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1 Introduction

Recent improvements in lattice simulations have paved the way for unquenched simulations

with three light dynamical (or sea) quarks. Even though these simulations are still at an

early stage, their results are already very instructive, especially when one is interested

in the low-energy dynamics of strong interactions. Indeed, there is a deep connection

between these first-principle simulations and the effective description of the light hadronic

degrees of freedom, i.e., Chiral Perturbation Theory (χPT) [1, 2]. The ability for the lattice

to investigate the quark-mass dependence of hadronic observables opens the possibility to

determine some poorly known χPT low-energy constants. Conversely, the chiral expansions

derived within χPT can be used to extrapolate or interpolate lattice data down to the

physical light quark masses.

It turns out that several collaborations performing simulations with 2+1 dynamical

quarks reported difficulties when fitting their data with Nf = 3 next-to-leading-order

(NLO) chiral expansions for pseudoscalar masses, decay constants, and Kℓ3 form factors [3–

6], forcing some of the collaborations to rely on Nf = 2 chiral expansions only (for instance

using on Heavy-Kaon χPT to perform their extrapolations [7]). Moreover, some chiral

order parameters (in particular the quark condensate and the decay constant) were seen

to decrease significantly when one moved from the Nf = 2 chiral limit where mu,md → 0

but ms is kept at its physical value [1] to the Nf = 3 chiral limit where mu,md,ms →
0 [2]. Defining the chiral order parameters in these two chiral limits (denoted limNf

for

simplicity):

Σ(Nf ) = −limNf
〈0|ūu|0〉 , F 2(Nf ) = limNf

F 2
π , (1.1)

PACS-CS [3] and MILC [8, 9] quote for instance:

PACS − CS :
F (2)

F (3)
= 1.089 ± 0.045 ,

Σ(2)

Σ(3)
= 1.245 ± 0.010 , (1.2)

MILC :
F (2)

F (3)
= 1.15 ± 0.05

(

+0.10

−0.03

)

,
Σ(2)

Σ(3)
= 1.52 ± 0.17

(

+0.38

−0.15

)

. (1.3)

Assuming that there are no intrinsic problems with the lattice data, these results can be

interpreted as the fact that the Nf = 3 chiral series do not converge quickly, because their

leading-order term in the chiral counting is not numerically dominant and competes with

(formally) higher-order contributions. Calculations up to NNLO are clearly useful to settle

the issue [10–13]. An exploratory study of the RBC/UKQCD data [4, 5] on Kℓ3 form

factors and FK/Fπ (the ratio of the kaon and pion decay constants) showed that NNLO

terms are not negligible though of the expected size, the NLO terms of some observables

being in this particular study anomalously small for some known reasons. However, this

study did not consider the RBC/UKQCD result for the decay constant Fπ itself, which

does not exhibit the quark-mass dependence predicted by chiral perturbation theory [4, 14].

Quite interestingly, a similar pattern with suppressed Nf = 3 chiral order parameters

seems to emerge from the experimental data on ππ and πK scattering, indicating a good

convergence of Nf = 2 chiral series for pion observables [15–22], but difficulties in Nf = 3
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chiral series, even once NNLO terms are included and modeled through resonance satura-

tion [23, 24]. As recalled in refs. [10, 25, 26], the situation seems to be well under control

in the ππ system, but the fits yield sometimes contradictions once πK data is considered.

It was advocated in refs. [27, 28] that such a situation could indeed occur in the low-energy

dynamics of QCD and it was highlighted there that the strange quark may play a very

special role, due to its light mass of order O(ΛQCD). Significant vacuum fluctuations of ss̄

pairs may lead to instabilities in the convergence of χPT expansions, where instabilities are

defined as a numerical competition between the terms considered as leading and next-to-

leading in the chiral counting. This effect would be related to a large violation of the Zweig

rule in the scalar sector, indicated by values of the O(p4) LECs L4 and L6 significantly

different from specific (“critical”) values [29–31] (see also refs. [32–34] for reviews of the

subject and a discussion of the baryon sector).

A pessimistic way of considering the problem would consist in dismissing the whole

χPT as soon as problems of convergence arise. A less restrictive point of view was adopted

in ref. [35], assuming that:

• only some (“good”) observables have convergent expansions, when expressed in terms

of the couplings arising in the chiral Lagrangian.

• a series is considered as convergent when the sum of LO and NLO terms is large

compared to the remaining part of the series.

• the resulting formulae must be treated analytically, without neglecting higher-order

corrections when reexpressing low-energy constants in terms of observables.

This framework was coined Resummed Chiral Perturbation Theory (ReχPT) for reasons

that will be recalled later in the present article. In particular, a specific prescription for the

unitarity pieces, described in section 2.2, will be added to this set of assumptions, defining

precisely how we choose to split the chiral series of the chosen observables between leading,

next-to-leading and higher orders in our framework.

The recent 2 + 1 dynamical simulations provide new and relevant information on the

impact of ss̄ fluctuations related to the presence of strange quarks in the sea. Conversely,

ReχPT can provide a more appropriate treatment of chiral extrapolations if the hints

of suppressed Nf = 3 quark condensate and decay constants are confirmed. In princi-

ple, this analysis would require lattice data performed with several u, d, s quark masses

(whose renormalized values are known) and transfer momenta (in the case of form factors,

scattering amplitudes), but where the continuum and infinite-volume limit have already

been performed (a → 0, L → ∞). Unfortunately, such data sets are not (yet) available.

Some collaborations [e.g., MILC [8, 9]] provide numbers directly in the physical limit, per-

forming the chiral extrapolation at the same time as the continuum limit. This prevents

one from testing different alternatives concerning chiral extrapolation, even though the

results sometimes contradict the usual assumptions of χPT (for instance concerning the

size of the quark condensate and the decay constant). Others [BMW [36, 37], ETMC [38],

TWQCD-JLQCD [39]] do not provide the decay constants and the renormalized quark

masses mandatory for such a study. Finally, some collaborations [RBC/UKQCD [4–6],

– 3 –
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PACS-CS [3]] have performed their analysis only at one particular lattice spacing and/or

one particular volume, without estimating the systematics associated with the continuum

and infinite-volume limits fully.

In view of this situation, we will restrict ourselves to the studies made by RBC/UKQCD

and PACS-CS. The fact that only statistical errors are quoted in both cases prevents us

from using a full-fledged statistical treatment [25], but we hope that our limited study will

provide some incentive for lattice collaborations to apply the same framework to their data

when performing chiral extrapolations. In section 2 we provide the basics of our procedure

with the illustration of the electromagnetic form factor of the pion, and we recall the

results obtained for the masses and decay constants. In sections 3 and 4, we apply the

same formalism to the electromagnetic form factor of the kaon and the Kℓ3 form factors.

In section 5, we consider the same observables in the case of lattice simulations for non-

physical values of the quark masses. In section 6, we fit our chiral expansions to different

sets of lattice data, and analyse the emerging pattern of Nf = 3 chiral symmetry breaking,

before concluding. An appendix summarises the main features of the results obtained by

the two lattice collaborations which are analysed in this article.

2 General arguments and the electromagnetic form factor of the pion

2.1 Expansion of “good” observables

As explained in greater details in refs. [25, 35, 40], if one expects a numerical competition

between LO and NLO chiral series of quantities of interest, one cannot perform expansions

on arbitrary functions of such quantities. Let us assume for instance that an observable A

has the following chiral expansion:

A = ALO +ANLO +AδA (2.1)

The statement of a good convergence of the series correspond to δA much smaller than 1,

but it does not involve necessarily that ALO is dominant numerically with respect to the

rest of the series.

One has the formal chiral expansion for any observable F = f(A):

F = FLO + FNLO + FδF , (2.2)

FLO = f(ALO) FNLO = ANLOf
′(ALO) , (2.3)

δF = 1 − f(ALO)

f(A)
− f ′(ALO)

f(A)
[A−ALO −AδA] . (2.4)

Depending on the value of XA = ALO/A, i.e., the saturation of the chiral expansion of A

by its first term, the chiral series of F may or may not converge well. One has in particular

the two limiting behaviours:

XA → 1 δF → −f
′(A)

f(A)
AδA , (2.5)

XA → 0 δF → 1 − f(0)

f(A)
− f ′(0)

f(A)
A+

f ′(0)

f(A)
AδA . (2.6)
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In the first case, a bound on δA implies a bound on δF , meaning that F converges well

provided that A does. But in the second case, the size of δF is by no means driven by that

of δA. As an illustration, if we take the “observables” B = 1/A and C =
√
A, we obtain:

δB =
(1 −XA)2

X2
A

− δA

X2
A

, (2.7)

δC = 1 − 1

2
√
XA

− 1

2

√

XA − 1

2
√
XA

δA . (2.8)

Even if we set δA = 0, we would need XA = ALO/A above 41% to ensure that |δB| < 10%,

and XA above 76% to ensure that |δC| < 10%.

Therefore, if the chiral expansions of some of the observables considered are not satu-

rated by their leading-order term, we cannot take an arbitrary function of these observables,

consider its chiral expansion, and assume that it will converge. In such a situation, one has

therefore to select the right set of observables for which converging series can be written.

Actually, this statement of convergence is equivalent to state that the generating func-

tional of QCD is well reproduced at low energies by χPT. The quantities that are assumed

to have convergent chiral series from the starting point of chiral perturbation theory are

the QCD correlators of axial and vector currents as well as pseudoscalar and scalar densi-

ties. In addition, the convergence is expected to be good only away from the singularities

(poles, cuts . . . ) corresponding to resonances and channel openings. Observables involving

pseudoscalar mesons as external states will be obtained by applying the LSZ reduction

formula on correlators involving axial currents, which will yields additional factors of the

pseudoscalar decay constants. One can easily state some of the observables associated to

each O(p4) LEC that are simple to determine on lattice simulations and/or to extract from

experiment:

• L1, L2, L3: Kℓ4 form factors (F 2
πFKf, F

2
πFKg, F

2
πFKh),

• L4, L5: π,K decay constants (F 2
π , F

2
K),

• L6, L8: π,K masses (F 2
πM

2
π , F

2
KM

2
K),

• L7: η mass and decay constant (F 2
η , F

2
ηM

2
η ),

• L9: Pion electromagnetic form factor (F 2
πF

π
V ),

• L10: π → eνγ form factor (FπAV AP ) and τ spectral functions (V V −AA).

We will define the expansion of a “good” observable through the following procedure:

• We take the chiral expansion of the observable in terms of the couplings of the effective

Lagrangian (low-energy constants, or LECs: B0, F0, Li. . . ).

• We replace the pseudoscalar masses at leading order by the physical ones only when

physical arguments indicate that the convergence of the series will be improved. In

practice we perform this replacement so that the nonanalytic structures imposed by

unitarity are located at the physical poles, thresholds. . .

– 5 –
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• We keep track of the remainders (collecting NNLO contributions and higher orders)

explicitly and treat the resulting chiral expansions as algebraic identities, without

performing further expansions.

Following this procedure (and taking the isospin limit mu = md = m), observables can

be expressed in terms of LO quantities:

X(3) =
2mΣ(3)

F 2
πM

2
π

, Z(3) =
F 2(3)

F 2
π

, r =
ms

m
, (2.9)

as well as NLO LECs and remainders. The first two quantities in eq. (2.9) are of particular

relevance, since they express two main order parameters of Nf = 3 chiral symmetry break-

ing, the quark condensate and the pseudoscalar decay constant, in physical units. They

also assess the saturation of the chiral expansion of F 2
πM

2
π and F 2

π by their leading order.

The third quantity measures the relative size of the quark masses in a framework where the

strange quark is supposed to play a peculiar role in the chiral structure of QCD vacuum.

In the following, we will also use the quantity Y (3):

Y (3) =
2mB0

M2
π

=
X(3)

Z(3)
, (2.10)

which assesses the saturation of the chiral expansion of the pion mass by its leading order.

Up to now, we have considered the masses and decay constants of Goldstone bosons [28,

31, 40] and observables derived from ππ scattering [35, 40] in this framework.

