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1 Introduction

Recently, consistent truncations of type IIB and 11-d supergravity including massive
(charged) modes have sparked a great deal of interest. The relevance of these reduc-
tions is two-fold: not only are they novel from the supergravity perspective, but they
also constitute an interesting arena to test and extend the ideas of gauge/gravity duality.
Indeed, these truncations provide a powerful way of generating solutions of the ten and
eleven-dimensional supergravity theories via uplifting of lower dimensional solutions. By
definition, this possibility is guaranteed by the consistency of the reduction. Also from a
supergravity perspective, the inclusion of massive modes is highly non-trivial; consistent
truncations are hard to find, even when truncating to the massless Kaluza-Klein (KK)
spectrum. In fact, until not long ago it was widely believed that consistency prevents
one from keeping a finite number of massive KK modes. From the gauge/gravity corre-
spondence perspective, in turn, the lower dimensional supergravity theories obtained from
these reductions are assumed to possess field theory duals with various amounts of unbro-
ken super(-conformal)symmetry. Strikingly, the inclusion of charged operators on the field
theory side, dual to massive bulk fields, opened the door for a stringy (“top-down”) mod-
elling of condensed matter phenomena, such as superfluidity and superconductivity and
systems with non-relativistic conformal symmetries, via the holographic correspondence.
Even though the original work in these directions [1–5] was based on a phenomenologi-
cal, “bottom-up” approach, it is clearly advantageous to consider top-down descriptions
of these (or similar) systems. Indeed, a description in terms of ten or eleven-dimensional
supergravity backgrounds may shed light on the existence of a consistent UV completion
of the lower-dimensional effective bulk theories, while possibly fixing various parameters
that appear to be arbitrary in the bottom-up constructions.

In this paper we shall be concerned with the consistent truncations of type IIB su-
pergravity on squashed Sasaki-Einstein five-manifolds (SE5) whose bosonic content was
recently considered in [6–8] (see [9] for related work). These constructions were largely mo-
tivated by the results of [10] (see [11, 12] also), which had a quite interesting by-product:
while searching for solutions of type IIB supergravity with non-relativistic asymptotic sym-
metry groups, consistent five-dimensional truncations including massive bosonic modes
were constructed. In particular, massive scalars arise from the breathing and squashing
modes in the internal manifold, which is then a “deformed” Sasaki-Einstein space, gen-
eralizing the case of breathing and squashing modes on spheres that had been studied
in [13, 14] (see also [15]). Regarding the internal SE5 manifold as a U(1) bundle over a
Kähler-Einstein (KE) base space of complex dimension two, the guiding principle behind
these consistent truncations is to keep modes which are singlets only under the structure
group of the KE base. The bosonic sector of the corresponding truncations including mas-
sive modes in 11-d supergravity on squashed SE7 manifolds had been previously discussed
in [16], and provided the basis for the embedding of the original holographic AdS4 super-
conductors of [2, 3] into M-theory, a connection that was explored in [17, 18]. In our recent
work [19] we have extended the consistent truncation of 11-d supergravity on squashed
SE7 to include the fermionic sector, and in particular provided the effective 4-d action
describing the coupling of fermion modes to the M-theory holographic superconductor.
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At the same time that the work of [17] appeared, the embedding of an asymptotically
AdS5 holographic superconductor into type IIB supergravity was reported in [20]. Contin-
uing with the program we initiated in [19], in the present work we discuss the extension
of the consistent truncation of type IIB supergravity on SE5 discussed in [6–8] to include
the fermionic sector. In particular, as an application of our results we present the effective
action describing the coupling of the fermion modes to the holographic superconductor
of [20]. Knowing the precise form of said couplings is important from the point of view
of the applications of gauge/gravity duality to the description of strongly coupled con-
densed matter phenomena, insofar as it determines the nature of fermionic correlators in
the presence of superconducting condensates, that rely on how the fermionic operators of
the dual theory couple to scalars. Hence, we set the stage for the discussion of these and
related questions from a top-down perspective. A related problem involving a superfluid
p-wave transition was studied in [21], in the context of (3+1)-dimensional supersymmetric
field theories dual to probe D5-branes in AdS5 × S5. In the top-down approach starting
from either ten or eleven-dimensional supergravity, inevitably the consistent truncations
will include not only spin-1/2 fermions that might be of phenomenological interest but
also spin-3/2 fields. One finds that these generally mix together via generalized Yukawa
couplings, and this mixing will have implications for correlation functions in the dual field
theory. One of our original motivations for the present work as well as [19] was to under-
stand this mixing in more detail and to investigate the existence of “further truncations”
which might involve (charged) spin-1/2 fermions alone. As we explain in section 6, in the
present case we have indeed found such a model, containing a single spin-1/2 field, in the
truncation corresponding to the type IIB holographic superconductor.

This paper is organized as follows. In section 2 we briefly review some aspects of
the truncations of type IIB supergravity constructed in [6–8] and the extension of the
bosonic ansatz to include the fermion modes. In section 3 we present our main result:
the effective five-dimensional action functional describing the dynamics of the fermions
and their couplings to the bosonic fields. We chose to perform this calculation by directly
reducing the 10-d equations of motion for the gravitino and dilatino. The resulting action
is consistent with 5-d N = 4 gauged supergravity, as has been anticipated. In section 4
we reduce the supersymmetry variation of the gravitino and dilatino, and comment on the
supersymmetric structure of the five-dimensional theory by considering how the fermions
fit into the supermultiplets of N = 4 gauged supergravity. In principle, a complete mapping
to the highly constrained form of N = 4 actions could be made, although we do not give
all of the details here. The N = 4 theory has two vacuum AdS5 solutions, one with N = 2
supersymmetry and one without supersymmetry. In section 5 we linearize the fermionic
sector in each of these vacua and demonstrate that as expected the gravitini attain masses
via the Stückelberg mechanism, which is a useful check on the consistency of our results.
In section 6 we apply our results to several further truncations of interest: the minimal
gauged N = 2 supergravity theory in five dimensions, and the dual [20] of the (3 + 1)-
dimensional holographic superconductor. We conclude in section 7. The details of many
of our computations as well as a full accounting of our conventions appear in a series
of appendices.
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2 Type IIB supergravity on squashed Sasaki-Einstein five-manifolds

2.1 Bosonic ansatz

In this section we briefly review the ansatz for the bosonic fields in the consistent trunca-
tions of [6–8]. In the following subsection, we will discuss the extension of this ansatz to
include the fermionic fields of type IIB supergravity. Here we mostly follow the type IIB
conventions of [7, 22, 23], with slight modifications as we find appropriate. Further details
of these conventions can be found in appendix A.

The Kaluza-Klein metric ansatz in the truncations of interest is given by [6–8]

ds2
10 = e2W (x)ds2

E(M) + e2U(x)ds2(KE) + e2V (x)
(
η +A1(x)

)2
, (2.1)

where W (x) = −1
3(4U(x)+V (x)). Here, M is an arbitrary “external” five-dimensional ma-

nifold, with coordinates denoted generically by x and five-dimensional Einstein-frame met-
ric ds2

E(M), and KE is an “internal” four-dimensional Kähler-Einstein manifold (hence-
forth referred to as “KE base”) coordinatized by y and possessing Kähler form J . The
one-form A1 is defined in T ∗M and η ≡ dχ+A(y), where A is an element of T ∗KE satis-
fying dA ≡ F = 2J . For a fixed point in the external manifold, the compact coordinate χ
parameterizes the fiber of a U(1) bundle over KE, and the five-dimensional internal mani-
fold spanned by (y, χ) is then a squashed Sasaki-Einstein manifold, with the breathing and
squashing modes parameterized by the scalars U(x) and V (x).1 In addition to the metric,
the bosonic content of type IIB supergravity [24, 25] includes the dilaton Φ, the NSNS
3-form field strength H(3), and the RR field strengths F(1) ≡ dC0, F(3) and F(5), where
C0 is the axion and F(5) is self-dual. The rationale behind the corresponding ansätze is
the idea that the consistency of the dimensional reduction is a result of truncating the KK
tower to include fields that transform as singlets only under the structure group of the KE
base, which in this case corresponds to SU(2). This prescription allows for an interesting
spectrum in the lower dimensional theory, inasmuch as the SU(2) singlets include fields
that are charged under the U(1) isometry generated by ∂χ. The globally defined Kähler
2-form J = dA/2 and the holomorphic (2, 0)-form Σ(2,0) define the Kähler and complex
structures, respectively, on the KE base. They are SU(2)-invariant and can be used in the
reduction of the various fields to five dimensions. The U(1)-bundle over KE is such that
they satisfy

