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1 Introduction

The development of efficient techniques for computing scattering amplitudes in gauge the-

ories has led to the discovery of new unexpected properties in the on-shell sector of these

theories.

In four dimensions, the use of stringy-inspired methods [1], twistor string theory [2]

and AdS/CFT correspondence [3] has allowed to dig out hidden symmetries for the planar

sector of the maximally supersymmetric Yang-Mills theory. In particular, planar N = 4

SYM has been proved to be integrable [4, 5] and the related Yangian symmetry [6, 7] to

be responsible for a duality between scattering amplitudes and Wilson loops (WL). This

duality has been checked perturbatively in many cases [8]–[20], while at strong coupling it

relies on the self-duality of type IIB string on AdS5 × S5 under a suitable combination of

bosonic and fermionic T-dualities [21–23].

Another duality has been found at weak coupling which involves WL and correlation

functions of BPS operators [24]–[30].

Since AdS/CFT has been playing a fundamental role in the discovery of these new

hidden properties and at the same time their perturbative confirmation represents a non-

trivial test of the correspondence, it is mandatory to investigate whether similar properties

emerge in other classes of theories for which a string dual description is known.

We are interested in the class of three dimensional N = 6 ABJM theories [31] which

are dual to type IIA string theory on AdS4 × CP3. A distinguished feature of these mod-

els compared to the more famous N = 4 SYM in four dimensions, is that they are not

maximally supersymmetric. Moreover, the proof of the amplitudes/WL duality in type

IIA string on AdS4×CP3 is complicated by the emergence of singularities in the fermionic

T-transformations [32]–[36]. Therefore, a priori, it is not totally obvious that we should

expect dualities and hidden symmetries to be realized in ABJM models exactly in the same

way as in their four-dimensional counterpart.
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Preliminary results can be found in literature, concerning integrability [37–42] and

related Yangian symmetry [43, 44]. Perturbative investigation of these properties have been

performed. At tree level, scattering amplitudes are invariant under dual superconformal

symmetry [45, 46] whose generators are the level-one generators of a Yangian symmetry [43].

A first indication of the duality between scattering amplitudes and WL comes from the

fact that at one-loop, both the four-point amplitude [47] and the light-like four-polygon

WL [48, 49] vanish. Recently, n-point correlators of BPS scalar operators have been proved

to vanish at one-loop [49], so providing a first indication that in some cases a possible triad

correlation functions/WL/amplitudes duality might work also in three dimensions.

However, non-trivial perturbative support to these potential dualities can come only

at orders where these quantities do not vanish.

At two loops, for the ABJMmodel the light-like four-polygonWL has been computed in

the planar limit [48]. In dimensional regularization, taking the light-like limit (xi−xi+1)
2 ≡

x2i,i+1 → 0, the result is non-vanishing and given by1

〈W4〉
(2) = λ2

[

−
(−µ2

WLx
2
13)

2ǫ

(2ǫ)2
−

(−µ2
WLx

2
24)

2ǫ

(2ǫ)2
+

1

2
ln2
(

x213
x224

)

+ C +O(ǫ)

]

(1.1)

where µWL is the (properly rescaled) UVmass scale of dimensional regularization, λ ≡ N/K

is the ABJM coupling constant and C = π2/2+ 2 ln 2+ 5 ln2 2− a6/4, with a6 a numerical

constant.

In this paper, using N = 2 superspace description and a direct Feynman diagram

approach, we evaluate the two-loop contribution to the planar scattering superamplitude

of four chiral superfields which, in components, gives rise to the amplitude for two scalars

and two chiral fermions. The amplitude involves two external particles in the bifundamental

representation of the U(N)×U(N) gauge group and two particles in the antibifundamental.

This is what mostly resembles a MHV amplitude in four dimensions. Defining M4 to be

the superamplitude divided by its tree level contribution, we find

M(2) ≡
A

(2 loops)
4

Atree
4

= λ2

[

−
(s/µ′2)−2ǫ

(2 ǫ)2
−

(t/µ′2)−2ǫ

(2 ǫ)2
+

1

2
ln2
(

s

t

)

+ C +O(ǫ)

]

(1.2)

where µ′ is the (conveniently redefined) IR scale of dimensional regularization and C =

4ζ2 + 3 ln2 2 is a numerical constant.