Exploiting the fact that some quantities describing the dynamics of pseudoscalar

mesons are well measured and inverting the relationships between these observables and

LECs, we can express the O(p4) LECs in terms of

• Masses, decay constants, form factors. . .

• The three leading-order parameters described in eq. (2.9)

• The remainders associated to each observable, assumed to be small (convergence).

These expressions can be exploited in the chiral expansions of other “good” observables, in

order to express the latter quantities in terms of LO quantities and remainders only. The

comparison with experimental information should then provide more information on the

pattern of chiral symmetry breaking in the Nf = 3 chiral limit.

As shown in refs. [25, 35, 40], this procedure applied to masses and decay constants

allows one to resum higher-order contributions in chiral series from L4 and L6 low-energy

constants, which encode the effect of ss̄ pairs on the structure of the chiral vacuum. It

may induce a significant ms -dependence in the pattern of chiral symmetry breaking and

can generate a numerical competition between LO and NLO in Nf = 3 chiral series. This

feature is related to the name of Resummed Chiral Perturbation Theory chosen to describe

this particular treatment of chiral expansions. This framework is compatible with the usual

treatment of chiral series in the limit where the latter are saturated by their LO term, but

it allows for a consistent treatment of the series even if there is a significant competition

of LO and NLO contributions for some of the observables.

– 6 –
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2.2 Electromagnetic form factor

We will illustrate our procedure with the example of the electromagnetic pion form factor

〈π+|jµ|π+〉 = (p + p′)µF π
V (t) , (2.11)

where the electromagnetic current is jµ = V 3
µ + V 8

µ /
√

3, p (p′) is the momentum of the

incoming (outgoing) pion, and t = (p′−p)2. As explained in section 2.1, we obtain this form

factor in χPT from 〈(Aµ

π+)†Aν
π+j

µ〉, leading to the product F 2
πF

π
V through the LSZ reduction

formula (the pion decay constant Fπ stems from the wave-function renormalisation). In the

case of the electromagnetic form factor, “good” observables are thus obtained from F 2
πF

π
V

at low energies away from singularities, i.e., the right-hand cuts, starting from t ≥ 4M2
π .

We obtain the following bare expansion, in agreement with refs. [41–43]:

F 2
πF

π
V (t) =F 2

πZ(3)+M2
πY (3)[8(r+2)Lr

4+8Lr
5]−

1

32π2
M2

πY (3)

[

4 log

◦

M
2

π

µ2
+(r+1) log

◦

M
2

K

µ2

]

+ t



2Lr
9 −

1

32π2





1

3
log

◦

M
2

π

µ2
+

1

6
log

◦

M
2

K

µ2
+

1

6







 (2.12)

+
1

6
[t− 4M2

πY (3)]J̄ππ(t) +
1

12
[t− 2(r + 1)M2

πY (3)]J̄KK(t) + ℜF 2
πF

π
V (t) ,

with the nonanalytic pieces from the two-meson channels encoded in the J̄ function [2].
◦

MP denotes the leading order of the chiral expansion of O(p2):

◦

M
2

π= M2
πY (3)

◦

M
2

K= M2
π

r + 1

2
Y (3)

◦

M
2

η= M2
π

1

3
(2r + 1)Y (3) , (2.13)

and Y (3) is the ratio defined in eq. (2.10). We have added ℜF 2
πF

π
V (t), a polynomial function

of t collecting remainders:

ℜF 2
πF

π
V (t) = (ℜF 2

πF
π
V )0 +

t

F 2
π

(ℜF 2
πF

π
V )1 +O(t2) , (2.14)

with (ℜF 2
πF

π
V )0 = O(m2

q) and (ℜF 2
πF

π
V )1 = O(mq).

At next-to-leading order in the chiral expansion, the nonanalytic dependence on quark

masses and momenta arises through the unitarity function J̄PQ. Following our prescription,

we compute the functions J̄ (and ¯̄J = J̄−sJ̄ ′(0)) with the physical values of M2
π ,M

2
K ,M

2
η ,

rather than their leading-order expansion, i.e. we define the chiral expansion in ReχPT as

eq. (2.12) with:

J̄PP (t) =
s

16π2

∫ ∞

4M2
P

dx

x(x− s)

√

1 − 4M2
P

x
=

1

16π2

[

σ log
σ − 1

σ + 1
+ 2

]

σ =

√

1 − 4M2
P

t
,

(2.15)

so that our expansion of the form factor eq. (2.12) features a unitarity cut from the two-

pion channel starting at t = 4M2
π (id. for the two-kaon channel). Indeed, from general

arguments of unitarity, we know that the higher-order corrections will shift the start of

– 7 –
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the right-hand cut from 4
◦

M
2

P to 4M2
P . Unfortunately, unitarity does not provide us more

information on the structure of the cut (and in particular the coefficient multiplying the J̄

function) due to the perturbative nature of the chiral expansion.

When needed, we will obtain the ReχPT expansion of other observables by performing

the same replacement for the functions J̄ and ¯̄J occurring in the definition of the loop inte-

grals KPQ, LPQ and M r
PQ in ref. [2]. However, we do not perform any further replacement

neither in the unitary functions nor in the rest of the expressions: for instance, we have

not modified the functions multiplying the J̄ functions, nor the chiral logarithms coming

from the tadpole terms in eq. (2.12), since we have no way of determining if the latter

modifications would improve or spoil the convergence of the series.1 Adopting a disper-

sive point of view, we can say that the position of the cuts are imposed by unitarity, but

not the value of the induced imaginary parts at low energies and that of the subtraction

constants (polynomials).

One checks easily that the NLO chiral expansion of the electromagnetic form factor in

ref. [41] can be recovered:

F π
V (t) = 1 + 2Hππ(t) +HKK(t) +O(p4) , (2.16)

with

HPP (t) =
1

F 2
0

[

1

12

(

t− 4M2
P

)

J̄PP (t) − t

6

1

32π2

(

log
M2

P

µ2
+ 1

)

+
t

288π2

]

+
2t

3F 2
0

Lr
9 . (2.17)

In the case where F0 is small compared to Fπ, as hinted at by lattice simulations and

NNLO fits of chiral series [26, 44], F 2
πF

π
V (t) is expected to exhibit a better convergence

than F π
V (t) in our framework according to eqs. (2.16)–(2.17). Similar expressions hold for

other observables: good observables will generally come multiplied by powers of physical

pseudoscalar decay constants (one for each external pseudoscalar meson involved).

2.3 Pion electromagnetic square radius

The electromagnetic square radius of the pion is the low-energy observable associated with

F π
V :

F 2
π 〈r2〉πV = 6F 2

π

dF π
V

dt
(0) . (2.18)

Following the previous discussion of the form factor, the product of F 2
π and 〈r2〉πV is the

quantity expected to exhibit a good convergence in our framework. eq. (2.12) yields the

corresponding expansion of 〈r2〉πV :

〈r2〉πV =
6

F 2
π

[

2∆L9 −
1

32π2

[

1

6
+

2

9
Y (3) +

M2
π

18M2
K

(r + 1)Y (3)

]]

+ 〈r2〉πV eπV , (2.19)

1This procedure is slightly different from the approach taken in ref. [25], where this substitution was

performed everywhere in the unitarity functions J, K, L, M and in the tadpole logarithms. It turns out that

the difference is usually very small: the unitarity functions yield only a small contribution below the first

threshold, and there is only a logarithmic difference in the case of the tadpole.
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where we have introduced the scale-independent combination ∆L9 = Lr
9(µ)− L̂r

9(µ), with:

L̂r
9(µ) =

1

32π2





1

6
log

◦

M
2

π

µ2
+

1

12
log

◦

M
2

K

µ2



 , (2.20)

and

eπV =
6

F 4
π

(ℜF 2
πF

V
π )1

〈r2〉πV
. (2.21)

The pion electromagnetic square radius is well-determined, and it is expected to suffer

only mildly from higher-order corrections being an observable involving pions. We will thus

use this observable to express L9:

∆L9 =
F 2

π

12
〈r2〉πV [1 − eπV ] +

1

32π2

[

1

12
+

1

9
Y (3) +

M2
π

36M2
K

(r + 1)Y (3)

]

. (2.22)

Equivalent relations for other LECs, namely L4,5,6,8 will be discussed later in eqs. (2.36)–

(2.39). L9(Mρ) can thus be estimated as a function of r, Y (3) and NNLO remainder. For

instance, if we take Y (3) = 1 and r = 2M2
K/M

2
π−1 (corresponding to LO estimates holding

in the case of a fast convergence) and the central experimental value [45]:

〈r2〉πV = 0.451 ± 0.031 fm2 , (2.23)

we obtain2 Lr
9(Mρ) = 6.77 · 10−3 in the ball park of usual estimates of this LEC, such as

(6.9± 0.7) · 10−3 at O(p4) in ref. [2], (5.93± 0.43) · 10−3 at O(p6) in ref. [43]. On the other

hand, if Y (3) tends to zero while the radius and its NNLO remainder remain finite, we see

that L9 becomes very large (we will see later that the other electromagnetic radii remain

also finite in this limit).

2.4 Masses and decay constants

Exactly as in the previous section, we can write the identities for F 2
P and F 2

PM
2
P in terms

of r,X(3), Z(3), the O(p4) LECs L4, L5, L6, L8 and remainders:

F 2
π =F 2

πZ(3) +M2
πY (3) [8(r + 2)Lr

4 + 8Lr
5] (2.25)

− 1

32π2
M2

πY (3)



4 log

◦

M
2

π

µ2
+ (r + 1) log

◦

M
2

K

µ2



+ F 2
πeπ ,

F 2
K =F 2

πZ(3) +M2
πY (3) [8(r + 2)Lr

4 + 4(r + 1)Lr
5] (2.26)

− 1

32π2
M2

πY (3)

[

3

2
log

◦

M
2

π

µ2
+

3

2
(r + 1) log

◦

M
2

K

µ2
+

1

2
(2r + 1) log

◦

M
2

η

µ2

]

+ F 2
KeK ,

2In this article, we take the following numerical values for the pseudoscalar masses, the pion decay

constant and the renormalisation scale:

Mπ = 0.13957 Gev , MK = 0.4957 Gev , Mη = 0.5478 Gev , Fπ = 0.0922 Gev , µ = 0.770 Gev .

(2.24)
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F 2
πM

2
π =F 2

πM
2
πX(3) +M4

π [Y (3)]2 [16(r + 2)Lr
6 + 16Lr

8] (2.27)

− 1

32π2
M4

π [Y (3)]2

[

3 log

◦

M
2

π

µ2
+(r+1) log

◦

M
2

K

µ2
+

1

9
(2r+1) log

◦

M
2

η

µ2

]}

+F 2
πM

2
πdπ ,

F 2
KM

2
K =

1

2
(r + 1)

{

F 2
πM

2
πX(3) +M4

π [Y (3)]2 [16(r + 2)Lr
6 + 8(r + 1)Lr

8] (2.28)

− 1

32π2
M4

π [Y (3)]2

[

3

2
log

◦

M
2

π

µ2
+

3

2
(r+1) log

◦

M
2

K

µ2
+

5

18
(2r+1) log

◦

M
2

η

µ2

]}

+F 2
KM

2
KdK .

The pion and kaon masses are well known experimentally. As far as the decay constants

are concerned, Fπ and FK are accessible at a high precision through leptonic decays (πl2 and

Kl2 respectively [45]) which provide in the framework of the Standard Model (SM) [46, 47]:

|Vus/Vud| × FK/Fπ = 0.2758 ± 0.0005 , (2.29)

which can be combined with the very accurate determination of the first element of the

CKM matrix Vud from super-allowed 0+ → 0+ nuclear beta decays [48–50]

Vud = 0.97425 ± 0.00022 , (2.30)

the unitarity of the CKM matrix and the smallness of the |Vub| matrix element to get:

Fπ

∣

∣

SM
= 92.2 ± 0.3MeV FK/Fπ

∣

∣

SM
= 1.192 ± 0.006 , (2.31)

In the following we take the value of Fπ in eq. (2.31), expecting the deviation from this

SM determination to be rather small. On the other hand, we will not fix the value of

FK/Fπ, keeping it as a free parameter of the fit to the lattice data. A deviation from its

value eq. (2.31) would hint at physics beyond the Standard Model contributing to flavour-

changing charged currents, in addition to the usual V −A term from the W bosons.

