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1 Introduction

Recently, the ATLAS [1] and CMS [2] collaborations have renewed efforts to search for the

Higgs boson at the CERN LHC with data integrated up to O(fb−1). The excluded mass

region for the Standard Model(SM) Higgs boson has been extended to most of the region

between 145 and 466GeV. In the low mass region of the Higgs boson, the two-photon

mode of Higgs decay plays a crucial role in experimental studies.

R. Gastmans et al. recently recalculatedH → γγ via W-boson loop [3, 4], which yielded

a result in contradiction with the old ones in the literature [5–8]. Their computation was

carried out in four-momentum cutoff regularization rather than dimensional regularization

(DREG). To reduce the number of Feynman diagrams, Gastmans et al. chose unitary

gauge. In their treatment, the new result, which satisfies the decoupling theorem [9],

was favored by the authors. Later, several authors [10–13] have pointed out that the old

results are still correct and the decoupling theorem is violated by the Hφ+φ− coupling in

this case. However, we are still unsatisfactory with the explanations about the problems

with the calculations of R. Gastmans et al., since there have never been doubts about the

correctness of their algebra. In order to clarify this problem, we develop a new method to

do one-loop calculation in cutoff regularization.

Although DREG has proven its superiority and achieved the most widely usage in phe-

nomenological applications, cutoff regularization, the oldest regularization, still has some

advantages compared with DREG theoretically. For instance, in DREG, one is unable to

obtain the correct divergent terms higher than logarithmic divergences, which means that

quadratic divergent terms of SM Higgs self-energy diagrams disappeared in DREG. Pauli-

Villars regularization is flawed because it violates chiral symmetry, while the symmetry is
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preserved in cutoff regularization. Moreover, from Wilsonian effective field theory view-

point, cutoff regularization scheme is also a more intuitive and straightforward scheme.

Therefore, the introduction of an explicit cutoff is sometimes advantageous.

However, there are still many drawbacks in this four-momentum regularization that

should be mentioned.Considering the truncation in momentum modes, this regularization

is flawed because it violates gauge invariance and translation invariance regarding the loop

momentum. The latter condition signifies that the results may ambiguously depend on the

manner how the propagators are written. Hence, in the present paper a new recursive rela-

tion for loop momentum translation is derived first. Then the Passarino-Veltman reduction

method1[14, 15] is modified to reduce the tensor integrals in this regularization. One can

follow Dyson’s prescription [16, 17] to obtain a gauge invariant result, just as shown in our

calculations of H → γγ.

As an example, we reconsider the process H → γγ in this four-dimensional momentum

cutoff regularization with our proposed approach. Given that the process of H → γγ is free

from infrared and mass singularities, only the ultraviolet cutoff is considered here. Readers

who need to handle infrared or mass singularities should turn to the mass regularization

scheme demonstrated in the literature e.g. [18].

The present paper is organized as follows. In section 2, a new recursive relation for

the loop momentum translation in cutoff regularization is demonstrated. Then, it is im-

plemented in the Passarino-Veltman reduction schemes in section 3. With this approach,

calculations and analysis of H → γγ are performed in section 4. Our conclusion is present

in section 5. In Appendex A, the expressions for JN
µ1...µs

used in section 2 is derived. Finally,

some scalar integrals can be found in appendix B.

2 A new recursive relation

In this section, we will show how to calculate

I∆µ1...µs
(b, a2) ≡

∫

d4k
kµ1

. . . kµs

(−(k − b)2 + a2)n
−
∫

d4k
(k + b)µ1

. . . (k + b)µs

(−k2 + a2)n
. (2.1)

This integration has a superficial divergence degree ∆ ≡ s+ 4− 2n.

A negative ∆ evidently simplifies the calculation, because the limits of the integrals

in eq. (2.1) can be set to infinity and the translation shift k → k + b does not change

these limits. Therefore, I∆µ1...µs
completely vanishes when ∆ < 0. However, results may

vary when the integrals in eq. (2.1) are ultraviolet divergent because there is an artificial

four-momentum cutoff scale Λ in these integrals. These conditions are then considered in

the following.

I∆µ1...µs
can be rewritten as

I∆µ1...µs
(b, a2) =

(∫

d4k
kµ1

. . . kµs

(−(k − b)2 + a2)n
−
∫

d4k
kµ1

. . . kµs

(−k2 + a2)n

)

−
∫

d4k
f rem(b)

(−k2 + a2)n
, (2.2)

1Note that, integration by parts (IBP) reduction methods are not valid in this case due to nonvanishing

surface terms.
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with the remainder f rem(b) ≡ (k + b)µ1
. . . (k + b)µs − kµ1

. . . kµs . Using the identity

1

An
− 1

Bn
=

∫ 1

0
dx

n(B −A)

(xA+ (1− x)B)n+1
, (2.3)

one arrived at

I∆µ1...µs
(b, a2) =

∫

d4k

∫ 1

0
dx

n(−2b · k + b2)kµ1
. . . kµs

(−(k − c)2 + d2)n+1

−
∫

d4k
f rem(b)

