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1 Introduction

It is well known that black-hole thermodynamics [1–4] reveals a deep and elegant relation

between gravity and thermodynamics. This relation is also an important clue for searching

a quantum theory of gravity. In 1995, Jacobson found that the Einstein equations can

be obtained from the first law of thermodynamics if assuming the area law of entropy for

all local acceleration horizons [5]. This idea has been extended to non-Einstein gravity

theories (for a review, see [6]). A highlight on this problem recently is the idea of entropy

force proposed by Verlinde [7]. Using the equipartition rule of energy and the holographic

principle [8–10], he found that gravity could be understood as a kind of entropy force. This

is a very attractive idea both in physics and mathematics. On physical side, it gives a new

viewpoint of gravity in terms of holographic principle. On mathematical side, this idea is

closely related with initial boundary value problem of Einstein equations. At almost the

same time, Padmanabhan reinterpreted the relation E = 2TS [11] between the Komar

energy, temperature and entropy as the equipartition rule of energy [12]. Many research

works have been done in this area (see [13–57, 94] for an incomplete list of them).

All these recent works imply that geometric quantities on a general holographic screen

also have thermodynamic interpretation as on a black-hole horizon. As pointed out by

Verlinde, for static case, an Unruh-Verlinde temperature [7] can be defined on a general

holographic screen. The relation between equipartition rule of energy and gravitational field

equation strongly supports that such a temperature is a physical temperature. In [58, 59],

Wald suggested a general method to get the horizon entropy and first law of black hole

for a general diffimorphism invariant theory. Padmanabhan generalized this method to the

off-horizon case in a certain class of gravitational theories and also got one quarter of the

screen’s area in Einstein’s gravity [49]. Many other authors have also suggested S = A/4
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for some general holographic screen from different aspects [50–52], for example Fursaev’s

result in the case of minimal surfaces [94]. (See, however, [53] for a different entropy

formula, as will be discussed later.) In Verlinde’s derivation, he related the Komar mass of

the screen to the thermal energy of the screen, then got the Einstein equations. A natural

question is whether we can use other types of quasi-local energy on the screen besides

the Komar mass. In ordinary thermodynamics, there are many types of energy, such as

inner energy, free energy, Gibbs free energy, · · · , which correspond to different thermal

processes. So, it is reasonable to guess that different quasi-local energy corresponds to

different kind of thermal energy, and all the hints of thermodynamics on an off-horizon

screen should fit into a whole picture. Chen et al have made an attempt to this direction in

four dimensional Einstein’s gravity and obtained a generalized first law of thermodynamics

for the spherically symmetric screen [54], but the energy appearing there is the Arnowitt-

Deser-Misner (ADM) mass instead of some quasi-local energy associated to the screen.

Even earlier, Cai et al have also considered the spherically symmetric case in Einstein’s

gravity and obtained a relation similar to the generalized first law [55] (see e.g. [60] for the

on-horizon case), but that is a dynamical process, while in the usual thermodynamic sense

the generalized first law should describe the quasi-static processes. Although most of the

present works support some thermodynamic relations on a general screen with S = A/4

in Einstein’s gravity, this entropy formula seems too simple to be falsified. Therefore, it is

necessary to investigate more general theories of gravity, where expressions of the entropy

and other quantities are complicated enough, and to collect more, different evidence for

supporting that conclusion.

The aim of this paper is to consider more general gravity theory in order to find more

evidence to support the thermal interpretation of gravity on an off-horizon screen. We

consider a general spherical screen in the Lovelock gravity in arbitrary dimensions [61]

which is a natural generalization of Einstein’s gravity. Three independent tests support

the thermal interpretation in this case. First, we find that we can recast the equations of

motion into the form of the first thermodynamical law. From this result, we can read out

the quasi-local energy, entropy, temperature associated to the screen directly. We find the

quasi-local energy is just the famous Misner-Sharp-like energy. Second, the analysis in [54]

is generalized to this case, which for the Reissner-Nordström solution in Einstein’s gravity

involves the Tolman-Komar energy inside the screen after a Legendre transformation. Fi-

nally, we also find that the entropy obtained previously just agrees with Padmanabhan’s

general definition of entropy on the screen, which satisfies some equipartition-like rule.

