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pare the ghost propagator numerical results with the analytical ones obtained by analyzing

the low-momentum behaviour of the ghost propagator DSE in Landau gauge, assuming for

the truncation a constant ghost-gluon vertex and a simple model for a massive gluon prop-

agator. The asymptotic expression obtained for the regular or decoupling ghost dressing

function up to the order O(q2) is proven to fit pretty well the numerical PT-BFM results.

Furthermore, when the size of the coupling renormalized at some scale approaches some

critical value, the numerical PT-BFM propagators tend to behave as the scaling ones. We

also show that the scaling solution, implying a diverging ghost dressing function, cannot

be a DSE solution in the PT-BFM scheme but an unattainable limiting case.
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1 Introduction

The low-momentum behaviour of the Yang-Mills propagators derived either from the tower

of Dyson-Schwinger equations (DSE) or from Lattice simulations in Landau gauge has been

a very interesting and hot topic for the last few years. It seems by now well established

that, if we assume in the vanishing momentum limit a ghost dressing function behaving as

F (q2) ∼ (q2)αF and a gluon propagator as ∆(q2) ∼ (q2)αG−1 (or, by following a notation

commonly used, a gluon dressing function as G(q2) = q2∆(q2) ∼ (q2)αG), two classes of

solutions may emerge (see, for instance, the discussion of refs. [1, 2]) from the DSE: (i)

those, dubbed “decoupling”, where αF = 0 and the suppression of the ghost contribution to

the gluon propagator DSE results in a massive gluon propagator (see [3–6] and references

therein); and (ii) those, dubbed “scaling”, where αF 6= 0 and the low-momentum behaviour

of both gluon and ghost propagators are related by the coupled system of DSE through the

condition 2αF +αG = 0 implying that F 2(q2)G(q2) goes to a non-vanishing constant when

q2 → 0 (see [7–13] and references therein). As a matter of fact, F 2(q2)G(q2), which gives the

perturbative running for the coupling constant renormalized in Taylor-scheme [14, 15], is a

good quantity in discriminating the kind of solutions we deal with. It is worth to remember

that, despite the widely accepted nomeclature for the classes of solutions, neither a scale

invariance nor a decoupling of the IR dynamics for the theory can be inferred from the

low-momentum behaviour of such a Taylor coupling.

How both types of IR solutions for Landau gauge DSE emerge and how the transition

between them occurs, being governed by the size of the coupling taken as an integration

boundary condition at the renormalization momentum, was initially discussed in ref. [1]

– 1 –



J
H
E
P
0
1
(
2
0
1
1
)
1
0
5

through the analysis of a ghost propagator DSE combined with a gluon propagator taken

from lattice computations. It should be remembered that one needs to know the QCD

mass scale to predict the QCD coupling at any momentum. This mass scale should be of

course supplied to get a particular solution from DSE and can be univocally related to the

boundary condition needed, after applying a trunctation scheme, to solve the equation.

The existence of a critical value for the coupling at any renormalization momentum was

suggested by that partial analysis. No solution was proved to exist for any coupling bigger

than the critical one and the unique scaling solution1 appeared to emerge when the coupling

took that critical value. Later, the authors of ref. [13] confirmed, by the analysis of the tower

of DSE truncated within two different schemes and also in the framework of the functional

renormalization group, that the boundary condition for the DSE integration determined

whether a decoupling or the scaling solution occurs. A similar analysis have been recently

done in the Coulomb gauge [16, 17] leading to the same pattern of ref. [1], although the

authors interpreted the boundary condition in terms of the gauge-fixing ambiguity (see

also [18, 19]). Furthermore, an analytic study based on the pinch technique in ref. [20]

shows that, within some approximations, there is a lower limit for the gluon mass, which

the IR singularities of QCD still persist below, that can be also interpreted as an upper

limit to the coupling. Very recently also, a next-to-leading low-momentum asymptotic

formula for the decoupling ghost dressing function solutions was obtained by studying the

ghost propagator DSE with the assumption, for the truncation, of a constant ghost-gluon

vertex and of a simple model for a massive gluon propagator [21]. In this asymptotic

formula, the ghost-propagator low-momentum behaviour appeared to be regulated by the

zero-momentum effective charge in Taylor scheme [22] and by the Landau-gauge gluon

mass scale.

