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1 Introduction

Compactifications of the heterotic string on Calabi-Yau manifolds has been a successful

avenue towards string model building since the early days of string theory [1] and recent

progress [2–5] models are edging closer and closer to a realistic standard model from string

theory. However, part of any program aiming at realistic string models must be the sta-

bilization of moduli and this is where heterotic compactifications encounter problems. In

type II models a combination of NS and RR flux allows one, at least in principle, to stabi-

lize all complex structure moduli and the dilaton while, thanks to the no-scale structure,

keeping the theory in a Minkowski vacuum [6]. In heterotic compactifications, on the other
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hand, only NS flux is available. This stabilizes the complex structure moduli only and one

need to use topological properties of the internal space to stabilize the remaining fluxes [7].

Moreover, the heterotic flux superpotential, unlike its IIB counterpart, does not allow itself

to be tuned to small values by a careful choice of the flux integers. All these features mean

that it will be difficult at best to achieve a scale separation between the string and the flux

scale in heterotic Calabi-Yau models with flux.

The previous discussion suggests that heterotic models with stable moduli may require

compactifications on more general manifolds with SU(3) structure, where some of the

“missing” RR flux is replaced by the intrinsic torsion of the manifold. Studying such more

general backgrounds for heterotic compactifications is the main purpose of the present

paper. One such class of compactifications has been identified early on by Strominger [8].

To obtain this class a maximally symmetric four-dimensional space and four preserved

supercharges have been assumed. In this case, it turns out that the associated internal

six-dimensional manifolds have SU(3) structure and are complex but, in general, no longer

Kahler. In the present paper, we will generalize this discussion by relaxing both initial

assumptions. We will allow the four-dimensional space to deviate from maximal symmetry,

more specifically, we will allow it to be a domain wall, and we will only require two preserved

supercharges for the 10-dimensional solution.

Why are we interested in backgrounds which violate the conventional requirement of

a four-dimensional maximally symmetric space? The simple answer is that there exists

conditions where the lowest order in α′ flux superpotential in four dimensions leads to a

runaway potential for some of the moduli and the simplest solution consistent with this

feature is a four-dimensional domain wall. This happens for the crude heterotic Calabi-

Yau compactifications with flux but also for more general heterotic compactifications on

half-flat manifolds as studied in refs. [9–12]. In general, world sheet effects need to be

considered in order to stabilize all moduli. This is typically the case for the dilaton mode.

Therefore, one should phenomenologically require a four-dimensional maximally symmet-

ric space after all relevant effects, including non-perturbative ones, have been included.

When studying 10-dimensional perturbative string solutions we could allow for more gen-

eral four-dimensional spaces, keeping in mind the possibility of a non-perturbative “lift” to

a maximally symmetric four-dimensional space. This allows us to study some more general

backgrounds as generally considered as potentially interesting solutions. We should now

emphasize a shortcoming of our analysis. As we don’t think of the domain wall solution as

“final”, we are not interested in whether it is well behaved everywhere and omit discussing

region in which it might become singular, such as e.g. at the boundary of the transverse

direction.

With this motivation in mind, we will study 10-dimensional solutions of the heterotic

string which consist of a warped product of a six-dimensional internal space and a four-

dimensional domain wall and preserve two supercharges (that is, they are half BPS from

a four-dimensional N = 1 point of view). There are two main questions we would like

to answer in this context. First, what are the allowed internal six-dimensional spaces in

such a setting? This question will be answered using the G-structure formalism [13, 14]

(for a review see [15]) applied to the heterotic case [16], for the groups G2 and SU(3),
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and this leads to a significant generalization of the class of manifolds found by Strominger.

Secondly, we would like to show the consistency of certain heterotic compactifications on

half-flat mirror manifolds [9–11] which has been carried out in the absence of a full 10-

dimensional solution. This will be done by verifying that such half-flat mirror manifolds

are allowed internal manifolds within our generalized setting and that the domain wall

solutions in the associated four-dimensional N = 1 supergravity theories do indeed lift

up to the correct 10-dimensional solutions. A general classification of solutions to the

heterotic string which preserve some supersymmetry has been carried out in ref. [17], using

spinorial methods. The solutions considered in the present paper fit into this classification

and correspond to cases with two supercharges and G2 stability group.

In this paper, we will work to zeroth order in α′, that is, we will not consider gauge fields

explicitly although the standard embedding should provide at least one way of completing

our models to include gauge fields.1

The plan of the paper is as follows. In the next section, we set the scene by reviewing

some general properties of the heterotic string and by defining our solution Ansatz. In

section 3 we focus on the case of vanishing flux and constant dilaton, as a warm-up. We

derive the structure of the 10-dimensional solutions in this case and show that they can

be matched up with four-dimensional domain wall solutions in the associated compactified

theories. We repeat this discussion but in full generality including non-vanishing flux and

a non-constant dilaton in section 4. Finally, in section 5 we introduce a class of Calabi-Yau

domain wall solutions with flux. We conclude in section 6. Three technical appendices set

out our conventions, review G-structures and their associated torsion classes for the groups

G2 and SU(3) and collect some relevant formulae for Calabi-Yau moduli spaces.

2 Ten-dimensional theory and solution Ansatz

To set the scene, we briefly review the 10-dimensional effective action of the heterotic string

and its associated Killing spinor equations (see, for example, refs. [18, 19] for details). Then

we discuss our solution Ansatz.

2.1 Action and Killing spinor equation

The bosonic spectrum of this effective theory consists of the 10-dimensional metric ĜMN ,

the dilaton φ̂ and the NS-NS rank two anti-symmetric tensor field B̂ = 1
2B̂MNdx

M ∧ dxN

with field strength

Ĥ = dB̂ . (2.1)

Here, we use indices M,N, . . . = 0, 1, . . . , 9 to label the 10-dimensional space-time coor-

dinates xM . (For a summary of our index conventions see appendix A.) In addition, we

have the gauge field AM with associated gauge group SO(32) or E8×E8 and field strength

FMN . To lowest order in α′, the bosonic part of the string frame action is given by

SS
0,bosonic = − 1

2κ2
10

∫

M10

e−2φ̂

[

R̂ ∗ 1− 4dφ̂ ∧ ∗dφ̂+
1

2
Ĥ ∧ ∗Ĥ

]

, (2.2)

1This might turn out to be a complicated problem for backgrounds with non vanishing NS flux. However,

this is beyond the scope of the present paper and we would like to defer this discussion to a later work.
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where κ10 is the 10-dimensional Planck constant. Gauge field terms only arise at order

α′ and do, therefore, not appear in the above action. In the present paper, we restrict

our discussion to the lowest order in α′ so we will not consider gauge fields explicitly from

hereon.

For completeness, we also provide the bosonic equations of motion which follow from

the action (2.2). They are given by

R̂MN −
1

4
ĤPQMĤ

PQ
N + 2∇M∂N φ̂ = 0 , (2.3)

∇M

(

e−2φ̂ĤM
PQ

)

= 0 , (2.4)

∇2φ̂− 2ĜMN∂M φ̂∂N φ̂+
1

12
ĤMNP Ĥ

MNP = 0 , (2.5)

where ∇ is the covariant derivative associated to the Levi-Civita connection of Ĝ.

The fermionic partners of the bosonic fields above are the gravitino ψM , the dilatino

λ and the gauginos χ, all of which are 10-dimensional Majorana-Weyl spinors. (For our

spinor conventions, see appendix A.) Their supersymmetry transformations are given by

δψM =

(

∇M +
1

8
ĤM

)

ǫ , (2.6)

δλ =

(

6∇φ̂+
1

12
Ĥ

)

ǫ , (2.7)

δχ = FMNΓMNǫ , (2.8)

where ǫ is a 10d Majorana-Weyl spinor parametrizing the transformations. Here and in

the following we use the short-hand notation ĤM = ĤMNP ΓNP and Ĥ = ĤMNP ΓMNP for

the contraction of the field strength Ĥ with products of 10-dimensional gamma matrices

ΓM . For later purposes, it is useful to introduce the connection

∇(H)
M ≡ ∇M +

1

8
ĤM , (2.9)

which appears on the right-hand side of eq. (2.6). This is a connection with torsion given

by the NS-NS field Ĥ.

In this paper, we are interested in finding solutions to the Killing spinor equations

δψM = 0, δλ = 0 and δχ = 0. It is known that such solutions also solve the bosonic

equations of motion provided that the equation of motion and the Bianchi identity for Ĥ

are satisfied. As mentioned above, we will only work to lowest order in α′ where gauge

fields do not appear so we are only concerned with the Killing spinor equations δψM = 0

and δλ = 0 and the Bianchi identity in its simple form (2.1). This concludes our basic

set-up and we would now like to discuss the class of solutions we will be interested in.