In all these aspects, exactly the same entropy and Unruh-Verlinde temperature arise, so

it is convincing that the quantities and thermodynamic interpretations on the screen are

physically meaningful.

Moreover, the formula of entropy is further confirmed in the general static spherically

symmetric case and dynamical spherically symmetric case, as well as the corresponding

plane symmetric and hyperbola symmetric case in parallel. In those cases, all the methods

available also get exactly the same result of entropy, but the forms of temperature are

slightly different, on which we will give some discussions.

Besides of those results, we also use another independent method to check the entropy

formula. It is well known that the entropy of black hole horizon can be calculated by
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the method of conical singularity [84]. Such method have also been used to calculate the

holographic entanglement entropy [85–90]. We apply this method to some general screen1

and find that the entropy obtained by this method agrees with Padmanabhan’s general

definition of off-horizon entropy (and also what we obtain from previous methods for the

maximally symmetric cases). This can be viewed as independent evidence which supports

the entropy formula.

This paper is organized as follows. In section II, we illustrate the three methods in

the Einstein case for static space-times with spherical symmetry and the metric ansatz

gtt = g−1
rr . In section III, we generalize those results into the general Lovelock gravity.

The general static case is discussed in section IV. In this section, we also discuss the non-

stationary spherical solutions and find that our results still hold in those cases. We also find

that our results hold if the spacetime is plane symmetric or hyperbola symmetric. These

cases is included in section V. The method of conical singularity is discussed in section VI.

In the last section, we give some remarks and discussions on our results.

2 Einstein’s gravity

Take Einstein’s gravity in n space-time dimensions as the simplest example to illustrate

our basic strategy. The action functional is

I =

∫

dnx

(√−g
16π

R+ Lmatt

)

, (2.1)

which leads to the equations of motion

Rab −
1

2
Rgab = 8πTab (2.2)

with T ab = 2√−g
δ

δgab

∫

Lmattd
nx the stress-energy tensor of matter. The most general static,

spherically symmetric metric can be written as

ds2 = −h(r)dt2 + f(r)−1dr2 + r2dΩ2
n−2 (2.3)

with dΩ2
n−2 the metric on the unit (n − 2)-sphere. We will consider this general case, as

well as the dynamical case, in section 4. Here we assume the ansatz

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
n−2 (2.4)

for the metric, which means that the Lagrangian density Lmatt of matter cannot be too

arbitrary, while still containing many cases of physical interest, such as electromagnetic

fields, the cosmological constant and homogeneous ideal fluids [68], etc. In fact, the above

ansatz essentially requires the relation T t
t = T r

r between the components of the stress-energy

tensor of matter. In this space-time, the Unruh-Verlinde temperature on the spherical

screen of radius r is easily obtained as

T =
−∂rgtt

4π
√−gttgrr

=
f ′

4π
, (2.5)

1We mean even not necessarily a maximally symmetric screen. See the (Euclidean) metric ansatz (6.6).

– 3 –



J
H
E
P
0
1
(
2
0
1
1
)
1
5
0

which is purely geometric and so independent of the gravitational dynamics. Here a prime

means differentiation with respect to r.

Upon substitution of the ansatz (2.4) into the equations of motion (2.2), the nontrivial

part of them is [69]

rf ′ − (n− 3)(1 − f) =
16πP

n− 2
r2 (2.6)

with P = T r
r = T t

t the radial pressure. Now we focus on a spherical screen with fixed f [54]

in different static, spherically symmetric solutions of (2.2). In order to do so, we just need

to compare two such configurations of infinitesimal difference. In fact, multiplying both

sides of (2.6) by the factor
n− 2

16π
Ωn−2r

n−4dr, (2.7)

we have after some simple algebra (assuming f fixed)

f ′

4π
d

(

Ωn−2r
n−2

4

)

− d

(

n− 2

16π
Ωn−2(1 − f)rn−3

)

= Pd

(

Ωn−2r
n−1

n− 1

)

. (2.8)

The above equation is immediately recognized as the generalized first law

TdS − dE = PdV (2.9)

with T the Unruh-Verlinde temperature (2.5) on the screen,

S =
Ωn−2r

n−2

4
, (2.10)

E =
n− 2

16π
Ωn−2(1 − f)rn−3 (2.11)

and V = Ωn−2rn−1

n−1 the volume of the (standard) unit (n−1)-ball. Here E is just the standard

form of the Misner-Sharp energy inside the screen in spherically symmetric space-times [70],

which is also identical to the Hawking-Israel energy in this case. More explicitly, solving f

from (2.11) gives

f = 1 − 16πE

(n− 2)Ωn−2rn−3
, (2.12)

which is the Schwarzschild solution in n dimensions for constant E as its ADM mass, and

some general spherically symmetric solution for certain mass function E(r).