In the present note, the work of ref. [1] will be extended by the analysis of the results [23]

obtained by solving the coupled system of Landau gauge ghost and gluon propagators DSE

within the framework of the pinching technique in the background field method [24–26]

(PT-BFM). Our main goal is investigating whether the same pattern for regular (decou-

pling) and critical (scaling) solutions in ref. [1] is also found for the PT-BFM solutions. In

the PT-BFM scheme, the zero-momentum ghost dressing function will be seen to diverge

when the coupling approaches some critical value, as it should be expected for the scaling

solution (αF 6= 0). This seems to support the suggestion of a transition from one to another

solutions controled by the size of the coupling approaching a critical value [1]. The authors

of ref. [13] obtained similar results but they applied the zero-momentum ghost propagator

as the boundary condition for the DSEs integration and missed its connection with the

value of the coupling at the renormalization momentum (i.e. the particular value of ΛQCD

one applies to build the solutions) or the critical coupling the scaling behaviour requires to

emerge.2 This connection is an important ingredient because it provides us with a manner,

1The authors of [27, 28] proved there, once the scaling behaviour is assumed, the uniqueness for Yang-

Mills infrared solutions
2These authors furthermore invoked the renormalization group invariance to claim that such a critical

coupling does not appear. Nevertheless, the renormalization group invariance only requires for the critical

values of the coupling at any two fixed renormalized momenta to be connected by the appropriate renor-
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through a comparison with the physical strong coupling, to discuss whether the scaling crit-

ical DSE solution could be allowed by the data. We will also compare the low-momentum

analytic results of ref. [21] with the PT-BFM results. In particular, the next-to-leading

asymptotic formula for the ghost dressing function with αF = 0 will be shown to nicely

describe the low-momentum PT-BFM results for different values of the coupling taken at

the renormalization point, as a boundary condition for the DSE integration. It should be

emphasized that the ansatz for the massive gluon propagator applied to derive the ana-

lytical results in ref. [21] has nothing to do either with the numerical analysis based on

lattice results in [1] or with the one based on PT-BFM results in this paper, both leading

to obtain a critical coupling. These analytical low momentum results are applied in this

paper only for comparative purposes. However, as a result of the comparison, this bound-

ary condition will be put in direct relation to the zero-momentum effective charge in Taylor

scheme [22] and to the Landau gauge gluon mass. Finally, we will also argue that a scaling

solution cannot exist as a solution of the coupled system of PT-BFM DSE, although the

PT-BFM solutions tend to it when the coupling aproaches the critical value. More gen-

erally, a diverging ghost dressing function cannot be obtained when the gluon propagator

is massive (αG = 1). Of course, this last claim is not a new result: it is well-known that

the scaling solution only can emerge if the ghost dominance in the gluon propagator DSE,

after assuming αF < 0, implies the gluon propagator to vanish at zero momentum [7–13].

However, it is not worthless to emphasize that, for the gluon propagator, being massive

implies not to observe the relation 2αF + αG = 0 and is therefore a sufficient condition

for the scaling solution not to appear. It should be also pointed out that LQCD results

(see [29–39] and references therein), pinching technique results (see, for instance, [20, 24–

26, 40, 41]), refined Gribov-Zwanziger 3 formalism (see [48, 49]) or other approaches like

the infrared mapping of λφ4 and Yang-Mills theories in ref. [50] or the massive extension

of the Fadeev-Popov action in ref. [51] appear to support a massive gluon propagator.

We organized this note as follows: first, we briefly review the low-momentum behaviour

for the propagator solutions of the ghost propagator DSE in section 2; we then compare

the PT-BFM results with the low-momentum analytical expression and discuss their de-

pendence with the size of the coupling at the renormalization point, taken as a boundary

condition for DSE integration, in section 3; and we finally conclude in section 4.

2 The two kinds of solutions of the ghost propagator Dyson-Schwinger

equation

As was explained in detail in refs. [2, 21], the low-momentum behavior for the solutions of

the Dyson-Schwinger equation for the ghost propagator (GPDSE), which can be written

malization group running (the same, of course, for any decoupling solution). Indeed, the renormalization

flow for the coupling can be defined by α(q2) = α(µ2)F 2(q2)G(q2) to satisfy this and it is found to agree, in

the perturbative domain, with the perturbative running given by the β-function in Taylor scheme [14, 15].
3In addition, K-I. Kondo triggered very recently an interesting discussion about the Gribov horizon

condition and its implications on the Landau-gauge Yang-Mills infrared solutions [42–47].
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diagrammatically as




a bk




−1

=




a bk




−1

−
a,k

d,ν

e

f,µ

c,q b,k

q-k

, (2.1)

can be obtained in Landau gauge by procceeding as follows: we consider eq. (2.1) for two

different (although parallel) external ghost momenta, k and p, such that p2 − k2 = δ2k2 (δ

being an extra parameter that, for the sake of simplicity, will be taken to be small enough

as to expand on it around 0) and subtract them, as a regularization prescription for not to

have to deal with any UV cut-off. Then, the ghost dressing function, F (k2), and the gluon

propagator form factor, ∆(k2), are renormalized by applying the MOM prescription,