This result has a number of remarkable properties. First of all, as in the N = 4 SYM

case, the two-loop amplitude is proportional to the tree level contribution times a function

of the kinematic invariants. We find that, up to an additive, scheme dependent constant,

this function matches exactly the result (1.1) once the IR regularization is formally identi-

fied with the UV one and the particle momenta are expressed in terms of dual coordinates,

pi = xi,i+1 (note also that the invariants in (1.1) differ from those in (1.2) by a sign, since

the former was worked out in Minkowskian signature, whereas our result has been derived

using the Euclidean metric).

1This result differs from the one in the published version of ref. [48] by an overall minus sign and a

different constant K. The authors of ref. [48] agree with us on the correctness of result (1.1).
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Therefore, at least for the four-point amplitude, we find evidence for the following

identity

lnM4 = ln〈W4〉+ const. (1.3)

that should hold order by order in the perturbative expansion of the two objects.

Quite remarkably, the two-loop result we have found has the same functional structure

as the one-loop correction to the four-point scattering amplitude for the four dimensional

N = 4 SYM theory. As proved in [9], for N = 4 SYM all momentum integrals up to

four loops are dual to four dimensional true conformally invariant integrals, well defined

off-shell. As a consequence, the four-point amplitude satisfies anomalous Ward identities

associated to dual conformal transformations [12], as dual conformal invariance is broken

in the on-shell limit by the appearance of IR divergences which require introducing a mass

regulator.

A natural question arises whether the same pattern is present in three dimensional

ABJM theories. We briefly discuss dual conformal invariance of the momentum integrals

that occur in our two-loop diagrammatic calculation, which does not assume dual con-

formal invariance a priori. At the level of the integrands every single diagram does not

appear to be invariant under dual conformal invariance, since they transform non-trivially

under inversion. Nevertheless we still expect this symmetry to be present in the on-shell

amplitude, since our result matches the Wilson loop computation, which possesses the

standard conformal invariance of the ABJM theory (eventually broken anomalously by UV

divergences). This means that, on-shell, it should be possible to rewrite the amplitude as

a linear combination of scalar integrals which are dual invariant in three dimensions.

In the N = 4 SYM case, an ansatz for all-loop n-point MHV amplitudes has been

proposed [50, 51], where the all-loop amplitudes exponentiate and turn out to be determined

by the one-loop result times the perturbative expansion of the scaling function fN=4(λ) as

a function of the ’t Hooft coupling.

Remarkably, we find that the two-loop four-point function for the ABJM model can

be obtained from the second order expansion of the same BDS-like ansatz where the four

dimensional scaling function is substituted by the three dimensional one, fCS(λ) as obtained

from the conjectured asymptotic Bethe equations [39].

Therefore, we make the conjecture that the all loop four-point amplitude is given by

A4

Atree
4

= e
Div+

fCS(λ)

8

(

ln2( s
t )+

4π2

3
+6 ln2 2

)

+C(λ)
(1.4)

where now λ is the ABJM coupling and C(λ) is a scheme-dependent constant.

Since fCS(λ) is known up to order λ4 [40–42], we may predict the exact four-loop

contribution to the four-point function (see eq. (5.6)).

Note added. When this work was already completed, a paper [52] appeared, which has

significant overlap. Although we draw the same conclusions, we stress that our compu-

tation, being based on a direct Feynman diagram approach is completely independent of

that in [52], which makes use of generalized unitarity methods.
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2 ABJM model in N = 2 superspace

An on-shell realization of N = 6 supersymmetric ABJM models can be given in terms of

N = 2 three dimensional superspace [53]. For U(N)×U(N) gauge group, the physical field

content is organized into two vector multiplets (V, V̂ ) in the adjoint representation of the

first and the second U(N)’s, coupled to chiral multiplets Ai and Bi carrying a fundamental

index i = 1, 2 of a global SU(2)A×SU(2)B and in the bifundamental and antibifundamental

representations of the gauge group, respectively.