Σ(2,0) ∧ Σ∗(2,0) = 2J2 , and dΣ(2,0) = 3iA ∧ Σ(2,0) . (2.2)

More precisely, as will be clear from the discussion to follow below, the relevant charged
form Ω on the total space of the bundle that should enter the ansatz for the various form
fields is given by

Ω ≡ e3iχΣ(2,0) , (2.3)

and satisfies
dΩ = 3iη ∧ Ω . (2.4)

1In particular, U − V is the squashing mode, describing the squashing of the U(1) fiber with respect to

the KE base, while the breathing mode 4U +V modifies the overall volume of the internal manifold. When

U = V = 0, the internal manifold becomes a five-dimensional Sasaki-Einstein manifold SE5.
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The ansätze for the bosonic fields is then [7]

F(5) = 4e8W+ZvolE5 + e4(W+U) ∗K2 ∧ J +K1 ∧ J ∧ J
+
[
2eZJ ∧ J − 2e−8U ∗K1 +K2 ∧ J

] ∧ (η +A1)

+
[
e4(W+U) ∗ L2 ∧ Ω + L2 ∧ Ω ∧ (η +A1) + c.c.

]
(2.5)

F(3) = G3 +G2 ∧ (η +A1) +G1 ∧ J +G0 J ∧ (η +A1)

+
[
N1 ∧ Ω +N0 Ω ∧ (η +A1) + c.c.

]
(2.6)

H(3) = H3 +H2 ∧ (η +A1) +H1 ∧ J +H0 J ∧ (η +A1)

+
[
M1 ∧ Ω +M0 Ω ∧ (η +A1) + c.c.

]
(2.7)

C(0) = a (2.8)

Φ = φ (2.9)

where volE5 and ∗ are the volume form and Hodge dual appropriate to the five-dimensional
Einstein-frame metric ds2

E(M), and W (x) = −1
3(4U(x) + V (x)) as before. Several com-

ments are in order. First, all the fields other than (η, J,Ω) are defined on Λ∗T ∗M . Z, a,
φ, G0, H0 are real scalars, and M0, N0 are complex scalars. The form fields G1, G2, G3,
H1, H2, H3, K1 and K2 are real, while M1, N1 and L2 are complex forms. As pointed out
in [7], the scalars G0 and H0 vanish by virtue of the type IIB Bianchi identities. We also
notice that the self-duality of F(5) is automatic in the ansatz (2.5): the first two lines are
duals of each other, while the last line is self-dual.

Inserting the ansatz into the type IIB equations of motion and Bianchi identities (ap-
pendix B), one finds that the various fields are related as2

H3 = dB2 +
1
2

(db− 2B1) ∧ F2

G3 = dC2 − adB2 +
1
2

(dc− adb− 2C1 + 2aB1) ∧ F2

H2 = dB1

F2 = dA1

G2 = dC1 − adB1

K2 = dE1 +
1
2

(db− 2B1) ∧ (dc− 2C1)

G1 = dc− adb− 2C1 + 2aB1

H1 = db− 2B1

K1 = dh− 2E1 − 2A1 + Y ∗DX + Y DX∗ −XDY ∗ −X∗DY
M1 = DY

N1 = DX − aDY
2We have chosen the notation of ref. [7] apart from replacing their χ, ξ with X,Y , to avoid confusion

with the fiber coordinate.
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M0 = 3iY

N0 = 3i(X − aY )

eZ = 1 + 3i(Y ∗X − Y X∗), (2.10)

where F2 ≡ dA1, X,Y and L2,M1, N1 are complex, and DY = dY − 3iA1Y , DX =
dX − 3iA1X.

As was explained in detail in [6, 7], the physical scalars parameterize the coset
SO(1, 1) × (SO(5, 2)/(SO(5) × SO(2))

)
, while the structure of the 1-forms and 2-forms

is such that a Heis3 ×U(1) subgroup is gauged.

2.2 Fermionic ansatz

The fermionic content of type IIB supergravity comprises a positive chirality dilatino and a
negative chirality gravitino. Instead of expressing the theory in terms of pairs of Majorana-
Weyl fermions, we find it notationally simplest to use complex Weyl spinors. Quite gener-
ally, we would like to decompose the gravitino using an ansatz of the form

Ψa(x, y, χ) =
∑
I

ψIa(x)⊗ ηI(y, χ) (2.11)

Ψα(x, y, χ) =
∑
I

λI(x)⊗ ηIα(y, χ) (2.12)

Ψf(x, y, χ) =
∑
I

ϕI(x)⊗ ηIf (y, χ) , (2.13)

where a, α and f denote the indices in the direction of the external manifold, the KE
base, and the fiber, respectively. The projection to singlets under the structure group of
the KE base was recently described in great detail for the case of D = 11 supergravity
compactified on squashed SE7 manifolds [19]. Since the principles at work in the present
case are essentially the same, here we limit ourselves to pointing to a few relevant facts
and results. As we have discussed, the five-dimensional internal space is the total space
of a U(1) bundle over a KE base. In general, the base is not spin, and therefore spinors
do not necessarily exist globally on the base. However, it is always possible to define a
Spinc bundle globally on KE (see [26], for example), and our (c-)spinors will then be
sections of this bundle. Indeed, we have seen above that the holomorphic form Ω is also
charged under this U(1). The U(1) generator is proportional to ∂χ, and hence ∇α −Aα∂χ
is the gauge connection on the Spinc bundle, where ∇α is the covariant derivative on KE.
Of central importance to us in the reduction to invariants of the structure group are the
gauge-covariantly-constant spinors, which can be defined on any Kähler manifold [27] and
satisfy in the present context

(∇α −Aα∂χ)ε(y, χ) = 0 , (2.14)

where

ε(y, χ) = ε(y)eieχ (2.15)

– 6 –
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for fixed “charge” e. For a KE base of real dimension db, these satisfy (see [19, 28] for
example)3

Qε ≡ −iJαβΓαβε =
4edb
db + 2

ε . (2.16)

In other words, the matrix Q = −iJαβΓαβ on the left is (up to normalization) the U(1)
charge operator. It has maximum eigenvalues ±db, and the corresponding spinors have
charge

e = ±db + 2
4

. (2.17)

These two spinors are charge conjugates of one another, and we will henceforth denote
them by ε±. By definition, they satisfy F/ ε± = iQε± = ±idb ε±, where F/ ≡ (1/2)FαβΓαβ.
These spinors with maximal Q-charge are in fact the singlets under the structure group,
and they constitute the basic building blocks of the reduction ansatz for the fermions. In
the case at hand db = 4 and the structure group is SU(2); in fact we have an unbroken
SU(2)L×U(1) subgroup of Spin(4) in which the spinor transforms as 20⊕1+⊕1−. In the
complex basis introduced in A.3, we find

Qαε± = ±1
2
ε± (α = 1, 2) (2.18)

and
P̄αε+ = 0, Pαε− = 0 , (2.19)

where Qα = Γαᾱ, Pα = ΓαΓᾱ, and P̄α = ΓᾱΓα. In the Fock state basis, these are ε± ↔
| ± 1

2 ,±1
2〉 and the remaining two states form a (charge-zero) doublet. Unlike the two

SU(3) singlet spinors that were used to reduce the gravitino in the 11-d case, here the
two singlets have the same chirality in 4 + 0 dimensions, that is γfε± = ε± (this follows,
since γf = −γ1234 =

∏
α 2Qα). Similarly, for the complex form Σ(2,0) we find [Q, /Σ] = 8/Σ,

which means that Σ(2,0) carries charge eΣ = 3 and justifies the definition Ω = e3iχΣ(2,0)

discussed above.
We are now in position to write the reduction ansatz for the gravitino and dilatino.

