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tations of the WN algebra; these are higher spin versions of the boundary gravitons. We

describe a fundamental bound which relates the value of the cosmological constant to the

amount of gauge symmetry present. In the dual CFT language, this is the statement that

modular invariance implies that the theory can not be quantized unless the central charge

is sufficiently large, i.e. if c ≥ N−1. This bound relies on the assumption that all of the per-

turbative excitations exist as full states in the quantum theory, and can be circumvented

if the theory possesses a linearization instability. The WN minimal models — recently

conjectured to be dual to certain higher spin AdS theories by Gaberdiel and Gopakumar

— provide an example of this phenomenon. This result can be regarded as an example

of a “gravitational exclusion principle” in Anti-de Sitter space, where a non-perturbative

quantum gravity mechanism involving black holes places a limit on the number of light

degrees of freedom present.
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1 Introduction

Three dimensional quantum gravity has proven a useful testing ground for many of our ideas

and conjectures concerning the microscopic nature of gravity. One of the most interesting

and important conjectures is the proposal that quantum gravity places a fundamental

limit on the number of light degrees of freedom present. This conjecture is most commonly

discussed in the context of black hole entropy, where it was observed that a large number of

light species of identical particles would violate holographic entropy bounds [1, 2]. However,

this notion has surfaced in a variety of different guises over the last several decades (for

example in [3–5]). The goal of this paper is to describe a specific three dimensional scenario

where this idea can be put to the test using the precision techniques of AdS/CFT.

We will focus on the case of three dimensional gravity in asymptotically Anti-de Sitter

(AdS) space, and consider theories with massless higher spin gauge fields. These theories

possess a large symmetry group which can be regarded as an enhanced version of the

conformal symmetry present in every asymptotically AdS theory of gravity. The states

organize into representations of this enhanced symmetry group, hence these theories contain

a large number of light degrees of freedom. In the context of AdS/CFT, the inclusion of

higher spin fields is interesting in its own right. In string theory realizations of AdS/CFT,

an infinite tower of massless higher spin fields is expected to emerge when the AdS radius

becomes small [6–11]. The study of such higher spin fields should therefore be regarded as

a first step in the study of quantum gravity in AdS beyond the supergravity regime.

We note that the construction of theories of massless higher spin fields is a notoriously

delicate procedure. In four space-time dimensions, a consistent theory with an infinite

tower of interacting higher spin fields was constructed by Vasiliev [12–15] (see also the

recent progress of [16–19]). In three space-time dimensions the story is somewhat more
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straightforward. A simple class of massless higher spin theories in AdS3 can be formulated

using Chern-Simons theory [20, 21]. Unlike Vasiliev’s four dimensional theory, which can

be formulated only when there are an infinite number of higher spin fields, this theory

exists for both a finite and an infinite number of higher spin fields [22, 23]. These theories

describe massless higher spin gauge fields which possess no local degrees of freedom and

can be regarded as higher spin versions of the graviton, which itself has no local degrees of

freedom in three dimensions.

Despite the fact that these theories have no local degrees of freedom, they have inter-

esting quantum properties which can be understood rather precisely. There are “non-local”

degrees of freedom which are associated with boundary excitations of the fields, general-

izing the classical results of Brown and Henneaux [24]. In particular, the algebra of the

asymptotic symmetry group is enlarged from two copies of the Virasoro algebra to two

copies of the WN algebra, where N is the highest allowed spin [23, 25]. The central charge

of the dual CFT can be computed, and remarkably remains unaffected by the presence of

the higher spin fields. A non-trivial check of this story was provided by [26], who computed

the one-loop determinant of the gravitational theory and showed that it is precisely the

vacuum character of WN .

Here we will investigate the effect of these higher spin fields on the spectrum of the

theory. Classically and at the linearized level the theories seem to be well defined and free

of pathologies. We would like to ask what happens once quantum effects are taken into

account. Our primary tool will be the AdS/CFT correspondence, which states that to every

theory of gravity in asymptotically AdS space there is a dual CFT. Thus the structure of

the theory is constrained by conformal invariance. In particular, modular invariance —

invariance under large conformal transformations in Euclidean signature — allows us to

determine the spectrum of the theory at high energies. This gives Cardy’s formula, which

determines the rate of growth for the density of states at high energies.