The N = 6 supersymmetric action reads

S = SCS + Smat (2.1)

with

SCS =
K

4π

∫

d3x d4θ

∫ 1

0
dt
{

Tr
[

V D
α(

e−tV Dαe
tV
)

]

− Tr
[

V̂ D
α(

e−tV̂ Dαe
tV̂
)

]}

Smat =

∫

d3x d4θTr
(

Āie
V Aie−V̂ + B̄ieV̂ Bie

−V
)

+
2πi

K

∫

d3x d2θ ǫikǫ
jl Tr(AiBjA

kBl) +
2πi

K

∫

d3x d2θ̄ ǫikǫjl Tr(ĀiB̄
jĀkB̄

l) (2.2)

Here K is an integer, as required by gauge invariance of the effective action. In the

perturbative regime we take λ ≡ N
K ≪ 1.

The quantization of the theory can be easily carried on in superspace after performing

gauge fixing (for details, see for instance [54, 55]). In momentum space and using Landau

gauge, this leads to gauge propagators

〈V a
b (1)V

c
d(2)〉 =

4π

K

1

p2
δad δ

c
b ×D

α
Dα δ

4(θ1 − θ2)

〈V̂ ā
b̄ (1) V̂

c̄
d̄ (2)〉 = −

4π

K

1

p2
δād̄ δ

c̄
b̄ ×D

α
Dα δ

4(θ1 − θ2) (2.3)

whereas the matter propagators are

〈Āā
a(1)A

b
b̄(2)〉 =

1

p2
δāb̄ δ

b
a × δ4(θ1 − θ2)

〈B̄a
ā(1)B

b̄
b(2)〉 =

1

p2
δab δ

b̄
ā × δ4(θ1 − θ2) (2.4)

where a, b and ā, b̄ are indices of the fundamental representation of the first and the second

gauge groups, respectively. The vertices employed in our two-loop calculation can be easily

read from the action (2.2) and they are given by

∫

d3x d4θ
[

Tr(ĀiV Ai)− Tr(BiV B̄i) + Tr(B̄iV̂ Bi)− Tr(AiV̂ Āi)
]

+
4πi

K

∫

d3x d2θ
[

Tr(A1B1A
2B2)− Tr(A1B2A

2B1)
]

+ h.c. (2.5)

We work in euclidean superspace with the effective action defined as eΓ =
∫

eS .
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a. b.

Figure 1. Diagrams contributing to the tree level and 1-loop four-point scattering amplitude.

Since the vector fields are not propagating, the only non-trivial amplitudes of the

theory are the ones involving external matter particles. In N = 2 superspace language

this means having A, B and their complex conjugates as external superfields. Given the

structure of the vertices, it is straightforward to see that only amplitudes with an even

number of external legs are non-vanishing. This is consistent with gauge symmetry and

with the requirement for the amplitudes to be Lorentz and dilatation invariant [45].

Each external scalar particle carries an on-shell momentum pαβ (p2 = 0), an SU(2)

index and color indices corresponding to the two gauge groups. We classify as particles the

ones carrying (N, N̄) indices and antiparticles the ones carrying (N̄ ,N) indices. Therefore,

(Ai, B̄j) are particles, whereas (Bi, Āj) are antiparticles.

We are interested in the simplest non-trivial amplitudes, that is four-point amplitudes.

Without loosing generality we consider the (ABAB) superamplitude. All the other super-

amplitudes can be obtained from this one by SU(4) R-symmetry transformations.

The color indices can be stripped out, as we can write

A4

(

Aa1
ā1 B

b̄2
b2
Aa3

ā3 B
b̄4
b4

)

=
∑

σ

A4

(

σ(1), · · · , σ(4)
)

δ
aσ(1)

bσ(2)
δ
b̄σ(2)

āσ(3)
δ
aσ(3)

bσ(4)
δ
b̄σ(4)

āσ(1)
(2.6)

where the sum is over exchanges of even or odd sites between themselves.

3 The four point amplitude at two loops

We study four-point scattering amplitudes of the type (AiBjA
kBl), where the external A,B

particles carry outgoing momenta p1, . . . , p4 (p2i = 0). As usual, Mandelstam variables are

defined by s = (p1 + p2)
2, t = (p1 + p4)

2, u = (p1 + p3)
2.