(−k2 + a2)n
, (2.4)

where c ≡ x b, d2 ≡ a2− b2x(1−x). The integral momentum k to k+ c in the first integral

of the previous equation is shifted, so that

I∆µ1...µs
(b, a2) = −2n bµ0

∫ 1

0
dxI∆−1

µ0µ1...µs
(c, d2) + n b2

∫ 1

0
dxI∆−2

µ1...µs
(c, d2)

+

∫

d4k

∫ 1

0
dx

n(−2b · k + b2 − 2b · c)kµ1
. . . kµs

(−k2 + d2)n+1

+

∫

d4k

∫ 1

0
dx

n(−2b · k + b2 − 2b · c)f rem(c)

(−k2 + d2)n+1

−
∫

d4k
f rem(b)

(−k2 + a2)n

= −2n bµ0

∫ 1

0
dxI∆−1

µ0µ1...µs
(c, d2) + n b2

∫ 1

0
dxI∆−2

µ1...µs
(c, d2)

−2n bµ0

∫

d4k

∫ 1

0
dx

kµ0
kµ1

. . . kµs

(−k2 + d2)n+1

−2n

∫

d4k

∫ 1

0
dx

b · kf rem(c)

(−k2 + d2)n+1

−
∫

d4k

∫ 1

0
dx

∂f rem(c)
∂x

(−k2 + d2)n
. (2.5)

In the sixth line of eq. (2.5), a spurious part that is proportional to (1−2x) in the numerator

of the integrand is removed. Integration by parts is performed at the end of eq. (2.5).

Aside from the terms expressed in I∆−1 and I∆−2, eq. (2.5) can be simplified further

using the formulae JN
µ1...µs

(a2) ≡
∫

d4k
kµ1kµ2 ...kµs
(−k2+a2)N

given in appendix A. After expanding

the terms proportional to xj in the integrands and implementing the expressions for JN ,

a lot of terms are canceled. Thus, the final result is

I∆µ1...µs
(b, a2) = −2n bµ0

∫ 1

0
dxI∆−1

µ0µ1...µs
(c, d2) + n b2

∫ 1

0
dxI∆−2

µ1...µs
(c, d2)

−
2⌊ s+1

2
⌋−2n+2
∑

t=max(0,4−2n), even

{gs+t−∆b∆−t}µ1...µs

iπ2(−2)−
s+t−∆

2

Γ( s+t−∆
2 + 3)

h(t, n,∆),

(2.6)
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where the notation {gs+t−∆b∆−t}µ1...µs defined in appendix A, n = s+4−∆
2 , ⌊y⌋ is a Gaussian

function (the greatest integer that is not larger than y), and the function is

h(t, n,∆) ≡
t
2
∑

l=0

C l
n−1+l

n2,n1,n0≥0
∑

n2+n1+n0=l

(−1)n2+n0(∆− t)

2n2 + n1 +∆− t

l!

n2!n1!n0!
(b2)n2+n1(a2)n0Λt−2l.

(2.7)

We should make some remarks about above equation before going forward. In the recursive

relation eq. (2.6), there are two integrals left. However, since all of the I∆µ1...µs
(b, a2) are only

polynomials of b and a2, i.e., they are only polynomials of integral variable x, the explicit

expressions for this recursive relation can be easily obtained with the help of computers.

Especially, the explicit expressions for I∆µ1...µs
(∆ = 0, 1, 2, 3) are

I0µ1...µs
(b, a2) = 0,

I1µ1...µs
(b, a2) = −{gs−1b1}µ1...µs

iπ2(−2)−
s−1

2

Γ( s+5
2 )

,

I2µ1...µs
(b, a2) =

(

n b2{gs}µ1...µs + (4n+ 2)θ(s− 2){gs−2b2}µ1...µs

)

iπ2(−2)1−n

Γ(n+ 2)
, with n =

s+ 2

2
,

I3µ1...µs
(b, a2) = −θ(s− 3){gs−3b3}µ1...µs

iπ2(−2)2−n(3n2 + 6n+ 2)

Γ(n+ 3)

−{gs−1b1}µ1...µs

iπ2(−2)1−n

Γ(n+ 2)

(

Λ2 − n a2 − n(n+ 1)

n+ 2
b2
)

, with n =
s+ 1

2
. (2.8)

3 Modified Passarino-Veltman reduction schemes

It is known that the one-loop tensor integrals can be reduced to a linear combination of

up to four-point scalar integrals [14]. In this section, a generic one-loop integral

TN
µ1...µs

≡
∫

d4k
kµ1

. . . kµs

D0D1 . . . DN−1
, (3.1)

with propagators Di ≡ (k + pi)
2 − m2

i + iε and p0 = 0 is considered. As mentioned in

the previous sections, the integrals TN
µ1...µs

may not be translation invariant because of the

finite integral limits when they are ultraviolet divergent. Therefore, the expressions for