Similarly to the case of L9 and the electromagnetic square radius of the pion and

following [25, 35] we will then invert the relationships eqs. (2.25)–(2.28) in order to reexpress

the four NLO LECs in terms of X(3), Z(3), r, the pion and kaon masses, the pion decay

constant and the ratio FK/Fπ:

Y (3)∆L4 =
1

8(r + 2)

F 2
π

M2
π

[1 − η(r) − Z(3) − e] , (2.32)

Y (3)∆L5 =
1

8

F 2
π

M2
π

[η(r) + e′] , (2.33)

Y 2(3)∆L6 =
1

16(r + 2)

F 2
π

M2
π

[1 − ǫ(r) −X(3) − d] , (2.34)

Y 2(3)∆L8 =
1

16

F 2
π

M2
π

[ǫ(r) + d′] . (2.35)
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∆Li = Lr
i (µ) − L̂i(µ) combine the (renormalized and quark-mass independent) constants

L4,5,6,8 and chiral logarithms so that they are independent of the renormalisation scale µ:

32π2L̂4(µ) =
1

8
log

◦

M
2

K

µ2
− 1

8(r−1)(r+2)



(4r+1) log

◦

M
2

K

◦

M
2

π

+(2r+1) log

◦

M
2

η

◦

M
2

K



 , (2.36)

32π2L̂5(µ) =
1

8



log

◦

M
2

K

µ2
+2 log

◦

M
2

η

µ2



+
1

8(r−1)



3 log

◦

M
2

η

◦

M
2

K

+5 log

◦

M
2

K

◦

M
2

π



 , (2.37)

32π2L̂6(µ) =
1

16



log

◦

M
2

K

µ2
+

2

9
log

◦

M
2

η

µ2



− 1

16

r

(r+2)(r−1)



3 log

◦

M
2

K

◦

M
2

π

+log

◦

M
2

η

◦

M
2

K



 , (2.38)

32π2L̂8(µ) =
1

16



log

◦

M
2

K

µ2
+

2

3
log

◦

M
2

η

µ2



+
1

16(r−1)



3 log

◦

M
2

K

◦

M
2

π

+log

◦

M
2

η

◦

M
2

K



 . (2.39)

The four equalities eqs. (2.32)–(2.35) are exact, since they are a mere reexpression

of the bare chiral series for F 2
π , F 2

K , F 2
πM

2
π and F 2

KM
2
K . d, d′ and e, e′ are combinations

of remainders associated with the chiral expansions of π,K masses and decay constants

respectively:

d =
r + 1

r − 1
dπ −

(

ǫ(r) +
2

r − 1

)

dK , d′ = d− dπ , (2.40)

e =
r + 1

r − 1
eπ −

(

η(r) +
2

r − 1

)

eK , e′ = e− eπ . (2.41)

d′, e′ are quantities of O(mms) whereas d, e scale like O(m2
s). In addition, the right hand-

side of these equations involves the r-dependent functions:

ǫ(r) = 2
r2 − r

r2 − 1
, r2 = 2

(

FKMK

FπMπ

)2

− 1 ∼ 36 , η(r) =
2

r − 1

(

F 2
K

F 2
π

− 1

)

. (2.42)

The properties of these equations, and in particular, the fact that they lead to a

resummation of L4 and L6 contributions once inserted in the chiral expansion of other

observables, were discussed at length in refs. [25, 35, 40]. Note that contrary to the case

of L9, these LECs always appear multiplied by powers of Y (3) in chiral series, since they

correspond to operators with one or two powers of the scalar source in the chiral Lagrangian,

and arise in chiral expansions always multiplied by one or two powers of B0. Therefore,

when Y (3) tends to zero, L̂i will exhibit a logarithmically divergent behaviour (due to the

tadpole logarithms) which will not affect observables though.

3 Kaon electromagnetic form factors

The method described in the previous section can easily be generalized to other observables.

Of particular interest are the kaon electromagnetic form factors and the Kπ form factor

which will be discussed in the following sections.
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3.1 Definition

The kaon vector form factors [41, 43] are defined as:

〈K+|jµ|K+〉 = (p+ p′)µFK+

V (t) , 〈K0|jµ|K0〉 = (p + p′)µFK0

V (t) , (3.1)

with the same convention as in the case of the pion electromagnetic form factor. All of them

are associated with the P -wave projection of the crossed channel. Following the discussion

in 2, we expect F 2
KF

K+

V and F 2
KF

K0

V to have good convergence properties away from the

singularities (opening thresholds. . . ). Expanding these form factors and reexpressing some

couplings in terms of r, Y (3) and Z(3), we obtain the bare expansion of the vector form

factors:

F 2
K

F 2
π

FK0

V (t) = − t

192π2F 2
π

log

◦

M
2

K

◦

M
2

π

− 1

12F 2
π

[t− 4M2
πY (3)]J̄ππ(t) (3.2)

+
1

12F 2
π

[t− 2(r + 1)M2
πY (3)]J̄KK(t) +

1

F 2
π

ℜF 2
KF

K0

V (t) ,

F 2
K

F 2
π

FK+

V (t) = Z(3) +
M2

π

F 2
π

[Y (3)][8(r + 2)Lr
4 + 4(r + 1)Lr

5] (3.3)

− 1

32π2

M2
π

F 2
π

Y (3)

[

3

2
log

◦

M
2

π

µ2
+

3

2
(r + 1) log

◦

M
2

K

µ2
+

1

2
(2r + 1) log

◦

M
2

η

µ2

]

+
t

F 2
π



2Lr
9 −

1

32π2





1

6
log

◦

M
2

π

µ2
+

1

3
log

◦

M
2

K

µ2
+

1

6









+
1

12F 2
π

[t− 4M2
πY (3)]J̄ππ(t) +

1

6F 2
π

[t− 2(r + 1)M2
πY (3)]J̄KK(t)

+
1

F 2
π

ℜF 2
KF

K+

V (t) ,

where ℜF 2
KF

K0

V (t) and ℜF 2
KF

K+

V (t) are polynomial functions of t collecting remainders:

ℜF 2
KF

K0

V (t) =
t

F 2
K

(ℜF 2
KF

K0

V )1 +O(t2) , (3.4)

ℜF 2
KF

K+

V (t) = (ℜF 2
KF

K+

V )0 +
t

F 2
K

(ℜF 2
KF

K+

V )1 +O(t2) , (3.5)

with (ℜFK
V )0 = O(m2

q) and (ℜFK
V )1 = O(mq). We have divided the expressions of the

form factors eqs. (3.3)–(3.2) by a numerical factor F 2
π for sole purpose of convenience, in

order to deal with dimensionless quantities.

In the limit where all the observables are saturated by their leading order, the standard

NLO chiral expansions of the vector form factors [41, 43] can be recovered by expanding

the ratio F 2
π/F

2
K at next-to-leading order and replacing the leading order masses by the

physical ones:

FK0

V (t) = −Hππ(t) +HKK(t) +O(p4) , FK+

V (t) = F π
V (t) + FK0

V (t) +O(p4) , (3.6)
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with HPQ defined as:

HPQ(t) =
1

F 2
0

[

1

12

(

t−2ΣPQ+
∆2

PQ

t

)

J̄PQ(t)−
∆2

PQ

3t
¯̄JPQ(t)− t

6
kPQ+

t

288π2

]

+
2t

3F 2
0

Lr
9 ,

(3.7)

involving ΣPQ = M2
P +M2

Q and ∆PQ = M2
P −M2

Q, and ¯̄JPQ(t) = J̄PQ(t) − tJ̄ ′
PQ(t).

3.2 Kaon electromagnetic radii

In a similar way to the pion form factor, the K+ electromagnetic square radius is given by

〈r2〉K+

V =
6

F 2
K



2∆L9−
1

32π2





1

6
log

◦

M
2

K

◦

M
2

π

+
1

6
+

1

9
Y (3)+

M2
π

9M2
K

(r+1)Y (3)







+〈r2〉K+

V eK
+

V ,

(3.8)

with the remainder:

eK
+

V =
6

F 4
K

(ℜF 2
KF

V
K+)1

〈r2〉K+

V

. (3.9)

Replacing ∆L9 by its value in terms of the pion radius, eq. (2.22), leads to the following

relation:

F 2
K〈r2〉K+

V (1 − eK
+

V ) − F 2
π 〈r2〉πV (1 − eπV )=

1

32π2



− log

◦

M
2

K

◦

M
2

π

+
2

3
Y (3) − M2

π

3M2
K

(r+1)Y (3)



 ,

(3.10)

where the right-hand side is a very small correction for any reasonable value of r and Y (3),

so that the electromagnetic square radius of the charged kaon is essentially predicted to be

〈r2〉K+

V ≃ F 2
π/F

2
K ×〈r2〉πV ≃ 0.32 fm2. Two experiments have measured this radius, leading

to the average [45]:

〈r2〉K+

V = 0.314 ± 0.035 fm2 . (3.11)

The square radius of the neutral kaon reads:

F 2
K〈r2〉K0

V (1 − eK
0

V ) =
1

32π2



− log

◦

M
2

K

◦

M
2

π

+
2

3
Y (3) − M2

π

3M2
K

(r + 1)Y (3)



 (3.12)

with the remainder:

eK
0

V =
6

F 2
K

(ℜF V
K0)1

〈r2〉K0

V

, (3.13)

The current experimental average is [45]:

〈r2〉K0

V = −0.077 ± 0.010 fm2 . (3.14)

Eqs. (3.10) and (3.12) yield the following relation between the electromagnetic radii:

〈r2〉πV (1 − eπV ) =
F 2

K

F 2
π

(

〈r2〉K+

V (1 − eK
+

V ) − 〈r2〉K0

V (1 − eK
0

V )
)

. (3.15)
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which is fulfilled using the experimental values of the radii and the SM value of FK/Fπ

(the remainders must be on the large side of their allowed value according to the dimen-

sional estimation discussed in section 5.3). In principle, the knowledge of these remainders

and the determination of the radii with a high precision would allow us to determine

FK/Fπ accurately.

4 Kπ form factors

4.1 Definition

Among the quantities that can be determined from lattice simulations, one can single out

the Kℓ3 form factors defined as:

√
2〈K+|ūγµs|π0〉 = (p′ + p)µf+(t) + (p′ − p)µf−(t) . (4.1)

f+ corresponds to P -wave projection of the Kℓ3 transition, whereas its S-wave comes from

f0(t) = f+(t) +
t

∆Kπ
f−(t) , (4.2)

where ∆PQ = M2
P −M2

Q. Following the discussion in 2, FπFKf+ and FπFKf− are expected

to have good convergence properties away from the singularities (opening thresholds. . . ).