Dropping all the SU(2) representations other than the singlets, we take

Ψa(x, y, χ) = ψ(+)
a (x)⊗ ε+(y)e

3
2
iχ ⊗ u− + ψ(−)

a (x)⊗ ε−(y)e−
3
2
iχ ⊗ u− (2.20)

Ψα(x, y, χ) = ρ(+)(x)⊗ γαε+(y)e
3
2
iχ ⊗ u− (2.21)

Ψᾱ(x, y, χ) = ρ(−)(x)⊗ γᾱε−(y)e−
3
2
iχ ⊗ u− (2.22)

Ψf(x, y, χ) = ϕ(+)(x)⊗ ε+(y)e
3
2
iχ ⊗ u− + ϕ(−)(x)⊗ ε−(y)e−

3
2
iχ ⊗ u− (2.23)

λ(x, y, χ) = λ(+)(x)⊗ ε+(y)e
3
2
iχ ⊗ u+ + λ(−)(x)⊗ ε−(y)e−

3
2
iχ ⊗ u+ (2.24)

where ϕ(±), ρ(±) and ψ(±)
a are (4 + 1)-dimensional spinors on M , the superscript c denotes

charge conjugation, and we have used the complex basis introduced in A.3 for the KE base
directions (α, ᾱ = 1, 2). The constant spinors u+ =

(
1
0

)
and u− =

(
0
1

)
have been introduced

as bookkeeping devices to keep track of the D = 10 chiralities. Since our starting spinors

3All of our Clifford algebra and spinor conventions are compiled in appendix A.
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were only Weyl in D = 10 (as opposed to Majorana-Weyl) there is no relation between,
say, λ(+) and λ(−); they are independent Dirac spinors in 4 + 1 dimensions, and the same
applies to the rest of the spinors in the ansatz. Although one could write the (4+1)-spinors
as symplectic Majorana, there is no real benefit to introducing such notation at this point
in the discussion. Notice that all of these modes are annihilated by the gauge-covariant
derivative on KE. Equations (2.20)–(2.24) provide the starting point for the dimensional
reduction of the D = 10 equations of motion of type IIB supergravity down to d = 5.

According to the charge conjugation conventions in A.5, we also find

Ψc
a(x, y, χ) = ψ(−)c

a (x)⊗ ε+(y)e
3
2
iχ ⊗ u− − ψ(+)c

a (x)⊗ ε−(y)e−
3
2
iχ ⊗ u− (2.25)

(Ψα)c(x, y, χ) = −ρ(+)c(x)⊗ γᾱε−(y)e−
3
2
iχ ⊗ u− (2.26)

(Ψᾱ)c(x, y, χ) = ρ(−)c(x)⊗ γαε+(y)e
3
2
iχ ⊗ u− (2.27)

Ψc
f (x, y, χ) = ϕ(−)c(x)⊗ ε+(y)e

3
2
iχ ⊗ u− − ϕ(+)c(x)⊗ ε−(y)e−

3
2
iχ ⊗ u− (2.28)

λc(x, y, χ) = −λ(−)c(x)⊗ ε+(y)e
3
2
iχ ⊗ u+ + λ(+)c(x)⊗ ε−(y)e−

3
2
iχ ⊗ u+ (2.29)

3 Five-dimensional equations of motion and effective action

The type IIB fermionic equations of motion to linear order in the fermions are given by
(see appendix B for details)

D̂/ λ =
i

8
F/ (5)λ+O(Ψ2) (3.1)

ΓABCD̂BΨC = −1
8
G/ ∗ΓAλ+

1
2
P/ ΓAλc +O(Ψ3) (3.2)

Here, D̂ denotes the flux-dependent supercovariant derivative, which acts as follows:

D̂/ λ =
(
/̂∇− 3i

2
/Q

)
λ− 1

4
ΓAG/ΨA − ΓAP/Ψc

A , (3.3)

D̂BΨC =
(
∇̂B − i

2
QB

)
ΨC +

i

16
F/ (5)ΓBΨC − 1

16
SBΨc

C , (3.4)

where ∇̂B denotes the ordinary 10-d covariant derivative and we have defined

SB ≡ 1
6
(
ΓBDEFGDEF − 9ΓDEGBDE

)
. (3.5)

As described in appendix B.1, defining the axion-dilaton τ = C(0) + ie−Φ = a + ie−φ our
conventions imply

G = ieΦ/2
(
τdB − dC(2)

)
= −

(
e−φ/2H(3) + ieφ/2F(3)

)
, (3.6)

and

P =
i

2
eΦdτ =

dφ

2
+
i

2
eφda , Q = −1

2
eΦdC(0) = −1

2
eφda . (3.7)
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It will prove convenient to introduce a compact notation as follows:

G1 = e
1
2

(φ−4U)
(
G1 − ie−φH1

)
G̃1 = e

1
2

(φ−4U)
(
G1 + ie−φH1

)
(3.8)

G2 = e
1
2

(φ+4U)Σ
(
G2 − ie−φH2

)
G̃2 = e

1
2

(φ+4U)Σ
(
G2 + ie−φH2

)
(3.9)

G3 = e
1
2

(φ+4U)Σ−1
(
G3 − ie−φH3

)
G̃3 = e

1
2

(φ+4U)Σ−1
(
G3 + ie−φH3

)
(3.10)

N (+)
1 = e

1
2

(φ−4U)
(
N1 − ie−φM1

)
Ñ (+)

1 = e
1
2

(φ−4U)
(
N1 + ie−φM1

)
(3.11)

N (−)
1 = e

1
2

(φ−4U)
(
N∗1 − ie−φM∗1

)
Ñ (−)

1 = e
1
2

(φ−4U)
(
N∗1 + ie−φM∗1

)
(3.12)

N (+)
0 = e

1
2

(φ−4U)Σ2
(
N0 − ie−φM0

)
Ñ (+)

0 = e
1
2

(φ−4U)Σ2
(
N0 + ie−φM0

)
(3.13)

N (−)
0 = e

1
2

(φ−4U)Σ2
(
N∗0 − ie−φM∗0

)
Ñ (−)

0 = e
1
2

(φ−4U)Σ2
(
N∗0 + ie−φM∗0

)
(3.14)

where the scalar Σ is defined as Σ ≡ e2(W+U) = e−
2
3

(U+V ). Its significance will be reviewed
later in the paper.

The detailed derivation of the equations of motion is performed in appendix C, and we
will not reproduce them here in the main body of the paper as the expressions are lengthy.
Given those equations of motion, we will write an action from which they may be derived.
Before doing so, we first consider the kinetic terms and introduce a field redefinition such
that the kinetic terms are diagonalized.

3.1 Field redefinitions

In order to find the appropriate field redefinitions it is enough to consider the derivative
terms, which follow from a Lagrangian density of the form (with respect to the 5-d Einstein

frame-measure d5x
√
−gE5 )

L
(±)
kin = eW

[
1
2
λ̄(±)D/λ(±) + ψ̄(±)

a

(
γabcDbψ

(±)
c − 4iγabDbρ

(±) − iγabDbϕ
(±)
)

− iρ̄(±)
(

4γabDaψ
(±)
b − 12iD/ ρ(+) − 4iD/ϕ(±)

)
+ ϕ̄(±)

(
−iγabDaψ

(±)
b − 4D/ρ(±)

)]
. (3.15)

Shifting the gravitino as4

ψ(±)
a = ψ̃(±)

a +
i

3
γa

(
ϕ(±) + 4ρ(±)

)
⇒ ψ̄(±)

a = ¯̃
ψ(±)
a +

i

3

(
ϕ̄(±) + 4ρ̄(±)

)
γa , (3.16)

we obtain

L
(±)
kin = eW

[
1
2
λ̄(±)D/λ(±) + ¯̃

ψ(±)
a γabcDbψ̃

(±)
c + 8ρ̄(±)D/ρ(±)

+
4
3

(
ρ̄(±) + ϕ̄(±)

)
D/
(
ρ(±) + ϕ(±)

)]
. (3.17)

4To avoid confusion, we note that the notation ϕ̄(±) means (ϕ(±))†γ0, etc.
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Then we are led to define5

λ̃(±) = eW/2λ(±) (3.18)

ζ(±)
a = eW/2

[
ψ(±)
a − i

3
γa

(
ϕ(±) + 4ρ(±)

)]
(3.19)

ξ(±) = 4eW/2ρ(±) (3.20)

η(±) = 2eW/2
(
ρ(±) + ϕ(±)

)
, (3.21)

which results in

L
(±)
kin =

1
2

¯̃
λ(±)D/λ̃(±) + ζ̄(±)

a γabcDbζ
(±)
c +

1
2
ξ̄(±)D/ ξ(±) +

1
3
η̄(±)D/η(±) (3.22)

− 1
2

[
ζ̄(±)
a γabc (∂bW ) ζ(±)

c +
1
2
ξ̄(±) (∂/W ) ξ(±) +

1
3
η̄(±) (∂/W ) η(±)

]
. (3.23)

The W -dependent interaction terms in the second line are produced by the action of the
derivatives on the warping factors involved in the field redefinitions, and they will cancel
against similar terms in the interaction Lagrangian. We note that the fields we have defined
are not canonically normalized. We have done this simply to avoid square-root factors.