2.2 Solution Ansatz

It is known for a long time [1], and has been the basis of much of heterotic string phe-

nomenology, that a direct product of four-dimensional Minkowski space with a Calabi-Yau

three-fold solves the Killing spinor equations provided the dilaton φ̂ is constant and the
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flux Ĥ vanishes. Such Calabi-Yau solutions preserve four out of the 16 supercharges,

corresponding to four-dimensional N = 1 supersymmetry.

A more general class of solutions, also preserving four supercharges, was subsequently

considered by Strominger [8]. These solutions allow for a warped product between the

internal six-dimensional space and four-dimensional Minkowski space as well as a non-

constant dilaton and non-vanishing flux. It turns out that the warp factor in those solutions

is proportional to the dilaton. Moreover, the internal manifolds are no longer restricted

to be Calabi-Yau but can be more general complex, non-Kahler manifolds with SU(3)

structure. For later comparison it is useful to describe these manifolds using the by-

now well-established classification of SU(3) structures [14, 16] in terms of the five torsion

classes W1, . . . ,W5. (See appendix B for a brief introduction to G-structures and torsion

classes.) In this language, Strominger’s manifolds are characterized by torsion classes

satisfying [16, 20]

W1 = W2 = 0 , W4 =
1

2
W5 = dφ̂ , (2.10)

and are arbitrary otherwise. The first of these conditions implies that the manifolds are

indeed complex.

The class of heterotic solutions described by Strominger is the most general one if one

insists on a maximally symmetric four-dimensional space-time and four preserved super-

charges. In this paper, we will relax both of these conditions. We will ask for only two

preserved supercharges and allow four-dimensional space-time to be a domain wall solution,

arguably the next-simplest possibility after maximal symmetry. Why are we interested in

such vacua which do not conform with the usual requirement of a four-dimensional maxi-

mally symmetric space-time? The answer is related to the structure of flux compactifica-

tions. Frequently, flux on its own is not sufficient to stabilize all the moduli and additional

non-perturbative effects are needed. However, such non-perturbative effects are typically

incorporated at the level of the four-dimensional effective theory and are not “visible” when

solving the 10-dimensional theory. In other words, a typical 10-dimensional solution, only

reflects the perturbative structure of the model. In type IIB Calabi-Yau vacua with flux

the four-dimensional potential vanishes at the minimum as a consequence of the no-scale

structure [6]. At the perturbative level, this leads to the existence of Minkowski vacua with

flat directions. Not all compactifications allow for perturbative vacua with such a vanishing

potential. An example is provided by the heterotic compactifications on half-flat manifolds

considered in ref. [9–11, 21, 22]. In this case the unstabilized moduli are no longer flat

directions and the simplest solution to the four-dimensional theory at the perturbative

level is expected to be a half-BPS domain wall. The main purpose of the present paper is

to find the full 10-dimensional solutions which correspond to such compactifications and

identify the class of internal SU(3) structure manifolds which can arise in this context. We

will also study in detail the relation of this 10-dimensional solution to the four-dimensional

domain wall solution which arises in the compactified theory.

With this motivation in mind we now explain our Ansatz. We consider 10-dimensional

metrics of the form

ds210 = e2A(xm)
(

ηαβdx
αdxβ + e2∆(xm)dx3dx3 + guv(x

m)dxudxv
)

, (2.11)
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where ηαβ is the 2 + 1-dimensional Minkowski metric, guv is an internal six-dimensional

metric on a compact manifold X̂ and A and ∆ are warp factors. We have introduced three-

dimensional indices α, β, . . . = 0, 1, 2, seven-dimensional indices m,n, . . . = 3, . . . 9 and six-

dimensional indices u, v, . . . = 4, . . . , 9 (see appendix A for a summary of conventions). The

four-dimensional part of this metric can be interpreted as a domain wall with world-volume

coordinates xα. The coordinate x3, transverse to the domain wall, will also be denoted by

y in the following. The full 10-dimensional metric represents a warped product between

this domain wall and the “internal” six-dimensional space X̂. Alternatively, the metric can

be viewed as a warped product of 2 + 1-dimensional Minkowski space (the world-volume

of the domain wall) and a seven-dimensional space Y = {y} × X̂. Both viewpoints will be

useful.

We would like to preserve 2 + 1 dimensional Lorentz invariance on the domain wall

world volume and therefore demand that2

ĤαMN = 0 , ∂αφ̂ = 0 . (2.12)

This completely specifies the Ansatz for the bosonic fields.

In addition, we should also provide the Ansatz for the spinor ǫ which parameterizes

the 10-dimensional supersymmetry transformations. Since we are interested in solutions

with two preserved supercharges we should assume the existence of a globally defined

seven-dimensional Majorana spinor η on Y . In analogy with the decomposition of the

metric (2.11), we write

ǫ(xm) = ρ⊗ η(xm)⊗ θ , (2.13)

where θ is an eigenvector of the third Pauli matrix σ3, and ρ is a (constant) Majorana

spinor in 2+1 dimensions whose two components represent the two preserved supercharges

of the solution. In what follows it will sometimes be useful to write η in terms of two chiral

six-dimensional spinors η± as

η(xm) =
1√
2

(

η+(xm) + η−(xm)
)

. (2.14)

(See appendix A for details on spinor conventions.)

Before embarking on a detailed analysis of the above Ansatz we would like to draw two

simple conclusions. From the gravitino Killing spinor equation, δψm = 0, together with

eqs. (2.6), (2.9) and (2.13) we have

∇(H)
m η = 0 . (2.15)

Hence, the internal spinor η is covariantly constant with respect to the torsion connection

∇(H). Further, after a short calculation, the external part of the gravitino Killing spinor

equation, together with eq. (2.11) leads to

δψα =
1

2
Γα

m∂mAǫ = 0 , (2.16)

2This requirement still allows a “space-filling” three form Hαβγ on the domain wall. In view of the

envisaged connection with flux compactifications to four dimensions we will not consider this possibility.

For the same reason we will later set Ĥ3MN = 0.
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where we have used the relation ∇̂M = ∇̃+ 1
2ΓM

N∂NA between the Levi-Civita connections

associated to two metrics Ĝ and G̃ related by a conformal re-scaling Ĝ = e2AG̃. The warp

factor A is, therefore, constant. For convenience, we set it to zero which simplifies our

metric Ansatz (2.11) to

ds210 = ηαβdx
αdxβ + e2∆(xm)dy2 + guv(x

m)dxudxv . (2.17)

This concludes our set-up. We will now analyze the resulting solutions using the formalism

of SU(3) (and G2) structures, beginning with the simple case of vanishing flux and constant

dilaton and, subsequently, considering the most general case.

3 Vanishing flux and half-flat compactifications

In this section, we would like to focus on the specific case of vanishing flux and constant

dilaton, that is

Ĥ = 0 , φ̂ = constant . (3.1)

As a first step, we will look at the structure of the 10-dimensional solution. We find that

the six-dimensional internal space X̂ is restricted to be half-flat while the structure of the

four-dimensional domain wall is described by Hitchin’s flow equations. These results are

then related to the four-dimensional N = 1 supergravity obtained from compactification

on half-flat mirror manifolds. In particular, within these four-dimensional effective super-

gavity theories, we find an explicit half-BPS domain wall solution which precisely matches

the domain wall present in the 10-dimensional solution. This shows that heterotic com-

pactifications on half-flat mirror manifolds are indeed consistent in the sense of there being

an associated solution of the full 10-dimensional theory, something taken on faith in earlier

papers [9–11].

3.1 The 10-dimensional solution

In the absence of flux the internal gravitino Killing spinor equation reads

∇mη = 0 , (3.2)

where we recall that ∇ is the ordinary Levi-Civita connection. Hence, η is a covariantly

constant spinor on the seven-dimensional space Y . By a well-known argument this im-

plies that Y has holonomy G2 (or smaller) and that its metric must be Ricci-flat. Of

course, it is immediately clear that, in the absence of stress energy, a product of 2+1-

dimensional Minkowski space and a seven-dimensional manifold with G2 holonomy solves

the 10-dimension Einstein equation (2.3).