FR(µ2) = µ2∆R(µ2) = 1 , (2.2)

where µ2 is the subtraction point; and, as explained in [2, 21], we choose for the ghost-

gluon vertex,

Γ̃abc
ν (−q, k; q − k) = ig0f

abc ( qνH1(q, k) + (q − k)νH2(q, k) ) , (2.3)

to apply the MOM prescription in Taylor kinematics (i.e. with a vanishing incoming

ghost momentum) and assume the non-renormalizable bare ghost-gluon form factor,

H1(q, k) = H1, to be constant (at least in the low-momentum regime for the incoming

ghost). Thus, after being cast into a renormalized form and the above-mentioned subtrac-

tion, the GPDSE reads

1

FR(k2)
−

1

FR(p2)
= NC g2

R(µ2) H1 I(k2) , (2.4)

where

I(k2) =

∫
d4q

(2π)4


FR(q2)

q2

(
(k · q)2

k2
− q2

)[
∆R

(
(q − k)2

)

(q − k)2
−

∆R

(
(q − p)2

)

(q − p)2

]
 (2.5)

and where the ghost dressing function and gluon propagator should be understood as

renormalized at the subtraction momentum, µ2, and gR(µ2) is the gauge coupling renor-

malized at a subtraction point with Taylor kinematics (Taylor MOM scheme). Then, we

cut integral domain of I(k2) in eq. (2.5) into two pieces by introducing some new momen-

tum scale, q2
0 , below which both ghost and gluon are assumed to be well described by the

following ansatze

∆R(q2) =
B(µ2)

q2 + M2
≃

B(µ2)

M2

(
1 −

q2

M2
+ · · ·

)
, (2.6)

FR(q2) = A(µ2)

(
q2

M2

)αF
(

1 + · · ·

)
. (2.7)
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Thus, we shall look for the ghost dressing function, FIR, its leading behaviour being pa-

rameterized through a general power law behaviour where αF > −2 to keep the integral

I(k2) infrared convergent, and for a massive 4 gluon propagator, that implies of course a

power law with αG = 1, as the current lattice data seems to point to. It is well-known

that the low-momentum behaviour of the integral I(k2) in eq. (2.5) is dominated by the

result of the integration over the IR domain, over q2 < q2
0, and it can be expanded on

δ2 = p2/k2 − 1 around zero with the subtraction momentum µ2 kept fixed, as explained in

ref. [2, 21], to give

I(k2) ≃ IIR(k2) ≃ −
δ2

M2+2αF

2A(µ2)B(µ2)

(2π)3

×

∞∑

i=0

(4k2)iCi

∫ q0

0
q3+2i+2αF dq Ki(q

2; k2,M2) + O(δ4) (2.8)

where

Ki(q
2; k2,M2) =

i

(q2 + k2 + M2)2i+1
−

i

(q2 + k2)2i+1

+ k2

(
2i + 1

(q2 + k2)2i+2
−

2i + 1

(q2 + k2 + M2)2i+2

)
(2.9)

and

Ci =
12π24i

Γ(−3/2 − i)Γ(1/2 − i)Γ(5 + 2i)
. (2.10)

Now, the two possible cases for the low-momentum behaviour of the GPDSE solutions

will be separately analyzed in the following by applying eq. (2.8) to eq. (2.4).

2.1 Critical case: scaling solution

When αF < 0, one can perform the change t = q2/k2 and integrate over t, the integration

in eq. (2.8) for any term of eq. (2.9) being (one by one) convergent as the limit q2
0/k

2 → ∞

is considered for the upper bound. Thus, the small-momentum asymptotical behaviour of

the r.h.s of eq. (2.4) is given by

IIR(k2) ≃ −δ2

(
k2

M2

)1+αF 2A(µ2)B(µ2)

(2π)3

∞∑

i=0

4i Ci

2

×

(
−i

∫ ∞

0
dt

t1+i+αF

(1 + t)2i+1
+ (2i + 1)

∫ ∞

0
dt

t1+i+αF

(1 + t)2i+2

)
+ O(δ4) , (2.11)

while its l.h.s. behaves as:

1

FR(k2)
−

1

FR(p2)
≃ δ2 αF

A(µ)

(
k2

M2

)−αF

+ O(δ4) (2.12)

Then, we should conclude both

4This is the massive gluon propagator where the gluon running mass [52, 53], M(q2), appears to be

approximated by its frozen value at vanishing momentum, M(0). It should be also noted that, provided

that the gluon propagator is to be multiplicatively renormalized, the mass scale, M = M(0), does not

depend on renormalization scale, µ2.