The equations of motion written in terms of the fields (3.18)–(3.21) are given explicitly
in appendix C. They follow from an effective d = 5 action that we derive below.

3.2 Effective action

The equations of motion for the 5d fields (3.18)–(3.21), which are explicitly displayed in
appendix C, follow from an effective action functional of the form

S4+1 = K5

∫
d5x
√
−gE5

[
1
2

¯̃
λ(+)D/λ̃(+) + ζ̄(+)

a γabcDbζ
(+)
c +

1
2
ξ̄(+)D/ ξ(+) +

1
3
η̄(+)D/η(+)

+
1
2

¯̃
λ(−)D/λ̃(−) + ζ̄(−)

a γabcDbζ
(−)
c +

1
2
ξ̄(−)D/ ξ(−) +

1
3
η̄(−)D/η(−)

+ L(+)

ψ̄ψ
+ L(−)

ψ̄ψ
+

1
2

(
L(+)

ψ̄ψc + L(−)

ψ̄ψc + c.c.
)]

(3.24)

where K5 is a normalization constant depending on the volume of the KE base, the length
of the fiber parameterized by χ, and the normalization of the spinors ε±. Here, Daψ

(±) =(∇a ∓ 3i
2 A1a

)
ψ(±) for ψ = λ̃, ψa, η, ξ, and the interaction Lagrangians are given by

L(±)

ψ̄ψ
= L(±)

mass + L(±)
1 + L(±)

2 (3.25)

5One should not confuse the one-form η dual to the Reeb vector field with the fermions η(±).

– 10 –



J
H
E
P
0
1
(
2
0
1
1
)
1
0
0

where we have defined

L(±)
mass = ∓ 1

2

(
e−4UΣ−1+

3
2

Σ2±eZ+4W

)
¯̃
λ(±)λ̃(±)∓

(
e−4UΣ−1+

3
2

Σ2∓eZ+4W

)
ζ̄(±)
a γacζ(±)

c

∓ 1
9

(
e−4UΣ−1− 15

2
Σ2±5eZ+4W

)
η̄(±)η(±)± 3

2

(
e−4UΣ−1− 1

2
Σ2∓eZ+4W

)
ξ̄(±)ξ(±)

± 1
3
i
(
e−4UΣ−1 − 3Σ2 ± 2eZ+4W

) (
ζ̄(±)
a γaη(±) + η̄(±)γaζ(±)

a

)
∓ 2

3
(
e−4UΣ−1 ± 2eZ+4W

) (
η̄(±)ξ(±) + ξ̄(±)η(±)

)
∓ i (e−4UΣ−1 ∓ eZ+4W

) (
ζ̄(±)
a γaξ(±) + ξ̄(±)γaζ(±)

a

)
±N (±)

0

[
1
2

¯̃
λ(±)γaζ(∓)

a +
2
3
i
¯̃
λ(±)η(∓) +

1
2
i
¯̃
λ(±)ξ(∓)

]
± Ñ (±)

0

[
1
2
ζ̄(±)
a γaλ̃(∓) +

2
3
iη̄(±)λ̃(∓) +

1
2
iξ̄(±)λ̃(∓)

]
(3.26)

L(±)
1 = +

1
8
i
¯̃
λ(±)

[
3eφ(∂/a) + 2e−4U /K1

]
λ̃(±) +

1
4
ie−4U ζ̄(±)

a

(
eφγabc(∂ba) + 2γ[c /K1γ

a]
)
ζ(±)
c

+
1
8
iξ̄(±)

[
eφ(∂/a) + 6e−4U /K1

]
ξ(±) +

1
12
iη̄(±)

[
eφ(∂/a)− 2e−4U /K1

]
η(±)

+ ζ̄(±)
a

(
i(∂/U)− 1

2
e−4U /K1

)
γaξ(±) + ξ̄(±)γa

(
−i(∂/U)− 1

2
e−4U /K1

)
ζ(±)
a

− 1
2
iζ̄(±)
a (Σ−1∂/Σ)γaη(±) +

1
2
iη̄(±)γa(Σ−1∂/Σ)ζ(±)

a

± 1
2
i
¯̃
λ(±)γa /N (±)

1 ζ(∓)
a ± 1

2
iζ̄(±)
a /̃N (±)

1 γaλ̃(∓) ± 1
2

¯̃
λ(±) /N (±)

1 ξ(∓) ± 1
2
ξ̄(±) /̃N (±)

1 λ̃(∓)

± 1
4
i
(¯̃
λ(±)/G1ξ

(±) + ξ̄(±) /̃G1λ̃
(±)
)
∓ 1

4

(¯̃
λ(±)γa/G1ζ

(±)
a + ζ̄(±)

a /̃G1γ
aλ̃(±)

)
(3.27)

and

L(±)
2 = +

1
8

¯̃
λ(±)γa (i/G3 + /G2) ζ(±)

a +
1
8
ζ̄(±)
a

(
i/̃G3 + /̃G2

)
γaλ̃(±)

+
1
12
i
¯̃
λ(±) (i/G3 + /G2) η(±) +

1
12
iη̄(±)

(
i/̃G3 + /̃G2

)
λ̃(±)

+
1
8
i
¯̃
λ(±)

(
i/G3 − /G2

)
ξ(±) +

1
8
iξ̄(±)

(
i/̃G3 − /̃G2

)
λ̃(±)

− 1
4
iζ̄(±)
a

(
Σ−2γ[cF/2γ

a] ∓ 2Σγ[c /K2γ
a]
)
ζ(±)
c ± Σζ̄(±)

a γ[c/L
(±)
2 γa]ζ(∓)

c

+
1
6
ζ̄(±)
a

(
Σ−2F/2 ± Σ /K2

)
γaη(±) ∓ 1

3
iΣζ̄(±)

a /L
(±)
2 γaη(∓)

+
1
6
η̄(±)γc

(
Σ−2F/2 ± Σ /K2

)
ζ(±)
c ∓ 1

3
iΣη̄(±)γc/L

(±)
2 ζ(∓)

c

+
1
8
i
¯̃
λ(±)

(
Σ−2F/2 ± 2Σ /K2

)
λ̃(±) ± 1

2
Σ¯̃
λ(±)/L

(±)
2 λ̃(∓)

+
1
8
iξ̄(±)

(
Σ−2F/2 ∓ 2Σ /K2

)
ξ(±) ∓ 1

2
Σξ̄(±)/L

(±)
2 ξ(∓)

− 1
36
iη̄(±)

(
5Σ−2F/2 ± 2Σ /K2

)
η(±) ∓ 1

9
Ση̄(±)/L

(±)
2 η(∓) (3.28)
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Similarly, the interaction Lagrangian for the coupling to the charge conjugate fields reads

L(±)

ψ̄ψc = ∓ 1
2

¯̃
λ(±)γaP/ ζ(∓)c

a ± 1
2
ζ̄(±)
a P/ γaλ̃(∓)c

± 1
4
ζ̄(±)
a γ[a (−i/G3 + /G2 ± 2/G1) γd]ζ

(∓)c
d + ζ̄(±)

a

[
iN (±)

1b γabd −N (±)
0 γad

]
ζ

(±)c
d

∓ 1
12
iζ̄(±)
a (i/G3 − /G2) γaη(∓)c − 2

3
iN (±)

0 ζ̄(±)
a γaη(±)c

∓ 1
12
iη̄(±)γd (i/G3 − /G2) ζ(∓)c

d − 2
3
iN (±)

0 η̄(±)γdζ
(±)c
d

∓ 1
8
iζ̄(±)
a (i/G3 + /G2 ± 2/G1) γaξ(∓)c +

1
2
ζ̄(±)
a

(
/N (±)

1 − iN (±)
0

)
γaξ(±)c

∓ 1
8
iξ̄(±)γd (i/G3 + /G2 ± 2/G1) ζ(∓)c

d +
1
2
ξ̄(±)γd

(
/N (±)

1 − iN (±)
0

)
ζ

(±)c
d

± 1
12
ξ̄(±) (i/G3 + /G2) η(∓)c +

2
3
N (±)

0 ξ̄(±)η(±)c ± 3
16
ξ̄(±)/G2ξ

(∓)c

∓ 1
36
η̄(±) (i/G3 − /G2 ∓ 6/G1) η(∓)c +

1
9
iη̄(±)

(
3 /N (±)

1 − 5iN (±)
0

)
η(±)c

± 1
12
η̄(±) (i/G3 + /G2) ξ(∓)c +

2
3
N (±)

0 η̄(±)ξ(±)c (3.29)

where, in a slight abuse of notation, P/ now denotes the 5-d quantity P/ =
(1/2)γb

(
∂bφ+ ieφ∂ba

)
.