At tree level the amplitude is simply given by the diagram in figure 1a associated to

the classical superpotential in (2.5). Its explicit expression is

Atree
4

(

Ai(p1), Bj(p2), A
k(p3), Bl(p4)

)

=
2πi

K
ǫikǫjl (3.1)

At one loop it has been proved to vanish [47]. In N = 2 superspace language a symmetry

argument shows that the only diagram that can be constructed (figure 1b) leads to a

vanishing contribution both off-shell and on-shell [67].

– 5 –
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b. c.

d. e. f.

a.

g.

Figure 2. Diagrams contributing to the two-loop four-point scattering amplitude. The dark-gray

blob represents one-loop corrections and the light-gray blob two-loop ones.

At two loops, in the planar sector, the amplitude can be read from the single trace

part of the two-loop effective superpotential

Γ(2)[A,B] =

∫

d2θd3p1 . . . d
3p4 (2π)

3 δ(3)
(

∑

i
pi

)

×

2πi

K
ǫikǫ

jl tr
(

Ai(p1)Bj(p2)A
k(p3)Bl(p4)

)

g
∑

X=a

M(X)(p1, . . . , p4) (3.2)

where the sum runs over the first six diagrams in figure 2, plus the contribution from the

1P-reducible (1PR) graph in figure 2g where the bubble indicates the two-loop correction

to the chiral propagator.

In (3.2) we have factorized the tree level expression, so that M(X)(p1, . . . , p4) are

contributions to A
(2 loops)
4 /Atree

4 .

In order to evaluate the diagrams we fix the convention for the upper-left leg to carry

momentum p1 and name the other legs counterclockwise. The total contribution from every

single graph is then given by summing over all possible permutations of the external legs

accounting for the different scattering channels.

The momentum-dependent contributions in (3.2) are the product of a combinatorial

factor times a sum of ordinary Feynman momentum integrals arising after performing

D-algebra on each supergraph (details can be found in [66, 67]).

Massless scattering amplitudes are affected by IR divergences. We deal with them by

dimensional regularization, d = 3− 2ǫ, ǫ < 0.

We begin by evaluating the simplest graph 2a. After performing D-algebra, its s-

channel contribution shown in figure 2 is given by a two-loop factorized Feynman integral

Ds
a = µ4ǫ

∫

ddk

(2π)d
ddl

(2π)d
−(p1 + p2)

2

k2 (k + p1 + p2)2 l2 (l − p3 − p4)2
= −G[1, 1]2

(

µ2

s

)2ǫ

(3.3)

where µ is the mass scale of dimensional regularization and the G function is defined by

G[a, b] =
Γ(a+ b− d/2)Γ(d/2− a)Γ(d/2− b)

(4π)d/2Γ(a)Γ(b)Γ(d− a− b)
(3.4)

– 6 –
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Taking into account all contributions of this type with color/flavor factors we obtain

M(a) = −(4πλ)2G[1, 1]2

(

(

µ2

s

)2ǫ

+

(

µ2

t

)2ǫ
)

= −3ζ2λ
2 +O(ǫ) (3.5)

The contribution from diagram 2b, after D-algebra and with the particular assignment

of momenta as in figure, is given by

Ds1
b = µ4ǫ

∫

ddk

(2π)d
ddl

(2π)d
2(p3 + p4)

2

l2 (l + k)2 (k − p4)2 (k + p3)2
=

2G[1, 1]Γ(1 + 2ǫ)Γ2(−2ǫ)

(4π)d/2Γ(1/2− 3ǫ) (s/µ2)2ǫ

(3.6)

Therefore, summing over all four contributions we get

M(b) = (4πλ)2
G[1, 1]Γ(1 + 2ǫ)Γ2(−2ǫ)

(4π)d/2Γ(1/2− 3ǫ)

(

(

µ2

s

)2ǫ

+

(

µ2

t

)2ǫ
)

(3.7)

which is infrared divergent.