Exactly as before, their chiral expansions can be expressed in terms of r,X(3), Z(3), NLO

low-energy constants (L4, L5 and L9) and remainders. Reexpressing L4 and L5 using

eqs. (2.32)–(2.33) yields the following bare expansions of the Kℓ3 form factors:

FπFKf+(t) =
F 2

π + F 2
K

2
+

3

2
[tM r

Kπ(t) + tM r
Kη(t) − LKπ(t) − LKη(t)] (4.3)

+2tLr
9 + FπFKd+ + te+ ,

FπFKf−(t) =
F 2

K − F 2
π

2
− 3

2
(M2

K −M2
π)[M r

Kπ(t) +M r
Kη(t)] (4.4)

+
1

4
KKπ(t)

[

5(t−M2
π −M2

K) +
3

2
(r + 3)M2

πY (3)

]

−1

4
KKη(t)

[

3(t−M2
π −M2

K) +
1

2
(r + 3)M2

πY (3)

]

−2(M2
K −M2

π)Lr
9 + FπFK(d− − d+) + t(e− − e+) ,

where d± = O(m2
q) and e± = O(mq) combine the remainders from the form factors and

the decay constants:

FπFKd+ = (ℜFπFKf+)0 −
F 2

πeπ + F 2
KeK

2
, (4.5)

FπFK(d− − d+) = (ℜFπFKf−)0 +
F 2

πeπ − F 2
KeK

2
, (4.6)

FπFKe+ = (ℜFπFKf+)1 , (4.7)

FπFK(e− − e+) = (ℜFπFKf+)1 , (4.8)
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where the remainder FπFK(ℜf±)(t) are defined as before. When performing our fits to

lattice data, we will also express L9 in terms of the pion radius using eq. (2.22). Inserting

eqs. (4.3)–(4.4) into eq. (4.2) leads to the following expression for the scalar form factor:

FπFKf0(t) =
F 2

K + F 2
π

2
+

t

∆Kπ

F 2
K − F 2

π

2
− 3

2
LKπ(t) − 3

2
LKη(t) (4.9)

+
t

4∆Kπ
KKπ(t)

[

5(t−M2
π −M2

K) +
3

2
(r + 3)M2

πY (3)

]

− t

4∆Kπ
KKη(t)

[

3(t−M2
π −M2

K) +
1

2
(r + 3)M2

πY (3)

]

+(FπFKd+ + te+)

(

1 − t

∆Kπ

)

+ (FπFKd− + te−)
t

∆Kπ
.

In the limit where all expansions are saturated by their leading-order contribution, the

well-known expression for the vector form factor is recovered:

fKπ
+ (t) = 1 +

3

2
HKπ(t) +

3

2
HKη(t) +O(p4) , (4.10)

as well as that for fKπ
− [41].

4.2 Callan-Treiman point, its soft kaon analog and the form factor at zero

momentum transfer

According to the Callan-Treiman theorem [51], in the soft-pion limit (p′2 = M2
π = 0), the

scalar form factor at t = ∆Kπ ≡ M2
K −M2

π (Callan-Treiman point) should be equal to

FK/Fπ. This implies that FKFπf0(∆Kπ) − F 2
K vanishes in the Nf = 2 chiral limit mu =

md = m → 0. There is a soft-kaon analog of this theorem holding at t = ∆̃Kπ ≡ −∆Kπ,

stating that FKFπf0(∆̃Kπ) − F 2
π vanishes in the Nf = 3 chiral limit. At these particular

points, eq. (4.9) reads:

FπFKf0(∆Kπ) =F 2
K − 3

2
LKπ(∆Kπ) − 3

2
LKη(∆Kπ) (4.11)

+
1

4
KKπ(∆Kπ)

[

−10M2
π +

3

2
(r + 3)M2

πY (3)

]

− 1

4
KKη(∆Kπ)

[

−5M2
π +

1

2
(r + 3)M2

πY (3)

]

+ FπFKd− + ∆Kπe− ,

FπFKf0(−∆Kπ) =F 2
π − 3

2
LKπ(−∆Kπ) − 3

2
LKη(−∆Kπ) (4.12)

− 1

4
KKπ(−∆Kπ)

[

−10M2
K +

3

2
(r + 3)M2

πY (3)

]

+
1

4
KKη(−∆Kπ)

[

−6M2
K +

1

2
(r + 3)M2

πY (3)

]

+ FπFK(2d+ − d−) − ∆Kπ(2e+ − e−) .

One can check explicitely that these expressions fulfill the Callan-Treiman theorem

and its soft-kaon analog (the K and L contributions canceling each other) provided the
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following constraints on the NNLO remainders

d− = O(mms) , e− = O(m) , (4.13)

meaning that d− and e− are suppressed compared to d+ and e+.

We can define the discrepancies from the Callan-Treiman theorem(s):

∆CT = f0(∆Kπ) − FK

Fπ
, ∆̃CT = f0(−∆Kπ) − Fπ

FK
. (4.14)

These NLO quantities can be expressed from eqs. (4.11)–(4.12), embedding the fact that

∆CT is 1/r-suppressed compared to ∆̃CT . For comparison, these quantities have been

calculated in standard χPT at one-loop order in the isospin limit [52]:

∆CT = −3.5 · 10−3 , ∆̃CT = 0.03 . (4.15)

It has in fact been shown in refs. [53, 54] that a precise assessment of the scalar form

factor at the Callan-Treiman points could probe physics beyond the Standard Model in

the strange quark sector, in particular right-handed couplings of quarks to W bosons. The

pioneering work [53] led to a reanalysis of Kℓ3 data by several collaborations [55–57], which

at present show a good/marginal agreement with the Standard Model except for the NA48

collaboration [55] exhibiting a 4.5σ deviation still unsolved.

The Kℓ3 vector form factor at zero momentum transfer is another quantity of interest.

Indeed, the measurement of Kℓ3 decays can be analysed in the framework of the Standard

Model to determine the product |Vusf+(0)|, and thus the CKM matrix element |Vus|. A

recent fit to |Vud| (from super-allowed 0+ → 0+ nuclear decays), |Vus|f+(0) (from Kℓ3),

and |Vus/Vud|FK/Fπ (from πℓ2 and Kℓ2) together with the unitarity of the CKM matrix

led to [46, 47]

f+(0)
∣

∣

SM
= 0.959 ± 0.005 , (4.16)

and a value of FK/Fπ

∣

∣

SM
in full agreement with eq. (2.31) with a strong correlation between

these two quantities.

Deviation of f+(0) from this value would be an indication of new physics, so that this

quantity plays a particularly important role to test the Standard Model in the light quark

sector. A direct determination of these quantities on the lattice as well as a well-controlled

method to extrapolate lattice data down to the physical quark masses are naturally crucial

to get a proper assessment of the uncertainties (from statistical, but also systematic origins).

5 Observables for lattice simulations at different quark masses

As explained in the previous section, we can use the relations eqs. (2.32)–(2.33) (decay con-

stants), eqs. (2.34)–(2.35) (masses), eq. (2.22) (pion electromagnetic square radius). . . to

express NLO LECs in terms of r, X(3), Z(3), accurately measured observables and remain-

ders. These relations can be inserted in the chiral expansions of other observables (such as

kaon or Kℓ3 form factors, or meson-meson scattering), which can be used to constrain r,
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X(3) and Z(3). For each new observable, one or several remainders are introduced, which

are assumed to be small but nevertheless limit the accuracy of the chiral series.

As indicated in the introduction, one can also consider lattice simulations, where the

same observables are considered at different values of the quark masses. The interest

is twofold. First, the lattice simulations probe the ms-sensitivity of observables, hard

to estimate from continuum measurements, but with deep connection with the pattern

of Nf = 3 chiral symmetry breaking. Second, lattice simulations [RBC/UKQCD [4–6],

PACS-CS [3]] have encountered difficulties in their fits of NLO Nf = 3 chiral expansions.

Let us remark that the inclusion of NNLO terms for Kℓ3 form factors and FK/Fπ to fits

of the RBC/UKQCD data seems to solve convergence issues for these particular quantities

assuming no Zweig-rule violation in the scalar sector [44]: a good χ2 is obtained with

a rather good convergence of the chiral series with NNLO terms of the expected size

(this work did not discuss Fπ itself, for which the problems of convergence seem the most

acute [4, 14]).

Fitting these data will offer us the opportunity to extract relevant information on chiral

symmetry breaking and to check the consistency of our picture concerning the numerical

competition between LO and NLO terms. We consider simulations with 3 dynamical

flavours (m̃, m̃, m̃s) and denote X̃ the values for the lattice quantities (and X the corre-

sponding value for physical quark masses). We introduce the ratios:

p =
m̃s

ms
, q =

m̃

m̃s
, (5.1)

in addition to the ratio of physical quark masses r and the chiral parameters arising in the

leading-order Lagrangian in eqs. (2.9) and (2.10).

5.1 Masses and decay constants

Proceeding as before in this new setting, we obtain the following expansions for the decay

constants:

F̃ 2
π

F 2
π

=Z(3) +
M2

π

F 2
π

pqrY (3)

[

8

(

1

q
+ 2

)

Lr
4 + 8Lr

5

]

(5.2)

− M2
π

F 2
π

1

32π2
pqrY (3)






4 log

◦̃

M

2

π

µ2
+

(

1

q
+ 1

)

log

◦̃

M

2

K

µ2






+
F̃ 2

π

F 2
π

ẽπ ,

F̃ 2
K

F 2
π

=Z(3) +
M2

π

F 2
π

pqrY (3)

[

8

(

1

q
+ 2

)

Lr
4 + 4

(

1

q
+ 1

)

Lr
5

]

(5.3)

− M2
π

F 2
π

1

32π2
pqrY (3)

[

3

2
log

◦̃

M

2

π

µ2
+

3

2

(

1

q
+ 1

)

log

◦̃

M

2

K

µ2
+

1

2

(

2

q
+1

)

log

◦̃

M

2

η

µ2

]

+
F̃ 2

K

F 2
π

ẽK ,

where the LO contributions to the simulated pseudoscalar masses are involved:

◦̃

M

2

π = pqrM2
πY (3) ,

◦̃

M

2

K =
pqr

2

(

1

q
+ 1

)

M2
πY (3) ,

◦̃

M

2

η =
pqr

3

(

2

q
+ 1

)

M2
πY (3) ,

(5.4)
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and ẽP are remainders of O(m̃2
q) (m̃q denotes either m̃s or m̃). We have divided by the

physical value of F 2
π in order to deal with dimensionless quantities. In a similar way, we

obtain the bare expansions of the masses:

F̃ 2
πM̃

2
π

F 2
πM

2
π

= pqr

{

X(3)+
M2

π

F 2
π

pqr[Y (3)]2
[

16

(

1

q
+2

)

Lr
6+16Lr

8

]

(5.5)

−M
2
π

F 2
π

1

32π2
pqr[Y (3)]2

[

3 log

◦̃

M

2

π

µ2
+

(

1

q
+1

)

log

◦̃

M

2

K

µ2
+

1

9

(

2

q
+1

)

log

◦̃

M

2

η

µ2

]}

+
F̃ 2

πM̃
2
π

F 2
πM

2
π

d̃π ,

F̃ 2
KM̃

2
K

F 2
πM

2
π

=
pqr

2

(

1

q
+1

)

{

X(3)+
M2

π

F 2
π

pqr[Y (3)]2
[

16

(

1

q
+2

)

Lr
6+8

(

1

q
+1

)

Lr
8

]

(5.6)

−M
2
π

F 2
π

1

32π2
pqr[Y (3)]2

[

3

2
log

◦̃

M

2

π

µ2
+

3

2

(

1

q
+1

)

log

◦̃

M

2

K

µ2
+

5

18

(

2

q
+1

)

log

◦̃

M

2

η

µ2

]}

+
F̃ 2

KM̃
2
K

F 2
πM

2
π

d̃K ,

where d̃P are remainders of O(m̃2
q). We have divided by the physical value of F 2

πM
2
π in

order to deal with dimensionless quantities. As explained before, we use eqs. (2.32)–(2.35)

to express the (mass-independent) chiral couplings L4,5,6,8 in terms of r,X(3), Z(3) and

the physical masses and decay constants.