The basic observation of this note is a simple one. When the value of N is sufficiently

large, the number of linearized states in the bulk theory — the number of higher spin

versions of boundary gravitons — exceeds this upper bound set by Cardy’s formula. In

order to prevent this we must require that

N − 1 ≤ c =
3ℓ

2G3
. (1.1)

Here we have used the Brown-Henneaux expression for the central charge of the theory in

terms of the AdS radius ℓ and Newton constant G3. Thus the existence of a dual CFT,

along with the existence of these boundary excitations, provides a bound on the amount of

higher spin gauge symmetry present. An important feature of this result is that when N

is large it applies to theories in the semiclassical (ℓ ≫ G3) regime. This can be regarded as

a “gravitational exclusion principle,” where quantum gravitational effects place an upper

bound on the number of light states in the theory.

We note that this bound appears only when non-perturbative effects are included,

and that the classical theories discussed above appear to be free of pathology for every

value of c and N . It is interesting then to ask exactly what happens when we try to
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quantize a theory with values of N and c which violate the bound (1.1). One of two

things must occur. The first possibility is that the value of ℓ (or G3) will be renormalized

by quantum effects so that (1.1) is satisfied. In effect, quantum corrections will drive

the value of the cosmological constant towards zero to accommodate the large number

of degrees of freedom. The second possibility is that some of the dangerous perturbative

states are removed from the spectrum upon quantization. This would mean that the

theory has a linearization instability; apparently innocuous perturbative states are not in

fact linearizations of true states in the Hilbert space. Roughly speaking, these perturbative

states are removed to accommodate the finite size of Anti-de Sitter space. It appears that

both of these possibilities can be realized in theories of AdS quantum gravity. To see this,

we will consider a simple set of CFTs with WN symmetry, namely the WN minimal models,

whose bulk duals were recently discussed in [27].

Finally, we wish to emphasize the intimate connection between the bound (1.1) and the

physics of asymptotically AdS black holes. Every classical theory of AdS3 gravity possesses

black hole solutions, the BTZ black holes. The Bekenstein-Hawking entropy of these black

holes is precisely given by Cardy’s formula for the asymptotic density of states. Thus the

bound (1.1) reflects the fact that black holes dominate the spectrum of the theory at high

energy. Indeed, we will see that there is a precise sense in which those CFTs which violate

the bound (1.1) — such as the WN minimal models — are dual to theories where the

spectrum of high energy states is not dominated by black holes with large area.

In the next section we will review a few salient features of WN symmetry and higher

spin theories in AdS3. In section 3 we discuss the bound (1.1) and its application in both

the finite N and N → ∞ case. In section 4 we comment on the specific realizations of

these conjectures in the WN minimal models. In an appendix we describe the asymptotic

properties of WN and W∞ vacuum characters.

2 Higher spin fields in AdS3

In this section we summarize the main results of [23, 25, 26] concerning higher spin theories

in AdS3.

Classical three dimensional general relativity with a negative cosmological constant

can be rewritten as a Chern-Simons gauge theory with gauge group SO(2, 2) ≃ SL(2, R)×

SL(2, R) [28–30]. It is easy to generalize this to include a theory with fields of up to spin

N . We simply replace the SL(2, R) gauge group by SL(N, R) [23]. In this case the higher

spin fields are massless and have no local propagating degrees of freedom; the theory

is topological, just as with the spin 2 graviton case. Further, one can take the infinite

dimensional extension of SL(2, R) — denoted hs(1, 1) — which will describe a infinite

tower of spins in a similar spirit as the Fradkin-Vasiliev theory [20, 21].

To formulate this theory more precisely, we introduce a pair of tensor-valued one forms

e a1···as−1

µ , ω a1···as−1

µ , (2.1)

where ai are Lorentz indices. If the gauge group is SL(2, R) we identify e a
µ with the

dreibein and ω a
µ with the spin connection. The Chern-Simons gauge fields are the linear
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combinations

A±
(2) = Ja

(

ω a
µ ±

1

ℓ
e a
µ

)

dxµ , (2.2)

where Ja are the generators of sl(2, R). The equations of motion are found by extremizing

the Chern-Simons action

ICS[A] =
k

4π

∫

tr(A ∧ dA +
2

3
A ∧ A ∧ A) , (2.3)

where tr is the symmetric bilinear form on SL(2, R). The Einstein-Hilbert action is given by

IEH = ICS [A+
(2)] − ICS [A−

(2)] , k =
ℓ

4G3
. (2.4)

where ℓ is the AdS3 radius and G3 Newton’s constant.