Diagram 2c, in contrast with the previous ones, is infrared divergent even when con-

sidered off-shell. This unphysical infrared divergence is cured by adding the 1PR diagram

corresponding to two-loop self-energy corrections to the superpotential, depicted in fig-

ure 2g. In fact, the contribution from this diagram, when the correction is on the p4 leg,

yields

D4
g = −3G[1, 1]G[1, 3/2 + ǫ] (p24)

−2ǫ + 2G[1, 1]2 (p24)
−2ǫ (3.8)

The first term of this expression is infrared divergent even off-shell, but precisely cancels

the infrared divergence of diagram 2c. The second term in (3.8) comes from a double

factorized bubble and is finite when d → 3, but since we take the momenta to be on-shell

before expanding in ǫ, this piece vanishes on-shell. It turns out that after this cancelation

between diagrams 2c and 2g the remainder is proportional to the integral corresponding

to diagram 2b. Precisely, we have

M(c) +M(g) = −3M(b) (3.9)

Diagrams of type 2d can be evaluated by using Mellin-Barnes techniques. Specifically,

with the momenta assignment as in figure, the D-algebra gives

Ds1
d = µ4ǫ

∫

ddk

(2π)d
ddl

(2π)d
Tr(γµγνγργσ) p

µ
4 (p3 + p4)

ν (k + p4)
ρ (l − p4)

σ

(k + p4)2 (k − p3)2 (k + l)2 (l − p4)2 l2
(3.10)

= −
Γ3(1/2− ǫ)Γ(1 + 2ǫ)Γ2(−2ǫ)

(4π)dΓ2(1− 2ǫ)Γ(1/2− 3ǫ) (s/µ2)2ǫ
(3.11)

and summing over the eight permutations multiplied by the corresponding flavor/color

factors we obtain

M(d) = −(4πλ)2
2Γ3(1/2− ǫ)Γ(1 + 2ǫ)Γ2(−2ǫ)

(4π)dΓ2(1− 2ǫ)Γ(1/2− 3ǫ)

(

(

µ2

s

)2ǫ

+

(

µ2

t

)2ǫ
)

(3.12)

– 7 –
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Using the identities derived in [67] it is possible to write diagram 2e as a combination

of diagrams 2b and 2d plus a double factorized bubble which can be dropped when working

on-shell. We find

M(e) = 2M(d) + 4M(b) (3.13)

The most complicated contribution comes from diagram 2f , which involves a nontrivial

function of the ratio s/t of kinematic invariants. Surprisingly, after some cancelations it

turns out to be finite. The D-algebra for the specific choice of the external momenta as in

figure results in the Feynman integral

D234
f = µ4ǫ

∫

ddk

(2π)d
ddl

(2π)d
−Tr(γµγνγργσ) p

µ
4 p

ν
2 k

ρ lσ

k2 (k − p2)2 (k + l + p3)2 (l − p4)2 l2
(3.14)

which after taking the on-shell limit can be expressed exactly as a single one-fold Mellin-

Barnes integral which is finite in the limit ǫ → 0

D234
f =

(1 + s/t)Γ3(1/2− ǫ)

(4π)dΓ2(1− 2ǫ)Γ(1/2− 3ǫ)(t/µ2)2ǫ
×

×

+i∞
∫

−i∞

dv

2πi
Γ(−v)Γ(−2ǫ− v)Γ∗(−1− 2ǫ− v)Γ2(1 + v)Γ(2 + 2ǫ+ v)

(

s

t

)

v

(3.15)

Taking into account the four permutations, flavor/color factors and expanding in ǫ we get

M(f) = λ2

(

1

2
ln2(s/t) + 3ζ2

)

+O(ǫ) (3.16)

Collecting all the partial results, after some algebra we may reduce the result to the

following compact form

M(2) ≡
A

(2 loops)
4

Atree
4

= λ2

[

−
(s/µ′2)−2ǫ

(2 ǫ)2
−

(t/µ′2)−2ǫ

(2 ǫ)2
+

1

2
ln2
(

s

t

)

+ C +O(ǫ)

]

(3.17)

where µ′2 = 8πe−γ µ2, and C is a constant given by C = 4ζ2 + 3 ln2 2.2

If we rotate to Minkowski spacetime with mostly minus signature and write the Mandel-

stam variables in terms of the dual ones, s = −x213, t = −x224, up to a (scheme-dependent)

constant, our result matches the expression (1.1) for the two-loop expansion of a four-cusp

light-like Wilson loop, once we have identified the UV and IR rescaled regulators of the

Wilson loop and scattering amplitude, as 1/µ2
WL = µ′2.