Some remarks are in order. First, the generalized first law (2.9) is of the same form

as that in [69] for the horizon of spherically symmetric black holes, but is valid for general

spherical screen with fixed f , which includes the horizon as the special case f = 0. Second,

the entropy (2.10) in the generalized first law is actually S = A/4, i.e. one quarter of

the area, for a general spherical screen, the same as the result obtained in [54] by the

generalized Smarr’s approach for the four dimensional case. (Similar results appear in [55]

and [49], as mentioned previously.)

In fact, the generalized Smarr’s approach can be used in the higher dimensional case

without any difficulty. The Reissner-Nordström solution in n dimensions is

f = 1 − 2µ

rn−3
+

q2

r2n−6
, (2.13)
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where the mass parameter µ is related to the ADM mass M by µ = 8πM
(n−2)Ωn−2

. For fixed

f , in order to obtain a generalized first law of the form [54]

dM = TdS + φdq (2.14)

with T the Unruh-Verlinde temperature (2.5) on the screen, one just needs to notice that

df(r,M, q) =
∂f

∂r
dr +

∂f

∂M
dM +

∂f

∂q
dq = 0 (2.15)

gives

dM = − f ′

4π

(

∂f

∂M

)−1 4πdr

dS
dS −

(

∂f

∂M

)−1∂f

∂q
dq. (2.16)

Comparing (2.14) and (2.16), we see that

S = −4π

∫
(

∂f

∂M

)−1

dr =
Ωn−2r

n−2

4
, (2.17)

which is the same as (2.10), and

φ =

(

∂f

∂M

)−1∂f

∂q
=

(n− 2)Ωn−2q

8πrn−3
(2.18)

proportional to the electrostatic potential on the screen.

Furthermore, by straightforwardly working out the Tolman-Komar energy K = M−φq
inside the screen, which is just a Legendre transformation of M , we can obtain another

generalized first law

dK = TdS − qdφ, (2.19)

which seems even more relevant to the holographic picture, since now all the quantities are

closely related to the screen, and the Tolman-Komar energy K satisfies the equipartition

rule [7, 12]. In this case the Misner-Sharp energy E = M − φq
2 is different from either

the ADM mass M or the Tolman-Komar energy K, which is a general fact except for the

vacuum case. Anyway, exactly the same temperature T and entropy S appear in different

kinds of generalized first laws2 and other places such as [55] and [49], which is strong

evidence that the Unruh-Verlinde temperature (2.5) and the entropy (2.10) should make

sense in physics. This argument will be further confirmed in more general cases below.

3 The Lovelock gravity

Now we consider the general Lovelock gravity. The action functional is

I =

∫

dnx

(√−g
16π

m
∑

k=0

αkLk + Lmatt

)

(3.1)

2There is no obvious relation between (2.19) [or (2.14)] with (2.9), as can be seen more clearly in the

discussion around (3.12) for the general Lovelock gravity.
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with αk the coupling constants and

Lk = 2−kδa1b1···akbk

c1d1···ckdk
Rc1d1

a1b1
· · ·Rckdk

akbk
, (3.2)

where δab···cd
ef ···gh is the generalized delta symbol which is totally antisymmetric in both sets of

indices. Note that α0 is proportional to the cosmological constant and L1 = R. This theory

has the nice feature that it is free of ghosts, and some special cases of it arise naturally as

the low-energy effective theories of string models [71, 72].