To include the dynamics of the spin s field, we define

A+ = A+
(2) + Ta1···as−1

(

ω a1···as−1

µ +
1

ℓ
e a1···as−1

µ

)

dxµ ,

A− = A−
(2) + Ta1···as−1

(

ω a1···as−1

µ −
1

ℓ
e a1···as−1

µ

)

dxµ , (2.5)

with s > 2 and Ta1···as−1
are generators of the extended gauge group. We can then identify

the gauge fields (2.1) with higher spin fields as defined by Fronsdal [31] provided the

generators Ta1···as−1
obey the correct algebra. First, the generators Ta1···as−1

must be taken

to be symmetric and traceless. Second, the Ja and Ta1···as−1
must form the Lie algebra

[Ja, Jb] = ǫabcJ
c , [Ja, Ta1···as−1

] = ǫm
a(a1

Ta2···as−1)m . (2.6)

One can then consider the Chern-Simons action

IN = ICS[A+] − ICS [A−] . (2.7)

For N > 2, one can check that the linearized fluctuations of the gauge fields around a

fixed metric background should satisfy the equations of motion of higher spin fields. More

precisely, we have

e a
µ = e(0)a

µ + e(1)a
µ , ω a

µ = ω(0)a
µ + ω(1)a

µ , (2.8)

where the upper script (0) denotes the background and (1) are fluctuations. Treating

all other higher spin fields as fluctuations, the linearized Chern-Simons equations are re-

duced to

∇2ϕµ1···µs
−∇(µ1|

∇λϕ|µ2···µs)λ
+ ∇(µ1

∇µ2
ϕ

λ
µ3···µs)λ = 0 , (2.9)

where

ϕµ1···µs =
1

s
e
(0)a1

(µ1
· · · e(0)as−1

µs−1
eµs)a1···as−1

, (2.10)

for s ≥ 2. At this level the connection ω
a1···as−1

µ becomes an auxiliary field. Equation (2.9)

is exactly the equation of motion for a free spin s field propagating on a curved space-time.

There are two very interesting results for these higher spin theories in AdS3. First,

in [23, 25] the authors computed the asymptotic symmetries of the SL(N, R) × SL(N, R)
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Chern-Simons theories for a given set of boundary conditions. Taking the connection A±
(2)

on empty AdS3 as the definition of “asymptotically AdS configurations”, they found all

gauge transformations that left the connection invariant up to a constant term with respect

to AdS3 near the boundary. The remarkable result is that the algebra of the asymptotic

symmetries is given by two copies of the WN algebra. Further, the algebra allows for a

central extension and its central charge is

c =
3ℓ

2G3
. (2.11)

It is surprising that the addition of higher spin fields does not affect the central charge.

The value in (2.11) is the same as computed by Brown-Henneaux [24] for Einstein gravity

with a negative cosmological constant. This results also holds in the infinite N limit, where

the algebra is W∞ and the central charge is still (2.11) [25].

The appearance of the centrally extended algebra as studied in [23, 25] is purely classi-

cal. The analysis presented in [26] goes one step further and tests whether the WN persists

at the quantum level. These authors computed the 1-loop determinant associated to the

linearized fluctuations (2.10). They found that the full 1-loop contribution of a single spin

s field is simply

Z(s) =

∞
∏

n=s

|1 − qn|−2 , (2.12)

where q = exp(2πiτ) and τ is the complex structure of the torus at the boundary of thermal

AdS3. Therefore for a SL(N) × SL(N) Chern-Simons theory, which contains a family of

spin fields from s = 2 up to s = N , the 1-loop determinant is given by

Z1−loop
N =

N
∏

s=2

∞
∏

n=s

|1 − qn|−2 = χN × χ̄N , (2.13)

with

χN =

N
∏

s=2

∞
∏

n=s

(1 − qn)−1 . (2.14)

χN is precisely the vacuum character of the WN algebra. For infinite N the resulting 1-loop

determinant is

Z1−loop
∞ =

∞
∏

s=2

∞
∏

n=s

|1 − qn|−2 = χ∞ × χ̄∞ , (2.15)

where

χ∞ = M(q)

∞
∏

n=1

(1 − qn) , (2.16)

and the MacMahon function is defined as

M(q) =
∞
∏

n=1

(1 − qn)−n . (2.17)

The function χ∞ is the character of the W∞ algebra. One nice and unexpected feature is

that equations (2.13) and (2.15) can be written as the square of a holomorphic function of

q.

– 5 –



J
H
E
P
0
1
(
2
0
1
1
)
1
4
2

Although these one loop determinants were computed directly in the bulk using heat

kernel methods, in fact they have a simple physical interpretation. They can be derived

using strictly algebraic methods, as traces over the vacuum representations of WN and

W∞. This is the representation where all of the WN descendants are linearly independent

and have positive norm; i.e. the representation without null vectors. Using this fact, it was

further argued in [26] that the partition functions (2.13) and (2.15) are one-loop exact,

following [32].