∆LN
µ1...µs

≡
∫

d4k
kµ1

. . . kµs

D1 . . . DN
−
∫

d4k
(k − p1)µ1

. . . (k − p1)µs

D̃1 . . . D̃N

, (3.2)
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where propagators Di ≡ (k + pi)
2 −m2

i + iε but p1 6= 0 and D̃i ≡ (k + pi − p1)
2 −m2

i + iε

should be calculated. After the conventional Feynman parameterization, ∆LN
µ1...µs

can be

reexpressed as

∆LN
µ1...µs

≡ (−)NΓ(N)

[

∫

simplex

N
∏

i=1

dui I
s+4−2N
µ1...µs

(b̃− p1, ã
2)

−
∫

simplex

N
∏

i=1

dui

s
∑

i=0

(−)s−i{ps−i
1 Ii+4−2N, i(b̃, ã2)}µ1...µs

]

, (3.3)

where b̃ ≡ −∑N
i=1 uipi+p1, ã

2 ≡ −∑N
i=1 ui(p

2
i −m2

i ) +
∑N

i,j=1 uiujpi · pj , and the notation

{ps−i
1 Ii+4−2N,i(b̃, ã2)}µ1...µs is defined in appendix A with the divergence degree of Ii+4−2N, i

defined in section 2 is i + 4 − 2N . The polynomial dependence of b, a2 in I∆(b, a2)µ1...µs

makes the simplex integration in eq. (3.3) straightforward using

∫

simplex

N
∏

i=1

dui

N
∏

i=1

uri−1
i =

∏N
i=1 Γ(ri)

Γ(
∑N

i=1 ri)
. (3.4)

Next, several notations similar to that given in ref. [15] are reintroduced here

∆LN
µ1...µs

≡
n0,n1,...,nN≥0

∑

2n0+n1+...+nN=s

{g2n0pn1

1 . . . p
nN

N }µ1...µs∆LN
0 . . . 0
︸ ︷︷ ︸

2n0

... N . . . N
︸ ︷︷ ︸

nN

,

TN
µ1...µs

≡
n0,n1,...,nN−1≥0

∑

2n0+n1+...+nN−1=s

{g2n0pn1

1 . . . p
nN−1

N−1 }µ1...µsT
N
0 . . . 0
︸ ︷︷ ︸

2n0

... (N − 1) . . . (N − 1)
︸ ︷︷ ︸

nN−1

,

TN
µ1...µs

(0) ≡
∫

d4k
kµ1

. . . kµs

D1 . . . DN
,

TN
µ1...µs

(k) ≡
∫

d4k
kµ1

. . . kµs

D0 . . . D̂k . . . DN

,

T̃N
µ1...µs

(0) ≡
∫

d4k
kµ1

. . . kµs

D̃1 . . . D̃N

,

TN
µ1...µs

(0) ≡
n0,n1,...,nN≥0

∑

2n0+n1+...+nN=s

{g2n0pn1

1 . . . p
nN

N }µ1...µsT
N
0 . . . 0
︸ ︷︷ ︸

2n0

... N . . . N
︸ ︷︷ ︸

nN

(0),

T̃N
µ1...µs

(0) ≡
n0,n1,...,nN−1≥0

∑

2n0+n1+...+nN−1=s

{g2n0(p2 − p1)
n1 . . . (pN − p1)

nN−1}µ1...µs

T̃N
0 . . . 0
︸ ︷︷ ︸

2n0

... (N − 1) . . . (N − 1)
︸ ︷︷ ︸

nN−1

(0), (3.5)

whereD0 . . . D̂k . . . DN ≡ D0 . . . Dk−1Dk+1 . . . DN and the caret “^” is employed to indicate

the indices omitted.
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Thus in this cutoff regularization, eq. (2.9) in ref. [15] should be replaced by

TN
0 . . . 0
︸ ︷︷ ︸

2n

1 . . . 1
︸ ︷︷ ︸

k

i2n+k+1...is
(0) = (−)k

k
∑

l=0

C l
k

N−1
∑

i1,...,il=1

T̃N
0, . . . , 0
︸ ︷︷ ︸

2n

,i1,...,il, i2n+k+1−1,..., is−1(0)

+∆LN
0 . . . 0
︸ ︷︷ ︸

2n

1 . . . 1
︸ ︷︷ ︸

k

i2n+k+1...is
, i2n+k+1, . . . , is > 1. (3.6)

When the determinant of Gram matrix

Z(N) =







2p1 · p1 . . . 2p1 · pN
...

. . .
...