4 Dual conformal invariance

The two-loop result (3.17) for the four-point amplitude in ABJM theories has the same

functional structure as the one-loop correction to the four-point amplitude in four dimen-

sional N = 4 SYM theory [9, 50], provided that we rescale ǫ → 2ǫ there.

2We note that the analytical value of the constant term matches the numerical result of [52].

– 8 –
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In the N = 4 SYM case, the perturbative results for planar MHV scattering ampli-

tudes can be expressed as linear combinations of scalar integrals that are off-shell finite in

four dimensions and dual conformal invariant [9]. Precisely, once written in terms of dual

variables, pi = xi+1−xi, the integrands times the measure are invariant under translations,

rotations, dilatations and special conformal transformations. In particular, invariance un-

der inversion, xµ → xµ/x2, rules out bubbles and triangles and up to two loops, only

square-type diagrams appear.

Dual conformal invariance is broken on-shell by IR divergences that require introduc-

ing a mass regulator. Therefore, conformal Ward identities acquire an anomalous contri-

bution [12].

A natural question which arises is whether the two-loop result (3.17) for three dimen-

sional ABJM models exhibits dual conformal invariance.

In order to answer this question, we concentrate on the momentum integrals associated

to the four diagrams in figure 2 which are the ones that eventually combine to lead to the

final result (3.17). We study their behavior under dual conformal transformations when

evaluated off-shell and in three dimensions.

We first rewrite their expressions in terms of dual variables and then perform conformal

transformations, the only non-trivial one being the inversion.

Since under inversion x2ij →
x2
ij

x2
i x

2
j

and ddxi →
ddxi

(x2
i )

d , it is easy to realize that, while in

four dimensions the elementary invariant building block integrands are squares, in three

dimensions they should be triangles. Therefore, it is immediate to conclude that the

integrands associated to diagrams 2a–2b cannot be invariant, since they contain bubbles.

On the other hand, diagrams 2d–2f contain triangles but also non-trivial numerators which

concur to make the integrand non-invariant under inversion.

Despite dual conformal invariance seems not to be a symmetry of the integrals arising

from our Feynman diagram approach, in the previous section we have showed that the

on-shell amplitude, when written in dual space, has the same functional form of the light-

like Wilson loop. As a consequence, on-shell the amplitude should possess dual conformal

invariance, since Wilson loops inherit the ordinary conformal invariance of the ABJM

theory, even though anomalously broken by UV divergences.

As a consequence, it should be possible to rewrite expression (3.17) for the on-shell

amplitude as a linear combination of scalar integrals which are off-shell finite in three

dimensions and manifestly dual conformal invariant at the level of the integrands.3

5 A conjecture for the all-loop four-point amplitude

Our result in (3.17) provides the first non-trivial quantum correction to the four-point

scattering amplitude in the ABJM theory. The analogue quantity in four dimensional

N = 4 SYM has been extensively studied and an all-loop iteration conjecture for it has

3Note added: this task has been actually accomplished in [52], where an explicit basis of dual conformal

integrals has been determined on which the amplitude can be expanded.
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been given in [50, 51]. The result may be schematically written as

A

Atree
= e

Div+
fN=4(λ)

8

(

ln2( s
t )+

4π2

3

)

+C(λ)
(5.1)

where fN=4(λ) is the scaling function of N = 4 SYM in terms of the ’t Hooft coupling

λ = g2N , the constant C(λ) is independent of the kinematic variables and the IR divergent

contributions are grouped in the first term.

It would be interesting to check whether a similar resummed expression may hold for

scattering amplitudes in the three-dimensional case. Although we only computed the first

non-trivial perturbative order for the amplitude, still we have some indications that this

could be the case.