3 Partition function and growth of states

We would now like to study the general properties of the partition function of an asymp-

totically AdS theory of gravity with WN symmetry. Our basic observation is that there is

a tension between the two essential features described above — the existence of asymptotic

conformal symmetry with a finite central charge, and the appearance of the infinite tower

of linearly independent, finite norm WN descendants. In some cases these features are

mutually incompatible.

We start by considering the partition function

Z(τ, τ̄) =
∑

∆,∆̄

d(∆, ∆̄)q∆q̄∆̄ , (3.1)

where d(∆, ∆̄) is the number of states with weight (∆, ∆̄). We will use the conventional

“CFT normalization” for the weights so that the ground state (i.e. empty Anti-de Sitter

space) has ∆ = ∆̄ = −c/24. This partition function can be regarded as a Euclidean path

integral in three dimensions, where we sum over all field configurations such that the metric

approaches a torus at asymptotic infinity.1 With standard Brown-Henneaux boundary

conditions this partition function will be a function only of the conformal structure τ of the

torus at infinity, and will hence be invariant under the modular transformation τ → −1/τ .

In the gravitational language, this modular transformation is a large diffeomorphism of the

bulk which induces a large conformal transformation of the boundary torus.

Modular invariance leads to Cardy’s formula [37]

log(d(∆, ∆̄)) ∼ 2π

√

c∆

6
+ 2π

√

c∆̄

6
, (3.2)

for the number of states at large ∆, ∆̄. The first assumption involved in the derivation

of this formula is that the bulk theory is diffeomorphism invariant in Euclidean signature.

The second is that the ground state has finite norm, so that the first excited state has

∆, ∆̄ > −c/24 and is separated by a gap from the ground state. Provided these assumptions

are satisfied, equation (3.2) is universal. The details of the bulk theory, such as the specific

matter content, will only enter into the subleading corrections to this formula.

1 The literature on the partition function of AdS3 gravity is extensive, see e.g. [32–36] and references

therein.
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This universal behaviour is a consequence of the physics of AdS3 black holes. Every

classical theory of AdS3 gravity contains black holes [38, 39]. These black holes are quo-

tients of AdS3, so will necessarily exist as solutions to the equations of motion if AdS3 itself

is a solution to the equations of motion. Their Bekenstein-Hawking entropy is precisely

given by equation (3.2) [40]. Thus we expect that in a quantum theory of AdS3 gravity,

there should be states with arbitrarily large weights which describe the BTZ black hole.

Let us now reconsider the higher spin theories in this light. Although we will not

be able to compute the partition function exactly, we can compute the tree and one-loop

contributions. The vacuum state will just be empty AdS, which contributes to the tree

level partition function

Z(0) = q−c/24q̄−c/24 . (3.3)

The one loop piece is also easy to compute. It is given by the trace

Z(1) = TrH

(

qL0 q̄L̄0

)

, (3.4)

over the Hilbert space H of linearized excitations of the theory. This is the space of solutions

to the linearized equations of motion (2.9) modulo gauge transformations. Since all local

excitations are pure gauge, one might guess that there are no such contributions. However,

this is not quite the case as the set of allowed gauge transformations includes only those

which vanish sufficiently quickly at infinity. Thus the spectrum includes states obtained by

acting on the vacuum state by a linearized gauge transformation at the boundary. Indeed,

it was argued that these gauge transformations generate the algebra WN , which is an

extension of the usual Virasoro algebra W2. Thus the linearized fluctuations of the spin

fields are organized into a WN character [26],

Z(1)(q) = q−c/24q̄−c/24|χN (q)|2 . (3.5)

Here χ(q) is given by the vacuum character (2.14) or (2.16) depending on whether N is

finite or infinite.

It is important to emphasize that there is nothing mysterious about the states which

contribute to the partition function (3.5). They describe solutions to the equations of

motion and can be written out explicitly in the Chern-Simons language. For N = 2, of

course, they have a simple interpretation; they are the usual boundary gravitons. At the

linearized level, these states have finite norm with respect to Klein-Gordon inner product,

so appear to represent legitimate states of the free higher spin field theory. The question is

whether these states will survive at the non-linear level, and if they do what the implications

are for the quantum theory.

