie within

a consistent truncation of SO(6) gauged supergravity that has two scalar fields φ1, φ2 and

U(1)3 ⊂ SO(6) gauge fields with Lagrangian [31]

L = (R− V ) ∗ 1− 1

2

2∑
a=1

∗dφa ∧ dφa −
1

2

3∑
i=1

X−2i ∗ F i ∧ F i + F 1 ∧ F 2 ∧A3 (6.1)

where F i = dAi and

V = −4

3∑
i=1

X−1i

X1 = e
− 1√

6
φ1− 1√

2
φ2 , X2 = e

− 1√
6
φ1+

1√
2
φ2 , X3 = e

2√
6
φ1 (6.2)

Our first result is that this theory admits the following magnetically charged black

hole solutions

ds25 = −f dt2 +
dr2

f
+ r2

(
dx21 + dx22 + dx23

)
F 1 = ε1B dx2 ∧ dx3, F 2 = ε2B dx3 ∧ dx1, F 3 = ε3B dx1 ∧ dx2 (6.3)

– 11 –



J
H
E
P
0
1
(
2
0
1
2
)
0
6
1

where

f = r2 −
r4+
r2

+
B2

2r2
log

r+
r

(6.4)

and εi = ±1. We choose 0 ≤ B ≤ 2
√

2r2+ so that the outer event horizon is located at

r = r+ and the temperature is T =
8r4+−B2

8πr3+
. At zero temperature, when B = 2

√
2r2+, the

near horizon limit of (6.3) approaches the magnetic AdS2×R3 solution constructed in [17]

ds25 =
1

8
ds2 (AdS2) + dx21 + dx22 + dx23

F 1 = ε12
√

2 dx2 ∧ dx3, F 2 = ε22
√

2 dx3 ∧ dx1, F 3 = ε32
√

2 dx1 ∧ dx2 (6.5)

(after scaling xi → xi/r+). Note that we can change the signs of two of the spatial coordi-

nates without changing the D = 5 orientation and this would change the signs of two of the

three F i. Thus, there are two independent solutions, with fixed orientation, depending on

whether ε1ε2ε3 = ±1. In fact both solutions have the same spatially modulated instability

as we now show.

We first consider perturbations about the AdS2×R3 solution (6.5). Specifically, using

the coordinates for AdS2 as in (5.4), we take

δgx1x1 = −δgx2x2 = h(ρ) cos(k x3)

δA1 = ε1a(ρ) sin(k x3)dx2, δA2 = ε2a(ρ) sin(k x3)dx1,

δA3 = ε1ε2ρu(ρ) sin(kx3)dt , δφ2 = w(ρ) cos(k x3) (6.6)

for which the equations of motion yield

8
(
ρ2w′

)′ − (12 + k2
)
w − 8

√
2h+ 8k a = 0

8
(
ρ2a′

)′ − k2 a+ 4k w + 2
√

2k h− 16
√

2 (ρ u)′ = 0

8
(
ρ2u′

)′ − k2 u− 4
√

2ρ a′ = 0

8
(
ρ2h′

)′ − (k2 + 8
)
h− 8

√
2w + 4

√
2k a = 0 (6.7)

Notice that we take into account the mixing of the metric and the scalar even for k = 0 (in

contrast to the analysis of [17]). We now look for solutions of the form (w, a, u, h) = v ρδ

with v a constant vector. The system of equations (6.7) then takes the form Mv = 0

where M is a 4 × 4 matrix that depends on k only. Demanding that non-trivial values

of v exist implies that detM = 0 and this equation specifies the possible values of δ as

functions of k. In [17], where only modes with k = 0 where considered, it was argued

that the AdS2 × R3 background is stable. Here, even after properly taking into account

the mixing with the metric, we still find that for k = 0 the system is stable. However,

for general k, a numerical analysis shows that there is a range of k 6= 0 for which δ has a

non-zero imaginary part signalling an unstable background.
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We now turn our attention to spatially modulated perturbations about the full mag-

netic black brane solution (6.1). Specifically we consider

δgx1x1 = −δgx2x2 = r2h(r) cos(k x3)