At first, comparing the conjectured form of the asymptotic all loop Bethe equations for

N = 4 SYM and ABJM theory, Gromov and Vieira noticed [39] that the scaling functions

of the two theories should be related as

fCS(λ) =
1

2
fN=4(λ)

∣

∣

∣

∣

√
λ

4π
→h(λ)

(5.2)

where h(λ) is the interpolating function of the magnon energy dispersion relation. The

first perturbative orders of h(λ) have been computed at both weak [40–42] and strong

coupling [56]–[65]. The weak coupling expansion

h2(λ) = λ2 − 4ζ2 λ
4 +O(λ6) λ ≪ 1 (5.3)

can be combined, using (5.2), with the known expansion of the 4d scaling function fN=4(λ)

= λ/2π2 − 1/96π2λ2 +O(λ3). We are then able to write explicitly the 3d scaling function

up to order λ4

fCS(λ) = 4λ2 − 4π2λ4 +O(λ6) (5.4)

Assuming (5.1) to hold also in the three dimensional case with the very same constant

coefficients and plugging (5.4) in it, after expanding at order λ2, we curiously find an

exact correspondence with the result we explicitly computed in (3.17). This suggests that

for the three dimensional case, provided we use the correct scaling function, a completely

analogous resummation may take place to give an expression for the amplitude of the form

A4

Atree
4

= eDiv+
fCS(λ)

8 (ln2( s
t )+8ζ2+6 ln2 2)+C(λ) (5.5)

If this is the case, using (5.4), we may predict the next non-trivial order for the finite

remainder F
(4)
4 (in the notation of [50]) of the four-point scattering amplitude

F
(4)
4 =

λ4

8
ln4
(

s

t

)

+ λ4

(

3

2
ln2 2− ζ2

)

ln2
(

s

t

)

+Consts (5.6)

A direct check of this prediction, either with a 4-loop scattering amplitude computation

or using the duality with Wilson loops, could confirm the conjectured exact expression

in (5.5).
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6 Conclusions

We briefly summarize the main results of this paper and discuss future developments.

For three dimensional ABJM superconformal models, in a N = 2 superspace setup,

we have computed the planar, two-loop corrections to the chiral (ABAB) four-point su-

peramplitude. We performed the calculation by a direct Feynman diagram approach, in

a manifestly supersymmetric formalism. We have found a non-vanishing result which per-

fectly agrees with the two-loop result for a light-like four-polygon Wilson loop. Our result

confirms the conjectured duality which seemed to arise trivially at one loop and represents

the first non-trivial evidence of an amplitude/WL duality working in three dimensional

superconformal theories, at least for four-particle scattering.

Stronger evidence for such a duality could be found by generalizing our calculation to

higher loops and to amplitudes with a greater number of external particles. While going

to higher loops might present only technical problems, the study of n-point amplitudes

with n > 4 opens a number of interesting questions. In fact, as already stressed, in the

ABJM theory only amplitudes with an even number of external particles may be non-

vanishing. On the other hand, n-polygon Wilson loops with n odd do not seem to vanish

at two loops. Therefore, a question arises why WL with an odd number of cusps do

not seem to have an obvious dual object in the set of scattering amplitudes. Moreover,

given the particle/antiparticle interpretation of matter superfields, starting from six points

the amplitudes are not MHV anymore. Therefore, according to the general framework

inherited from N = 4 SYM [20, 68, 69], they should not be dual to an ordinary bosonic

Wilson loop, rather they should be related to some supersymmetric generalization. Again,

further investigation is required in order to understand whether in the three dimensional

case the non-MHV amplitudes are somehow related to bosonic, even n-polygon WL or if

supersymmetry has to enter the game.

The functional structure of our result resembles the one-loop planar four-point ampli-

tude for N = 4 SYM theory in four dimensions. As in that case, it can be obtained from a

BDS-like ansatz for the all-loop amplitude where the scaling function of four dimensions is

substituted by the three dimensional one, as predicted by the conjectured Bethe equations.

For N = 4 SYM theory the structure of the four-point BDS ansatz has been verified

also at strong coupling [21, 22]. It would be interesting to check whether applying the

recipe of [21, 22] for computing scattering amplitudes at strong coupling to the ABJM

case, the result agrees with a three dimensional version of the BDS ansatz. From our weak

coupling computation we expect this to be the case, at least at four points. A preliminary

discussion will be given in [66].

An important question to be addressed is whether and how dual conformal invariance

plays a role in three dimensional models. By explicit calculations, which do not assume

dual conformal invariance a priori, we showed that the four-point on-shell amplitude is dual

to the four-cusps light-like Wilson loop. This hints at the invariance of the result under

dual conformal invariance, even though this symmetry is not manifest in our Feynman

diagram approach. We report on this issue more extensively in [66].
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