5.2 Kℓ3 form factors

We obtain for the lattice vector form factor:

F̃πF̃K f̃+(t) =
F̃ 2

π + F̃ 2
K

2
+

3

2
[tM̃ r

Kπ(t) + tM̃ r
Kη(t) − L̃Kπ(t) − L̃Kη(t)] (5.7)

+2tLr
9 + F̃πF̃K d̃+ + t̃e+ ,

and the scalar form factor:

F̃πF̃K f̃0(t) =
F̃ 2

K + F̃ 2
π

2
+

t

∆̃Kπ

F̃ 2
K − F̃ 2

π

2
(5.8)

−3

2
L̃Kπ(t) − 3

2
L̃Kη(t)

+
t

4∆̃Kπ

K̃Kπ(t)

[

5(t− M̃2
π − M̃2

K) +
3

2

(

1

q
+ 3

)

pqrM2
πY (3)

]

− t

4∆̃Kπ

K̃Kη(t)

[

3(t− M̃2
π − M̃2

K) +
1

2

(

1

q
+ 3

)

pqrM2
πY (3)

]

+(F̃πF̃K d̃+ + tẽ+)

(

1 − t

∆̃Kπ

)

+ (F̃πF̃K d̃− + tẽ−)
t

∆̃Kπ

,

where L̃PQ, K̃PQ, M̃PQ are evaluated with the leading-order pseudoscalar masses at the

simulated quark masses using eq. (5.4), apart from the J̄PQ function which is evaluated

at the simulated (“physical”) pion and kaon masses using eqs. (5.5)–(5.6). In the above

formulae, the decay constants on the right-hand side arise from the reexpression of L4 and

L5, and should be understood as a short-hand notation of the full expressions in eqs. (5.2)–

(5.3). For the vector form factor, we can trade L9 for the pion electromagnetic square

radius using eq. (2.22).
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5.3 Remainders

The expressions for the simulated masses, decay constants, form factors and electromag-

netic square radius involve unknown remainders. These remainders collect all the contribu-

tions coming from NNLO, NNNLO and higher orders. They can be evaluated by resonance

saturation [58], involving a hadronic scale ΛH only mildly affected by the actual value of

the quark masses (mass of the ρ,K∗ . . .). In order to keep track of the scaling of the re-

mainders with the quark masses, we take the following NNLO estimates which involves the

hadronic scale at the fourth power:

d, e, dK , eK , d+ = O

(

M4
K

Λ4
H

)

, e+ = O

(

F 2
πM

2
K

Λ4
H

)

, eVπ = O

(

6

〈r2〉πV
M2

K

Λ4
H

)

, (5.9)

d′, e′, d− = O

(

2M2
πM

2
K

Λ4
H

)

, e− = O

(

2F 2
πM

2
π

Λ4
H

)

, (5.10)

dπ = d− d′ , eπ = e− e′ , (5.11)

where M2
π and M2

K follow the known dependence of the remainders on m and ms, whereas

F 2
π is inserted when a dimensionful constant with no dependence on mq is required.

We can use the known scaling of the remainders to perform their extrapolation to the

simulated quark masses:

d̃π = p2d− p2qrd′ , d̃K =

(

FKMK

FπMπ

)2

p2 r + 1

2

(

d− r + 1

2
qrd′

)

, (5.12)

ẽπ = p2e− p2qre′ , ẽK =

(

FK

Fπ

)2

p2

(

e− r + 1

2
qre′

)

, (5.13)

d̃+ = p2d+ , ẽ+ = pe+ , d̃− = p2qrd− , ẽ− = pqre− . (5.14)

6 Fit to lattice values

6.1 Data and parameters

We are now in a position to build the χ2 function to be minimised for the sets of data that

we will consider. The inputs are the following ones, as recalled in appendix A:

• F̃ 2
π , F̃

2
K , F̃

2
πM̃

2
π , F̃

2
KM̃

2
K for known values of the quark masses (m̃, m̃s) (RBC/UKQCD

and PACS-CS)

• F̃πF̃K f̃+ and F̃πF̃K f̃0 for several transfer momenta (RBC/UKQCD)

• We consider the quantities given by these collaborations corresponding to light quark

masses and small momenta (“Subset” fit) where chiral perturbation theory is valid.

In appendix B we will also consider all the quantities available even though some points

at higher masses and momenta might certainly be outside the region of validity of ReχPT

(“Total” fit) to check the stability of our results as well as to illustrate the interest of having

more data points to determine the remainders more accurately. Obviously, we would need

more points for lower pion and kaon masses.
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The uncertainties on these quantities were obtained by combining the uncertainties in

quadrature: no correlation between the various observables is provided in the articles of

both collaborations, and we have only the statistical errors (no estimate of the systematic

uncertainties was available for the quantities of interest here). The parameters entering

the fit are:

• Quantities from the leading-order chiral Lagrangian X(3), Z(3), r

• NNLO remainders: d, d′, e, e′ (in all cases), d+, e+, d−, e−, e
V
π (for a fit to Kℓ3 decay

constants),

• The value of the ratio of decay constants FK/Fπ,

• The value of pref = m̃s,ref/ms for a lattice set of reference, providing the equivalence

between lattice and physical quark masses (when possible).

The last quantity is estimated by both collaborations, but we found it interesting to keep

this parameter free in the fit, in order to take partially into account systematic effects

related to lattice spacing. Since the quark masses are expressed in a mass-independent

scheme involving only multiplicative renormalisation, we can determine the value of p =

m̃s/ms for any lattice set once we know p for a given reference set using m̃s = (m̃s/m̃s,ref ) ·
pref . We had to fix the last two parameters in the case of RBC/UKQCD “Subset” fits,

due to the limited number of unitarity (unquenched) points available for the masses and

decay constants (only 2 different pairs of quark masses).

When computing the values of the observables from NLO chiral expansions, we need

the values of the masses and decay constants for the simulated quark masses (for instance

in the unitarity functions J̄). In such a case, we computed systematically the values of the

decay constants and masses from their chiral expansions (5.2)–(5.6), rather than plugging

in their “measured” values on the lattice. This distinction may have some importance

for the Kℓ3 form factors eqs. (4.3) and (4.9), where we have reexpressed L4 and L5 in

terms of F̃ 2
π and F̃ 2

K , but where the latter quantities stand for their chiral expansion in

terms of LECs (the fits to RBC/UKQCD would be slightly improved compared to the ones

presented here if we used the measured values of F̃ 2
π and F̃ 2

K rather than the computed

ones).

In addition, the mass M̃η and decay constant F̃η of the η are needed for the evaluation

of the loop integral J̄PQ (and related unitarity functions). They are obtained at a sufficient

accuracy for such purposes using the two following LO formulae reminiscent of the Gell-

Mann-Okubo relation:

F̃ 2
η =

4

3
F̃ 2

K − 1

3
F̃ 2

π , F̃ 2
η M̃

2
η =

4

3
F̃ 2

KM̃
2
K − 1

3
F̃ 2

πM̃
2
π . (6.1)

We constrain the remainders in the ranges indicated in table 5. Once the (MINUIT-

powered) fit has converged, we can estimate a large body of quantities: NLO LECs, Nf = 2

chiral order parameters, values of the Kℓ3 scalar form factor at zero momentum transfer, at

the Callan-Treiman point and its soft kaon analog, test of the convergence of the series. We

have propagated the errors exploiting the covariance matrix provided by MINOS, assuming

that all uncertainties follow a Gaussian distribution.
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6.2 Discussion

Our results are summarised in table 1. The first series of rows corresponds to the outcome

of the fit, whereas the lower rows are quantities derived from the results of the fit (LO

LECs, NLO LECs, quantities in the Nf = 2 chiral limit, Kℓ3 quantities, relative fraction of

LO/NLO/remainders contributions at the minimum for several observables), and the last

row is the χ2 per degree of freedom.

The “Subset” fit of RBC/UKQCD results includes only a limited number of data

points for the masses and decay constants, which forces us to fix one of the parameters

of the fit, namely the simulated strange quark mass3 and to impose some bounds on the

size of the higher-order remainders, based on a simple estimate from resonance saturation

described in appendix B. Indeed, some of these remainders are pushed to the limits of

their range when the set of data is too small, because there is not enough information for

MINUIT to choose a particular value for these remainders (keeping them free would lead

to a larger contribution from higher orders and to a further decrease of the leading-order

contribution). The situation improves when higher masses and momenta are included (see

the fits to “Total” sets presented in appendix C), so that the remainders remain small,

within the window discussed in appendix B. It is interesting to notice that the results are

consistent with the fits to PACS-CS data (“Subset” or “Total”): r is close to 25 (i.e close

to the ratio 2M2
K/M

2
π − 1 even though its value was left free in our framework), the quark

condensate remains around X(3) ∼ 0.5, the squared decay constant is Z(3) ∼ 0.6, leading

to a value for the LO term of the squared pion mass Y (3) ∼ 0.8.

The ratio of decay constants FK/Fπ (left free in our fit) comes out slightly larger

(smaller) for PACS-CS (RBC/UKQCD) than its Standard Model value eq. (2.31) in the

fits of the masses and decay constants. We obtain also values of simulated strange quark

masses and of the physical strange quark mass in good agreement with the results obtained

by the two collaborations (the discrepancy between RBC/UKQCD and PACS-CS is due

to the different choice of renormalisation procedure, which explains the low value obtained

by the PACS-CS collaboration [59]).

The decay constant in the Nf = 3 chiral limit is found to be rather low, in agreement

with other recent works [26, 44]. The pattern of Nf = 3 chiral symmetry breaking (with

low quark condensate and decay constant) is reflected by the values obtained for the low-

energy constants L4 and L6, which are both positive and do not show any sign of Zweig

suppression. Such large values of L4 and/or L6 have been obtained in several earlier works:

dispersive analysis of scalar form factors [29, 30], dispersive treatment of πK scattering [23],

J/ψ decay into a vector meson and two pseudoscalars [60] (with a value of L6 compatible

with zero), preliminary NNLO Nf = 3 fits to pseudoscalar masses, decay constants, Kℓ4

decay and πK scattering data [26]. . . Large values of L4 and L6 are known to induce a

significant dependence of the chiral order parameter on the strange quark mass, and it is

not surprising to witness a strong suppression from the Nf = 2 chiral limit to the Nf = 3

3Letting all parameters free gives comparable results for the central values, but some parameters get

very large uncertainties, larger than their allowed range. Propagating the errors in such a situation would

be meaningless, and reporting the results of this fit would not provide much more information than the

constrained fit that we present here.
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PACS − CS Subset RBC/UKQCD Subset

Without Kℓ3 With Kℓ3

r 26.5 ± 2.3 23.2 ± 1.5

X(3) 0.59 ± 0.21 0.20 ± 0.14

Y (3) 0.90 ± 0.22 0.43 ± 0.30

Z(3) 0.66 ± 0.09 0.46 ± 0.04

FK/Fπ 1.237 ± 0.025 1.148 ± 0.015

Rem. at limit none d, e

m̃s,ref/ms 1.24 ± 0.08 1.15⋆

ms(2 GeV)[MeV] 70 ± 4 107

m(2 GeV)[MeV] 2.6 ± 0.3 4.6 ± 0.3

B0(2 GeV)[GeV] 3.34 ± 1.18 0.92 ± 0.67

F0[MeV] 74.8 ± 4.9 62.2 ± 2.5

L4(µ) · 103 −0.1 ± 0.2 2.4 ± 2.0

L5(µ) · 103 1.8 ± 0.4 1.8 ± 1.6

L6(µ) · 103 0.1 ± 0.4 4.7 ± 7.1

L8(µ) · 103 0.8 ± 0.7 4.4 ± 7.1

L9(µ) · 103 × 4.4 ± 2.8

X(2) 0.90 ± 0.01 0.90 ± 0.02

Y (2) 1.04 ± 0.02 1.00 ± 0.03

Z(2) 0.87 ± 0.02 0.90 ± 0.02

B(2 GeV)[GeV] 3.83 ± 0.50 2.09 ± 0.19

F [MeV] 85.8 ± 0.7 87.7 ± 0.8

ℓ̄3 5.0 ± 2.1 −0.6 ± 3.7

ℓ̄4 4.5 ± 0.5 3.3 ± 0.5

Σ/Σ0 1.51 ± 0.51 4.52 ± 2.83

B/B0 1.15 ± 0.26 2.28 ± 1.39

F/F0 1.15 ± 0.08 1.41 ± 0.06

f+(0) 1.004 ± 0.149 0.985 ± 0.008

∆CT · 103 × −0.2 ± 12.1

∆′

CT · 103 × −126 ± 104

〈r2〉K
+

V [ fm2] × 0.248 ± 0.156

〈r2〉K
0

V [ fm2] × −0.027 ± 0.106

F 2
π 0.66 + 0.22 + 0.12 0.45 + 0.69 − 0.14

F 2
K 0.44 + 0.48 + 0.08 0.34 + 0.76 − 0.10

F 2
πM2

π 0.60 + 0.30 + 0.10 0.20 + 0.95 − 0.15

F 2
KM2

K 0.42 + 0.50 + 0.08 0.14 + 0.97 − 0.11

FπFKf+(0) × 0.40 + 0.75 − 0.15

χ2/N 0.9/3 4.4/8

Table 1. Results of fits performed on the data from the PACS-CS [3] and RBC/UKQCD [4–6]

collaborations on pseudoscalar masses and decay constants, and Kℓ3 form factors in the case of

RBC/UKQCD. In all cases, we considered only data with light pions (Subset) and only statistical

errors are shown. In the RBC/UKQCD case, we fixed the lattice strange quark mass (marked with

a star). The LECs are given at the scale µ = mρ. In the PACS-CS case, the Kℓ3 form factor at

zero momentum transfer is a prediction of the fit (with an error combining those obtained from

the fit and the maximal contribution allowed for the remainder from dimensional estimation). The

penultimate set of rows collects the relative fractions of LO/NLO/remainders for decay constants,

masses and Kℓ3 form factor at vanishing transfer momentum (for RBC/UKQCD) at the minimum.
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one. Let us notice that we obtain values for Nf = 2 chiral order parameters4 which are in

agreement with the hypothesis of standard χPT confirming that this framework is indeed

appropriate in the Nf = 2 sector as shown by the recent data on Kℓ4 decays [20, 21],

though this does not seem to be the case for Nf = 3. The other LECs L5,8,9 have values

in agreement with conventional estimates (this was expected in particular for L9 since our

framework induces modifications that are only sub-leading for vector quantities such as the

pion electromagnetic form factor).