By the ansatz (2.4) again and extending the approach in [73] for the vacuum case to

include Lmatt, the nontrivial part of the equations of motion is

∑

k

α̃k

(

1 − f

r2

)k−1

[krf ′ − (n− 2k − 1)(1 − f)] =
16πP

n− 2
r2, (3.3)

where

α̃0 =
α0

(n− 1)(n − 2)
, α̃1 = α1, α̃k>1 = αk

2k
∏

j=3

(n− j). (3.4)

Now follow the strategy illustrated in the Einstein case. Multiplying both sides of the

above equation by the factor
n− 2

16π
Ωn−2r

n−4dr, (3.5)

we have after some simple algebra (assuming f fixed)

f ′

4π
d

(

n− 2

4
Ωn−2r

n−2
∑

k

α̃kk

n− 2k

(

1 − f

r2

)k−1
)

−d
(

n− 2

16π
Ωn−2r

n−1
∑

k

α̃k

(

1 − f

r2

)k
)

= Pd

(

Ωn−2r
n−1

n− 1

)

. (3.6)

Recalling that the Unruh-Verlinde temperature (2.5) is independent of the gravitational

dynamics, we again recognize the above equation as the generalized first law (2.9) with

S =
n− 2

4
Ωn−2r

n−2
∑

k

α̃kk

n− 2k

(

1 − f

r2

)k−1

, (3.7)

E =
n− 2

16π
Ωn−2r

n−1
∑

k

α̃k

(

1 − f

r2

)k

. (3.8)

Here E can be interpreted as some generalization of the Misner-Sharp (or Hawking-Israel)

energy to the Lovelock gravity (for certain special case, see [74] for the discussion of the

Misner-Sharp energy). In fact, when E = M is a constant, (3.8) is just the algebraic

equation (of arbitrary degree) that f satisfies for the vacuum case [73], with M the ADM

mass. And when

E(r) = M − φ(r)q

2
(3.9)

with φ(r) given by (2.18), (3.8) gives the Reissner-Nordström-like solution with charge q,

while the Born-Infeld-like case corresponds to more complicated mass function E(r) [75, 76].
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The entropy (3.7) should be discussed further. On the horizon, we have f = 0, so (3.7)

just becomes the well-known entropy of the Lovelock black hole [77]. On a general spherical

screen with fixed f , the generalized Smarr’s approach can be applied without knowing the

explicit form of f (which is impossible in the general Lovelock gravity) and still gives the

generalized first law (2.14) for the Reissner-Nordström-like solution (3.9), with exactly the

same temperature (2.5) and entropy (3.7). In fact, from (3.8) and (3.9) we have

M =
n− 2

16π
Ωn−2

(

rn−1
∑

k

α̃k

(

1 − f

r2

)k

+
q2

rn−3

)

. (3.10)

For this case, (2.16) can be rewritten as

dM = − f ′

4π

∂M

∂f

4πdr

dS
dS − ∂M

∂q
dq. (3.11)

Noticing that the entropy (3.7) and energy (3.8) satisfy

∂S

∂r
= −4π

∂E

∂f
= −4π

∂M

∂f
, (3.12)

which is independent of the previous interpretation of (3.6) as the generalized first law (2.9),

we see that (2.14) really holds with T in (2.5), S in (3.7) and φ in (2.18). Actually, the

first equality of (3.12) just means that (3.5) is the integrating factor of the left hand side

of (3.3), and this integrating factor just renders the right hand side of (3.3) to have the

form PdV , which is an interesting feature of the general Lovelock gravity.

However, if we define the “Tolman-Komar energy” K̃ = M − φq and write down a

generalized first law (2.19) mimicking the Einstein case, it is not clear whether K̃ has the

meaning of some quasi-local energy inside the screen. Instead, there is a more acceptable

Tolman-Komar energy [49], defined as

K =

∫

V
dn−1x

√
h

16π
Ra

bξ
bna (3.13)

for a region V with induced metric hab and normal vector na, where ξb is the Killing

vector and

Ra
b = 16πP acdeRbcde (3.14)

with

P abcd =
∂L

∂Rabcd
. (3.15)

Here Ra
b can be viewed as the generalization of Ricci tensor to the Lovelock gravity. Note

that even for the vacuum case the equations of motion do not imply Rab = 0, so K does

not vanish, unlike in Einstein’s gravity. In our case, we take ξ = ∂t and V to be the outside

of the screen. If the space-time is asymptotically flat, it is natural to identify