We can also describe this situation in terms of G2 structures on Y . (For a brief review

on G-structures and torsion classes see appendix B.) We can think of such a G2 structure

as being defined by a three-form ϕ = 1
6ϕmnpdx

m ∧ dxn ∧ dxp and its (seven-dimensional)

Hodge dual Φ = ∗7ϕ on Y . In terms of the spinor η these forms can be written as

ϕmnp = −iη†γmnpη , Φmnpq = η†γmnpqη . (3.3)

– 7 –
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Then, the space Y has holonomy G2 (or smaller) if and only if the G2 structure is torsion-

free, that is, if it satisfies

d7ϕ = d7Φ = 0 , (3.4)

where d7 is the seven-dimensional exterior derivative. We would now like to decompose

these equations into 6 + 1 dimensions in accordance with our metric Ansatz (2.17). First,

in the direction of the special coordinate y, we introduce the one-form

α = e∆dy (3.5)

satisfying

dα = Θ ∧ α , Θ = d∆ . (3.6)

In terms of the six-dimensions chiral spinors η± one can introduce the forms

Juv = ∓iη†±γuvη± , Ωuvw = η†+γuvwη− , (3.7)

which define an SU(3) structure on the six-dimensional space X̂ for every fixed value of

y. The definition of the G2 structure (3.3) and the spinor decomposition (2.14) then lead

immediately to the well-known relations

ϕ = α ∧ J + Ω− , Φ = α ∧ Ω+ +
1

2
J ∧ J , (3.8)

where Ω± are the real and imaginary parts of Ω. These relations express the G2 structure

on Y in terms of the SU(3) structure on the six-dimensional space X̂ and the one-form α

in the y-direction. They can be used to rewrite the vanishing torsion conditions (3.4) for

the G2 structure as

dΩ− = 0 , (3.9)

J ∧ dJ = 0 , (3.10)

dΩ+ = e−∆J ∧ ∂yJ −Θ ∧ Ω+ , (3.11)

dJ = e−∆∂yΩ− −Θ ∧ J . (3.12)

The first two of these equations imply that the SU(3) structure on the six-dimensional

space X̂ is, in fact, half-flat. A half-flat SU(3) structure can also be characterized by the

following conditions

W1− = W2− = W4 = W5 = 0 , (3.13)

on the torsion classes, as can be seen by comparison with the general expressions for dJ and

dΩ in terms of torsion classes, eqs. (B.12). Here and in the following, we use subscripts ±
to denote the real and imaginary parts of torsion classes. Note that, unlike for Strominger’s

class of solutions (2.10), W1 and W2 are non-zero in general and, hence, the manifold X̂

does not necessarily admit an integrable complex structure. A further comparison between

eqs. (3.12) and (3.13) reveals that

Θ = 0 . (3.14)
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Hence, the warp factor ∆ can be set to zero and the 10-dimensional string-frame met-

ric (2.17) takes the form

ds210 = ηαβdx
αdxβ + dy2 + guv(y, x

w)dxudxv , (3.15)

where guv is the metric associated to the half-flat SU(3) structure given by J and Ω. From

eqs. (3.11) and (3.12) the y-dependence of this SU(3) structure is described by Hitchin’s

flow equations [14]

dΩ+ = J ∧ ∂yJ , dJ = ∂yΩ− . (3.16)

We should note that these flow equations do not guarantee for the volume of the internal

manifold to be bounded nor to remain large everywhere in y. However, as stated in the

introduction, we ignore such issues in our present analysis. From a physics point of view,

the metric (3.15) should be interpreted as a product of a six-dimensional half-flat space

X̂ with metric guv and a four-dimensional domain wall with world-volume coordinates xα

and transverse direction y. This shows that half-flat spaces can indeed be considered as

solutions of the heterotic string provided they are “paired up” with an external domain wall

solution rather than a maximally symmetric four-dimensional space-time. The existence

of these solutions also justifies heterotic compactifications on half-flat manifolds, as carried

out in refs. [9–11], and suggests the existence of half-BPS domain wall solutions in the

associated four-dimensional N = 1 supergravity theories which should match the domain

wall part of the metric (3.15). We will now verify this picture explicitly for compactifications

on half-flat mirror manifolds. First, we will briefly review the four-dimensional N = 1

supergravity theories which originate from such compactifications. Then we find explicit

half-BPS domain wall solutions in these supergravity theories and show that they match

the 10-dimensional solutions just obtained.

3.2 Heterotic compactification on half-flat mirror manifolds

Half-flat mirror manifolds have first been introduced in the context of type II mirror sym-

metry with NS-NS flux [23]. Essentially, they arise as mirrors of type II Calabi-Yau com-

pactifications with electric NS-NS flux. More specifically, consider a mirror pair X, X̃ of

Calabi-Yau manifolds and compactification of type IIB string theory on X̃ with NS-NS flux

H̃ = eiβ̃
i, where i = 1, . . . , h2,1(X̃), the β̃i are part of the standard symplectic three-form

basis on X̃ and ei are integer flux parameters. Then mirror symmetry suggests the exis-

tence of a half-flat manifold X̂, closely related to the mirror Calabi-Yau manifolds X, so

that compactification of IIA on X̂ (without flux) is mirror to the IIB compactification on

X̃ with flux H̃. Manifolds X̂ of this type will be referred to as half-flat mirror manifolds.

Although the explicit mirror map is unknown, mirror symmetry allows one to con-

jecture a number of properties for half-flat mirror manifold X̂ which, in turn, facilitates

explicit compactifications on such manifolds. Usually, these properties can be formulated

in terms of related properties of the associated Calabi-Yau manifold X. In particular,

X̂ carries a set {ωi}, where i, j, . . . = 1, . . . , h1,1(X) of two forms and a symplectic ba-

sis {αA, β
A}, where A,B, . . . = 0, . . . , h2,1(X), of three-forms so that the SU(3) structure
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forms (J,Ω) can be expanded as

J = viωi , Ω = ZAαA − GAβ
A . (3.17)

These equations are in complete analogy with the expansion of the Kahler form and holo-

morphic three-form on a Calabi-Yau manifold and, hence, by abuse of terminology, we will

also refer to the vi and ZA as Kahler and complex structure moduli, respectively. We also

introduce the affine complex structure moduli za = Za/Z0, where a, b, . . . = 1, . . . , h2,1(X).

Many of the standard Calabi-Yau moduli space results apply and the ones relevant in the

present context are summarized in appendix C. For a non-Calabi-Yau manifold J and Ω

are no longer closed and given the above expansion the same must be true for at least

some of the forms {ωi} and {αA, β
A}. It turns out, in the present case, the only non-closed

forms are [23]

dωi = eiβ
0 , dα0 = eiω̃

i . (3.18)

Here {ω̃i} is a set of four-forms dual to {ωi}, so that
∫

ωi ∧ ω̃j = δj
i . (3.19)

With these relations it is easy to verify that

dJ = vieiβ
0 , dΩ = Z0eiω̃

i , (3.20)

and that J and Ω indeed satisfy the half-flat conditions (3.9) and (3.10).

At this stage, we should emphasize the fact that the above set of relations should be

taken as a practical toolbox kit in order to perform some calculations. The mathematical

existence of such geometries is still to be shown. Nonetheless, if the story in type II theories

has to make sense, such manifolds are bound to exist and the above rules would provide

an accurate description of their geometry.

Heterotic compactifications on half-flat mirror manifolds have been studied in ref. [9]

and here we briefly review the main results. We begin with the reduction Ansatz and the

relation between the 10- and four-dimensional fields. The six-dimensional internal space

is taken to be the half-flat mirror space X̂ with the metric guv associated to the SU(3)

structure (J,Ω). In terms of the total internal volume V =
∫

d6x
√
g the four-dimensional

dilaton φ is given by

φ = φ̂− 1

2
lnV , (3.21)

where φ̂ = φ̂(xµ) is the zero mode of the 10-dimensional dilaton. The Ansatz for the

10-dimensional metric then reads

ds210 = e2φg4µνdx
µdxν + guvdx

udxv , (3.22)

where the dilaton factor in front of the four-dimensional part has been included so that

g4µν is the four-dimensional Einstein-frame metric. We are now going to apply our toolbox

kit for the internal manifold. Thus, we will retain for the “zero-mode” expansion of the

NS-NS field

B̂ = B + biωi , Ĥ = H + dbi ∧ ωi + bidωi (3.23)
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where bi are axionic scalars and B = 1
2Bµνdx

µ ∧ dxν is a four-dimensional two-form with

field strength H = dB which can be dualized to the universal axion a. Note that, even

thought we are considering the case without “explicit” flux, a non-zero flux is induced

from the last term in eq. (3.23) as a consequence of the differential relations (3.18) for

half-flat mirror manifolds. These various scalar fields form the lowest components of four-

dimensional chiral supermultiplets in the usual way, that is

S = a+ ie−2φ , T i = bi + ivi , Za = za . (3.24)

Their Kahler potential is given by the same expression as for Calabi-Yau compactifications,

namely

K = − ln
(

i(S̄−S)
)

+K(1)+K(2), K(1) = − ln(8V) , K(2) = − ln

(

i

∫

X̂
Ω ∧ Ω̄

)

. (3.25)

Some standard results on the explicit moduli dependence of K and related issues are

summarized in appendix C. The superpotential can be obtained from the Gukov-Vafa

type formula [24]

W =
√

8

∫

X̂
Ω ∧

(

Ĥ + idJ
)

. (3.26)

For half-flat mirror manifolds and vanishing flux this superpotential has the explicit form

W =
√

8eiT
i , (3.27)

where we have used the relations (3.20) and (3.23). Even though we are not considering

explicit flux the Ĥ term has to be included in this formula to correctly incorporate the flux

induced by the structure of the half-flat mirror manifolds (see eq. (3.23)).