2pN · p1 . . . 2pN · pN






(3.7)

for (N + 1)-point functions is non-vanishing, the reduction can be continued as

TN
00i3...is =

1

2(3 + s−N)



TN−1
i3...is

(0) + 2m2
0T

N
i3...is +

N−1
∑

j=1

fjT
N
ji3...is

+∆LN−1
i3...is

+

N−1
∑

j=1

∆LN−1
ji3...is



 ,

TN
i1...is =

N−1
∑

j=1

(Z(N−1))−1
i1j

(

Ss
ji2...is − 2

s
∑

r=2

δjirT
N
00i2...̂ir...is

)

, i1 6= 0, (3.8)

where some notations are defined in ref. [15]

fk ≡ p2k −m2
k +m2

0,

δ̄ij ≡ 1− δij ,

(ir)k ≡
{

ir , k > ir

ir − 1 , k < ir
,

Ss
ki2...is ≡ TN−1

(i2)k...(is)k
(k)δ̄ki2 . . . δ̄kis − TN−1

i2...is
(0)− fkT

N
i2...is . (3.9)

Otherwise, when the Gram determinant is zero, there is at least one non-vanishing element

Z̃
(N)
kl in the adjoint matrix of Z(N)

Z̃
(N)
kl ≡ (−)k+l

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2p1p1 . . . 2p1pl−1 2p1pl+1 . . . 2p1pN
...

. . .
...

...
. . .

...

2pk−1p1 . . . 2pk−1pl−1 2pk−1pl+1 . . . 2pk−1pN

2pk+1p1 . . . 2pk+1pl−1 2pk+1pl+1 . . . 2pk+1pN
...

. . .
...

...
. . .

...

2pNp1 . . . 2pNpl−1 2pNpl+1 . . . 2pNpN

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(3.10)
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and one non-zero element X̃
(N)
0j in the adjoint matrix of the following matrix

X(N) ≡













2m2
0 f1 . . . fN

f1 2p1p1 . . . 2p1pN
...

...
. . .

...

fN 2pNp1 . . . 2pNpN













. (3.11)

One-loop reduction can be applied using the following equations

TN
i1...is = − 1

X̃
(N−1)
0j

N−1
∑

n=1

Z̃
(N−1)
jn

(

Ŝs+1
ni1...is

− 2

s
∑

r=1

δnirT
N
00i1...̂ir...is

)

,

TN
00i1...is =

1

2(6 + s−N +
∑s

r=1 δ̄ir0)Z̃
(N−1)
kl

[

Z̃
(N−1)
kl Ss+2

00i1...is

+
N−1
∑

n=1

(

Z̃
(N−1)
nl Ŝs+2

nki1...is
− Z̃

(N−1)
kl Ŝs+2

nni1...is

)

−
N−1
∑

n,m=1

˜̃
Z

(N−1)
(kn)(lm)

(

fnŜ
s+1
mi1...is

+ 2

s
∑

r=1

δnir Ŝ
s+2
m00i1...̂ir...is

−fnfmTN
i1...is − 2

s
∑

r=1

(fnδmir + fmδnir)T
N
00i1...̂ir...is

−4
s
∑

r,t=1,r 6=t

δnirδmitT
N
0000i1...̂ir...̂it...is







 . (3.12)

Some notations in eq. (3.12) should be recalled, i.e.

˜̃
Z

(N)
(ik)(jl) ≡ (−)i+j+k+lsgn(i− k)sgn(l − j)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2p1p1 . . . 2p1pj−1 2p1pj+1 . . . 2p1pl−1 2p1pl+1 . . . 2p1pN
...

. . .
...

...
. . .

...
...

. . .
...

2pi−1p1 . . . 2pi−1pj−1 2pi−1pj+1 . . . 2pi−1pl−1 2pi−1pl+1 . . . 2pi−1pN

2pi+1p1 . . . 2pi+1pj−1 2pi+1pj+1 . . . 2pi+1pl−1 2pi+1pl+1 . . . 2pi+1pN
...

. . .
...

...
. . .

...
...

. . .
...

2pk−1p1 . . . 2pk−1pj−1 2pk−1pj+1 . . . 2pk−1pl−1 2pk−1pl+1 . . . 2pk−1pN

2pk+1p1 . . . 2pk+1pj−1 2pk+1pj+1 . . . 2pk+1pl−1 2pk+1pl+1 . . . 2pk+1pN
...

. . .
...

...
. . .

...
...

. . .
...

2pNp1 . . . 2pNpj−1 2pNpj+1 . . . 2pNpl−1 2pNpl+1 . . . 2pNpN

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

N > 2,
˜̃
Z

(2)
(ik)(jl) ≡ δilδkj − δijδkl,

Ŝs
ki2...is ≡ TN−1

(i2)k...(is)k
(k)δ̄ki2 . . . δ̄kis − TN−1

i2...is
(0). (3.13)
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For det(Z(N−1)) = 0,det(X(N−1)) = 0 and all X̃
(N−1)
0k = 0 but Z̃

(N−1)
kl 6= 0 and X̃N−1

ij 6= 0,

following equations

TN
0 . . . 0
︸ ︷︷ ︸

r

l . . . l
︸ ︷︷ ︸

n

i1...im =
1

2(n+ 1)Z̃
(N−1)
kl

[

−2
m
∑

j=1

Z̃
(N−1)
kij

TN
0 . . . 0
︸ ︷︷ ︸

r

l . . . l
︸ ︷︷ ︸

n+1

i1...̂ij ...im

+
N−1
∑

j=1

Z̃
(N−1)
kj Ŝr+n+m

j0 . . . 0
︸ ︷︷ ︸

r−2

l . . . l
︸ ︷︷ ︸

n+1

i1...im

]