K = M −
∫

V
dn−1x

√
h

16π
Ra

bξ
bna (3.16)
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as the Tolman-Komar energy inside the screen, where M is the ADM mass of the space-

time. So, unlike in Einstein’s gravity, this energy is screen-dependent even in the vacuum

case. For a spherically symmetric screen in the RN-like solution (3.9), the Tolman-Komar

energy (3.16) can be explicitly computed to be

K = (n− 2)2Ωn−2

∑

k

α̃kk

n− 2k

(

1 − f

r2

)k−1 r2n−4
∑

k α̃k(n − 2k − 1)(1−f
r2 )k − (n− 3)q2

16π(n − 3)rn−3
∑

k α̃kk(
1−f
r2 )k−1

.

(3.17)

It is obvious that K 6= M − φq in generic case, so it is not clear whether a generalized first

law concerning this Tolman-Komar energy exists.

Furthermore, Padmanabhan has proposed another definition of entropy off the hori-

zon [49] in a certain class of theories including the Lovelock gravity, generalizing the defini-

tion of entropy on the horizon by Wald et al [58, 59]. For a general screen S, the associated

entropy is suggested to be

S =

∫

S
8πP ab

cd ǫabǫ
cd√σdn−2x, (3.18)

ǫab the binormal to S and σab the metric on S, where L = 1
16π

∑

k αkLk for the Lovelock

gravity. This entropy is shown to satisfy the equipartition-like rule with the Unruh-Verlinde

temperature (2.5) and some generalized Tolman-Komar energy [49]. In our case, the only

non-vanishing components of the binormal are ǫtr = 1/2 = −ǫrt, so the only relevant

component of (3.15) in (3.18) is

P tr
tr =

1

16π

∑

k

αkk2
−kδtra2b2···akbk

trc2d2···ckdk
Rc2d2

a2b2
· · ·Rckdk

akbk
(3.19)

with the indices ai, bi, ci, di (i = 2, · · · , k) running only among the angular directions. By

explicitly working out

Rab
cd =

1 − f

r2
δab
cd (3.20)

for the metric (2.4) and substituting it into (3.19), one can see that the general defini-

tion (3.18) of entropy eventually gives (3.7). In fact, substitution of (3.20) into (3.19) gives

P tr
tr =

1

16π

∑

k

αkk2
−kδtra2b2···akbk

trc2d2···ckdk
δc2d2

a2b2
· · · δckdk

akbk

(

1 − f

r2

)k−1

=
1

32π

∑

k

αkkδ
tra2b2···akbk

tra2b2···akbk

(

1 − f

r2

)k−1

=
1

32π

∑

k

αkk(n− 2)(n − 3) · · · (n− 2k + 1)

(

1 − f

r2

)k−1

=
n− 2

32π

∑

k

α̃kk

n− 2k

(

1 − f

r2

)k−1

(3.21)

Substituting the above expression into (3.18), we then obtain the entropy (3.7) exactly.

Moreover, the entropy (3.7), the Unruh-Verlinde temperature (2.5) and the Tolman-Komar
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energy (3.17) satisfy

K =
n− 2

n− 3
TS, (3.22)

as Padmanabhan proved.

4 The general static case and dynamical case

For the general static case in the Lovelock gravity, it is convenient to let h(r) = e−2c(r)f(r)

in the metric (2.3). In this case, the tt and rr components

∑

k

α̃k

(

1 − f

r2

)k−1

[krf ′ − (n− 2k − 1)(1 − f)] =
16πT t

t

n− 2
r2, (4.1)

∑

k

α̃k

(

1 − f

r2

)k−1

[kr(f ′ − 2fc′) − (n− 2k − 1)(1 − f)] =
16πT r

r

n− 2
r2 (4.2)

of the equations of motion are independent of each other. Focusing on a screen with fixed

f , taking a linear combination of these two equations and multiplying both sides of the

equation by the factor (3.5), we have again the generalized first law (2.9) with exactly

the same entropy (3.7) and Misner-Sharp-like energy (3.8), but with a slightly different

temperature

T =
f ′ − 2lfc′

4π
=
∂r[(g

rr)1−l(−gtt)
l]

4π(−gttgrr)l
(4.3)

from (2.5) and

P = (1 − l)T t
t + lT r

r . (4.4)