As a last comment about this supergravity description, we would like to justify the

validity of our choice of four-dimensional chiral fields. In the preceding discussion, we

retain massless modes together with some carefully chosen set of massive modes. This

makes sense only when our massive modes are very light compared to the Kaluza-Klein

cut-off scale. In our set up, the massive modes come from the intrinsic torsion of the

manifold and, therefore, we must consider a geometry in the limit of small torsion. It

is true in general [25] that a manifold with SU(3) structure has a Riemann tensor which

decomposes as

R = RCY +R⊥ , (3.28)

with RCY having the properties of the curvature tensor of a Calabi-Yau manifold and where

the orthogonal tensor R⊥ is determined by the intrinsic torsion. The limit of small torsion

corresponds then to R⊥ ≪ RCY. A condition we assume to be fulfilled from now on. Even

though this looks somewhat artificial, it has been conjectured to hold in the large complex

structure limit [23]. Only a careful study on a case by case basis for explicit geometries

can make this statement more precise. This is however beyond the scope of our present

paper which aims at a more general analysis, at the expense of mathematical rigor.
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3.3 Four-dimensional domain wall solutions

We would now like to find explicit half-BPS domain solutions within the four-dimensional

N = 1 supergravity theories just discussed. As a preparation, we first set up the general

formalism for four-dimensional BPS domain walls (see refs. [26–28] for further details).

Consider a four-dimensional N=1 supergravity theory with chiral superfields (AI , χI),

Kahler potential K and superpotential W and a gravitino ψµ. Then, the Killing spinor

equations are given by

δχI = i
√

2σµζ̄∂µA
I −
√

2eK/2KIJ∗

DJ∗W ∗ζ = 0 , (3.29)

δψµ = 2Dµζ + ieK/2Wσµζ̄ = 0 , (3.30)

where the Weyl spinor ζ parameterizes supersymmetry, DIW = WI + KIW and (σµ) =

(12, σ
α), with the Pauli matrices σa . The covariant derivatives Dµ is defined by

Dµ = ∂µ + ωµ +
1

4

(

Kj∂µA
j −Kj∗∂µA

j∗
)

, (3.31)

with the spin connection ωµ.

For a domain wall solution, we should split the coordinates as (xµ) = (xα, y) where

α, β, . . . = 0, 1, 2 label the directions longitudinal to the domain wall and y is the transverse

coordinate. Accordingly, we should start with an Ansatz

ds24 = e−2B
(

ηαβdx
αdxβ + dy2

)

(3.32)

for the metric, where B = B(y) is a warp factor. In addition, all scalar fields and the spinor

ζ are functions of y only. For the spin connection of the metric Ansatz (3.32) one has

ω0 = −1

2
B′σ2 , ω1 = −i1

2
B′σ3 , ω2 = i

1

2
B′σ1 , ω3 = 0 . (3.33)

Here and in the following we use a prime to denote the derivative with respect to y. The

general Killing spinor equations (3.29) and (3.30) then specialize to

∂yA
I = −ie−BeK/2KIJ∗

DJ∗W ∗ ,

B′ = ie−BeK/2W ,

Im(KI∂yA
I) = 0 ,

2ζ ′ = −B′ζ .

(3.34)

Further, the spinor ζ satisfies the constraint

ζ(y) = σ2ζ̄(y) , (3.35)

which reduces the number of independent spinor components to two, corresponding to

half-BPS solutions.

We would now like to solve the system of Killing spinor equations (3.34) for the spe-

cific supergravity theories obtained from compactification on half-flat mirror manifolds, as
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discussed in the previous sub-section. We recall that the (chiral) field content of these the-

ories consists of (AI) = (S, T i, Za) and the Kahler potential and superpotential are given

by eqs. (3.25) and (3.26), respectively. In the following, we will make frequent use of the

properties of the Kahler potential summarized in appendix C. The fields are split up into

their real and imaginary part according to

S = a+ ie−2φ , T i = bi + ivi , Za = ca + iwa . (3.36)

It is not difficult to see by inspection of (3.34) that the right-hand side of the first

equation is purely imaginary. This implies that the real parts of all superfields must be

constant, that is

a ∼ bi ∼ ca ∼ const , biei = 0 , (3.37)

where the last constraint follows because the superpotential needs to be purely imaginary

as a consequence of the second equation (3.34). By comparing the first equations (3.34)

for the dilaton S with the second equation (3.34) one finds that φ′ = B′ so without loss of

generality we can set

B = φ . (3.38)

For the remaining imaginary parts we have

φ′ = −1

2

K′

K , Kij∂yv
j =

√

K
K̃
ei , ∂yw

a = −2φ′wa . (3.39)

Here, K = Kijkv
ivjvk is the Kahler moduli pre-potential where Kijk are the intersection

numbers of X and Kij = Kijkv
k. Analogously, for the complex structure module, the pre-

potential is given by K̃ = K̃abcw
awbwc with the intersection numbers K̃abc of the mirror

Calabi-Yau X̃ . (For details see appendix C.)

These equations can easily be integrated to

K = K0e
−2φ , Ki = 2

√

K0

K̃(k)
eiỹ +K0i , wa = kae−2φ , (3.40)

where we have introduced a new coordinate ỹ defined by dỹ = e2φdy. Further, K0, K0i

and ka are integration constants and K̃(k) denotes the complex structure pre-potential as

a function of the ka. To find the explicit solution in terms of the Kahler moduli vi one has

to invert the relations

Ki = Kijkv
jvk , (3.41)

which can only be done on a case by case basis.

3.4 Comparison between 10 and four dimensions

We would now like to show that this four-dimensional domain wall indeed matches our 10-

dimensional solution (3.15), in a way similar to what happens in the context of type IIA [29,

30]. We start by re-writing the four-dimensional domain wall Killing spinor equations (3.39)
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in terms of 10-dimensional language. To this end, we insert the following definitions of the

10-dimensional fields,

K = (Z0)2K̃ , φ̂′ = φ′ +
1K′

2K . (3.42)

The first of these arises from the compatibility relation (B.14) while the latter is simply

the definition (3.21). It is then straightforward to see that the four-dimensional domain

wall equations (3.39) are equivalent to the following,

φ̂′ = 0 , Kij∂yv
j = Z0ei , Z0ωa = const . (3.43)

It is also useful to recall from eq. (3.37) the constraints these equations imply on the real

parts of the superfields, namely

a ∼ bi ∼ ca ∼ const , biei = 0 . (3.44)

We now turn to the 10-dimensional solution (3.15) and will show that it corresponds

to the above system. To do this, we insert the defining relations of mirror half-flat mani-

fold (3.20) into Hitchin’s flow equations (3.16). We can easily see that the first flow equation

gives,

Kij∂yv
j = Z0ei , (3.45)

which is equivalent to the corresponding domain wall equation (3.43). From the second

Hitchin flow equation, we obtain three equations,

Z0ωa = const , ca = const , viei =
1

6
(Z0K̃)′ , (3.46)

which correspond to the components of the three-forms αa, β
a and β0, respectively. The

first two equations are identical equations in (3.43) and (3.44). The third one simply tells

us that the flow equations preserves the compatibility relation (B.14) between the SU(3)

structure forms J and Ω. This last equation does not provide any new information as it is

just a contracted version of (3.45) together with the condition Z0ωa = const.

Finally, we need to realize that the last conditions in (3.43) and (3.44) ensure, from a

10-dimensional point of view, the vanishing of Ĥ and a constant dilaton φ̂. Therefore, we

have shown that the four-dimensional domain wall solution of the effective supergravity is

completely equivalent to the corresponding 10-dimensional flow equations.