, i1, . . . , im 6= 0, l,

TN
i1...is =

1

X̃
(N−1)
ij

[

Z̃
(N−1)
ij

(

2(5 + s−N)TN
00i1...is − TN−1

i1...is
(0)

−∆LN−1
i1...is

−
N−1
∑

n=1

∆LN−1
ni1...is

)

+
N−1
∑

m,n=1

˜̃
Z

(N−1)
(in)(jm)fn(Ŝ

s+1
mi1...is

− 2
s
∑

r=1

δmirT
N
00i1...̂ir...is

)

]

(3.14)

can be used. Other details in the derivation of these equations can be found in [15].

4 Higgs decay into two photons

In this section, one-loop reduction which is illustrated in the previous section is applied to

the process H → γγ.

In unitary gauge, the three diagrams via the W-boson loop that contribute to this

process with a specific loop momentum configuration are shown in figure (1). A direct

calculation of amplitude (dropping the polarization vectors of external photons) yields

Mµν
unitary = − 3e3mW

8π4m2
Hsw

[

2kµ2 k
ν
1

(

iπ2 − (m2
H − 2m2

W )C0(0, 0,m
2
H ,m2

W ,m2
W ,m2

W )
)

−k1 · k2gµν
(

iπ2 − 2(m2
H − 2m2

W )C0(0, 0,m
2
H ,m2

W ,m2
W ,m2

W )
)]

=
3ie3mW

8π2m4
Hsw

[

−k
µ
2 k

ν
1

(

2m2
H + 4(m2

H − 2m2
W )f(

m2
H

4m2
W

)

)

+k1 · k2gµν
(

m2
H + 4(m2

H − 2m2
W )f(

m2
H

4m2
W

)

)]

, (4.1)

with

f(x) ≡







arcsin(
√
x)2 , x ≤ 1

−1
4

[

ln (1+
√
1−x−1

1−
√
1−x−1

)− iπ
]2

, x > 1
, (4.2)

and the scalar integral C0 is given in appendix B. However, gauge invariance is spoiled in

this four-momentum cutoff regularization. Therefore, a term should be subtracted from the

above expressions to recover gauge invariance. In this gauge, a requirement of Mµν(k1 =

k2 = 0) = 0 should be made. However,

Mµν
unitary(k1 = k2 = 0) =

−3ie3mW

16π2sw
gµν 6= 0. (4.3)
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Following Dyson’s prescription [16, 17], gauge invariance is recovered after making sub-

traction from eq. (4.3), and the final result is

Mµν
unitary = − 3ie3

16π2mW sw
(kµ2 k

ν
1 − gµνk1 · k2)

(

τ−1 + (2τ−1 − τ−2)f(τ)
)

(4.4)

with τ =
m2

H

4m2
W

following the notations of refs. [3, 4]. Eq. (4.4) is the same as those in

refs. [3, 4] up to a factor of −2i from the symmetry factor of loops and different conventions

of Feynman rules. However, in this gauge, there are high degrees of ultraviolet divergence

in each diagram. The expressions for amplitude may be different under different choices of

loop momentum. One may suspect that the discrepancy between eq. (4.4) and the result

given in DREG

Mµν
DREG = − ie3

16π2mW sw
(kµ2 k

ν
1 − gµνk1 · k2)

(

2 + 3τ−1 + 3(2τ−1 − τ−2)f(τ)
)

(4.5)

is originated from the bad loop momentum choices in eq. (4.4). However, in our calculation

we find that the terms

∆Mµν(p) = − ie3

96π2m3
W sw

[

(kµ2 p
ν − pµkν1 )

(

−3Λ2 − 2m2
H − 6m2

W + (k1 + k2) · p− p2
)

+2gµν(k1 − k2) · p
(

−3Λ2 − 2m2
H + 3m2

W + (k1 + k2) · p− p2
)]

(4.6)

should be added to eq. (4.4) if loop momentum k is shifted to k + p. From the symmetric

consideration of k1, k2, a proper choice of p is k1+k2
2 which is the same as that presented in

refs. [3, 4]. Since ∆Mµν(k1+k2
2 ) = 0 in eq. (4.6), the result in eq. (4.4) remains unchanged.

From eq. (4.6), it seems hopeless that the difference between eq. (4.4) and eq. (4.5) can be

eliminated through shifting the integral momentum k.