It is worth noticing that this action can be also obtained by direct dimensional reduc-
tion of the following D = 10 action:

S9+1 = K10

∫
d10x
√−g10

[
1
2
λ̄

(
∇̂/ − 3i

2
/Q− i

8
F/ (5)

)
λ+

1
8
(
Ψ̄AG/

∗ΓAλ− λ̄ΓAG/ΨA

)
− 1

4

(
λ̄ΓAP/Ψc

A + Ψ̄AP/ ΓAλc +
1
8

Ψ̄AΓABCSBΨc
C + c.c.

)
+ Ψ̄AΓABC

(
∇̂B − i

2
QB +

i

16
F/ (5)ΓB

)
ΨC

]
, (3.30)

from which the 10-d fermionic equations of motion can be derived. As usual in the context of
AdS/CFT, the bulk action would have to be supplemented by appropriate boundary terms
in order to compute correlation functions of the dual field theory operators holographically.

4 N = 4 supersymmetry

It is expected that the Lagrangian we have derived has N = 4 d = 5 supersymmetry, and
we will provide evidence that that is the case. We expect to find the gravity multiplet
(containing the graviton, the scalar Σ and vectors) and a pair of vector multiplets (con-
taining the rest of the scalars and vectors). Let us consider the supersymmetry variations
of the 10-d theory. These are

δλ = P/ εc +
1
4
G/ ε (4.1)

δΨA = ∇̂Aε− 1
2
iQAε+

i

16
F/ (5)ΓAε−

1
16
SAε

c (4.2)
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where
SA =

1
6
(
ΓADEFGDEF − 9ΓDEGADE

)
= ΓAG/ − 2GADEΓDE (4.3)

as before. Given the consistent truncation (assuming throughout that the SE5 is not S5),
the variational parameters must also be SU(2) singlets:

ε = eW/2θ(+)(x)⊗ ε+(y)e
3
2
iχ ⊗ u− + eW/2θ(−)(x)⊗ ε−(y)e−

3
2
iχ ⊗ u− (4.4)

εc = eW/2θ(−)c(x)⊗ ε+(y)e
3
2
iχ ⊗ u− − eW/2θ(+)c(x)⊗ ε−(y)e−

3
2
iχ ⊗ u− . (4.5)

The evaluation of the variations proceeds much as the calculations leading to the equations
of motion, and we find

δλ̃(±) = ± P/ θ(∓)c − 1
4

(
i/G3 + /G2 ∓ 2/G1

)
θ(±) ∓ i

(
/N (±)

1 − iN (±)
0

)
θ(∓) (4.6)

δξ(±) =
[
2i(∂/U) + e−4U /K1 − 2ieZ+4W ± 2ie−4UΣ−1

]
θ(±)

∓ 1
4

(
/G3 − i/G2 ∓ 2i/G1

)
θ(∓)c −

(
/N (±)

1 − iN (±)
0

)
θ(±)c (4.7)

δη(±) =

[
−3

2
i(Σ−1∂/Σ)− 1

2
Σ−2F/2 ∓ 1

2
Σ /K2 ∓ ie−4UΣ−1 ± 3iΣ2 − 2ieZ+4W

]
θ(±)

± iΣ/L(±)
2 θ(∓) ∓ 1

4

(
/G3 + i/G2

)
θ(∓)c + 2iN (±)

0 θ(±)c (4.8)

δζ(±)
a =

[
∇a∓ 3

2
iAa+

1
4
ieφ∂aa− 1

2
ie−4UK1a

]
θ(±)+γa

(
±1

3
e−4UΣ−1± 1

2
Σ2− 1

3
eZ+4W

)
θ(±)

+
1
8
iΣ−2

(
/F 2γa −

1
3
γa /F 2

)
θ(±) ∓ 1

4
iΣ
(
/K2γa −

1
3
γa /K2

)
θ(±)

∓ 1
8

[
i

(
/G3γa −

1
3
γa/G3

)
−
(
/G2γa −

1
3
γa/G2

)
∓ 4G1a

]
θ(∓)c

∓ 1
2

Σ
(
/L

(±)
2 γa − 1

3
γa/L

(±)
2

)
θ(∓) +

(
iN (±)

1a +
1
3
N (±)

0 γa

)
θ(±)c . (4.9)

Consulting for example [29, 30], one sees immediately that it is δη(±) that contains
Σ−1∂/Σ, and thus we deduce that it is η(±) that sits in the N = 4 gravity multiplet. These
could be assembled into four symplectic-Majorana spinors, forming the 4 of USp(4) ∼
SO(5). The remaining fermions ξ(±), λ̃(±) can then be arranged into an SO(2) doublet of
USp(4) quartets, appropriate to the pair of vector multiplets.

5 Linearized analysis

5.1 The supersymmetric vacuum solution

It has been shown that the N = 4 possesses a supersymmetric vacuum with N = 2
supersymmetry. To see the details of the Stückelberg mechanism at work, we linearize the
fermions around the vacuum, in which all of the fluxes are zero and the scalars take the
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values U = V = X = Y = Z = 0. Around this vacuum, the supersymmetry variations
reduce to

δη(+) = δξ(+) = δλ̃(+) = 0 (5.1)

δζ(+)
a = Daθ

(+) +
1
2
γaθ

(+) (5.2)

δη(−) = δξ(−) = −4iθ(−) (5.3)

δλ(−) = 0 (5.4)

δζ(−)
a = Daθ

(−) − 7
6
γaθ

(−) . (5.5)

These correspond to unbroken N = 2 supersymmetry parametrized by θ(+), while the
supersymmetry given by θ(−) is broken. In our somewhat unusual normalizations of the
fermions, as given in (3.22), we can deduce that the Goldstino is proportional to g =
1
10

(
η(−) + 3

2ξ
(−)
)

(orthogonal to the invariant mode 1
10

(
η(−) − ξ(−)

)
). The kinetic terms

in this vacuum then take the form

Ssvac =
1
2

(
¯̃
λ(+)D/ λ̃(+) − 7

2
¯̃
λ(+)λ̃(+)

)
+

1
2

(
¯̃
λ(−)D/ λ̃(−) +

3
2

¯̃
λ(−)λ̃(−)

)
+

2
15

(
κ̄

(+)
1 D/ κ

(+)
1 − 11

2
κ̄

(+)
1 κ

(+)
1

)
+

1
5

(
κ̄

(+)
2 D/ κ

(+)
2 +

9
2
κ̄

(+)
2 κ

(+)
2

)
+20

(
h̄D/ h− 5

2
h̄h

)
+ ζ̄(−)

a γabcDbζ
(−)
c +

7
2
ζ̄(−)
a γacζ(−)

c +
(

40
3
iζ̄(−)
a γag + c.c.

)
− 700

9
ḡg +

40
3
ḡD/ g

+ ζ̄(+)
a γabcDbζ

(+)
c − 3

2
ζ̄(+)
a γacζ(+)

c , (5.6)

where κ(+)
1,2 are linear combinations of η(+), ξ(+). Since the geometry is AdS5, the fourth

line represents a “massless” gravitino, while, defining the invariant combination Ψa =
ζ

(−)
a + 7

6 iγag − iDag, the third line becomes

Ψ̄aγ
abcDbΨc +

7
2

Ψ̄aγ
abΨb , (5.7)

the action of a massive gravitino. This is the Proca/Stückelberg mechanism. We see then
that we have fermion modes of mass {11

2 ,
7
2 ,

5
2 ,

3
2 ,−3

2 ,−7
2 ,−9

2} which correspond to the
fermionic modes of unitary irreps of SU(2, 2|1) and which also coincide with the lowest
rungs of the KK towers of the sphere compactification [31]. The corresponding features
in the bosonic spectrum were noted in [6, 7]. Specifically, in the language of ref. [32], the
p = 2 sector contains ζ(+)

a , λ̃(−), p = 3 contains ζ(−)
a , λ̃(+), η(−), ξ(−) and p = 4 contains

η(+), ξ(+).