The most immediate effect of the higher spin fields is to increase the number of states

at each level. In particular, the number of WN descendants of a given dimension is larger

than the number of Virasoro descendants. But the total number of states is constrained

by Cardy’s formula (3.2). If the linearized states appearing in (3.5) are to appear as states

in the full theory, this a significant constraint.
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To see this let us first consider the case where N is finite. The coefficients pN
∆ of the

WN vacuum character

χN =

N
∏

s=2

∞
∏

n=s

(1 − qn)−1 =
∑

∆

pN
∆q∆ , (3.6)

can be estimated at large ∆. They grow like

log (pN
∆) ∼ 2π

√

(N − 1)

6
∆ , (3.7)

when ∆ is large (and in particular if ∆ ≫ N3). A derivation of this is given in the

appendix, but the origin of this growth can be understood intuitively. When N = 2, χ2 is

the vacuum character of the Virasoro algebra. In the absence of null vectors, the number

of Virasoro descendants of a given primary state increases like the number of states in

a CFT of central charge c = 1. That is why the construction CFTs with c < 1 (the

minimal models) is a highly constrained algebraic problem which requires the existence of

null vectors. For N > 2, we observe that the character (3.6) is equal to the (N − 1)th

power of the Virasoro vacuum character times a finite polynomial in q. Thus it is natural

to guess that the number of descendants grows like the number of states of a CFT with

central charge (N − 1). From equation (3.7) we see that this is indeed the case. One just

has to verify that this finite polynomial does not lead to cancellations which will spoil this

heuristic argument; this computation is described in appendix A.2.

Comparing equations (3.7) and (3.2) it is clear that if N − 1 > c then there will be

a value of ∆ for which pN
∆ will exceed the allowed density of states d(∆, ∆̄). Thus some

of the linearized states must be removed from the spectrum. Indeed, we will see explicitly

that this can happen in certain cases in the next section for the bulk theories dual to the

WN minimal models.

We note that the situation is even more drastic if N is infinite. The descendants are

counted by the W∞ character

χ∞ = M(q)

∞
∏

n=1

(1 − qn) =

∞
∑

∆=1

p∞∆ q∆ , (3.8)

whose coefficients grow like

log (p∞∆ ) ∼ 3

(

ζ(3)∆2

4

)1/3

, (3.9)

as we show in appendix A.3. The growth of states in (3.9) will always exceed the Cardy

growth (3.2) for any finite value of the central charge. Thus in the absence of a linearization

instability, the number of perturbative states vastly exceeds the number of black holes

states.

Finally, we note that the convergence towards the asymptotic values (3.7) and (3.9) is

rather slow. In some cases, this might mean that in order to see that the number of WN

descendants exceeds the Cardy bound we have to look at states of very high dimension.
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As an illustration of this phenomenon, we will consider the following simple example.

Let us ask if it is possible to construct a “pure” theory of gravity with WN symmetry,

in the sense that the only perturbative states are the WN descendants described above.

Following [34], it is natural to conjecture that this theory is holomorphically factorized.

In this case the partition function will be the square of an analytic function Z(τ) which

diverges like q−c/24 as q → 0. Z(τ) will be a holomorphic, modular invariant function on

the upper half τ plane. Using general properties of modular functions (see e.g. [41]) it

follows that Z(τ) is determined uniquely provided we specify the c/24 polar terms in the

expansion of Z(τ) around q = 0. If the theory is “pure” in the sense defined above, then

these polar terms are found by demanding that they match the polar terms in the one

loop partition function (3.5). It is then straightforward to compute Z(τ) for any desired

values of N and c and hence determine the number of states of any dimension ∆, using an

algorithm similar to that presented in [34].2 It is then possible to check explicitly that for

any N − 1 > c there is some value of ∆ for which the number of WN descendants exceeds

to total number of states counted by the partition function Z(τ).

It is amusing to work this out explicitly for the case c = 24 where the holomorphic part

of the partition function is, up to an additive constant, equal to the Klein’s J-invariant

J(τ). The q expansion is

Z(τ) = q−1 + (const) + 196884q + 21493760q2 + 864299970q3 + . . . (3.10)

One can compare this to the asymptotic growth of the vacuum character

Z(1)(τ) = q−1χN = q−1 + q + 2q2 + 3q3 . . . . (3.11)

It is a surprising (but true) fact that when N > 25 the coefficients of (3.11) become larger

than those of (3.10) for some value of ∆. For N very large this occurs when ∆ ≈ 105 and

the coefficients are of order 101000.3 The explanation of this curiously large value of ∆ is

the following. The J-function happens to be well approximated by Cardy’s formula for

small values of ∆, whereas the corresponding asymptotic formula for χN is only a good

approximation for relatively large (of order 104) values of ∆. The lesson is that while

the first few coefficients in expressions like (3.11) may appear small, this does not tell the

full story!