In ’t Hooft-Feynman gauge (ξ = 1), the amplitude with one-loop diagrams shown in

figure (2) is

Mµν
ξ=1 =

e3

16π4m2
HmW sw

{

2kµ2 k
ν
1

[

−iπ2(m2
H + 6m2

W )

+6m2
W (m2

H − 2m2
W )C0(0, 0,m

2
H ,m2

W ,m2
W ,m2

W )
]

+ k1 · k2gµν
[

iπ2(m2
H + 6m2

W )

−12m2
W

(

m2
H − 2m2

W

)

C0(0, 0,m
2
H ,m2

W ,m2
W ,m2

W )
]}

=
ie3

16π2m2
HmW sw

[

−2kν1k
µ
2

(

m4
H + 6m2

Hm2
W + 12m2

W

(

m2
H − 2m2

W

)

f(τ)
)

+k1 · k2gµν
(

m4
H + 6m2

Hm2
W + 24m2

W (m2
H − 2m2

W )f(τ)
)]

. (4.7)

Following a similar procedure to obtain a gauge invariant result, the amplitude at k1 =

k2 = 0 is calculated as

Mµν
ξ=1(k1 = k2 = 0) = −3ie3mW

16π2sw
gµν , (4.8)
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which is the same as eq. (4.4). However, the gauge invariant amplitude is non-vanishing

at k1 = k2 = 0 because of the contributions of diagrams (g) and (h) in figure (2) in this

gauge. These contributions are

Mµν
ξ=1,(g,h)(k1 = k2 = 0) =

ie3m2
H

32π2mW sw
gµν . (4.9)

Therefore, the subtracted terms should be Mµν
ξ=1(k1 = k2 = 0) −Mµν

ξ=1,(g,h)(k1 = k2 = 0)

instead of Mµν
ξ=1(k1 = k2 = 0). The final result is

Mµν
ξ=1 = − ie3

16π2mW sw
(kµ2 k

ν
1 − gµνk1 · k2)

(

2 + 3τ−1 + 3(2τ−1 − τ−2)f(τ)
)

= Mµν
DREG. (4.10)

The term generated by the contributions of the Goldstone triangle diagrams (d, e) in fig-

ure (2) spoils the decoupling theorem, as pointed out by Shifman et al. recently [10].

Given that there are only logarithmic divergences under this covariant gauge, the result in

eq. (4.10) is unique with a different loop momentum chosen. To best of our knowledge, it

is the first derivation in the ’t Hooft-Feynman gauge in cutoff regularization.

It seems there are some problems with unitary gauge in this cutoff regularization.

Given that the top quark loop (figure (3)) does not suffer from any ambiguities in the

gauge or loop momentum choices, the diagrammatic expressions are expected to be the

same in DREG and in this cutoff regularization. These conditions have been verified

following the same procedures. The result is as follows

Mµν
top =

ie3Nc

18π2mW sw
(kµ2 k

ν
1 − k1 · k2gµν)

(

χ−1 + (χ−1 − χ−2)f(χ)
)

, (4.11)

where χ =
m2

H

4m2
t

.

The authors of refs. [11, 12] have also calculated this Higgs decay process in Pauli-

Villars regularization and dimensional regularization respectively, and obtained the same

result as the old ones [5–8]. Their statement about this issue is that the integral (in

Euclidean space)

Iµν ≡
∫

k2gµν − 4kµkν
(k2 +m2)3

(4.12)

is vanishing in cutoff regularization, while it is nonzero in DREG, which is also pointed

out by R. Gastmans et al. [3, 4]. They also argued that Iµν contained the difference of

two logarithmic divergencies and should be regulated. Therefore, the integral that violates

electromagnetic gauge invariance may suffer from some ambiguities. Actually, this issue

was first discussed by R. Jackiw [21] in a more general case. However, we think that

the vanishing of Iµν in 4 dimensions is just a result of the fact that the integral intervals

are symmetric about the origin even when there is a cutoff Λ, and the replacement of

kµkν → gµνk2

4 in the integrand is also proper.

Moreover, very recently R. Jackiw also pointed out that by combining the two terms

in the integrand of Iµν one can avoid infinities but the difference of the integrals in these
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two regularization schemes is still the same, thus both evaluations are mathematically

defensible [22]. So, what are the physical reasons for these ambiguities? In the following,

we will try to clarify this issue.

Considering that the diagrammatic expressions in unitary gauge are not well-defined

in the four-momentum cutoff regularization, how to recover the correct result under this

condition may be still an open question. We investigate the Lagrangian for the Standard

Model in unitary gauge, similar to the treatments in ref. [19]. The covariant terms for

scalars are

Lscalar ≡ (DµΦ)
†(DµΦ)−V(Φ),

with V(Φ) ≡ −µ2Φ†Φ+ λ(Φ†Φ)2,DµΦ ≡
(

∂µ − i

2
gτ iWi

µ − i

2
g′Bµ

)

Φ. (4.13)

The scalar doublet produces the vacuum expectation value through the Higgs mechanism as

〈Φ〉0 =

(

0
v√
2

)

, v =

(

µ2

λ

)1/2

. (4.14)

Therefore, the scalar fields can be redefined as

Φ =

(

φ+

v√
2
+ h + iφ3

)

. (4.15)

There are terms like

m2
WW+

µW
−,µ + imW

(

W−
µ ∂

µφ+ −W+
µ ∂

µφ−)