Now, two special cases should be noted. The first one is the choice l = 1/2, where P =

(T t
t + T r

r )/2 and it can be shown that

T =
ec(e−cf)′

4π
=
DaD

ar

4π
(a = t, r) (4.5)

just coincides with Hayward’s definition [78, 79] generalized to the off-horizon case [55] in

Einstein’s gravity.3 The second one is the choice l = 1, which is of particular interest, since

in this case P = T r
r is just the standard expression of the radial pressure and

T =
∂rgtt

4πgttgrr
(4.6)

differs from the standard Unruh-Verlinde temperature only by a
√−gttgrr factor. Similar

phenomena of non-unique temperatures are extensively observed in the on-horizon case [55,

80, 81].

For the general definition (3.18) of entropy, since (3.20) still holds in this case and it

is easily seen that

ǫtrǫ
tr =

1

4
(4.7)

3The work density w there is just −P here.
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for the metric (2.3), the calculation in the previous section leads to exactly the same re-

sult (3.7), which is consistent with the above analysis that leads to the generalized first law.

The dynamical case is formally the same. In this case, the metric can be written as

ds2 = −e−2c(t,r)f(t, r)dt2 + f(t, r)−1dr2 + r2dΩ2
n−2, (4.8)

with t the so-called Kodama time [82]. It turns out that the above discussion extends to

this case straightforwardly, with f , c and other quantities in the same equations (4.1)–

(4.6) understood as functions of both t and r. However, the thermodynamic meaning of

the resulting “first law”

TdS − dE = PdV (4.9)

is obscure. In fact, we know in the standard thermodynamics that the expression dQ = TdS

holds only in reversible processes, and a reversible process is necessarily quasi-static. Thus,

for such a dynamical evolving case, (4.9) cannot be regarded as the generalized first law

in the usual thermodynamic sense. Nevertheless, the first-law-like description (4.9) of the

Lovelock gravitational dynamics is interesting in its own right. And needless to say, exactly

the same, unique expression (3.7) of entropy on the screen involved here further confirms its

physical significance. Furthermore, the general definition (3.18) of entropy still gives (3.7)

even in this case, since (3.20) and (4.7) still hold for the metric (4.8).

5 The plane symmetric and hyperbola symmetric cases

The above discussions can be generalized to the plane symmetric and hyperbola symmetric

cases. Generally, the static metric can be written as

ds2 = −e−2c(r)f(r)dt2 + f(r)−1dr2 + r2dΩ2
ε,n−2 (5.1)

with dΩ2
ε,n−2 the metric on the “unit” (n− 2)-sphere, plane or hyperbola for ε equal to 1,

0 or −1, respectively. In these cases, (4.1) and (4.2) become

∑

k

α̃k

(

ε− f

r2

)k−1

[krf ′ − (n− 2k − 1)(ε − f)] =
16πT t

t

n− 2
r2, (5.2)

∑

k

α̃k

(

ε− f

r2

)k−1

[kr(f ′ − 2fc′) − (n− 2k − 1)(ε − f)] =
16πT r

r

n− 2
r2. (5.3)

Similar discussions as in the previous section lead to the generalized first law (2.9) with

the entropy and Misner-Sharp energy

S =
n− 2

4
Ωn−2r

n−2
∑

k

α̃kk

n− 2k

(

ε− f

r2

)k−1

, (5.4)

E =
n− 2

16π
Ωn−2r

n−1
∑

k

α̃k

(

ε− f

r2

)k

, (5.5)

while the temperature (4.3) and pressure (4.4) have the same forms in all these cases.
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On the horizon (f = 0), these results just become the known ones for the plane

symmetric and hyperbola symmetric black holes in the general Lovelock gravity. Especially,

in the plane symmetric case (ε = 0), the entropy on the horizon is just A/4 and the

corresponding Misner-Sharp energy is simply

n− 2

16π
α̃0Ωn−2r

n−1 (5.6)

even in the general Lovelock gravity [67], while it is obvious that this statement no longer

holds off the horizon.