4 Minimal models and black holes

In this section we comment on the WN minimal models, which provide specific and calcu-

lable examples of WN symmetric CFTs with central charges c < N − 1. Thus they lie on

2One could also compute Z(τ ) by performing a sum over geometries, following [35]. If we simply sum

the holomorphic part of the one-loop determinant over the coset SL(2, Z)/Z, then the resulting Z(τ ) will be

the same as that described above. However, if one does not assume holomorphic factorization and instead

sums the full one loop determinant (3.5) over SL(2, Z)/Z one finds results which are not consistent with a

quantum mechanical interpretation, as in [32].
3In fact, we can improve this argument a bit by noticing that the full partition function must be a WN

character, so that every time a primary state appears in the theory this leads to additional WN descendants

at higher order. When N = ∞ and c = 24, for example, this leads to a negative number of WN primaries

at ∆ ≈ 60000 if there are no null vectors.
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the other side of the bound (1.1). This bound was motivated in part by bulk gravity con-

siderations, so one might expect that the bulk duals to these minimal models have several

rather unusual properties. Indeed we will see that they possess a linearization instability

and that for finite k and N the spectrum of black hole states differs qualitatively from the

semiclassical expectation.

The WN minimal model at level k can be described in terms of the coset WZW model

su(N)k ⊕ su(N)1
su(N)k+1

, (4.1)

where the subscripts give the level of the algebra. The central charge is

c = (N − 1)

(

1 −
N(N + 1)

(N + k)(N + k + 1)

)

, (4.2)

and is strictly less than N − 1 for finite values of N and k. When N = 2 these coincide

with the usual (Virasoro) minimal models, and it can be proven that there are no other

unitary CFTs with c < 1. We do not know of a similar proof for higher values of N .

We note that, from a quantum gravity perspective, these higher N minimal models

are much more interesting than their Virasoro (c < 1) cousins. That is because c can be

taken to be large provided that N is also large, so that the theories are dual to macroscopic

theories of three dimensional gravity with AdS radius large in Planck units. Thus one would

expect all of the familiar features of classical three dimensional gravity — in particular the

BTZ black holes — to arise in this limit.

Unfortunately, the bulk duals of these theories are not known explicitly. However,

when N and k are taken to infinity with the ratio k/N fixed, the bulk dual was conjectured

to be an infinite tower of higher spin fields along with a pair of complex scalar fields [27].

In this limit the central charge goes to infinity, meaning that the AdS radius is infinite in

Planck units. For finite values of N this bulk theory should presumably be augmented by

terms involving the curvature of AdS space. These modifications are not known, but we

can still describe some basic features of the bulk dual of the WN minimal models for finite

N and k.

As emphasized in the previous section, the theory must have null vectors, meaning

that certain higher spin versions of the boundary gravitons are removed from the spectrum.

Indeed, one can check explicitly that the WN minimal models have null vectors. For the

WN descendants of the vacuum, the first null state appears at dimension ∆ = k + 1 − c
24 .

Indeed, the vast majority of the WN descendants will be projected out of the spectrum at

high order.

In fact, for large values of ∆ the spectrum of the WN minimal model consists entirely

of descendant states, rather than primary states. In particular, these theories have only a

finite number of primaries, hence they have a state with largest dimension. The dimension

of this highest dimension state can be estimated, and is of order4

∆max ∼ k2N , (4.3)

4We are grateful to M. Gaberdiel for discussions related to this point.

– 10 –



J
H
E
P
0
1
(
2
0
1
1
)
1
4
2

when k and N are large.

It is worth commenting on the bulk interpretation of these descendant states. The only

states with arbitrarily high dimension (above ∆max) are the descendants of lower dimension

primary states. Thus in the bulk the high energy spectrum consists entirely of lower energy

states which are dressed by a large number of boundary excitations. The exponentially

large degeneracy of states at high energy comes from the large number of such descendant

states — i.e. from the large number higher spin boundary excitations.

We note that this is in drastic contrast to our semiclassical expectations. BTZ black

holes exist as classical solutions of the equations of motion for any value of the mass and

angular momentum such that Mℓ ≥ J . In particular the theory contains black holes whose

horizon size (r+) is arbitrarily large compared to both the Planck length G3 and the AdS

radius ℓ. In the dual CFT language, these correspond to states with dimensions ∆ such that

c∆ ∼

(

r2
+

G2
3

)

≫ 1 , (4.4)

and
(

∆

c

)

∼

(

r2
+

ℓ2

)

≫ 1 . (4.5)

For states where the second inequality is valid, Cardy’s formula can be used to compute

the entropy. Although we might expect that the allowed values r+ (and hence ∆) will be

quantized in the full quantum theory, we still expect that there should still be a tower of

black hole states with arbitrarily large dimension.