= m2
W

(

W+
µ +

i

mW
∂µφ

+

)(

W−,µ − i

mW
∂µφ−

)

− ∂µφ
+∂µφ− (4.16)

after expanding the Lagrangian given in eq. (4.13), where W±
µ ≡ W 1

µ∓iW 2
µ√

2
. By following

the prescription in ref. [19], the W-boson fields in unitary gauge can be redefined as

W̃+
µ ≡ W+

µ +
i

mW
∂µφ

+,

W̃−
µ ≡ W−

µ − i

mW
∂µφ

−. (4.17)

In this gauge there are no kinetic term ∂µφ
+∂µφ− and mass term for the Goldstone φ+, φ−

because of the cancelation between the last term in eq. (4.16) and the original kinetic term

of the W-boson’s Goldstone in Lscalar. However, terms such as hφ+φ− still exist in the

original Lagrangian. In DREG, φ+ = φ− = 0 can be set safely, similar to a previous

work by Grosse-Knetter [20], because all the momentum modes can be included in this

regularization.2 Hence, the conventional Lagrangian in unitary gauge only with physical

fields is obtained. However, the results are in contrast to those of the four-momentum cutoff

regularization, because an artificial scale Λ is introduced in the Lagrangian. The absence of

a kinetic term for φ+, φ− does not mean that these Goldstone fields are vanishing intuitively,

2Note that the limits of loop integrals are taken to be infinity
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H

γ

γ

k1, µ

k2, ν

W

k

k − k1

k − k1 − k2

(a)

H

γ

γ

k1, µ

k2, ν

W

k

k − k1

k − k1 − k2

(b)

H

γ

γ

W k1, µ

k2, ν

k

k − k1 − k2

(c)

Figure 1. Feynman diagrams via W-boson loop in unitary gauge for H → γγ.

but because the theory does not provide any information above Λ in this regularization.

If the mass of φ+, φ− is assumed to be O(Λ), there are still finite contributions from the

Goldstone triangle diagrams when Λ → ∞. From this viewpoint, the cutoff regularization

in unitary gauge is problematic. The violation of the property in gauge invariance can also

be attributed to the absence of large momentum modes. Therefore, the old results in the

literature for H → γγ are still valid.

In fact, dimensional and Pauli-Villars regularization schemes are free of missing large

momentum modes, and can maintain gauge invariance. Therefore, these results are cor-

rect also in unitary gauge. From the evaluations of R. Jackiw, the integral Iµν can be

dealt without any infinities, and the only difference is from surface terms (i.e., the large

momentum region), which also verifies our conclusion.

5 Summary

A method for systematical evaluations of one-loop tensor integrals in cutoff regularization

is proposed by deriving a new recursive relation eq. (2.6) and implementing it in the

Passarino-Veltman reduction method. The result has been expressed in a form that can

be directly translated into computer codes. Similar to the methods presented in ref. [15],

our results are also numerical stable for up to four-point integrals. Surely, our method can

be extended to deal with high-point integrals straightforwardly.

With this approach, we have calculated the amplitudes for Higgs decay into two pho-

tons via the W-boson loop and the top-quark loop. The correctness of the method has been

confirmed by evaluating these processes and checking other programs, and it is certainly

useful in both theoretical and phenomenological aspects. Moreover, we also reanalyze the

Higgs decay process and make our efforts to find the physical reasons for some puzzles

appeared in the calculations of this process.
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W
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Figure 2. Some representative Feynman diagrams via W-boson loop in ’t Hooft-Feynman gauge

for H → γγ.
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t

t

(a)

H

γ

γ
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k2, ν

t

t

t

(b)

Figure 3. Feynman diagrams via top-quark loop for H → γγ.

A Derivation of expressions for J
N
µ1µ2...µs

In this appendix, the general formulae for JN
µ1µ2...µs

≡
∫

d4k
kµ1kµ2 ...kµs
(−k2+a2)N

used in section 2

are derived first. Obviously, JN
µ1µ2...µs

is vanishing unless s is even. Therefore, s should be

an even and non-negative integer and N should be positive in the following context.

A notation (similar to but a little different from that in ref. [15]) is introduced first

in order to write down the tensor decomposition in a concise way. We use curly braces to
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denote symmetrization with respect to Lorentz indices, where all non-equivalent permuta-

tions of the Lorentz indices on metric tensor g and momenta p are implicitly understood.