For the dynamical case, it is easy to check that the above discussion applies straight-

forwardly, with f , c and other quantities in the same equations (5.1)–(5.5) understood as

functions of both t and r. Furthermore, the definition (3.18) of entropy again gives (5.4) in

the general static case and dynamical case, since (4.7) still holds and (3.20) now becomes

Rab
cd =

ε− f

r2
δab
cd (5.7)

for the metric (5.1), even with f and c understood as functions of both t and r.

6 The entropy from conical singularities

In the Euclidean approach to the thermodynamics of black holes, the horizon temperature

for the metric (2.4) is determined by requiring that its Euclidean counterpart

ds2 = f(r)dτ2 + f(r)−1dr2 + r2dΩ2
n−2 (6.1)

should have no conical singularity at the origin f(r) = 0 of the τ -ρ plane, where ρ is defined

by the differential equation

dρ = f(r)−1/2dr (6.2)

with the boundary condition ρ = 0 when f(r) = 0. Note that this origin just corresponds

to the horizon of the black hole. That analysis results in a periodicity

τ ∼ τ +
4π

f ′(r0)
(f(r0) = 0) (6.3)

of the imaginary time τ at the origin, which implies a temperature

T =
f ′(r0)

4π
(6.4)

of the horizon.

On the other hand, if we allow a conical singularity at the origin with an angle β,

then the Euclidean action IE (upon properly renormalized) will be β-dependent and, cor-

respondingly, there is an entropy

S = lim
β→2π

(

β
∂

∂β
− 1

)

IE (6.5)

– 11 –



J
H
E
P
0
1
(
2
0
1
1
)
1
5
0

canonically conjugate to the deficit angle δ = 2π−β, which is shown to agree with the black-

hole entropy in the general Lovelock gravity [83]. Note that this viewpoint on the entropy is

off shell, i.e. does not rely on the validity of the equations of motion, in contrast to the on-

shell ones by the usual black-hole thermodynamics or by the method of Wald et al [58, 59].

An analysis of Riemann manifolds with conical singularities, using some regularization

techniques, has been made in [84], under certain requirements on the asymptotic behavior

of the metric approaching the singularity. However, we will use another approach [88–90] in

the following to analyze the conical singularity and then compute the entropy (6.5), which

seems more convenient and relevant to the off-horizon case that we are really interested in

throughout this paper.

In fact, we take a more general form

ds2 = gττ (τ, r)dτ
2 + 2gτr(τ, r)dτdr + grr(τ, r)dr

2 + gij(τ, r, x)dx
idxj (6.6)

of metric, which is assumed regular everywhere and can be (globally) recast as

ds2 = 2gww̄(w, w̄)dwdw̄ + gij(w, w̄, x)dx
idxj (6.7)

under some conformally flat complex coordinates (w, w̄) on the (τ, r) plane. Here i, j run

over indices excluding τ and r. The Euclidean spherically symmetric, plane symmetric

and hyperbola symmetric space-times are all special cases of the metric (6.6). For the

on-horizon, static case discussed previously the origin w = 0 = w̄ of the complex plane is

just at f(r) = 0 (or ρ = 0), while for the off-horizon, static case the origin of the complex

plane is at (τ, r) with r the position of the screen and τ arbitrary. The conically singular,

or multi-sheeted, structure is realized by the coordinate transformation

w = zm, (6.8)

which is singular at z = 0 = z̄ for m 6= 1. Precisely, our original Euclidean space-time

has topology R2 × S. To obtain the multi-sheeted Euclidean space-time, m copy of the

R2 factor is glued together in the standard way as Riemann surfaces [88–90], while the S
factor remains untouched. The metric (6.7) then becomes

ds2 = 2m2(zz̄)m−1gww̄dzdz̄ + gijdx
idxj . (6.9)

Note that the conical angle β = 2πm. Since β → 2π in (6.5), we extend m from integers

to reals and let m = 1 + ǫ with ǫ an infinitesimal parameter. To the linear order of ǫ, the

above metric is

ds2 = 2[1 + 2ǫ+ ǫ ln(zz̄)]gww̄dzdz̄ + gijdx
idxj. (6.10)

Straightforward calculations give the Riemann curvature

ǫRab
cd = Rab

cd − 8πǫgzz̄ǫabǫcdδ
2(z, z̄) (6.11)

with Rab
cd the tensorial part of the Riemann curvature, ǫab the binormal to the surface

z = 0 = z̄ and the second term on the right hand side the non-tensorial part due to the

conical singularity, which is similar to the result in [84].
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Now suppose that the Euclidean action has the form