However, this is not what is indicated by equation (4.3) for finite values of k and

N . The states with ∆ ≫ ∆max are lower energy states dressed by a large number of

perturbative excitations. Thus, if they are to be interpreted as black holes, they should be

regarded as a black hole of small area (a primary with ∆ ≤ ∆max) along with some number

of boundary excitations. When ∆ ≫ ∆max most of the energy (and entropy) of a state in

the high energy spectrum comes just from these boundary excitations. In this sense the

bulk dual of a minimal model does not appear to possess black holes with arbitrarily large

mass and angular momentum.

We emphasize that this picture may be altered in the large N or k limit. Depending

on how this limit is approached the minimal WN models may contain large black holes in

the sense of (4.4) and (4.5). For example, in the ’t Hooft limit (as defined in [27]) N and

k are taken to infinity with the ratio k/N fixed. This is a classical limit in the bulk where

the central charge becomes infinite. For the highest dimension state in the theory, the

ratios (4.4) and (4.5) become large. A different, and somewhat simpler, case to consider is

k large with N fixed. In this limit c → (N −1) and the linearization instability (i.e. the null

vectors) disappears. Again the ratios (4.4) and (4.5) become large. So in both cases there

are primary states of large dimension which might be interpreted as BTZ microstates. It

would be interesting to compute the degeneracies of these states and see if they can indeed

be interpreted as black holes (see [42] for related progress in this direction).
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A Asymptotic behaviour of χN and χ∞

Here we collect several asymptotic formulas for WN characters used in section 3 and sketch

the derivations of these formulas.

A.1 Asymptotics of the Partition Function F (q)

As a warmup we first estimate the growth of the coefficients of partition function F (q)

defined as

F (q) =
∞
∑

n=0

p(n)qn =
∞
∏

n=1

(1 − qn)−1 . (A.1)

where p(n) is the number of partitions of the integer n. Our goal is to approximate p(n)

for large values of n. This is a classic computation which we review here for the sake

of completeness.

We start with the inverse Laplace transform

p(n) =
1

2πi

∫

C

F (q)

qn+1
dq , (A.2)

where C is a simple contour that encloses the origin. Since F (q) has poles for |q| = 1 we

must keep the contour C inside the unit circle in the complex q plane. Our strategy is to

choose a contour C which approaches the unit circle |q| = 1 where we can approximate

F (q) by elementary functions.

Our next step is to write F (q) as an elliptic modular function

F (e2πiτ ) = eiπτ/12η(τ)−1 , (A.3)

with η(τ) the Dedekind eta function and q = e2πiτ . The eta function transforms simply

under modular transformations. In particular,

η (−1/τ) = (−iτ)1/2η(τ) , (A.4)

so that

F (e2πiτ ) = exp

(

iπ

12
(τ + τ−1)

)

(−iτ)1/2F (e−2πi/τ ) . (A.5)

When the imaginary part of τ is very small, so that we are close to |q| = 1, F (e−2πi/τ )

approaches one and equation (A.5) becomes

F (e2πiτ ) ∼ exp
(

iπ(τ + τ−1)/12
)

(−iτ)1/2 , (A.6)
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so that

p(n) ∼

∫ iǫ+1

iǫ
exp

(

−2πiτ(n −
1

24
) +

πi

12τ

)

(−iτ)1/2dτ . (A.7)

Using the saddle point approximation we obtain

p(n) ∼ (const)
1

n
exp

(

π

√

2n

3

)

. (A.8)

This estimate is valid only in the limit n → ∞. By refining the above argument we can

estimate the size of the error terms in this approximation (see e.g. [41]).

A.2 Asymptotics of the WN character χN

We now turn to the vacuum character for WN ,

χN =

(

N−1
∏

n=1

(1 − qn)N−n

)

F (q)N−1 =

∞
∑

n=0

pN
n qn . (A.9)

whose coefficients are again given by the contour integral

pN
n =

∫

C

χN

qn+1
dq . (A.10)

Again, it is necessary to keep the contour within the unit circle |q| = 1, where χN diverges.

Our goal is to obtain an approximate expression for pN
n by estimating χN when |q| → 1.