A generic notation {g2n0pn1

1 . . . p
nk

k }µ1...µt with t =
∑k

l=1 nl + 2n0 means a sum that the

2n0 of Lorentz indices µ1, . . . , µt are distributed to n0 metric tensors g while nl of them

are distributed to nl momenta pl with equal weights. For instance,

{g4}µνρσ ≡ gµνgρσ + gµρgνσ + gµσgνρ,

{g2p1}µνρ ≡ gµνpρ + gνρpµ + gρµpν ,

{p21p12}µνρ ≡ p1µp1νp2ρ + p1µp1ρp2ν + p1νp1ρp2µ. (A.1)

The Lorentz covariance ensures us to make the following replacement

kµ1
kµ2

. . . kµs −→ {gs}µ1µ2...µs

(k2)
s
2

Γ( s2 + 2)2
s
2

(A.2)

in the integral JN
µ1...µs

, which can be proven by the induction of the integer s. After this

replacement and subsequent Wick rotation, spherical coordinate system transformation

and some trivial variable substitutions, one arrived

JN
µ1...µs

= {gs}µ1...µs

iπ2(−2)−
s
2

Γ( s2 + 2)

∫ Λ2

0
dK

K
s+2

2

(K + a2)N
, (A.3)

where Λ was denoted as the ultraviolet cutoff scale.

Eq. (A.3) can be solved directly when a2 = 0, i.e.

JN
µ1...µs

= {gs}µ1...µs

iπ2(−2)−
s
2

Γ( s2 + 2)

2Λ∆

∆
(A.4)

when superficial degree of ultraviolet divergence ∆ ≡ s−2N +4 > 0. In the case of ∆ ≤ 0,

eq. (A.3) encounters infrared divergence, which is not considered in this article. When

a2 6= 0, result becomes a little more complicated than the previous one. However, this

problem can be resolved after implementing the tricks of using integration by parts and

following integral formulae
∫

dx xn ln(x+ a) =
1

n+ 1

(

xn+1 ln(x+ a)−
n
∑

k=0

(−a)kxn+1−k

n+ 1− k

−(−a)n+1 ln(a+ x)

)

, n ∈ N (A.5)

into eq. (A.3). The explicit expressions for JN
µ1...µs

can also be obtained, i.e. a2 6= 0 and

superficial degree of divergence ∆ ≡ s− 2N + 4 ≥ 0 yields

JN
µ1...µs

= {gs}µ1...µs (−2)−
s
2

iπ2

Γ(N)


−
N−1
∑

k=1

Γ(N − k)

Γ( s2 + 3− k)





∆

2
∑

l=0

C l
N−k+l−1(−a2)lΛ∆−2l





+
Γ(1)

Γ(∆2 + 1)





∆

2
−1
∑

k=0

(−a2)k
2Λ∆−2k

∆− 2k
+ (−a2)

∆

2 ln(
Λ2

a2
)







 , (A.6)
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while a2 6= 0 but ∆ < 0 returns

JN
µ1...µs

= {gs}µ1...µs (−2)−
s
2

iπ2Γ(−∆
2 )

Γ(N)
a∆. (A.7)

B Some scalar integrals

After the reduction of one-loop integrals using the modified Passarino-Veltman reduction

formulas given in the section 2, every tensor integral can be expressed as a linear com-

bination of up to four-point scalar integrals. In this appendix, the analytical expressions

for some scalar integrals are listed below. Some of them may be used in the one-loop

calculations of the process Higgs decay to two photons.

First of all, the conventions for the scalar integrals used in this article are fixed

as follows

TN
0 ≡

∫

d4k
1

D0D1 . . . DN−1
. (B.1)

For one-point functions,

A0(0) = −iπ2 Λ2,

A0(m
2
0) = iπ2m2

0

(

ln(
Λ2

m2
0

)− Λ2

m2
0

)

,

A0 . . . 0
︸ ︷︷ ︸

2n

(m2
0) =

(−)n+1iπ2

Γ(n+ 2)2n

(

n+1
∑

i=1

(−)n+1−i

i
Λ2im2n+2−2i

0 + (−)n+1m2n+2
0 ln(

Λ2

m2
0

)

)

.(B.2)

Two-point functions can be easily verified as

B0(p
2
1,m

2
0,m

2
1) = iπ2

(

ln(
Λ2

p21
) + 1 +

2
∑

i=1

[γi ln(
γi − 1

γi
)− ln(γi − 1)]

)

,

with γ1,2 =
p21 −m2

1 +m2
0 ±

√

(

p21 −m2
1 +m2

0

)2 − 4p21m
2
0

2p21
,

B0(0, 0,m
2) = iπ2 ln(

Λ2

m2
),

B0(p
2, 0, 0) = iπ2

(

ln(
Λ2

p2
) + 1

)

,

B0(p
2, 0,m2) = iπ2

(

ln(
Λ2

m2
) + 1 +

m2 − p2

p2
ln(

m2 − p2

m2
)

)

,

B0(0,m
2
0,m

2
1) = iπ2

m2
0 ln(

Λ2

m2
0

)−m2
1 ln(

Λ2

m2
1

)

m2
0 −m2

1

,

B0(0,m
2,m2) = iπ2

(

ln(
Λ2

m2
)− 1

)

. (B.3)
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Moreover, two special finite three-point functions are

C0(0, 0, p
2,m2,m2,m2) =

iπ2

2p2



ln2(
1−

√

1− 4m2

p2

1 +
√

1− 4m2

p2

)− π2



 ,

C0(0, 0, 0,m
2,m2,m2) = − iπ2

2m2
. (B.4)
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