– 5 –
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(i) that −αF = 1 + αF ⇒ αF = −1/2,

(ii) and, given that

∞∑

i=0

4i Ci

(
−i

∫ ∞

0
dt

t
1
2
+i

(1 + t)2i+1
+ (2i + 1)

∫ ∞

0
dt

t
1
2
+i

(1 + t)2i+2

)
=

2π

5
, (2.13)

one obtains

NCg2
R(µ2)H1A

2(µ2)B(µ2) ≃ 10π2 . (2.14)

Thus, we know the asymptotic behaviour for the ghost dressing function in this case

to be:

FR(q2) ≃
π

gR(µ2)

(
10

NCH1∆R(0)

)1/2 ( 1

q2

)1/2

(2.15)

This is a so-called scaling solution where, in particular, the low-momentum behavior of the

massive gluon propagator forces the ghost dressing function to diverge at low-momentum

through the requirement 5 for the power exponent, αF , in (i).

If αF > 0 is assumed, one would be also left with the contradictory scaling condition

that αF = −1 [2, 31] and should conclude that no solution exists for that case.

2.2 Regular case: decoupling solution

When αF = 0, the previous ressumation cannot be done and the integral I(k2) in eq. (2.5)

should be consistently expanded in powers of k2. This case has been deeply studied in

ref [21], where it is found that

IIR(k2) ≃ δ2 A(µ2)B(µ2)

64π2

k2

M2

[
ln

k2

M2
−

5

6
+ O

(
M2

q2
0

)]
+ O

(
k4

M4
, δ4

)
. (2.16)

Then, the ghost dressing function, including its first correction to the leading constant

term, should behave as6

FR(q2) = FR(0)

(
1 +

NCH1

16π
αT (0)

q2

M2

[
ln

q2

M2
−

11

6

]
+ O

(
q4

M4

))
(2.17)

where

αT (0) = lim
q→0

(
q2 + M2

) αT (q2)

q2
= M2 g2

R(µ2)

4π
F 2

R(0)∆R(0), (2.18)

such that the eq. (2.4) could be satisfied. It should again understood that the subtraction

momentum for all the renormalization quantities is µ2. In eq. (2.18), αT = g2
T /(4π) is

5This is of course a particular case, with αG = 1, of the more general scaling condition: 2αF + αG = 0.
6It should be also noted that eq. (2.16) imples to take M2/q2

0 ≪ 1. However, any correction to that

approximation will not play at the order of the coefficient eqs. (2.18), that will keep the same value disre-

garding that of M2/q2
0 , but at the order of the gluon mass, M2, inside the logarithm, presummably like the

UV part of the integral I(k2) that should be proportional to k2 and vanish at least like 1/ log (q2
0/Λ2

QCD))

when q2
0/Λ2

QCD ≫ 1.
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the perturbative strong coupling defined in this Taylor scheme [14, 15], while αT is the

extension of the non-perturbative effective charge definition from the gluon propagator [54]

to the Taylor ghost-gluon coupling [22]. As a consequence of the appropriate amputation

of a massive gluon propagator, where the gluon mass scale is the same RI-invariant mass

scale appearing in eq. (2.6), this Taylor effective charge is frozen at low-momentum and

gives a non-vanishing zero-momentum value in terms of which the ghost-dressing-function

subleading correction can be expressed.

3 Comparison with numerical results from coupled PT-BFM DSE’s

We shall now compare the formulas given by eqs. (2.6), (2.17) with some numerical re-

sults for the gluon propagator and ghost dressing function. The aim of the comparison

is twofold: testing the asympotical solution we obtained in the previous section, but also

checking the consistency of a massive-gluon solution and determining the gluon mass as

the best-fit parameter in the comparison. In particular, we will consider the solutions of

the coupled system of gluon and ghost DS equations obtained by applying the pinching

technique in the background field method (PT-BFM) [24–26] (see also [55] and references

therein) to compare with. This PT-BFM framework leaves us with an attractive model for

gluon and ghost propagators providing quantitative description of lattice data [6, 56] and

giving well account of their main qualitative features: finite gluon propagator and finite

ghost dressing function at zero-momentum. Futhermore, the coupled DSE system can be

solved with different boundary conditions (see below), the solutions compared with the

analytical formula and how their behaviour depends on these boundary conditions can be

thus properly studied. This last is the main purpose of this note.