Let us notice some specificities of our treatment of the chiral expansions. Tadpoles

diagrams generate chiral logarithms of the form M2
P log(M2

P /µ
2) which can prove quite

troublesome to fit. For instance, the RBC/UKQCD collaboration [4–6] finds a better

agreement of their data on decay constants with polynomial fits than with chiral series. In

our treatment, these chiral logarithms always involve the leading-order mass
◦

M
2

P . There-

fore, the limit of a small Y (3) tames the chiral logarithms in our expansions, so that these

logarithms become hard to distinguish from a polynomial at the numerical level on the

range of masses where χPT could be valid. Furthermore large contributions from NLO

LECs, and in particular from L4 and L6 as just discussed, will enhance the quadratic de-

pendence on the quark masses and thus our chiral expressions will mimic a polynomial

dependence on the quark masses that cannot be reproduced in the more usual treatment

of chiral expansions. These mechanisms could explain why chiral logarithms are often dif-

ficult to identify in lattice data, in addition to other effects (heavy strange quark mass,

lattice systematics. . . ).

The Kℓ3 form factor at zero momentum transfer, f+(0) = f0(0), involves only LECs

related to decay constants and masses, eq. (4.3). In principle, it can be predicted from

a fit of the latter quantities up to the determination of the remainder d+. We quote the

corresponding results in table 1, where the central value for f+(0) corresponds to remainders

set to zero. The uncertainty on this quantity includes the maximal size allowed for the

remainders d+ based on dimensional estimate (see table 5), as well as the uncertainties

coming from the parameters of the fit. Clearly, the NNLO remainder d+ hinders any

accurate determination of f+(0), unless their value is also precisely determined from the

fit, which is possible once data on Kℓ3 form factors themselves is included (table 1). The

values obtained for f0(0) are somewhat larger than the Standard Model value eq. (4.16),

as well as those obtained from the RBC/UKQCD collaboration using different forms for

the extrapolation in quark masses [5, 6]. This illustrates the importance of the mass

extrapolation for lattice simulations at the level of accuracy aimed at currently. A particular

attention was paid in ref. [6] to the structure of the chiral expansion of f+(0) = 1+f2 +f4,

where f2 is the NLO contribution, which involves only a combination of chiral logarithms

divided by F 2
0 :

f2 =− 3

256π2F 2
0

[

(M2
K +M2

π)h

(

M2
π

M2
K

)

+(M2
K +M2

η )h

(

M2
η

M2
K

)]

, h(x) = 1+
2x

1−x2
log x .

(6.2)

4The expressions for the Nf = 2 order parameters X(2), Y (2), Z(2) can be obtained by setting m̃ =

0, m̃s = ms in the expressions for F̃ 2
π and F̃ 2

πM̃2
π , eqs. (5.2) and (5.5). The matching expressions for ℓ̄3,4 in

terms of L4,5,6,8 differ from the usual ones [2, 61] by factors of Y (2) and Y (3) that are easy to recover.
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f2 is often said to be free from LECs and thus known precisely from Chiral Perturbation

Theory. This statement is not totally correct for the following reasons. One usually assumes

that the value of F0 is close to that of Fπ, so that it can be replaced in actual calculations

by the physical value of the pion decay constant leading to the estimate f2 ≃ −0.023. Since

the difference between the two quantities is a higher-order effect, one can always perform

this replacement. However, one has to determine how large the NNLO term f4 can be

with such a prescription, and consequently how well the chiral series for f+ converges.

If F0 is significantly lower than Fπ as indicated not only by our fit, but by other recent

estimates [26, 44], the convergence is expected to be rather slow, forcing us to treat the

NLO contribution to f+(0) more carefully. We advocated that correlators of vector and

axial currents yields observables with good convergence properties, selecting FπFKf0(0).

In this case, we should replace F 2
0 by FπFK in the evaluation of eq. (6.2), as can be checked

in our expression for f+, eq. (4.3).

Once the Kℓ3 form factors are included in our fits, L9 can be determined even though

the fit does not constrain for this particular LEC tightly. In table 1, the deviations from

the Callan-Treiman relation at t = ∆Kπ and its soft kaon analog at −∆Kπ are given.

Their values are of the expected size for SU(Nf ) chiral-symmetry breaking quantities for

Nf = 2, 3 flavours respectively, and thus compatible with the one obtained in standard

χPT. The values of the square radii of the charged and neutral kaons, also shown have

rather large uncertainties and are thus within the experimental error bars.

In the last lines of our tables, we have indicated for each fit the contribution from

LO, NLO and remainders to pseudoscalar decay constants and masses for values of the

parameters at the minimum of the fit. We can see that the series converge well on overall

(remainder much smaller than LO+NLO), but that the LO term is far from saturating

the series. The values of Y (3) obtained is smaller than 1, reducing the contribution from

chiral logarithms compared to that from the NLO LECs. We can compare these results

with those from a fit of the same observables, where the NLO and higher contributions

(chiral logarithms µP , LECs Li, remainders) are computed replacing 2mB0, (m +ms)B0

and F0 by the physical pion and kaon masses and the pion decay constant. This is exactly

equivalent to performing the same fit as before with the following replacements in the NLO

and higher-order contributions:

r → 2
M2

K

M2
π

−1, q → M̃2
π

2M̃2
K−M̃2

π

, p→ 2M̃2
K−M̃2

π

2M2
K−M2

π

, Y (3) → 1, (6.3)

η(r) → η(r0), ǫ(r) → ǫ(r0)−2X(3)
r−r0
r2
0
−1

, log

◦

M
2

P

µ2
→ log

M2
P

µ2
,

(6.4)

both for the observables that we consider, eqs. (5.2)–(5.8), and the equations allowing

the determination of L4,5,6,8,9, eqs. (2.22) and (2.36)–(2.39). For PACS-CS, this leads to

χ2/N = 1.1/3 (compared to our result 0.9/3), with very similar values for the fundamental

parameters r,X(3), Y (3), Z(3). For RBC/UKQCD, the fitting procedure yields χ2/N =

9.5/8 (compared to our result 4.4/8), with much more uncertain values of the fundamental
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parameters (e.g., r = 14.9 ± 12.1, X(3) = 0.30 ± 0.26, Y (3) = 0.68 ± 0.60). This is not

particularly surprising since our fits to the PACS-CS data led to values of r and Y (3) in good

agreement with eq. (6.3), but not the RBC/UKQCD ones. The corresponding convergence

of the pseudoscalar masses and decay constants is then (the relative contribution for LO,

NLO and higher orders is given here):

PACS − CS [NLO phys. masses] F 2
π : 0.64+0.26+0.10, F 2

πM
2
π : 0.67+0.24+0.09,

F 2
K : 0.42+0.51+0.07 F 2

KM
2
K : 0.50+0.44+0.06,

RBC/UKQCD [NLO phys. masses] F 2
π : 0.45+0.70−0.15 F 2

πM
2
π : 0.31+0.81−0.12,

F 2
K : 0.34+0.76−0.10, F 2

KM
2
K : 0.15+0.94−0.11.

There is no saturation of the series by their leading order. We see that our formulae

yields results that are in good agreement with those obtained after reexpressing the NLO

contributions in terms of Fπ,Mπ,MK in the PACS-CS case, where Y (3) is close to 1. On

the other hand, when Y (3) is not close to 1 (for instance in the RBC/UKQCD case), our

formulae provide more efficient and accurate fits (lower χ2, smaller error bars). From a

more methodological point of view, we avoid a perturbative reexpression of LECs in terms

of Fπ,Mπ,MK in a regime where it is not justified.

These trends can be compared interestingly with the fits done by the lattice collabo-

rations themselves, with a different treatment of the chiral series than ours. For instance,

the MILC collaboration [9] observed from fits with staggered chiral perturbation theory

that M2
π received NNLO corrections of the same size as NLO contributions, canceling each

other to a large extent, with small NNNLO corrections (the latter being taken as analytic

in quark masses and lattice spacings), whereas Fπ exhibited no problems of convergence.

On the other hand, the RBC/UKQCD collaboration [4] experienced difficulties in fitting

Fπ both in Nf = 2 and Nf = 3 theories. They also noticed that fits to M2
K and FK

using the Nf = 3 chiral expansion led to very significant NLO contributions (of order 50%)

when data up to the kaon mass scale was included, and they conclude that higher-order

corrections could be very significant (up to 30%).

At this point, we should emphasize that our framework does not contain any bias con-

cerning the size of X(3), Y (3) and Z(3) or on the relative size of the LO and NLO contri-

butions. It is compatible with the usual assumptions that chiral series of decay constants,

squared masses. . . are saturated by their LO contribution, but it can also accommodate

situations where there is a numerical competition between LO and NLO terms. It turns

out that the lattice data set from the RBC/UKQCD and PACS-CS collaborations favour

values for the three quantities X(3), Y (3), Z(3) smaller than 1, with a χ2/d.o.f. which

ranges from fairly good to excellent. Our results confirm the difficulties reported by the

two collaborations to fit Nf = 3 NLO chiral expressions, and highlights the improvement

provided by our ReχPT formulae for the extrapolations in quark masses of these quantities.

As a further check, we have performed fits where we have taken that the physical masses

(and not the LO ones) in the unitarity functions J,K,L,M and the argument of the chiral

logarithms (similarly to what was done in ref. [25]). The quality and parameters of the

fits are almost unchanged, and the outcome for the derived quantities is also very similar,

meaning that the relevant issue is the proper choice of the “good observables” whose chiral

series converge well.
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7 Conclusion

Recent lattice simulations with light 2+1 dynamical fermions have encountered difficulties

to fit their results for pseudoscalar masses, decay constants and form factors with chiral

expansions obtained from Nf = 3 Chiral Perturbation Theory at next-to-leading order.

Such fits of poor quality can be related to the fact that chiral series are not saturated

by their leading order, so that there is a numerical competition between leading-order

contributions — from the decay constant and/or the condensate in the Nf = 3 chiral limit

(mu = md = ms = 0) — and next-to-leading-order contributions — in particular from L4

and L6, related to the Zweig-rule violation in the scalar sector, enhanced by ms and not

accurately known.