We start by noting that χN differs from F (q)N−1 only by the prefactor in parenthesis

in (A.9). We then define the log of the polynomial prefactor in (A.9)

g(z) =
N−1
∑

n=1

(N − n) log(1 − qn) = −
∞
∑

m=1

N−1
∑

n=1

(N − n)
e−2πznm

m
(A.11)

where q = e−2πz . Our strategy will be to apply the Abel-Plana formula

∞
∑

n=0

f(n) =

∫ ∞

0
f(x)dx +

1

2
f(0) + i

∫ ∞

0

f(ix) − f(−ix)

e2πx − 1
dx , (A.12)

which relates an infinite sum to the residues of a complex function. To use this formula we

will first take a derivate of (A.11) and add the m = 0 contribution

g′(z) = 2π

∞
∑

m=0

N−1
∑

n=1

(N − n)ne−2πznm −
π

3
N(N2 − 1) . (A.13)

so that (A.12) gives

g′(z) =
1

2z
N(N − 1) −

π

6
N(N2 − 1) + O(z) (A.14)

where we neglect terms which vanish in the z → 0 limit, where |q| → 1. Thus

g(z) =
N(N − 1)

2
log(z) + g0 −

π

6
N(N2 − 1)z + O(z2) (A.15)
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Figure 1. For N = 2 (straight line), N = 3 (long dash) and N = 6 (short dash), we plot the ratio

of numerical value of log(pN

n
) over the approximated value given by (A.18). As N increases, we

require larger values of n to reach the Cardy regime.

where we have introduced a constant of integration g0.

Following the arguments of section A.1, we approximate the contour integral by the

value of χN close to |q| = 1 where

χN ∼ zN(N−1) exp
(

−
π

6
N(N2 − 1)z −

π

12
(N − 1)(z − z−1)

)

. (A.16)

We have neglected an overall constant prefactor. Thus

pN
n ∼ i

∫

C
zN(N−1) exp

(

−
π

6
N(N2 − 1)z −

π

12
(N − 1)(z − z−1) + 2πnz

)

dz . (A.17)

and the saddle point approximation

pN
n ∼ (const)n− 1

2
N(N−1)− 3

4 exp

(

π

√

2(N − 1)n

3

)

. (A.18)

gives an estimate for pN
n which is valid in the large n limit. We note that the constant mul-

tiplying (A.18) depends on N . In the figure (1) we compare the asymptotic formula (A.18)

with the actual values (A.9). We note that the pN
n approach their asymptotic values more

slowly as N increases. Indeed one can check that the error terms in this approximation are

negligible only when n ≫ N3.

A.3 Asymptotics of the W∞ character χ∞ and the MacMahon function

For the character of W∞ we need to be a little more careful; we refer the reader to [43] for

a more detailed analysis. The character is given by

χ∞ = M(q)F (q)−1 , (A.19)
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Figure 2. Ratio of log p∞n over the saddle point approximation (A.27).

with F (q) given by (A.1) and M(q) the MacMahon function

M(q) =

∞
∏

n=1

(1 − qn)−n (A.20)

As before we compute the coefficients of χ∞ using a contour integral

p∞n =
1

2πi

∫

C

χ∞(q)

qn+1
dq . (A.21)

where C encloses the origin and is contained in the unit circle.

We start by approximating the MacMahon function M(q). Defining the logarithm

g(z) ≡ log M(q) = −

∞
∑

n=1

n log(1 − e−2πnz) . (A.22)

with q = e−2πz and applying (A.12) we find

g(z) = −

∫ ∞

0
x log(1 − e−2πzx)dx + 2

∫ ∞

0

x

e2πx − 1
log(2 sin(πzx))dx

=
ζ(3)

4π2z2
+

1

12
log z +

1

12
(1 − γ + 6ζ ′(2)) + O(z2) (A.23)

where we have used the Taylor expansion of log(2sin(πzx)) at z → 0 and computed the

integrals explicitly. From this we can read off the behaviour of M(q) at small z

M(e−2πz) ∼ z1/12 exp

(

ζ(3)

4π2z2

)

. (A.24)

where we have neglected an overall constant prefactor.

This leads to an approximate expression for χ∞

χ∞(e−2πz) ∼ z−5/12 exp

(

ζ(3)

4π2z2
+

π

12
(z − z−1)

)

. (A.25)
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so that

p∞n = i

∫

C
z−5/12 exp

(

ζ(3)

4π2z2
+

π

12
(z − z−1) + 2πnz

)

dz , (A.26)

and the saddle point approximation gives

p∞n ∼ (const) n−19/36 exp

(

3

(

ζ(3)

4
n2

)1/3
[

1 −
π2

18

(

2

ζ(3)2n

)1/3
])

. (A.27)

for large n. We note that this grows like en2/3

, which is faster than the en1/2

behaviour

obtained for finite N . In figure (2) we compare the asymptotic growth (A.27) with the

actual coefficients of (A.19).
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