The main feature in the PT-BFM scheme is that the transversality of the gluon self-

energy is guaranteed order-by-order in the dressed-loop expansion, this leading to a gauge-

invariant truncation of the gluon DSE [24–26]. In this PT-BFM scheme for the coupled

DSE system, the ghost propagator DSE is the same as given by eqs. (2.1), (2.4), where the

bare ghost-gluon vertex is approximated by H1 = 1. The gluon DSE is given by

(1 + G(q2))2

∆(q2)

(
gµν −

qµqν

q2

)
= q2gµν − qµqν + i

4∑

i=1

(ai)µν (3.1)

where

a1 = , a2 =

a3 = , a4 = . (3.2)

In the diagrams of (3.2) for the gluon DSE, eq. (3.1), the external gluons are treated, from

the point of view of Feynman rules, as background fields (these diagrams should be also

properly regularized, as explained in [55]). The last justifies the four field coupling of two

background gluons and two ghosts leading to the contribution a4. The function 1 + G

– 7 –
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defined in ref. [57, 58] can be, in virtue of the ghost propagator DSE, connected to the

ghost propagator [22]. The coupled system is to be solved, by numerical integration, with

the two following boundary conditions as the only required inputs: the zero-momentum

value of the gluon propagator and that of the coupling at a given perturbative momentum,

µ = 10 GeV, that will be used as the renormalization point. The latter can be done by fixing

different values for the boundary conditions, this providing us with a family of gluon and

ghost propagators solutions so determined. In particular, solutions obtained by keeping the

zero-momentum value of the gluon propagator fixed (see lefthand plots of figure 1) while

α(µ2 = 100 GeV2) is ranging from 0.15 to 0.1817 are available [23] and can be confronted

to the asymptotical expressions derived in the previous section.

3.1 Decoupling solutions in the PT-BFM scheme

Then, as the gluon propagator solutions in the PT-BFM scheme result to behave as massive

ones, the eqs. (2.6), (2.17) must account for the low-momentum behaviour of both gluon

propagator and ghost dressing function with H1 = 1 and

αT (0) = αT (µ2)F 2
R(0)B(µ2) = αT (µ2)F 2

R(0)M2∆R(0) , (3.3)

αT (µ2) = g2
R(µ2)/(4π) being fixed, as a boundary condition, at the moment of the numer-

ical integration of the coupled DSE for each particular solution of the family. B(µ2) and

M being determined by the best fit of the eq. (2.6) to the numerical solution for the gluon

propagator, we shall be left with one only free parameter, FR(0), to account with eq. (2.17)

for the numerical solution for the ghost propagator. Furthermore, the zero-momentum val-

ues of the ghost dressing function, FR(0), can be also taken from the numerical integration

of the DSE (for any value of the α(µ = 10GeV)); and these altoghether with the zero-

momentum values of the gluon propagator, ∆R(0), and the gluon masses, obtained by the

fit of eq. (2.6) to the numerical DSE gluon propatator solutions, provide us with all the in-

gredients to evaluate, with no unknown parameter, eq. (2.17). The gluon masses obtained

from the best fits of eq. (2.6) to the numerical data (see the left plots in figure 1) and that

of zero-momentum Taylor effective charge, αT (0), computed by applying eq. (3.3), with

the zero-momentum ghost dressing function taken from numerical data, can be found in

table 1.

Indeed, the expression given by eq. (2.17) can be succesfully applied to describe the

solutions all over the range of coupling values, α(µ), at µ = 10 GeV. This can be seen,

for instance, for α = 0.15, 0.16, 0.17, in the right plots of figure 1, where the ghost dress-

ing functions obtained from the numerical integration of the DSE’s appear plotted with

black-solid lines and the evaluation of eq. (2.17), as we explained above, with red-dotted

ones. Thus, with no parameter to be fitted (FR(0) is taken from the numerical integration),

we nicely reproduce the low-momentum behaviour of the ghost dressing function obtained

through numerical integration.

In the right plots of figure 1, black-dotted curves obtained by only retaining the log-

arithmic leading order in eq. (2.17) appear also drawn. The big discrepancy they show

with respect to the numerical integration clearly implies the necessity of the next-to-

– 8 –
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Figure 1. Gluon propagators (left) and ghost dressing functions (right) after the numerical in-

tegration of the coupled DSE system for α(µ = 10GeV) = 0.15, 0.16, 0.17 taken from [23] . The

curves for the best fit of eq. (2.6) to the gluon propagator data appear as dotted lines in the lefthand

plots. In the righthand plots, the red dotted lines correspond to apply eq. (2.17) with the gluon

mass obtained from the gluon fits and with R = αT (0)/M2 determined by the zero-momentum

values of gluon propagator and ghost dressing function coming from the numerical integration of

the DSE system; the same for the black dotted lines but retaining only the logarithmic leading term

in eq. (2.17) by dropping the −11/6 away.
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α(µ) αT (0) M (GeV) [gluon]

0.15 0.24 0.37

0.16 0.30 0.39

0.17 0.41 0.43

Table 1. Gluon masses and the zero-momentum non-perturbative effective charges, obtained as

explained in the text, which are applied to describe the gluon propagator and the ghost dressing

function numerical data with eqs. (2.6), (2.17).

leading correction in eq. (2.17) when assessing the gluon mass from the low-momentum

ghost propagator.