4 Non-vanishing flux and half-flat compactifications

We will now extend the discussion of the previous section by including non-vanishing NS-

NS flux, as well as a non-constant dilaton. First, we derive the generalization of Hitchin’s

flow equations for this case and then discuss the relation to domain wall solutions in the

four-dimensional effective supergravity compactified on mirror half-flat manifolds.
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4.1 The 10-dimensional solution

As before, we begin by working out the constraints on the G2 structure of the seven-

dimensional space Y . Starting point is the seven-dimensional part of the gravitino Killing

spinor equation and the dilatino Killing spinor equation. From (2.6) and (2.7) they read

∇mη = −1

8
Hmη , 6∇φ̂ η = − 1

12
Ĥ η . (4.1)

We proceed in the usual way by multiplying the above equations and their hermitian

conjugates with anti-symmetrised products of gamma matrices times η or η†. With the

definitions (3.3) of the G2 structure forms ϕ and Φ, this leads to the following set of

equations

∇mϕnpq =
3

2
Ĥms[nϕpq]

s

∇mΦnpqr = −2Ĥms[nΦpqr]
s

∇[mφ̂Φnpqr] = Ĥs[mnΦpqr]
s

4∇[mφ̂ ϕnpq] = −3Ĥv[mnϕpq]
v +

1

12
ǫmnpqrstĤ

rst

ǫmnpqrst∇tφ̂ = −10Ĥ[mnpϕqrs]

Ĥ[mnpΦqrst] = 0 .

(4.2)

A combination of the first with the third equation, the second with the fourth equation

and the last equations on their own can then be written in the form [17, 31, 32]

d7ϕ = 2d7φ̂ ∧ ϕ− ∗7 Ĥ
d7Φ = 2d7φ̂ ∧ Φ

∗7 d7φ̂ = −1

2
Ĥ ∧ ϕ

0 = Ĥ ∧Φ ,

(4.3)

where ∗7 and d7 are the seven-dimenionsal Hodge star and exterior derivative, respectively.

The first two of these equations characterize the G2 structure on Y and are the general-

ization of the torsion-free conditions (3.4) which appeared in the case without flux. The

third equation determines the variation of the dilaton.

From these results we can deduce the structure of G2 torsion classes X1, . . . ,X4. By

comparing with the general results (B.7), it follows that X1 = X2 = 0, the class X3

is determined by the corresponding component of the flux Ĥ and the class X4 by the

derivative d7φ̂ of the dilaton and the corresponding component of Ĥ. This means that the

G2 structure is integrable conformally balanced [32].

As previously, we now split these equations up into 6+1 dimensions and express them

in terms of the SU(3) structure on X̂ . Since we are motivated by compactifications to four-

dimensions and to simplify matters we set all remaining components of the flux breaking

four-dimensional Lorentz symmetry to zero, that is,

Ĥymn = 0 . (4.4)
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We recall that the relation between G2 and SU(3) is given by eq. (3.8). Using these

relations in (4.3) and splitting up the resulting equations into a one- and a six-dimensional

part we find

dΩ− = 2dφ̂ ∧ Ω− (4.5)

dJ = e−∆Ω′
− − 2e−∆φ̂′ Ω− + 2dφ̂ ∧ J − J ∧Θ− ∗Ĥ (4.6)

J ∧ dJ = J ∧ J ∧ dφ̂ (4.7)

dΩ+ = e−∆J ∧ J ′ − e−∆φ̂′J ∧ J + 2dφ̂ ∧ Ω+ + Ω+ ∧Θ (4.8)

∗dφ̂ = −1

2
Ĥ ∧ J (4.9)

e−∆φ̂′ ∗ 1 = −1

2
Ĥ ∧ Ω− (4.10)

0 = Ĥ ∧ Ω+ , (4.11)

where the Hodge star and the exterior derivative now refer to six dimensions. We also

recall that Θ = d∆ is the exterior derivative of the warp factor ∆. Matching up the first

four of these equations with the general expressions for dJ and dΩ in eq. (B.12) one finds

the torsion classes are constrained by

W1− = W2− = 0 , W4 =
1

2
W5 = dφ̂ , (4.12)

and arbitrary otherwise. We can compare this result with the torsion constraints (2.10)

which characterize Strominger’s class of solutions. The only difference is that W1+ and

W2+ can now be non-zero and, as a consequence, the six-dimensional space X̂ , while still

having an almost complex structure, does no longer need to be complex. Further, since W4

and W5 are non-vanishing and proportional to the dilaton the SU(3) structure is mildly

more general than that for half-flat manifolds. We refer to this structure as generalized

half-flat.

Given that we have already fixed W5 in terms of the dilaton, a comparison between

eq. (4.8) and eq. (B.12) reveals that Θ = 0. Hence, without loss of generality we can set

the warp factor ∆ to zero and, as before, the 10-dimensional metric for our solution is

ds210 = ηαβdx
αdxβ + dy2 + guv(y, x

w)dxudxv . (4.13)

Here, guv, for every value of y, is the metric associated to the SU(3) structure with torsion

classes satisfying (4.12) and with y-dependence governed by

dΩ+ = J ∧ J ′ − φ̂′J ∧ J + 2dφ̂ ∧ Ω+ (4.14)

dJ = Ω′
− − 2φ̂′Ω− + 2dφ̂ ∧ J − ∗Ĥ . (4.15)

These are the generalizations of Hitchin’s flow equations (3.16) in the presence of non-zero

NS-NS flux and, again, we should note that these flow equations do not guarantee a well

behaved domain wall everywhere in y. The flux in this solution must be a harmonic form

on the six-dimensional space X̂ , that is,

dĤ = 0 , d ∗ Ĥ = 0 . (4.16)
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As a consistency check we can assume that all fields are y-independent. In this case we

indeed recover the standard equations for solutions with four supercharges and maximally

symmetric four-dimensional space [33], as we should.

4.2 Four-dimensional domain wall solution

We would now like to discuss the above solutions from the viewpoint of the four-dimensional

supergravity theory. In section (3.2) we have reviewed the structure of this four-dimensional

theory for the case of compactifications on half-flat manifolds X̂ with vanishing Ĥ flux.

Here, we want to show that the results still apply when this assumption is relaxed.

We will then continue to assume that the internal manifold is described by the mirror

half-flat properties. Hence, the superfields of the four-dimensional supergravity theory are

still given by {S, T i, Za} and they are related to their higher-dimensional counterparts as

in eq. (3.24). The NS-NS zero-mode expansion is now given by,

Ĥ = H + dbi ∧ ωi + bidωi + ǫaβ
a + µaαa , (4.17)

where we introduce the electric flux ǫa and the magnetic flux µa. The Kahler potential

remains the standard one as given in eq. (3.25). However, the superpotential is modified

since it now contains the additional contribution due to flux. It can still be obtained from

the heterotic Gukov formula (3.26) which gives [9]

W =
√

8
(

eiT
i + ǫaZ

a + µaGa(Z)
)

. (4.18)

Here, Ga(Z) are the derivatives of the pre-potential (see appendix C) and we have set

Z0 = 1, for simplicity.

To find domain wall solutions we can follow the same general set-up as in sub-

section 3.3, that is, we can start with the general domain wall Killing spinor equa-

tions (3.34). As before, we split the fields into real and imaginary parts as

S = a+ ie−2φ , T i = bi + ivi , Za = ca + iwa . (4.19)

In much the same way as in sub-section 3.3 we can conclude that the warp factor B in the

metric Ansatz (3.32) is determined by the dilaton, so B = φ and that the real parts of the

fields are subject to the constraints

a ∼ bi ∼ const , ∂yc
a = −

√

K̃
Kµ

a , K̃aµ
a = 0 , biei + ǫac

a =
1

2
K̃abcc

acbµc . (4.20)

For the imaginary parts, we find

− 1

4

(K′

K +
K̃′

K̃

)

= 2φ′ , (4.21)

Ki

(K′

K + 2φ′
)

−K′
i = −2

√

K
K̃
ei , (4.22)

K̃a

(K̃′

K̃
+ 2φ′

)

− K̃′
a = −2

√

K̃
K

(

ǫa − K̃abcc
bµc

)

. (4.23)

It is easy to see that, for vanishing ǫa and µa fluxes, these equations reduce to the previous

ones (3.39).
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4.3 Comparison between 10 and four dimensions

As before, we would like to show that this four-dimensional domain wall indeed matches

our 10-dimensional solution. For clarity, let us rewrite the relevant 7-dimensional Killing

spinor equations (4.5)–(4.11). First, we should note that the relations for mirror half-flat

manifolds (3.18) for the basis forms ωi and α0 together with eqs. (4.5), (4.7) and (4.9)

imply that

dbi = dφ̂ = 0 . (4.24)

Let us also remind that the warp factor can be set to zero ∆ = 0. Therefore, we are left

with the Killing spinor equations

Ω′
− = 2φ̂′Ω− + dJ + ∗Ĥ , (4.25)

J ∧ J ′ = φ̂′J ∧ J + dΩ+ , (4.26)