δA1 = ε1a(r) sin(k x3)dx2, δA2 = ε2a(r) sin(k x3)dx1,

δA3 = ε1ε2u(r) sin(kx3)dt, δφ2 = w(r) cos(k x3) (6.8)

which leads to the linear system of equations

r
(
r3f w′

)′ − (2B2 + k2r2 − 4r4
)
w + 2

√
2Bk a−

√
2B2h = 0

r
(
rf a′

)′ − k2 a+
√

2Bkw +Bk h− rBu′ = 0(
r3 u′

)′ − k2rf−1 u− 2Ba′ = 0

r
(
r3f h′

)′ − r2 (k2 + 8r2 − 4f − 2rf ′
)
h+ 2Bk a−

√
2B2w = 0 (6.9)

At the black hole horizon we impose the following boundary conditions

w = w(0) + w(1) (r − r+) + · · ·

a = a(0) + a(1) (r − r+) + · · ·

u = u(1) (r − r+) + · · ·

h = h0 + h(1) (r − r+) + · · · (6.10)

As usual we are only interested in spatially modulated zero modes that correspond to

spontaneously breaking of translation invariance. Thus, asymptotically as r → ∞ we

impose the boundary conditions

w =
v1
r2

+ · · ·

a =
v2
r2

+ · · ·

u =
v3
r2

+ · · ·

h =
v4
r4

+ · · · (6.11)

with the vi fixing the expectation values of the corresponding operators in the dual N = 4

SYM theory.

Our analysis of the instabilities of the AdS2 × R3 solution implies that there will be

solutions of the ODEs (6.9) with these boundary conditions at a specific temperature for

a given value of k. Unfortunately the temperatures are very low and so we have not been

able to stabilise the numerics. The highest critical temperature Tc will occur for a critical

wave number kc. At Tc a new branch of spatially modulated black branes will exist with,

at leading order,

〈Oφ2〉 ∼ sin kcx3 ,

〈j1x2〉 ∼ sin kcx3 , 〈j2x1〉 ∼ sin kcx3 〈j3t 〉 ∼ sin kcx3 (6.12)
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where Oφ2 is the operator dual to φ2 and ji are the three U(1) currents dual to Ai in

N = 4 SYM theory. Observe that j1, j2 exhibit current density waves, while j3 exhibits

charge density waves and that they are in phase with each other. It would be interesting

to explore what happens at next order in perturbation theory.

7 Final comments

We have shown that magnetically charged black branes can exhibit spatially modulated

instabilities. In the dual field theory, these correspond to the spontaneous breaking of

translation invariance via current density waves, and in some cases also charge density

waves, when the field theory is placed in a magnetic field. It would be very interesting

to go beyond our perturbative analysis and construct the fully back reacted black brane

solutions as well as determining the zero temperature ground states.

For the class of black brane solutions which have an AdSD−2 ×R2 region in the IR at

zero temperature, we have not yet been able to find any top-down model that exhibits an

instability either in the models extending Einstein-Maxwell theory or those considered in

section 5. However, we think it is likely that they can be found. On the other hand for a

new class of black brane solutions of D = 5 SO(6) gauge supergravity with an AdS2 × R3

region at zero temperature that we constructed in section 6 we did find spatially modulated

instabilities. It would be interesting to explore this example further and determine, for

example, whether or not the instability we found is the dominant instability within type

IIB supergravity.

Another direction is to extend our analysis to dyonic black brane solutions, carrying

both electric and magnetic charges. For the D = 4 case the dyonic black brane solutions

of Einstein-Maxwell theory are again of the AdS-RN form. For the D = 5 case, dyonic

black brane solutions have been constructed numerically for a class of gravity theories,

including minimal gauged supergravity, in [32–34]. There are a variety of ways in which

these theories can be coupled to additional fields and it is clear that, again, there is a rich

spectrum of spatially modulated black brane solutions.
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A Top down perturbations of magnetic AdSD−2 × R2