3.2 The “critical” limit in the PT-BFM scheme

There appears to be a critical value of the coupling, αcrit = α(µ2) ≃ 0.182 with µ = 10 Gev,

above which the coupled DSE system does not converge any longer to a solution [23]. As

a matter of the fact, we know from eq. (2.14) that the scaling solution implies for the

coupling

g2
crit = g2

R(µ2) ≃
10π2

3A2(µ2)B(µ2)
, (3.4)

where B(µ2) is determined by the gluon propagator solution that is supposed to behave as

eq. (2.6), and A(µ2) by the ghost propagator that should behave as

FR(q2) = A(µ2)

(
M2

q2

)1/2

, (3.5)

where again µ2 is the momentum at the subtraction point. This is shown in ref. [1], where

only the ghost propagator DSE is solved there after extracting a gluon propagator from

the lattice data and applying it to build the kernel of the integral, eq. (2.5), appearing in

eq. (2.4). In the analysis of ref. [1], a ghost dressing function solution diverging at vanish-

ing momentum appears to exist and verifies eqs. (3.4), (3.5), while regular or decoupling

solutions exist for any α < αcrit.

Now, we can perform a more complete analysis by studying again the dressing function

computed by solving eq. (3.1) for the different values of the coupling, α = α(µ2), at

µ2 = 100 GeV2 [23]. A ghost dressing function at vanishing momentum, F (0, µ2), diverging

as α → αcrit had to be expected, one could try the following power behaviour,

F (0) ∼ (αcrit − α(µ2))−κ(µ2) , (3.6)

to describe the vanishing-momentum ghost dressing function in terms of the coupling,

α(µ2). The coefficient κ(µ2) should be the positive critical exponent (depending pre-

summably on the renormalization point, µ2) governing the transition from decoupling

(α < αcrit) to the scaling (α = αcrit) solutions.

Our strategy will be to let αcrit be a free parameter to be fitted by requiring the best

linear correlation for log[F (0)] in terms of log[αcrit − α]. In doing so, the best correlation
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Figure 2. (a) Log-log plot of the zero-momentum values of the ghost dressing function, obtained by

the numerical integration of the coupled DSE system in the PT-BFM scheme, in terms of αcrit −α.

α = α(µ = 10GeV), the value of the coupling at the renormalization momentum, is an initial

condition for the integration; while αcrit is fixed to be 0.1822, as explained in the text, by requiring

the best linear correlation. (b) Gluon propagator solutions in terms of q2 for the same coupled DSE

system for different values of α(µ = 10GeV), all very close to the critical value, ranging from 0.18

to 0.1817 .

coefficient is 0.9997 for αcrit = 0.1822, which is pretty close to the critical value of the

coupling above which the coupled DSE system does not converge any more, and then

we obtain

κ(µ2) = 0.0854(6) . (3.7)

In figure 2.(a), the log-log plot of FR(0) in terms of αcrit−α is shown for αcrit = 0.1822,

where the linear behaviour corresponding to the best correlation coefficient can be strikingly

seen and the negative slope indicates a zero-momentum ghost propagator diverging as

α → αcrit. However, no critical or scaling solution of the coupled DSE system seems

to appear with a massive gluon propagator as solution of the coupled DSE system in the

PT-BFM, although the decoupling solutions obtained for any α < αcrit = 0.1822 seem

to approach the behaviour of a scaling one when α → αcrit. The absence of the scaling

solution can be well understood by analysing eq. (3.1). As explained in [6], after the

appropriate regularization and renormalization, the contribution of a3 to the inverse of the

gluon propagator, its momentum vanishing, will be dominated by 7

a3 →

∫ q0

0
d(q2)

(
F 2(q2) − 1

)
, (3.8)

where q0 is again some UV cut-off above which the ghost dressing function can be taken

to be perturbative. Provided that one deals with a decoupling solution, the ghost dressing