5.2 The Romans AdS5 vacuum

The non-supersymmetric AdS vacuum [32, 33] of the theory has radius
√

8/9, and vevs

e4U = e−4V =
2
3
, Y =

eiθ√
12
eφ/2 X = (a+ ie−φ)Y , (5.8)
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where θ is an arbitrary constant phase. The axion a and dilaton φ are arbitrary [6, 7]. For
the various quantities appearing in the effective action we have

Gi = G̃i = N (±)
1 = Ñ (±)

1 = N (+)
0 = Ñ (−)

0 = K1 = K2 = L2 = 0 , (5.9)

where i = 1, 2, 3, and

e−4W =
2
3
, Σ = 1 , eZ =

1
2
, P = 0 ,

(
N (−)

0

)∗
= Ñ (+)

0 = − 3√
2
eiθ . (5.10)

We then find

L(+)
mass = − 15

8
¯̃
λ(+)λ̃(+) − 9

4
ζ̄(+)
a γacζ(+)

c +
1
4
η̄(+)η(+) +

3
8
ξ̄(+)ξ(+)

− 2
(
η̄(+)ξ(+) + ξ̄(+)η(+)

)
− 3

4
i
(
ζ̄(+)
a γaξ(+) + ξ̄(+)γaζ(+)

a

)
− 3√

2
eiθ
(

1
2
ζ̄(+)
a γaλ̃(−) +

2
3
iη̄(+)λ̃(−) +

1
2
iξ̄(+)λ̃(−)

)
(5.11)

L(−)
mass =

9
8

¯̃
λ(−)λ̃(−) +

15
4
ζ̄(−)
a γacζ(−)

c − 13
12
η̄(−)η(−) − 21

8
ξ̄(−)ξ(−)

+ i
(
ζ̄(−)
a γaη(−) + η̄(−)γaζ(−)

a

)
+

9
4
i
(
ζ̄(−)
a γaξ(−) + ξ̄(−)γaζ(−)

a

)
+

3√
2
e−iθ

(
1
2

¯̃
λ(−)γaζ(+)

a +
2
3
i
¯̃
λ(−)η(+) +

1
2
i
¯̃
λ(−)ξ(+)

)
(5.12)

L(−)

ψ̄ψc =
3√
2
e−iθ

(
ζ̄(−)
a γadζ

(−)c
d − 5

9
η̄(−)η(−)c +

2
3
iζ̄(−)
a γaη(−)c +

2
3
iη̄(−)γdζ

(−)c
d

+
i

2
ζ̄(−)
a γaξ(−)c +

i

2
ξ̄(−)γdζ

(−)c
d − 2

3
ξ̄(−)η(−)c − 2

3
η̄(−)ξ(−)c

)
(5.13)

and

L(±)
1 = L(±)

2 = L(+)

ψ̄ψc = 0 . (5.14)

We see by inspection that indeed both gravitinos are massive. For example, ζ(+)
a eats the

goldstino proportional to g(+) = 3
2 iξ

(+) −N (−)
0

∗
λ̃(−), while the Goldstino eaten by ζ(−)

a is
a linear combination of ξ(−), η(−) and their conjugates.

6 Examples

As an application of our general result (3.24), in this section we discuss the coupling of
the fermions to some further bosonic truncations of interest, including the minimal gauged
N = 2 supergravity theory in d = 5, and the holographic AdS5 superconductor of [20].

6.1 Minimal N = 2 gauged supergravity in five dimensions

Perhaps the simplest further truncation one could consider that retains fermion modes
entails taking U = V = Z = K1 = L2 = Gi = Hi = Mq = Nq = 0 (i = 1, 2, 3 and q = 0, 1)
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No p = 3 bosons

λ̃(+), ζ(−)
a , η(−), ξ(−)

λ̃(−), ζ(+)
a , η(+), ξ(+)

Figure 1. Decoupling of the fermion modes in the futher truncation obtained by eliminating the
bosons in the “p = 3 sector”.

and K2 = −F2. It is then consistent to set λ̃(±) = η(±) = ξ(±) = 0 together with ζ
(−)
a = 0.

This gives the right fermion content of minimal N = 2 gauged supergravity in d = 5, which
is one Dirac gravitino (ζ(+)

a in our notation), with an action given by

S4+1 = K5

∫
d5x
√
−gE5

[
ζ̄(+)
a γabcDbζ

(+)
c + L(+)

ψ̄ψ

]
(6.1)

where

L(+)

ψ̄ψ
= − 3

2
ζ̄(+)
a γacζ(+)

c − 3
4
iζ̄(+)
a γ[cF/2γ

a]ζ(+)
c , (6.2)

and Da = ∇a − (3i/2)A1a as before.

6.2 No p = 3 sector

A possible further truncation of the bosonic sector considered in [7] entails taking Gi =
Hi = L2 = 0 (i = 1, 2, 3). In the notation of [32], this corresponds to eliminating the
bosonic fields belonging to the p = 3 sector. By studying the equations of motion provided
in appendix C we find that the fermion modes split into two decoupled sectors, as depicted
in figure 1. It is therefore consistent to set the modes in either of these sectors to zero.

We note the first set of fermion fields are all in the p = 3 sector, while the second
set are in p = 2, 4. It seems reasonable therefore to suggest that the latter truncation
corresponds to an N = 2 gauged supergravity theory coupled to a vector multiplet and
two hypermultiplets (this was suggested in [6, 7] in the context of the bosonic sector.) The
former truncation would apparently be non-supersymmetric.

6.3 Type IIB holographic superconductor

As discussed in [6, 7], the type IIB holographic superconductor of [20] can be obtained
by truncating out the bosons of the p = 3 sector as discussed above, and further setting
a = φ = h = 0 and X = iY , K2 = −F2, e4U = e−4V = 1− 4|Y |2, which implies Ẽ1 = 0 and

eZ = 1− 6|Y |2 , K1 = 2i (Y ∗DY − Y DY ∗) ≡ 2iY ∗
←→
DY . (6.3)
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No p = 3 bosons

λ̃(+), ζ(−)
a , η(−), ξ(−)

λ̃(−), ζ(+)
a , η(+), ξ(+)

λ̃(+)

ζ(−)
a , η(−), ξ(−) type IIB s.c.

Figure 2. Further decoupling of fermion modes in the type IIB holographic superconductor trun-
cation.

In terms of the variables we have defined, this truncation implies

Gi = G̃i = N (+)
q = Ñ (−)

q = 0 (6.4)

(i = 1, 2, 3 and q = 0, 1) together with

N (−)
1 = −2ie−2UDY ∗ , N (−)

0 = −6e−2UY ∗ ,

Ñ (+)
1 = 2ie−2UDY , Ñ (+)

0 = −6e−2UY , (6.5)

and
P = 0 , Σ = 1 , e−4W = 1− 4|Y |2 . (6.6)

By analyzing the equations of motion given in appendix C, we find that in this case there
is a further decoupling of the fermion modes with respect to the no p = 3 sector truncation
discussed above. As depicted in figure 2, the λ̃(+) mode now decouples from ζ

(−)
a , η(−), ξ(−)

as well, resulting in three fermion sectors, which can then be set to zero independently.