If there is such a competition, one must decide which observables are expected to have

a good overall convergence (small higher-order contributions). According to the assumed

equivalence of the χPT and QCD generating functionals at low energies, it seems reasonable

to consider observables derived from correlators of axial and vector currents as well as

pseudoscalar and scalar densities, as done here. For these observables, one must treat

chiral series with a particular care, avoiding the perturbative reexpression of LECs in

terms of observables while neglecting higher orders (this can be easily done by introducing

remainders corresponding to NNLO and higher contributions) and choosing how unitarity

contributions should be treated to define the structure of the chiral expansion and its

splitting into leading, next-to-leading and higher-order terms. Such a set of prescriptions

was introduced some time ago under the name of Resummed Chiral Perturbation Theory.

In the present paper, we have recalled the basic ingredients of this framework and applied

it to observables related to pseudoscalar masses, decay constants, and kaon and pion form

factors (electromagnetic and Kℓ3 ones). This allowed us to illustrate how O(p4) LECs

L4,5,6,8,9 can be reexpressed in terms of the leading-order quantities X(3), Z(3), r as well

as experimental values of observables (pion and kaon decay constants and masses, square

electromagnetic radius of the pion) and associated remainders.

Then we have turned to 2+1 lattice simulations where these observables were obtained

for several sets of quark masses: PACS-CS (decay constants and masses only) [3] and

RBC/UKQCD (decay constants, masses, Kℓ3 form factors) [4–6]. We performed fits to data

corresponding only to light quark masses and small momenta, but checked the stability

of our procedure by considering also fits to all data available (unitary points). Since

only statistical uncertainties (without correlations) are publicly available for each of the

points, we performed naive fits with Gaussian errors, in order to determine the leading-

order parameters of the chiral Lagrangian as well as NNLO remainders and the ratio of

decay constants.

The fits are generally of a good quality, with a good consistency when one compares

subsets coming from the same collaboration. This allows one to determine the values of the

LO quantities as well as the NNLO remainders, with a good accuracy in the case of PACS-

CS, with a more limited precision for RBC/UKQCD because of the restricted number of

low-mass points. One observes that:

• The decay constant and the quark condensate in the Nf = 3 limit (mu = md = ms =
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0) are both small and suppressed compared to the Nf = 2 case (mu = md = 0 and

ms physical).

• The low-energy constants L4 and L6 do not follow the Zweig rule suppression gener-

ally advocated to set them to zero.

• The other low-energy constants L5, L8 and L9 have values in good agreement with

previous estimates.

• The ratio of quark masses r remains quite close to the most simple estimate from

pseudoscalar masses.

• Nf = 2 chiral order parameters are in good agreement with the values extracted from

Kℓ4 decays.

• When the sets of data are large enough, the NNLO remainders remain in the expected

range from a naive dimensional estimate.

• The expected numerical competition between LO and NLO chiral expansions indeed

occurs for F 2
π , F 2

K , F 2
πM

2
π and F 2

KM
2
K .

Beyond this description of the pattern of Nf = 3 chiral symmetry breaking and its impli-

cation for the convergence of chiral expansions, we can also make a few predictions. The

values obtained for the kaon electromagnetic radii are in good agreement with experimental

data. In the case of RBC/UKQCD, the value obtained for f+(0) with our fits is slightly

larger than the ones quoted by the collaboration, relying on alternative formulae for the

chiral expansion of theKℓ3 form factors. This has naturally an impact on the determination

of |Vus|, considering the level of accuracy achieved in Kℓ3 decays [46, 47].

Lattice simulations are able to investigate the dependence of observables on quark

masses, which makes them very valuable tools to investigate the chiral structure of QCD

vacuum. Conversely, any improvement in our understanding of chiral symmetry breaking

will help reducing systematics associated with chiral extrapolations in lattice determina-

tions. In light of the discussion presented in this paper, it would be very helpful that more

lattice collaborations present the dependence of their results on the quark masses and/or

study alternative ways of performing the extrapolation down to physical quark masses in

order to assess the related systematics precisely. It would also be very interesting to have

lattice results for observables related to the scalar channel, and thus difficult to determine

from experiment. For instance, the pion and kaon scalar form factors, simulated on the

lattice and analysed in the framework of Resummed Chiral Perturbation, would provide

an interesting complement to the present discussion.
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A Lattice inputs

A.1 RBC/UKQCD collaboration

We first consider the RBC/UKQCD Collaboration simulations with 2+1 dynamical

flavours [4–6] performed with domain-wall fermions at one lattice spacing a−1 =

1.729(28) GeV. The calculations are performed on two volumes, 163 × 32 and 243 × 64

((2.74)3 fm3) (with a fifth dimension of length 16), at each quark mass, except the lightest

mass which is only simulated on the larger volume. They performed a non-perturbative

renormalisation to relate the lattice quark masses to those in the RI-MOM scheme.

The only points that we will use are those where the sea and valence quark masses are

identical. There are four sets corresponding to such a situation for pseudoscalar masses

and decay constants in ref. [4], corresponding to a(m̃lat −mres) and a(m̃lat
s −mres) being

respectively (0.005, 0.040), (0.010, 0.040), (0.020, 0.020), (0.030, 0.030). where amres =

0.00315(2). The quark masses are given in the RI-MOM scheme, but they can be related

to the M̄S scheme through a multiplicative factor m̄(2 GeV) = Zma
−1(am̃lat) that drops

in all the input quantities (which involve only ratio of quark masses in the same setting).

We obtain the following values expressed in units of 10−3 GeV−2 for the pseudoscalar

masses and decay constants [4, 62]. The uncertainties here are purely statistical and do

not include those induced by the uncertainty on the value of the lattice spacing.

Masses (p, q) F 2
π F 2

πM
2
π F 2

K F 2
KM

2
K Subset

(0.005, 0.040) (1.15, 0.189) 10.98 ± 0.16 1.196 ± 0.022 14.11 ± 0.19 4.644 ± 0.076 ⋆

(0.010, 0.040) (1.15, 0.304) 12.85 ± 0.16 2.249 ± 0.036 15.59 ± 0.18 5.730 ± 0.082 ⋆

(0.020, 0.020) (0.616, 1) 15.58 ± 0.34 4.851 ± 0.107 15.58 ± 0.34 4.851 ± 0.107

(0.030, 0.030) (0.883, 1) 17.82 ± 0.36 8.038 ± 0.166 17.82 ± 0.36 8.038 ± 0.166

In two papers [5, 6], the RBC/UKQCD collaboration investigated the Kℓ3 form fac-

tors f0 and f+ using in particular twisted boundary conditions to obtain a sample trans-

fer momenta, with the same two sets of values corresponding to nondegenerate masses

(a(m̃lat −mres), a(m̃
lat
s −mres)) = (0.005, 0.040), (0.010, 0.040).

The set with the lighter u, d quark masses yields the following values:

t 60.7 59.87 38.1 21.6 0.30

FπFKf0(t) 12.68 ± 0.17 12.73 ± 0.17 12.49 ± 0.17 12.32 ± 0.17 12.15 ± 0.16

FπFKf+(t) × × 12.71 ± 0.176 12.42 ± 0.175 12.15 ± 0.17

Subset ⋆ ⋆ ⋆ ⋆ ⋆

t −44.00 −129.3 −204.9 −389.2

FπFKf0(t) 11.68 ± 0.21 10.95 ± 0.32 10.77 ± 0.23 9.667 ± 0.28

FπFKf+(t) × × × ×
Subset ⋆ ⋆
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r 28.8 ± 0.4 ± 1.6

m̃s,ref/ms 1.150

FK/Fπ 1.205 ± 0.018 ± 0.062

ms(2 GeV)[MeV] 107.3 ± 4.4 ± 9.7 ± 4.9

m(2 GeV)[MeV] 3.72 ± 0.16 ± 0.33 ± 0.18

B(2 GeV)[GeV] 2.52 ± 0.11 ± 0.23 ± 0.12

F [MeV] 81.2 ± 2.9 ± 5.7

ℓ̄3 3.13 ± 0.33 ± 0.24

ℓ̄4 4.43 ± 0.14 ± 0.77

Table 2. Results obtained by the RBC/UKQCD collaboration in ref. [4].

The set with the heavier value leads to the following values for the scalar form factor:

t 35.42 −90.51 −195.3 −205.0 −385.2

FπFKf0(t) 14.28 ± 0.17 13.05 ± 0.21 11.64 ± 0.38 12.89 ± 0.40 11.83 ± 0.75

Subset ⋆ ⋆ ⋆

We have considered also a subset of data, indicated with stars, where the convergence

of chiral series is expected to be particularly good. This amount to considering only non-

degenerate u, d, s quark masses, and to drop the points for t ≤ −0.2 Gev−2 [i.e., the two

points for f0 in ref. [5] corresponding to the lowest values of transfer momentum].

The values of the physical quark masses (m and ms) and the lattice spacing are ob-

tained by studying the dependence of the mass of π, K and Ω hadrons on these three

parameters and tuning them to reproduce the physical hadron masses. If we call m̃s,ref the

value of the strange quark mass corresponding to the set (0.005,0.040), the RBC/UKQCD

collaboration obtained m̃s,ref/ms = 1.150. Considering the uncertainty associated with

such a determination (in particular the role played by the form of the chiral extrapolation

used for π and K), we will not assume this value in our fit, but rather include this quantity

as a parameter of our fit, and scale the other ratios involving a simulated strange quark

mass over the physical value.

Fits to the Nf = 2 and Nf = 3 NLO chiral series for pseudoscalar masses and decay

constants were performed in ref. [4]. It turned out that the Nf = 3 chiral expansions led to

rather poor fits (large χ2 per d.o.f), in particular for decay constants, unless they put strin-

gent cuts on the values of quark masses where such expansions should hold. This led the

authors in ref. [4] to perform fits to Nf = 2 NLO chiral expansions. In addition, in ref. [14],

NNLO SU(2) chiral expansions were shown to have only a limited utility to extrapolate the

data: many more data points would be needed to fix the size of the combinations of O(p6)

counterterms involved The results obtained in ref. [4] that are relevant for our discussion

are summarised in table 2.

In addition, two different values for f+(0) were obtained in refs. [5, 6] from the same

gauge configurations, using either data for the scalar form factor or data for both form

factors, and applying a pole ansatz based on either Nf = 3 or Nf = 2 chiral perturbation
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theory for Kℓ3 form factors [7]:

f+(0) = 0.964 ± 0.033 ± 0.0034 ± 0.0014 [5] , f+(0) = 0.960(+5

−6
) [6] . (A.1)

A.2 PACS-CS collaboration

The PACS-CS collaboration [3] has investigated the pseudoscalar masses and decay con-

stants with a large sample of light quark masses, for one particular value of lattice spacing

a−1 = 2.176(31) GeV, on a 323×64 volume. They used a non-perturbatively O(a)-improved

Wilson quark action and performed the renormalisation of quark masses perturbatively at

one loop (with tadpole improvement), with the following results:

(amM̄S
ud , amM̄S

s ) (p, q) F 2
π F 2

πM
2
π F 2

K F 2
KM

2
K Subset

(0.001, 0.040) (1.410, 0.040) 10.19±1.09 0.247±0.035 14.29±0.48 4.385±0.151 ⋆

(0.006, 0.041) (1.456, 0.138) 11.51±0.26 1.007±0.031 15.49±0.22 5.459±0.088 ⋆

(0.010, 0.036) (1.256, 0.271) 12.48±0.21 1.846±0.041 15.37±0.16 5.200±0.067 ⋆

(0.011, 0.042) (1.519, 0.260) 13.25±0.18 2.242±0.036 16.83±0.23 6.791±0.096

(0.021, 0.045) (1.577, 0.466) 17.23±0.73 5.595±0.239 19.87±0.65 10.11±0.33

(0.031, 0.047) (1.663, 0.652) 19.09±0.51 9.397±0.254 21.01±0.58 13.08±0.37

Once again, the uncertainties are of purely statistical origin, and they do not include the

uncertainty coming from the determination of the lattice spacing. We have also considered a

subset of data, indicated with stars, where the convergence of the chiral series is expected

to be particularly good. This amounts to considering the three lightest values of the

pion masses.