7The regularisation procedure in [6] implies the subtraction of the perturbative part, as well as we

evaluate eq. (2.4) for two different scales and subtract them in order not to have to deal with any UV

cut-off in eq. (2.4).
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function reaching some constant as q2 → 0, this contribution is finite and negligible (the

same happens for a4). On the other hand, had we considered the scaling solution, the ghost

dressing function would behave as 1/q and would lead to a divergent contribution and to

a vanishing gluon propagator at vanishing momentum. Then, a massive gluon propagator,

as lattice solutions points to and as required in ref. [6, 23], cannot appear as a scaling

solution. The same has been already proven in literature by applying different truncation

schemes and also on general grounds, and indeed agrees with the very well-known infrared

behaviour obtained from the coupled DSE system in refs. [7–13], where an unique scaling

solution with αF ≃ −0.595 and αG = −2αF ≃ 1.190 emerges, the gluon propagator

vanishing thus at zero-momentum, as the inverse of the zero-momentum ghost dressing is

assumed to vanish. However, for the sake of completeness, a very general argumentation

addressing this issue is presented in appendix A. We should recall at this point that the

numerical analysis of the ghost propagator DSE in ref. [1] left us with a divergent ghost

dressing function for the critical value of the coupling, even after assuming a finite gluon

propagator at zero momentum. However, this resulted from a partial analysis where we

dealt only with the ghost propagator DSE and not with the gluon propagator one. Thus,

we did not solve the gluon DSE and taking a massive gluon propagator from the lattice

to build the ghost-DSE kernel does not prevent from obtaining a “wrong” scaling solution

indeed not satisfying the coupled DSE system.

When approaching the critical value of the coupling, the gluon propagators obtained

from the coupled DSE system in PT-BFM must be also thought to obey the same critical

behaviour pattern as the ghost propagator. In the PT-BFM, the value at zero-momentum

being fixed by construction [6, 23], one should expect that, instead of decreasing, the gluon

propagator obtained for couplings near to the critical value increases for low momenta:

the more one approaches the critical coupling the more it has to increase. This is indeed

the case, as can be seen in figure 2(b). This implies that, near the critical value, the low

momentum propagator does not obey eq. (2.6) and that consequently eq. (2.17) does not

work any longer to describe the low momentum ghost propagator.8

Finally, one can pay attention to the critical value of the coupling, αcrit = 0.1822,

and try to make a comparison with the physical strong coupling values in order get some

idea of whether the current data can exclude or not this critical behaviour. Although the

experimental PDG world average of the strong coupling in the MS scheme, αMS(MZ) =

0.1184(7) [59], can be propagated from the Z0 boson mass down to µ = 10 GeV to give

αMS(10 GeV) = 0.179(2), that incidentally lies on the right ballpark of the above critical

value, such a comparison is meaningless because our coupling corresponds to one in MOM

Taylor-scheme for zero number of flavours. One can use instead the available perturbative

four-loop formula describing the running of the coupling in Taylor-scheme to estimate ΛQCD

in this particular scheme, then perform the conversion to MS (see for instance eqs. (22,23)

of the first reference in [14, 15]) and thus obtain the value quoted in table 3.2. Of course,

it would be again meaningless to compare this last value with the one for ΛMS that can

8This is only true for the next-to-leading contribution of eq. (2.17), the leading one being only determined

by the zero-momentum gluon propagator still works.
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Λ
Nf =0

MS,crit
Λ

Nf =0

MS
[61] Λ

Nf=0

MS
[14, 15] Λ

Nf =5

MS
[59]

434 MeV 238(19) MeV 244(8) MeV 213(9) MeV

Table 2. The critical value of Λ
MS

in pure Yang-Mills inferred from αcrit = 0.1822 (first column),

lattice estimates for Yang-Mills Λ
MS

taken from literature (second and third columns) and the one

obtained from the PDG value of α
MS

(MZ) by applying a four-loop perturbative formula for the

running of α
MS

with Nf = 5.

be obtained from the PDG value for αMS(MZ), also quoted in table 3.2, but we can refer

the comparison to the lattice Yang-Mills determinations of the same parameter,9 as for

instance the two of them included in table 3.2. Thus, the lattice estimates of ΛMS appear

to lie clearly below this critical limit for the PT-BFM DSE in pure Yang-Mills. However,

as no quark flavour loops effect have been incorporated in our DSE, eq. (3.1), we cannot

neither compare with the physical strong coupling nor conclude whether the critical limit

can be allowed in the “real world”.