− IE =

∫

F (gef , R
ab
cd, ψ)

√
gdwdw̄dn−2x, (6.12)

where F (gef , R
ab
cd, ψ) is some scalar function of the metric, the Riemann curvature (and

its contractions) and some matter fields (and their covariant derivatives) collectively de-

noted by ψ. Under the transformation (6.8), substitution of (6.11) into (6.12) gives the

β-dependent Euclidean action

ǫIE = ǫ

∫

8π
∂F

∂Rab
cd

ǫabǫcdδ
2(z, z̄)gzz̄√gdzdz̄dn−2x−

∫

F
√
gdzdz̄dn−2x

= ǫ

∫

8π
∂F

∂Rab
cd

ǫabǫcd
√
σdn−2x−

∫

F
√
gdzdz̄dn−2x, (6.13)

where σ is the determinant of the induced metric σij on the surface z = 0 = z̄ of codimen-

sion 2. Note that the precise meaning of the bulk integral
∫ √

gdzdz̄dn−2x in (6.13) is to

evaluate it for integral m and extend the result to real m → 1 [91, 92], so this integral is

by construction proportional to β. Substituting (6.13) into (6.5), we then have

S =

∫

8π
∂F

∂Rab
cd

ǫabǫcd
√
σdn−2x, (6.14)

which agrees with (3.18) because we know from (6.12) that F is just the Euclidean version

of the Lagrangian L. Similar argument has early been made in [93] that the horizon entropy

from conical singularities is equivalent to the definition by Wald et al, but introducing and

treating the singularities by techniques similar to [84].

7 Concluding remarks

In this work, we use three independent ways to check the thermodynamical interpretation

of some geometric quantities on a maximally symmetric (spherically, plane or hyperbola

symmetric) holographic screen in the general Lovelock theory, first under certain metric

ansatz in the static case. All these methods give the same Unruh-Verlinde temperature,

Misner-Sharp energy and entropy formula on the screen. This agreement supports the

thermal interpretation of these geometric quantities to be physically meaningful. In the

general static spherical case and dynamical spherical case, then, exactly the same form of

entropy appears, but the definition of temperature is of some ambiguity and the physical

meaning of the “generalized first law” in the dynamical case is obscure, which have been

clarified in our paper. In fact, we have obtained a series of “generalized first law”, which

include that of Hayward as a special case. Similar to the on-horizon case that the entropy is

canonically conjugate to the deficit angle of the conical singularity at the “horizon” of the

Euclidean space-time, the off-horizon entropy has been shown to be canonically conjugate

to the deficit angle of the conical singularity at the “screen” from the Euclidean point

of view. This result can been viewed as additional independent evidence of the thermal

meaning of geometric quantities on a general screen.
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Nevertheless, there are many open questions and/or unclear points in this framework,

of which an important one will be described as follows, simply in Einstein’s gravity. Al-

though the relation S = A/4 for a general spherically symmetric screen seems rather uni-

versal and is supported by many recent works, there is an alternative expression S = 2πRE

obtained in [53], which seems also substantial. To get the former form of entropy, we have

to focus on a screen with fixed f , while to get the latter form, we have to focus on a screen

with fixed r. In fact, the former form of entropy just saturates the holographic entropy

bound [8, 9], while the latter form just saturates the Bekenstein entropy bound [95]. Fur-

thermore, for the former form of entropy it is easy to write down some generalized first

law of thermodynamics as discussed above, but it is not clear how to realize Verlinde’s

entropy variation formula and then the gravity as an entropic force, while for the latter

form there exist the entropy variation formula and the entropic force expression [53] but

without a satisfactory generalized first law. How to reconcile these two forms of entropy is

a significant open question.

Although in the method of conical singularity, Padmanabhan’s general definition of

off-horizon entropy has been confirmed in a much larger class of metrics than the maxi-

mally symmetric ones, it seems that it is difficult to generalize all the other approaches

of investigating the off-horizon entropy, and moreover, the off-horizon thermodynamics to

a general (non-maximally-symmetric) holographic screen. This problem should be left for

future works.
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