The values of the physical quark masses (m and ms) and the lattice spacing are ob-

tained by studying the dependence of the mass of π, K and Ω hadrons on these three

parameters and tuning them to reproduce the physical hadron masses. If we call m̃s,ref

the value of the strange quark mass corresponding to the set (0.0016,0.0399), we obtain

m̃s,ref/ms = 1.19. Considering the uncertainty associated with such a determination (in

particular the role played by the form of the chiral extrapolation used for π and K), we will

not assume this value in our fit, but rather include this quantity as a parameter of our fit,

and scale the other ratios involving a simulated strange quark mass over the physical value.

Fits to the Nf = 2 and Nf = 3 NLO chiral series for pseudoscalar masses and decay

constants were performed in ref. [3]. It turned out that the Nf = 3 chiral expansions led

to rather poor fits, related to very significant NLO contributions compared to LO terms,

in particular for the decay constants, related to large contributions from kaon loops. In

other words, the dependence of these quantities on the strange quark mass seen in these

simulations is not accounted for properly by NLO SU(3) chiral perturbation theory. This

led the authors in ref. [3] to perform fits to Nf = 2 chiral expansions. The results obtained

in ref. [3] that are relevant for our discussion are summarised in table 3.

A latter article of the same collaboration [59] considered simulations directly performed

at the physical point including non-perturbative renormalisation. This has induced a sig-

nificant modification for the quark mass renormalisation factor, becoming Zm = 1.441(15)

(non-perturbative) instead of Zm = 1.114 (one-loop perturbation theory) leading to an
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r 28.8 ± 0.4

Y (3) 0.88 ± 0.01

Z(3) 0.76 ± 0.04

FK/Fπ 1.189 ± 0.020

m̃s,ref/ms 1.19

ms(2 GeV)[MeV] 72.72 ± 0.78

m(2 GeV)[MeV] 2.527 ± 0.047

B0(2 GeV)[GeV] 3.869 ± 0.092

F0[MeV] 83.8 ± 6.4

L4(µ) · 103 −0.06 ± 0.10

L5(µ) · 103 1.45 ± 0.07

L6(µ) · 103 0.03 ± 0.05

L8(µ) · 103 0.61 ± 0.04

Y (2) 0.96 ± 0.01

Z(2) 0.88 ± 0.01

B(2 GeV)[GeV] 0.96 ± 0.01

F [MeV] 88.2 ± 3.4

ℓ̄3 3.14 ± 0.23

ℓ̄4 4.04 ± 0.19

Σ/Σ0 1.205 ± 0.014

B/B0 1.073 ± 0.055

F/F0 1.065 ± 0.058

Table 3. Results obtained by the CP-PACS collaboration with one-loop perturbative renormalisa-

tion and extrapolation to the physical limit [3]. The values for the quantities in the Nf = 2 chiral

limit correspond to Nf = 2 fits to the so-called Range I with finite-size effects included.

r 31.2 ± 2.7

FK/Fπ 1.333 ± 0.072

ms(2 GeV)[MeV] 92.75 ± 0.58 ± 0.95

m(2 GeV)[MeV] 2.97 ± 0.28 ± 0.03

Table 4. Results obtained by the CP-PACS collaboration [59] with non-perturbative renormalisa-

tion and simulation at the physical point.

increase (decrease) in the values of quark masses (condensates) by a factor 1.30. This

should be taken into account when comparing the results obtained from the PACS and

RBC/UKQCD sets in this article. The results obtained in ref. [59] that are relevant for

our discussion are summarised in table 4. Since the simulation was performed at the phys-

ical point, there is no further information on LECs describing the pattern of Nf = 2 and

Nf = 3 chiral symmetry breakings.
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Remainder σ

d, e, d+ 0.148

d′, e′, d− 0.024

e+ 0.005

e− 0.001

eVπ 0.318

Table 5. Size of the NNLO remainders allowed in our fits, based on a dimensional estimate.

B Dimensional estimate of the remainders

As indicated in eqs. (5.9)–(5.11), we can estimate the higher-order remainders assuming

that they are dominated by NNLO contributions and using resonance saturation. A typical

order of magnitude for O(m2
s) remainders so that the chiral series converge is 10% so

that ΛH ≃ 0.8 GeV. The corresponding size σ of the remainders is given in table 5, and

the remainders will be required to stay in the range [−σ, σ] in our fits to lattice data if

necessary. In the specific case of the electromagnetic square radius of the pion, we have

combined the uncertainty on the experimental measurement of the square radius with the

theory uncertainty on the remainder in quadrature (the range for the kaon radii would be

the same).

C Fits with “Total” data sets

In section 6.2, we considered fits to both PACS-CS and RBC/UKQCD data restricted to

the low-mass and low-momentum region (“Subset” data). We have also performed fits to

the whole sets of data available (“Total” data), in order to test the stability of our results,

and to illustrate the interest of having larger data sets to determine NNLO remainders in

an accurate way. We are aware that some of the data points considered here may stand

outside the region of validity for ReχPT, but we found nevertheless interesting to provide

these results, showing a good consistency with those obtained with “Subset” data.

Our results are summarised in tables 6 and 7. The first series of rows corresponds to

the outcome of the fit, whereas the lower rows are quantities derived from the results of the

fit (LO LECs, NLO LECs, quantities in the Nf = 2 chiral limit, Kℓ3 quantities, relative

fraction of LO/NLO/remainders contributions at the minimum for several observables),

and the last row is the χ2 per degree of freedom. Most of the comments made in section 6.2

can be restated, with a few changes in the case of the RBC/UKQCD data (larger value of

FK/Fπ and lower value of f+(0) than in the “Subset” case). We notice that the fits are

fairly good, and that all NNLO remainders turn out to lie within their expected range.
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Without Kℓ3 RBC/UKQCD Total PACS − CS Total

r 25.8 ± 0.9 25.7 ± 0.9

X(3) 0.44 ± 0.03 0.48 ± 0.04

Y (3) 0.77 ± 0.06 0.76 ± 0.07

Z(3) 0.56 ± 0.04 0.63 ± 0.05

FK/Fπ 1.214 ± 0.012 1.239 ± 0.011

Rem. at limit none none

m̃s,ref/ms 1.12 ± 0.03 1.21 ± 0.02

ms(2 GeV)[MeV] 110 ± 3 72 ± 2

m(2 GeV)[MeV] 4.3 ± 0.1 2.8 ± 0.1

B0(2 GeV)[GeV] 1.75 ± 0.14 2.65 ± 0.20

F0[MeV] 69.2 ± 2.2 73.0 ± 2.5

L4(µ) · 103 0.7 ± 0.1 0.1 ± 0.2

L5(µ) · 103 1.8 ± 0.2 2.2 ± 0.2

L6(µ) · 103 0.8 ± 0.2 0.5 ± 0.3

L8(µ) · 103 1.2 ± 0.3 1.4 ± 0.3

X(2) 0.90 ± 0.01 0.90 ± 0.01

Y (2) 1.02 ± 0.01 1.03 ± 0.01

Z(2) 0.88 ± 0.01 0.87 ± 0.01

B(2 GeV)[GeV] 2.34 ± 0.07 3.58 ± 0.11

F [MeV] 86.7 ± 0.3 86.3 ± 0.3

ℓ̄3 3.1 ± 0.6 3.8 ± 0.6

ℓ̄4 3.9 ± 0.2 4.2 ± 0.2

Σ/Σ0 2.07 ± 0.15 1.88 ± 0.14

B/B0 1.32 ± 0.10 1.35 ± 0.11

F/F0 1.25 ± 0.04 1.18 ± 0.04

f+(0) 1.006 ± 0.149 1.011 ± 0.149

F 2
π 0.56 + 0.54 − 0.10 0.63 + 0.28 + 0.09

F 2
K 0.38 + 0.69 − 0.07 0.41 + 0.52 + 0.07

F 2
πM

2
π 0.44 + 0.67 − 0.11 0.48 + 0.50 + 0.02

F 2
KM

2
K 0.31 + 0.77 − 0.08 0.33 + 0.65 + 0.02

χ2/N 13.6/7 13.8/15

Table 6. Results of fits performed on the data from the RBC/UKQCD [4–6] and PACS-CS [3]

collaborations on pseudoscalar masses and decay constants, considering all the available unquenched

data (Total). Only statistical errors are shown. The LECs are given at the scale µ = mρ. The Kℓ3

form factor at zero momentum transfer is a prediction of the fit (with an error combining those

obtained from the fit and the maximal contribution allowed for the remainder from dimensional

estimation). The penultimate set of rows collects the relative fractions of LO/NLO/remainders for

decay constants and masses at the minimum.
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With Kℓ3 RBC/UKQCD Total I RBC/UKQCD Total II

r 24.9 ± 0.6 25.2 ± 0.9

X(3) 0.43 ± 0.03 0.42 ± 0.03

Y (3) 0.80 ± 0.05 0.78 ± 0.06

Z(3) 0.53 ± 0.03 0.54 ± 0.04

FK/Fπ 1.199 ± 0.009 1.203 ± 0.011

Rem. at limit none none

m̃s,ref/ms 1.15⋆ 1.14 ± 0.03

ms(2 GeV)[MeV] 107 109 ± 3

m(2 GeV)[MeV] 4.3 ± 0.1 4.3 ± 0.1

B0(2 GeV)[GeV] 1.80 ± 0.12 1.77 ± 0.14

F0[MeV] 67.1 ± 1.9 67.6 ± 2.1

L4(µ) · 103 0.76 ± 0.10 0.75 ± 0.10

L5(µ) · 103 1.64 ± 0.12 1.71 ± 0.19

L6(µ) · 103 0.71 ± 0.13 0.76 ± 0.17

L8(µ) · 103 1.18 ± 0.22 1.19 ± 0.23

L9(µ) · 103 5.05 ± 2.25 5.08 ± 2.25

X(2) 0.90 ± 0.01 0.90 ± 0.01

Y (2) 1.02 ± 0.01 1.02 ± 0.01

Z(2) 0.88 ± 0.01 0.88 ± 0.01

B(2 GeV)[GeV] 2.30 ± 0.06 2.31 ± 0.06

F [MeV] 86.5 ± 0.2 86.6 ± 0.3

ℓ̄3 2.7 ± 0.5 2.9 ± 0.6

ℓ̄4 4.1 ± 0.2 4.0 ± 0.2

Σ/Σ0 2.11 ± 0.13 2.14 ± 0.16

B/B0 1.28 ± 0.07 1.31 ± 0.10

F/F0 1.29 ± 0.04 1.28 ± 0.04

f+(0) 0.975 ± 0.006 0.975 ± 0.006

∆CT · 103 4.8 ± 5.7 3.8 ± 5.8

∆′
CT · 103 −70 ± 28 −68 ± 29

〈r2〉K+

V [ fm2] 0.224 ± 0.129 0.225 ± 0.129

〈r2〉K0

V [ fm2] −0.026± 0.098 −0.026± 0.097

F 2
π 0.53 + 0.57 − 0.10 0.54 + 0.56 − 0.10

F 2
K 0.37 + 0.70 − 0.07 0.37 + 0.70 − 0.07

F 2
πM

2
π 0.43 + 0.68 − 0.11 0.42 + 0.69 − 0.11

F 2
KM

2
K 0.30 + 0.78 − 0.08 0.30 + 0.78 − 0.08

FπFKf+(0) 0.45 + 0.66 − 0.11 0.46 + 0.66 − 0.12

χ2/N 33.6/20 33.2/19

Table 7. Results of two different fits of the data from the RBC/UKQCD [4–6] on pseudoscalar

masses and decay constants, as well as on Kℓ3 form factors. We considered all the available un-

quenched data (Total), and either fixed the lattice strange quark mass (marked then with a star)

or let it vary freely. Only statistical errors are shown and LECs are given at the scale µ = mρ. The

penultimate set of rows collects the relative fractions of LO/NLO/remainders at the minimum for

decay constants, masses and Kℓ3 form factor at vanishing transfer momentum.
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