4 Conclusions

The ghost propagator DSE, with the only assumption of taking H1(q, k) from the ghost-

gluon vertex in eq. (2.3) to be constant in the infrared domain of q, can be exploited to look

into the low-momentum behaviour of the ghost propagator. The two classes of solutions

named “decoupling” and “scaling” can be indentified and shown to depend on whether

the ghost dressing function achieves a finite non-zero constant (αF = 0) at vanishing

momentum or not (αF 6= 0). The solutions appear to be dialed by the size of the coupling

at the renormalization momentum which plays the role of a boundary condition for the

DSE integration. The low-momentum behaviour of the decoupling solutions results to be

regulated by the gluon propagator mass and by a regularization-independent dimensionless

quantity that appears to be the effective charge defined from the Taylor-scheme ghost-gluon

vertex at zero momentum.

In this note, we have studied the solutions of coupled ghost and gluon propagator

DSE in the PT-BFM scheme and demonstrated that the asymptotic decoupling formula

(αF = 0) successfully describes the low-momentum ghost propagator. The model applied

for the massive gluon propagator is also verified to give properly account of the gluon

solution, at least for momenta below 1GeV (and for a coupling not very close to the

critical point). Although we argued that a massive gluon propagator implies that the

ghost dressing function takes a non-zero finite value at vanishing momentum, we also show

that the zero-momentum ghost dressing function tends to diverge when the value of the

coupling dialing the solutions approaches some critical value. Such a divergent behaviour at

the critical coupling seems to be the expected one for a scaling solution (where, if the gluon

is massive, αF = −1/2). If we consider the zero-momentum value of the ghost dressing

9It should be noted that the procedures for the lattice determination of ΛMS mainly work in the UV

domain, where IR sources of uncertainties as the Gribov ambiguity or volume effects are indeed negligible. In

fact, there are unquenched lattice determinations with Nf = 5 staggered fermions for the strong coupling [60]

which are pretty consistent with the PDG value.
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function as some sort of “order parameter” indicating whether the ghost propagator low-

momentum behaviour is suppressed (αF = 0 and finite ghost dressing function) or it is

enhanced (αF < 0 and divergent ghost dressing function), the strength of the coupling

computed at some renormalization point seems to control some sort of transition from

the suppressed to the enhanced phases for the ghost propagator DSE solutions in the PT-

BFM scheme. The last only takes place as some critical value of the coupling is reached.

Neverteless, it can be proven that, as far as the gluon is massive, the scaling behaviour for

the Yang-Mills propagators appear not to be a solution but an unattainable limiting case

for the PT-BFM DSE solutions.
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A No scaling solution with massive gluons

We consider the conventional gluon self-energy, Πµν(q), contributing to the gluon DSE:

Πµν(q) =
1

2
+

1

2
+

+
1

6
+

1

2
, (A.1)

where the yellow bullets stand for full vertices and propagators.

After only assuming that the ghost-gluon vertex form factor H1 is constant (the Taylor

non-renormalization theorem tells us that the bare ghost-gluon vertex is finite), We showed

in section 2 that a massive gluon propagator unequivocally implies a ghost dressing function

diverging as 1/q at vanishing momentum. Then, the ghost-loop contribution to the gluon

self-energy, eq. (A.1), with vanishing external momentum, k, is dominated by

gT
µν(k) × ∼

∫
d4q

(2π)4
q2

(
1 −

(k · q)2

k2q2

)
F (q2)

q2

F ((q − k)2)

(q − k)2

∼

∫ q0

0
dq

q2

(q2 + k2)3/2

∫ π

0
dθ

sin4 θ
(
1 − 2kq

q2+k2 cos θ
)3/2

∼

∫ q0

0
dq

q2

(q2 + k2)3/2
(A.2)
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where q0 is the momentum scale which the ghost dressing function is assumed to take its

asymptotic infrared form below. For not to have to deal again with any UV regularization

cut-off, we can consider the two momenta p, k such that k2 ≪ p2 < q2
0 and subtract the

gluon DSE for these two momenta. Then, when k2 → 0 while p2 is kept fixed, one would

have for the transversal gluon propagator

1

∆R(k2)
−

1

∆R(p2)
∼

∫ q0

0
dq

q2

(q2 + k2)3/2
, (A.3)

where we only account for the dominant part of the ghost-loop contribution. This contri-

bution diverges thus logarithmically with a constant ghost-gluon vertex again as the only

assumption made, while computing the contributions coming from other diagrams would

leave us with the neccessity to make some new assumption about the full gluon vertices.

Thus, to avoid a diverging gluon self-energy, we need to invoke new contributions from

the other diagrams in eq. (A.1), also diverging logarithmically as the external momentum

vanishes, to cancel that from eq. (A.2). Otherwise, such a divergent behaviour of the

gluon self-energy would lead the inverse of the gluon propagator to diverge, and the gluon

propagator consequently to vanish, at zero-momentum.
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