Ω− ∧ Ĥ = 2φ̂′ ∗ 1 , (4.27)

Ω+ ∧ Ĥ = 0 . (4.28)

We can now expand these equations on the basis {ωi} and {αA, β
A} to obtain ex-

plicit equations for the moduli fields. For this, we insert the respective expansions (3.17)

and (4.17) of the Kahler form J , the complex structure Ω and the NS-NS field Ĥ into

the above Killing spinor equations (4.25)–(4.28). The calculations is a bite tedious due

to the Hodge ∗ operator. The α0 component of (4.25) together with (4.28) give the two

constraints,

biei + ǫac
a =

1

2
K̃abcc

acbµc , K̃aµ
a = 0 . (4.29)

The imaginary part of the complex structure and the dilaton equations are given by the

αa component of (4.25) together with (4.27). We obtain,

1

2

(

∂yZ0

Z0
− K̃

′

K̃

)

K̃a + K̃′
a =

2

Z0

(

ǫa − K̃abcc
bµc

)

, φ̂′ =
3∂yZ0

4Z0
+
K̃′

4K̃
. (4.30)

The remaining components of eq. (4.25) lead to equations for the real parts of the complex

structure moduli and the last eq. (4.26) gives the Kahler moduli y-dependence. These read

explicitly,

∂yc
a = − 1

Z0
µa ,

1

2
K′

i = φ̂′Ki + Z0ei . (4.31)

Finally, we have the conditions,

a = const , bi = const , (4.32)

coming from the NS-NS flux Ansatz (2.12) and (4.4).

Again, it is now easy to see the correspondence between the four-dimensional domain

wall equations and the 10-dimensional ones. For this, we need to insert the 10-dimensional

relations

K = (Z0)2K̃ , φ̂′ = φ′ +
1K′

2K , (4.33)

into one or the other set of equations. It is easy to see that it will lead to equivalent

equations.
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5 A class of Calabi-Yau domain wall solutions

It is interesting to realize that our flow equations (4.14) and (4.15) imply the existence of

an exact solution which involves a Calabi-Yau manifold and non-vanishing Ĥ-flux. In this

solution, the flux stress-energy in the Einstein equations (2.3), instead of deforming away

from a Calabi-Yau space, leads to a non-trivial variation of the moduli as one moves in the

direction transverse to the domain wall direction. The full seven-dimensional manifold has

G2 structure with a non-vanishing Ricci tensor, while, at the same time, the six-dimensional

fibre at each fixed point in the coordinate y remains Ricci-flat.

5.1 10-dimensional geometry

Calabi-Yau manifolds are characterized by the property dJ = 0 and dΩ = 0. Inserting this

back into the generalized flow equations (4.14) and (4.15), we find

J ∧ J ′ = φ̂′J ∧ J , Ω′
− = 2φ̂′ Ω− + ∗Ĥ , Ω− ∧ Ĥ = 2φ̂′ ∗ 1 . (5.1)

A Calabi-Yau manifold X̂ with moduli varying along y as dictated by the above flow

equations will then be a solution of the Einstein equations (2.3). To satisfy the full system

of equations of motion, we also have the constraints on the flux Ĥ and the dilaton φ̂. From

eqs. (4.5)–(4.11) they can be written as

dφ̂ = 0 , Ĥ ∧ J = 0 , Ĥ ∧ Ω+ = 0 . (5.2)

We can now deploy the full range of Calabi-Yau moduli space technology to solve these

differential equations for the various moduli fields. In principle, this amounts to taking the

ei = 0 limit of our previous, general discussion in sections 4.2 and 4.3. However, for the

sake of clarity, we will repeat the required steps here. We recall the standard expansion of

the Kahler form and the complex structure

J = viωi , Ω = ZAαA − GAβ
A , (5.3)

as well as the expansion of the flux

Ĥ = ǫaβ
a + µaαa (5.4)

in terms of harmonic two forms {ωi} and harmonic three-forms {αA, β
B} on the Calabi-Yau

manifold X̂. This will then satisfy the second constraint of (5.2) from the property of the

basis forms. We also recall, that we have set all components of Ĥ breaking four-dimensional

Lorenz-invariance to zero, that is, ĤµMN = 0. This implies the axions a and bi have to be

constant. The y-dependence of the remaining moduli vi and ZA is determined by the flow

equations (5.1) and can be explicitly obtained by inserting the above expansions for J , Ω

and Ĥ and setting the coefficient of each basis form to zero. Working in the large complex

structure limit, we find for the complex structure moduli

∂yc
a = − 1

Z0
µa , K̃′

a =
2

Z0

(

ǫa − K̃abcc
bµc

)

, (5.5)
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and for the dilaton and the Kahler moduli

φ̂′ =
K̃′

K̃
, φ̂′ =

∂yZ0

Z0
, φ̂′ =

∂yv
i

vi
. (5.6)

We should point out the y-dependence of J and Ω implied by these solutions is consistent

with the SU(3) structure compatibility relations (B.14). Finally, we also have the conditions

coming from the third constraint of (5.2) together with the α0 component of the Ω′
−

equation,

K̃aµ
a = 0 , ǫac

a =
1

2
K̃abcc

acbµc . (5.7)

They are constraints on the flux parameters and the different integrations constants of the

previous flow equations.

We can integrate these differential equations in term of the new variable dy = Z0dỹ.

We find for the complex structure moduli,

ca = −µaỹ + Ca , (5.8)

K̃a =
1

2
K̃abcµ

bµcỹ2 + 2
(

ǫa − K̃abcµ
cCb

)

ỹ + K̃0a , (5.9)

where Ca and K̃0a are integration constants. This then determines the dilaton and, there-

fore, the Kahler moduli vi and the Z0 field:

K̃ ∼ eφ̂ , vi ∼ eφ̂ , Z0 ∼ eφ̂ . (5.10)

Finally, we have the constraints on the flux parameters (5.7). When plugging the solution

back into it, they turn out to be equivalent to the following non-trivial constraints. First,

the flux parameter µa is constraint by

K̃abcµ
aµbµc = 0 . (5.11)

Then, the integration constants Ca must be chosen such that

ǫaµ
a = K̃abcµ

aµbCc , ǫaCa =
1

2
K̃abcµ

aCbCc . (5.12)

This could turn out to be a non-trivial condition on ǫa as it might not be possible to choose

the constants Ca satisfying the above conditions for any flux parameter. The analysis should

be carried on on a case by case basis with explicit intersection numbers. Finally, we also

have the condition

K̃0aµ
a = 0 , (5.13)

on the K̃0a integration constants, which can always be satisfied by choosing the constants

to vanish. Hence, provided that the fluxes and the integration constants satisfy the above

non-trivial constraints, we find indeed a Calabi-Yau domain wall solution.
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5.2 Four-dimensional domain wall

As before, we now relate this 10-dimensional Calabi-Yau domain wall solution to the four-

dimensional supergravity obtained by compactifying on the Calabi-Yau manifold with flux.

The module fields in this four-dimensional supergravity are

S = a+ ie−2φ , T i = bi + ivi , Za = ca + iwa , (5.14)

as usual, and the superpotential is given by

W =
√

8
(

ǫaZ
a + µaGa(Z)

)

. (5.15)

In the same way as in sub-section 3.3, the domain wall Killing spinor equations (3.34) tell

us that the real parts of the superfields satisfy

a = bi = const , ∂yc
a = −

√

K̃
Kµ

a , K̃aµ
a = 0 , ǫac

a =
1

2
K̃abcc

acbµc . (5.16)

Again, the warp factor of the metric Ansatz (3.32) can be set to B = φ. For the imaginary

parts, we have

∂yv
i = −2φ′vi , K̃′

a = 2

√

K̃
K

(

ǫa − K̃abcc
bµc

)

, −2φ′ =
K̃′

K̃
. (5.17)

We note that this corresponds to eq. (4.21) in the limit where the half-flat fluxes vanish, that

is, ei = 0. The matching of these four-dimensional flow equations with the ten-dimensional

ones (5.1) can be worked out in the same way as previously, namely by inserting the

definitions

K = (Z0)2K̃ , φ̂′ = φ′ +
1K′

2K . (5.18)

Hence, we conclude that the four-dimensional domain wall solution is identical, upon up-

lifting, to the 10-dimensional Calabi-Yau domain wall solution.