6.3.1 A single spin-1/2 fermion

The simplest scenario corresponds of course to keeping the λ̃(+) mode only, for which the
effective action (3.24) reduces to

S4+1 = K5

∫
d5x
√
−gE5

[
1
2

¯̃
λ(+)D/λ̃(+) + L(+)

ψ̄ψ

]
(6.7)

with

L(+)

ψ̄ψ
= − 1

2
¯̃
λ(+)

(
3
2

+
1
4
iF/2 +

2− 6|Y |2 + Y ∗
←→
D/ Y

1− 4|Y |2
)
λ̃(+) , (6.8)

where we recall that DY = dY − 3iA1Y , and D/ λ̃(+) =
(∇/ − 3i

2
/A1

)
λ̃(+). As pointed

out in [7], we can make contact with the notation of [20] by setting A1 = (2/3)A and

– 17 –



J
H
E
P
0
1
(
2
0
1
1
)
1
0
0

Y = (1/2)eiθ tanh(η/2). Notice that λ̃(+) only couples derivatively to the phase of the
charged scalar Y . The model (6.7) is particularly well suited for an exploration of fermion
correlators via holography, inasmuch as the presence of a single spin-1/2 field makes the
application of all the standard gauge/gravity duality techniques possible. Naturally, such
a program becomes more involved in the presence of mixing between the gravitino and the
spin-1/2 fields.

6.3.2 Retaining half of the fermionic degrees of freedom

For the λ̃(−), ζ
(+)
a , ξ(+), η(+) sector we find that (3.24) reads

S4+1 = K5

∫
d5x
√
−gE5

[
1
2

¯̃
λ(−)D/λ̃(−) + ζ̄(+)

a γabcDbζ
(+)
c +

1
3
η̄(+)D/η(+)

+
1
2
ξ̄(+)D/ ξ(+) + Lψ̄ψ

]
(6.9)

with

Lψ̄ψ =
3
8
i
¯̃
λ(−)F/2λ̃

(−) + 3
(
e−4U |Y |2 +

1
4

)
¯̃
λ(−)λ̃(−) − 1

2
e−4U ¯̃

λ(−)
(
Y ∗
←→
D/ Y

)
λ̃(−)

− 3
4
iζ̄(+)
a γ[cF/2γ

a]ζ(+)
c − 3

(
2e−4U |Y |2 +

1
2

)
ζ̄(+)
a γacζ(+)

c

− e−4U ζ̄(+)
a γ[c

(
Y ∗
←→
D/ Y

)
γa]ζ(+)

c

− i

12
η̄(+)F/2η

(+) +
1
6
e−4U η̄(+)

(
1 + 2Y ∗

←→
D/ Y

)
η(+)

+
3
8
iξ̄(+)F/2ξ

(+) +
3
4
e−4U ξ̄(+)

(
3− 2Y ∗

←→
D/ Y

)
ξ(+) − 3ξ̄(+)ξ(+)

− e−2U ¯̃
λ(−)γa

(
D/Y ∗ − 3Y ∗

)
ζ(+)
a − e−2U ζ̄(+)

a

(
D/Y + 3e−2UY

)
γaλ̃(−)

+ 2ie−4U ξ̄(+)γa
(
Y D/Y ∗ − 3|Y |2

)
ζ(+)
a − 2ie−4U ζ̄(+)

a

(
Y ∗D/Y + 3|Y |2

)
γaξ(+)

+ ie−2U ¯̃
λ(−)

(
D/Y ∗ + 3Y ∗

)
ξ(+) + ie−2U ξ̄(+)

(
D/Y − 3Y

)
λ̃(−)

− 4ie−2U
(
Y η̄(+)λ̃(−) − Y ∗ ¯̃λ(−)η(+)

)
− 2

(
ξ̄(+)η(+) + η̄(+)ξ(+)

)
, (6.10)

where we recall that e4U = 1 − 4|Y |2. We note the presence of a variety of couplings
between the fermions and the charged scalar, as well as Pauli couplings.

6.3.3 The ζ
(−)
a , η(−), ξ(−) sector

For the remaining decoupled sector containing the ζ(−)
a , η(−), ξ(−) modes we find

S4+1 = K5

∫
d5x
√
−gE5

[
ζ̄(−)
a γabcDbζ

(−)
c +

1
3
η̄(−)D/η(−) +

1
2
ξ̄(−)D/ ξ(−)

+ Lψ̄ψ +
1
2

(
L(−)

ψ̄ψc + c.c.
)]

(6.11)
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where now

Lψ̄ψ = e−4U

[(
7
2
− 12|Y |2

)
ζ̄(−)
a γacζ(−)

c +
1
9

(
−23

2
+ 60|Y |2

)
η̄(−)η(−)

− 3
2

(
3
2
− 4|Y |2

)
ξ̄(−)ξ(−) +

2
3
(−1 + 12|Y |2) (η̄(−)ξ(−) + ξ̄(−)η(−)

)
+

4
3
i
(
1− 6|Y |2) (ζ̄(−)

a γaη(−) + η̄(−)γaζ(−)
a

)
+ 2i

(
1− 3|Y |2) (ζ̄(−)

a γaξ(−) + ξ̄(−)γaζ(−)
a

)
− ζ̄(−)

a γ[cY ∗
←→
D/ Y γa]ζ(−)

c − 3
2
ξ̄(−)Y ∗

←→
D/ Y ξ(−) +

1
3
η̄(−)Y ∗

←→
D/ Y η(−)

− 2iζ̄(−)
a Y ∗D/Y γaξ(−) + 2iξ̄(−)γaY D/Y ∗ζ(−)

a

]
+

1
4
iζ̄(−)
a γ[cF/2γ

a]ζ(−)
c − 1

8
iξ̄(−)F/2ξ

(−) − 7
36
iη̄(−)F/2η

(−)

+
1
3
ζ̄(−)
a F/2γ

aη(−) +
1
3
η̄(−)γcF/2ζ

(−)
c (6.12)

and

L(−)

ψ̄ψc = e−2U

[
2ζ̄(−)
a

(
γabdDbY

∗ + 3γadY ∗
)
ζ

(−)c
d + 4iY ∗

(
ζ̄(−)
a γaη(−)c + η̄(−)γaζ(−)c

a

)
− iζ̄(−)

a (D/Y ∗ − 3Y ∗) γaξ(−)c − iξ̄(−)γd (D/Y ∗ − 3Y ∗) ζ(−)c
d

− 4Y ∗
(
ξ̄(−)η(−)c + η̄(−)ξ(−)c

)
+

2
3
η̄(−) (D/Y ∗ − 5Y ∗) η(−)c

]
. (6.13)

The models (6.7), (6.9) and (6.11) display a variety of couplings between the fermions
and the charged scalar, the fermions and their charge conjugates, and Pauli couplings as
well. From the gauge/gravity duality point of view, these couplings might be of phenomeno-
logical interest and give rise to features that have not been observed so far in the simpler
non-interacting fermion models in the literature. The exploration of these directions in the
context of AdS/CFT will be pursued elsewhere.

7 Conclusions

Continuing with the program initiated in [19], where we performed the reduction of the
fermionic sector in the consistent truncations of D = 11 supergravity on squashed Sasaki-
Einstein seven-manifolds [16], in the present paper we have considered the reduction of
fermions in the recently found consistent truncations of type IIB supergravity on squashed
Sasaki-Einstein five-manifolds [6–8]. A common denominator of these KK reductions is
that they consistently retain charged (massive) scalar and p-form fields. This feature not
only establishes them as relevant from a supergravity perspective, but it also makes them
particulary suitable for the description of various phenomena, such as superfluidity and
superconductivity, by means of holographic techniques.

In particular, as an application of our results we have discussed the coupling of fermions
to the (4+1)-dimensional type IIB holographic superconductor of [20], which complements
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our previous result for the coupling of fermions to the (3 + 1)-dimensional M-theory holo-
graphic superconductor constructed in [17]. It is interesting to note the differences between
these two effective theories. For example, the coupling of the fermions to their charge con-
jugates (i.e. Majorana-like couplings) was found to play a central role in the (3 + 1)-model
of [19]. Although such couplings are still present in the general truncation discussed in the
present work, they are absent in the further truncation corresponding to the holographic
(4 + 1)-dimensional superconductor. More importantly, while a simple further truncation
of the fermion sector that could result in a more manageable system well suited for holo-
graphic applications eluded us in our previous work, in the present scenario we have found
a very simple model (c.f. (6.7)) describing a single spin-1/2 Dirac fermion interacting with
the charged scalar that has been shown to condense for low enough temperatures of a cor-
responding black hole solution of the bosonic field equations [20]. It would be interesting
to apply our results to the holographic computation of fermion correlators in the presence
of these superconducting condensates. Similarly, our results can be used to explore fermion
correlators in other situations as well.
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A Conventions and useful formulae

In this appendix we introduce the various conventions used in the body of the paper, and
collect some useful results.