Here we consider perturbations of magnetic AdSD−2 × R2 solutions that appear in some

top-down models extending Einstein-Maxwell theory that are similar to (2.4), but involve

a second scalar field. In all cases we find that the models do not have spatially modulated

instabilities. As in section 4, it is still possible that the magnetic brane solutions do have

them, but we will not investigate this here.
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We first consider the consistent truncation of D = 11 supergravity on a SE7 manifold

to a D = 4 N = 2 gauged supergravity [35]. It is convenient to use the Lagrangian given

in eq (2.6) of [6] and we then set h = χ = a = 0 to obtain

L =
R

2
− 12∂U2 − 3

4
∂V 2 − 3∂U∂V − 1

8
e6U+3V FµνF

µν − 3

8
e−V−2U HµνH

µν

− 9e−12U (B − εA)2 + 24e−8U−V − 3e−10U+V − 9e−18U−3V , (A.1)

with F = dA, H = dB and ε = ±1. Note that this truncation is only valid for configurations

which satisfy F ∧ H = 0. The basic AdS4 vacuum uplifts to an AdS4 × SE7 solution of

D = 11 supergravity: when ε = 1 it is the supersymmetric solution and when ε = −1 it

is the skew-whiffed solution. We now redefine εA → 1
2
√
2
A −

√
3

2
√
2
B, B → 1

2
√
2
A + 1

2
√
6
B

and U → 1
6

√
1− 1√

13
u − 1

6

√
1 + 1√

13
v, V → 1

3

√
4− 10√

13
u + 1

3

√
4 + 10√

13
v. We can then

expand around the AdS2 × R2 solution of the model and find that u and v each combine

with B as in (3.1) to give a mass matrix as in (3.3) with

• m̃2
u = 8

(
7 +
√

13
)
, m2

vec = 48, s =
√

1 + 1√
13
, λ =

√
12 .

• m̃2
v = 8

(
7−
√

13
)
, m2

vec = 48, s =
√

1− 1√
13
, λ =

√
12 .

In both cases we find that the minimum mass-squared eigenvalue of (3.3) is at k = 0 and

does not violate the AdS2 BF bound.

We next consider the consistent truncation of D = 11 supergravity on S4 × H3 to a

D = 4 N = 2 gauged supergravity that was derived in [36]. Starting with the action given

in eq. (4.14) of [36] we set l = −1, χ = θ = ξ = a = 0, T = δ. Restricting to configurations

in which H̃ ∧H̃ = H̃ ∧F = 0 we can also set β = 0. We next redefine the scalars via: φ0 →

−1
2 ln 2 + 1√

15

(√
5 +
√

5φ0 −
√

5−
√

5φ1

)
, φ1 → 2

(
1√

5+
√
5
φ0 + 1√

5−
√
5
φ1

)
and the

vectors via: A → 21/4
(
A−
√

3B
)
, B̃ → 2−3/4

(
A+ 1√

3
B
)

. Focussing on perturbations

about the AdS2 × R2 solution we find

• m̃2
φ0

= 3
√

2 +
√

10, m2
v = 2

√
2, s = −

√
1 + 1√

5
, λ = 31/2

21/4
.

• m̃2
φ1

= 3
√

2−
√

10, m2
v = 2

√
2, s =

√
1− 1√

5
, λ = 31/2

21/4
.

The minimum mass-squared eigenvalue of (3.3) for φ0 is at k 6= 0, while for φ1 it is at

k = 0 and neither violates the AdS2 BF bound.

Finally we consider the consistent truncation of type IIB supergravity on an arbitrary

SE5 space derived in [37]. We start with the action given in eq. (4.21) of [37]. We then

redefine the scalars via: u → − 1
5
√
5

(
u− 2

√
6v
)
, v → 1

5

√
2
15

(
2
√

6u+ v
)

and the vectors

via A →
√

2
3

(
A−
√

2B
)
, A→

√
3B. Expanding about the AdS3 × R2 solution we find

• m̃2
u = 36, m2

vec = 24, s = −2
√
2

5 , λ =
√

3 .

• m̃2
v = 16, m2

vec = 24, s = 4√
15
, λ =

√
3 .

The minimum mass-squared eigenvalue of (3.3) for u is at k 6= 0, while for v it is at k = 0

and neither violates the AdS3 BF bound.
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