It is interesting to note that for the case of vanishing magnetic flux µa = 0, the above

equations reduce to

a ∼ bi ∼ ca ∼ const , ǫac
a = 0 , (5.19)

for the real parts and

φ′ = −1

2

K̃′

K̃
, K̃ab∂yw

a =

√

K̃
K ǫa , ∂yv

i = −2φ′vi , (5.20)

for the imaginary parts. These equations are “mirror-symmetric” to (3.39) under the

following correspondence

vi ←→ wa , Kijk ←→ K̃abc , ei ←→ ǫa (5.21)

and can, therefore, be integrated in the same way. This fact is not surprising and re-

flects the original construction of half-flat mirror manifolds [23] as type II mirror duals

of Calabi-Yau manifolds with electric NS flux. In the present context it suggests a sym-

metry between heterotic Calabi-Yau compactifications with electric NS flux and heterotic

compactifications based on the associated half-flat mirror manifold.
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6 Conclusion

In this paper, we have studied 10-dimensional solutions of the heterotic string which involve

a warped product of a four-dimensional domain wall with a six-dimensional internal space.

Such solutions provide the general setting for heterotic compactifications with flux and on

manifolds with SU(3) structure.

For the special case with vanishing flux and a constant dilaton the solution is a di-

rect product of the 2 + 1-dimensional domain wall world volume and a seven-dimensional

manifold with G2 holonomy. This G2 manifold in turn consists of a six-dimensional half-

flat manifold varying along the direction y transverse to the domain wall as specified by

Hitchin’s flow equations. We have shown that these 10-dimensional solutions form the ba-

sis for compactification on half-flat mirror manifolds without flux as carried out in ref. [9].

Specifically, we have verified that the BPS domain walls in the four-dimensional N = 1 su-

pergravity theories associated to these compactifications precisely lift to our 10-dimensional

solutions.

We have further generalized this picture to include non-vanishing flux and a non-

constant dilaton. In this case, the 10-dimensional space is still a direct product between

the 2 + 1-dimensional domain wall world volume and a seven-dimensional space. However,

this seven-dimensional space now has G2 structure rather than G2 holonomy. It can also

be thought of as the variation of a six-dimensional manifold along the direction y, where

the variation is described by a generalized version of Hitchin’s flow equations. The torsion

classes of the allowed spaces are constrained by the relations (4.12). In particular, these

constraints imply that the six-dimensional manifolds are generalized half-flat and almost

complex but, in general, no longer complex. Compared to Strominger’s original class

of complex, non-Kahler manifolds this opens up many more possibilities. In particular,

flux compactifications on half-flat mirror manifolds are based on these solutions. These

hypothetical manifolds constitute a very large set: one such manifold is obtained for each

Calabi-Yau three-fold (with a mirror) and a choice of electric NS flux on this three-fold [23].

It would be very interesting to find an explicit mathematical construction for them.

Finally, we have obtained a class of solutions consisting of an exact Calabi-Yau three-

fold with NS flux, which varies in its moduli space as one moves along the direction y. For

the case of purely electric NS-NS flux, they are the natural candidate “mirrors” for the

solutions based on G2 holonomy manifolds. This is analogous to the original type II mirror

symmetry correspondence with NS flux [23].

Our results open up new possibilities for heterotic string model building and they

put heterotic half-flat compactifications on a more solid theoretical basis. It would be

interesting to study the lift of these solutions to heterotic M-theory [34–36]. We also hope

to follow up this work by studying heterotic models based on explicit classes of half-flat

manifolds.
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10d M,N, . . . = 0, 1, . . . , 9

7d m,n, p, . . . = 3, 4, . . . , 9

6d u, v, . . . = 4, 5, . . . , 9

4d µ, ν, . . . = 0, 1, 2, 3

3d α, β, γ, . . . = 0, 1, 2

1d M = µ = m = 3

Table 1. Index conventions. The letters used to label indices are given according to the dimension

they live in. These are curved indices and their tangent space counterparts will be underlined.

A Conventions

In this appendix, we would like to summarize the conventions used throughout the paper.

We begin with our index conventions. Ten-dimensional space-time M10 is decomposed as

M10 = M3×{y}×X̂ into three-dimensional Minkowski space M3, a six-dimensional internal

space X̂ and a special direction y. We will also need to refer to the four-dimensional space

M3 × {y} and the seven-dimensional space Y = {y} × X̂ . The various index choices for

these spaces are summarized in table 1.

The 10-dimensional gamma matrices ΓM are 32 × 32 matrices which we choose to be

purely imaginary. They satisfy the usual commutation relations

{

ΓM ,ΓN
}

= 2ηMN · 132 . (A.1)

The chirality operator in this basis is given by

Γ11 = Γ0Γ1 . . .Γ9 . (A.2)

Given the above choice of gamma matrices, the Majorana condition on 10-dimensional

Dirac spinors ǫ is simply the reality condition ǫ = ǫ∗ and chiral spinors satisfy Γ11ǫ = ±ǫ.
We choose the three-dimensional gamma matrices γ̃α to be real and the seven-

dimensional gamma matrices γm to be purely imaginary. They satisfy

{γ̃α, γ̃β} = 2ηαβ
12 , {γm, γn} = 2δmn

18 . (A.3)

Three-dimensional Majorana spinors ρ and seven-dimensional Majorana spinor η are then

simply real spinors. As usual, anti-symmetrisation of gamma matrices is with strength one

and is denoted by

γm
1
...mk = γ[m

1γm
2 . . . γmk] . (A.4)

With the above conventions we can decompose the 10-dimensional gamma matrices as

Γa = γ̃a ⊗ 18 ⊗ σ2 , Γm = 12 ⊗ γm ⊗ σ1 , (A.5)

where σµ denote the usual Pauli matrices together with σ0 = 12. A 10-dimensional

Majorana-Weyl spinor ǫ can be constructed from three- and seven-dimensional Majorana

spinors ρ and η by writing

ǫ = ρ⊗ η ⊗ θ , (A.6)

– 23 –



J
H
E
P
0
1
(
2
0
1
1
)
1
5
1

Dimension Group G Tensors

7d G2 ϕ, Φ

7d SU(3) J , Ω, α

6d SU(3) J , Ω

Table 2. G-structures in dimensions six and seven. The different covariantly constant forms are

given with respect to the structure group they define.

where θ is an eigenvector of the third Pauli matrix σ3 whose eigenvalue determines the

chirality of ǫ. It will also be useful to express the seven-dimensional Majorana spinor as

η =
1√
2
(η+ + η−) , (A.7)

where η± are six-dimensional chiral spinors satisfying γ3η± = ±η± and η− = η∗+.

B Torsion classes

In this appendix, we review some facts on G-structures, in particular SU(3) and G2 struc-

tures, which will be used in the main text. We will be brief and refer to the literature [14–

16, 37] for a more detailed discussion.

For an n-dimensional manifold, the structure group of its frame bundle is in general

contained in GL(n,R). The manifold is said to admit a G-structure, where G ⊂ GL(n,R)

is a sub-group, if a sub-bundle of the frame bundle with structure group G exists. Alterna-

tively, a G-structure can also be characterized by globally defined spinors on the manifold

or a set of globally defined forms. In the present paper, we are interested in G2 structures

on seven-dimensional manifolds and SU(3) structures on six- and seven-dimensional man-

ifolds. The invariant forms which characterize these various structures are summarized in

table 2. For a G-structure there exists a connection ∇(T ), in general with torsion, sat-

isfying hol(∇̂) ⊂ G. The tensors characterizing the G-structure are covariantly constant

with respect to this connection. The con-torsion κ contained in ∇(T ) is can be viewed as

a one-form taking values in the Lie algebra of so(n) and can be decomposed as

κm = κ0
m + κG

m . (B.1)

Here κG takes values in L(G), the Lie algebra of G, and κ0 in its orthogonal comple-

ment L(G)⊥ in so(n). The reason for this decomposition is that the action of κG
m on the

G-invariant tensors vanishes. Hence, the fact that the invariant tensors are covariantly

constant under ∇(T ) and that the holonomy of ∇(T ) is contained in G only depends on κ0
m.

For this reason, κ0
m is also called the intrinsic (con)-torsion. It can be decomposed into its

irreducible representation content under the group G. These irreducible parts of κ0
m are

called torsion classes and they can be used to characterize the G-structure.

We begin reviewing this more concretely for G2 structures on a seven-dimensional

manifold. The torsion is a one form, with its one-form index transforming as a fundamental
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of SO(7), and otherwise taking values in the adjoint of SO(7). Hence, the two relevant

decompositions under G2 are

7SO(7) → 7G2
, 21SO(7) → (7 + 14)G2

. (B.2)

The intrinsic torsion only takes values in L(G2)
⊥ = 7G2

and, hence, its G2 representation

content is given by

7⊗ 7 = 1 + 14 + 27 + 7 . (B.3)

The representations on the right-hand side correspond to the four torsion classes X1, . . . ,X4

associated to a G2 structure and, hence, the con-torsion takes values

κ0 ∈ X1 ⊕X2 ⊕X3 ⊕X4 . (B.4)

The G2 structure can be characterized by a seven-dimensional Majorana spinor η or, al-

ternatively, by a three-form ϕ and four-form Φ. In terms of the spinor η, these forms can

be written as

ϕmnp = −iη†γmnpη , Φmnpq = η†γmnpqη . (B.5)

It is easy to verify that

ϕ = ∗7Φ , (B.6)

where ∗7 is the seven-dimensional Hodge star with respect to the metric induced by the

G2 structure. A straightforward computation shows that the exterior derivatives of these

forms depend on the torsion classes and are given by

d7ϕ = 4X1Φ + 3X4 ∧ ϕ− ∗7X3 , d7Φ = 4X4 ∧ Φ− 2 ∗7 X2 , (B.7)

where d7 is the seven-dimensional exterior derivative. Often these equations offer the most

straightforward way to determine the torsion classes by computing the exterior derivatives

of ϕ and Φ.

We now move on to SU(3) structures on six-dimensional manifolds. The torsion takes

values in the Lie-algebra so(6) while its one-form index transforms under the fundamental

of SO(6). Hence, the relevant SU(3) decompositions read

6SO(6) → (3 + 3̄)SU(3) , 15SO(6) → (1 + 3 + 3̄ + 8)SU(3) . (B.8)

Since, L(SU(3))⊥ = 1 + 3 + 3̄, the intrinsic torsion contains the irreducible SU(3) repre-

sentations

(3 + 3̄)⊗ (1 + 3 + 3̄) = (1 + 1) + (8 + 8) + (6 + 6̄) + (3 + 3̄) + (3 + 3̄) , (B.9)

which gives rise to the five torsion classes

κ0 ∈W1 ⊕W2 ⊕W3 ⊕W4 ⊕W5 . (B.10)

Properties of the six-dimensional manifold can be characterized by these five torsion classes

as indicated in table 3. An SU(3) structure is determined by a six-dimensional Weyl spinor
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Vanishing Torsion Classes Properties (Name)

W1 = W2 = 0 Complex

W1 = W3 = W4 = 0 Symplectic

W1 = W2 = W3 = W4 = 0 Kahler

W1− = W2− = W4 = W5 = 0 Half-flat

W1 = W2 = W3 = W4 = W5 = 0 Calabi-Yau

Table 3. Extract from classification of six-dimensional manifolds according to their torsion classes.

The different properties of the manifolds are given with respect to the corresponding vanishing

torsion classes.

η+ and its conjugate η− = η∗+ or, alternatively, by a two-form J and a three-form Ω. In

terms of the spinors, these forms can be written as

Juv = −iη†+γuvη+ , Ωuvw = η†+γuvwη− . (B.11)

The exterior derivatives of J and Ω are explicitly given by

dJ = −3

2
Im(W1Ω̄) +W4 ∧ J +W3 , dΩ = W1J ∧ J +W2 ∧ J + W̄5 ∧ Ω . (B.12)

As a consequence of their SU(3) transformation properties the torsion classes satisfy the

following useful constraints

W3 ∧ J = W3 ∧ Ω = W2 ∧ J ∧ J = 0 . (B.13)

An alternative way to define an SU(3) structure is to start with the pair of forms (J,Ω)

and require the conditions

J ∧ J ∧ J =
3

4
iΩ ∧ Ω̄ , Ω ∧ J = 0 . (B.14)

which will be used in the main part of the text.

An SU(3) structure on a seven-dimensional manifold can be defined by a triplet

(J,Ω, α) of forms, where J is a two-form and Ω a three-form, as before, and α is a one-form.

Intuitively, α singles out a special direction and a complementary six-dimensional space

on which J and Ω can be thought of as defining an SU(3) structure in the six-dimensional

sense. In addition to the usual conditions (B.14) for a six-dimensional SU(3) structure, its

seven-dimensional counterpart must satisfy a number of additional relations which involve

α. We will not give these relations explicitly but instead refer to refs. [38]. From the spinor

expressions (B.5) and (B.11) together with eq. (A.7) one can show that a seven-dimensional

SU(3) structure gives rise to a G2 structure via

ϕ = α ∧ J + Ω− , Φ = α ∧ Ω+ +
1

2
J ∧ J . (B.15)
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C Moduli space geometry

In this appendix, we collect some information about the moduli space geometry of Calabi-

Yau manifolds which will be used throughout the paper. This material is well-known [39]

and is merely included for our and the reader’s convenience.

We consider a Calabi-Yau three-fold X with Kahler form J and holomorphic (3, 0)-

form Ω and Hodge numbers h1,1(X) and h2,1(X). We have a basis {ωi}, where i, j, . . . =

1, . . . , h1,1(X) of harmonic two-forms and a symplectic basis {αA, β
A}, where A,B, . . . =

0, 1, . . . , h2,1(X), of harmonic three forms. We can define the moduli by expanding J and

Ω in terms of these basis forms as

J = viωi , Ω = ZAαA − GAβ
A . (C.1)

Here, vi are the Kahler moduli and we denote their complexification by T i = bi + ivi. The

ZA are the projective complex structure moduli. Their affine counterparts are defined by

Za = Za/Z0, where a, b, . . . = 1, . . . , h2,1(X), and split up into real and imaginary parts as

Za = ca + iwa. The harmonic (2, 1) and (1, 2) forms associated to Za and Z̄a are denoted

by χa and χ̄a, respectively. We also introduce the triple intersection numbers

Kijk =

∫

X
ωi ∧ ωj ∧ ωk (C.2)

of X as well as the triple intersection numbers K̃abc of the mirror X̃ of X.

After this set-up we begin with the Kahler moduli space. The moduli space metric in

the large radius limit can be written as

K
(1)
ij =

1

4V

∫

X
ωi ∧ ∗ωj , (C.3)

where V is the volume of X. In order to describe this metric explicitly it is useful to

introduce the following functions

K = Kijkv
ivjvk , Ki = Kijkv

jvk , Kij = Kijkv
k (C.4)

of the Kahler moduli vi. It is easy to verify that the volume can be written as

6V = K =

∫

X
J ∧ J ∧ J . (C.5)

It can then be shown that the metric (C.4), as a function of the complexified fields T i, is

Kahler and can be obtained as

K
(1)
ij =

∂2K(1)

∂T i∂T̄ j
, K(1) = − ln

(

4

3
K

)

, (C.6)

where K(1) is the Kahler potential. Explicitly, this means

K
(1)
i ≡ ∂K(1)

∂T i
=

3i

2

Ki

K , K
(1)
ij =

9

4

KiKj

K2
− 3

2

Kij

K . (C.7)
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Now we move on to the complex structure moduli space. As before, the moduli space

metric is Kahler and takes form

K
(2)
ab = −

∫

X χa ∧ χ̄b
∫

X Ω ∧ Ω̄
=

∂2K(2)

∂Za∂Z̄b
. (C.8)

with the Kahler potential

K(2) = − ln

(

i

∫

X
Ω ∧ Ω̄

)

= − ln
(

i(Z̄AGA − ZAḠA)
)

. (C.9)

Here, G is the pre-potential, a holomorphic function of the fields ZA which is homogeneous

of degree two and GA = ∂G/∂ZA. That this Kahler potential does indeed lead to the

correct metric (C.8) can be verified by using Kodaira’s formula

∂Ω

∂za
= −∂K

(2)

∂Za
Ω + χa . (C.10)

In terms of Ω the volume of the Calabi-Yau manifold can be expressed as

V =
i

‖Ω‖2
∫

X
Ω ∧ Ω̄ , (C.11)

where 3!‖Ω‖2 = ΩuvwΩ̄uvw.

In the large complex structure limit, the pre-potential has the simple form

G = −1

6
K̃abc

ZaZbZc

Z0
. (C.12)

In this case, we can introduce the functions

K̃ = K̃abcw
awbwc , K̃a = K̃abcw

bwc , K̃ab = K̃abcw
c , (C.13)

and write the complex structure moduli space metric as

K(2)
a =

∂K(2)

∂Za
=

3i

2

K̃a

K̃
, K

(2)

ab̄
=

9

4

K̃aK̃b

K̃2
− 3

2

K̃ab

K̃
, (C.14)

in complete analogy with the equations in the Kahler moduli sector.

The total Kahler potential K can now be written as K = K(1) +K(2) +K(S) where

K(S) = − ln
(

i(S̄ − S)
)

= − ln
(

2e−2φ
)

, (C.15)

is the contribution from the dilaton S = a+ ie−2φ. From eqs. (C.6), (C.9) and (C.11) this

leads to the useful formula

eK/2 =
eφ

4V‖Ω‖ . (C.16)
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