A.1 Conventions for forms and Hodge duality

We normalize all the form fields according to

ω = ωa1...ap e
a1 ⊗ ea2 · · · ⊗ eap

=
1
p!
ωa1...ap e

a1 ∧ · · · ∧ eap . (A.1)

Similarly, all the slashed p-forms are defined with the normalization

/ω =
1
p!
γa1...apωa1...ap . (A.2)

In d spacetime dimensions, the Hodge dual acts on the basis of forms as

∗ (ea1 ∧ · · · ∧ eap) =
1

(d− p)!εb1...bd−p
a1...ap eb1 ∧ · · · ∧ ebd−p , (A.3)
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where εb1...bd−pa1...ap are the components of the Levi-Civita tensor. Equivalently, for the
components of the Hodge dual ∗ω of a p-form ω we have

(∗ω)a1...ad−p =
1
p!
εa1...ad−p

b1...bpωb1...bp . (A.4)

In the (4 + 1)-dimensional external manifold M we adopt the convention ε01234 = +1 for
the components of the Levi-Civita tensor in the orthonormal frame.

A.2 Zehnbein and spin connection

As discussed in section 2, the Kaluza-Klein metric ansatz of [6–9] is given by

ds2
10 = e2W (x)ds2

E(M) + e2U(x)ds2(KE) + e2V (x)
(
dχ+A(y) +A1(x)

)2
, (A.5)

where W (x) = −1
3 (4U(x) + V (x)) as in the body of the paper. We now introduce the

ten-dimensional orthonormal frame êM . Denoting by a, b, . . . the tangent indices to M , by
α, β, . . . the tangent indices to the Kähler-Einstein base KE, and by f the index associated
with the U(1) fiber direction χ, our choice of zehnbein reads

êa = eW ea (A.6)

êα = eUeα (A.7)

êf = eV
(
dχ+A(y) +A1(x)

)
, (A.8)

where ea and eα are orthonormal frames for M and KE, respectively. The dual basis is
then

êa = e−W
(
ea −A1a∂χ

)
(A.9)

êα = e−U
(
eα −Aα∂χ

)
(A.10)

êf = e−V ∂χ . (A.11)

Denoting by ωab the spin connection associated with ds2
E(M) and by ωαβ the spin connec-

tion appropriate to ds2(KE), for the ten-dimensional spin connection ω̂MN we find

ω̂αa = eU−W (∂aU)eα (A.12)

ω̂ f
a = eV−W

[
1
2
F2 abe

b + (∂aV )
(
dχ+A+A1

)]
(A.13)

ω̂ f
α = eV−U

1
2
Fαβeβ (A.14)

ω̂ab = ωab − 2ηac∂[cWηb]de
d − 1

2
e2(V−W )F a2 b

(
dχ+A+A1

)
(A.15)

ω̂αβ = ωαβ −
1
2
e2(V−U)Fαβ

(
dχ+A+A1

)
, (A.16)

where ηab is the flat metric in (4 + 1) dimensions, F2 ≡ dA1 and F ≡ dA = 2J , J being
the Kähler form on KE.
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A.3 Fluxes

The ansätze for the form fields fields, reproduced here for convenience, is as presented in
ref. [7]

F(5) = 4e8W+ZvolE5 + e4(W+U) ∗K2 ∧ J +K1 ∧ J ∧ J
+
[
2eZJ ∧ J − 2e−8U ∗K1 +K2 ∧ J

] ∧ (η +A1)

+
[
e4(W+U) ∗ L2 ∧ Ω + L2 ∧ Ω ∧ (η +A1) + c.c.

]
(A.17)

F(3) = G3 +G2 ∧ (η +A1) +G1 ∧ J +G0 J ∧ (η +A1)

+
[
N1 ∧ Ω +N0 Ω ∧ (η +A1) + c.c.

]
(A.18)

H(3) = H3 +H2 ∧ (η +A1) +H1 ∧ J +H0 J ∧ (η +A1)

+
[
M1 ∧ Ω +M0 Ω ∧ (η +A1) + c.c.

]
(A.19)

As pointed out in the body of the paper, notice that we have G0 = H0 = 0 by virtue of
the type IIB Bianchi identities. We will often use a complex basis on T ∗KE. If y denote
real coordinates on KE, we define z1 ≡ 1

2(y1 + iy2), z1̄ ≡ 1
2

(
y1 − iy2

)
, and similarly for

z2, z2̄. With this normalization, the Kähler form J and the holomorphic (2,0)-form Σ(2,0)

are given by

J = 2i
∑
α=1,2

eα ∧ eᾱ (A.20)

Σ(2,0) =
22

2!
εαβ e

α ∧ eβ , (A.21)

where we have chosen ε12 = +1. The components of F(5) with respect to the ten-
dimensional frame êM are then (in the real basis for T ∗KE)

F(5)abcde = 4eZ+3W εabcde (A.22)

F(5)abcdf = −2e−4U−W ε e
abcd K1;e (A.23)

F(5)aαβγδ = 6e−4U−WK1;aJ[αβJγδ] (A.24)

F(5)αβγδ f = 12eZ+3WJ[αβJγδ] (A.25)

F(5)abcαβ =
1
2
eW+2U ε de

abc

(
K2;deJαβ + L2;deΩαβ + L∗2;deΩ̄αβ

)
(A.26)

F(5)abαβ f = eW+2U
(
K2;abJαβ + L2;abΩαβ + L∗2;abΩ̄αβ

)
. (A.27)

Similarly for the components of F(3) with respect to the ten-dimensional frame we find

F(3)abc = e−3WG3 abc (A.28)

F(3)abf = e−2W−VG2 ab (A.29)

F(3)aαβ = e−W−2U
[
G1 aJαβ + (N1 aΩαβ + c.c.)

]
(A.30)

F(3)αβ f = e−2U−V [G0Jαβ + (N0Ωαβ + c.c.)
]
, (A.31)

with an analogous expression for H(3).
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A.4 Clifford algebra

We choose the following basis for the D = 10 Clifford algebra:

Γa = γa ⊗ 14 ⊗ σ1 (A.32)

Γα = 14 ⊗ γα ⊗ σ2 (A.33)

Γf = 14 ⊗ γf ⊗ σ2 , (A.34)

where a = 0, 1, . . . , 4, α = 1, . . . , 4, whence6

Γab = γab ⊗ 14 ⊗ 12 (A.35)

Γαβ = 14 ⊗ γαβ ⊗ 12 (A.36)

Γ11 = −Γ0Γ1 . . .Γ9 = 14 ⊗ 14 ⊗ σ3 . (A.37)

The γa generate C`(4, 1) while the γα generate C`(4, 0). We have γ01234 = −i14 in C`(4, 1)
and γf = −γ1γ2γ3γ4 in C`(4, 0).

Notice that γabcde = iεabcde5 . Some useful identities involving the C`(4, 1) gamma
matrices are then

εabcdeγ
abcde = −i5! , εeabcdγ

abcd = −i4!γe , (A.38)

εdeabcγ
abc = +i3!γde , εcdeabγ

ab = +i2!γcde . (A.39)

It is also useful to notice that the Kähler form on KE satisfies

JαβJγδε
αβγδ = 8 , JαβJγδγ

αβγδ = −8γf , JαβJγδγ
βγδ = −2γαγf . (A.40)

A.5 Charge conjugation conventions

In d = 5 dimensions with signature (−,+,+,+,+) we can define unitary intertwiners B4,1

and C4,1 (the charge conjugation matrix), unique up to a phase, satisfying

B4,1γ
aB−1

4,1 = −γa∗ , BT
4,1 = −B4,1 , B∗4,1B4,1 = −1 , (A.41)

and

C4,1γaC
−1
4,1 = γTa , CT4,1 = −C4,1 , C4,1 = BT

4,1γ0 = −B4,1γ0 . (A.42)

If ψ is any spinor in (4 + 1) dimensions, its charge conjugate ψc is then defined as

ψc = B−1
4,1ψ

∗ = B†4,1ψ
∗ = −γ0C

†
4,1ψ

∗ . (A.43)

In (4+1) dimensions it is not possible to define Majorana spinors satisfying ψc = ψ. It
is possible, however, to define symplectic Majorana spinors. These satisfy ψc

i = Ωijψj ,
where Ωij is the USp(4)-invariant symplectic form. This fact becomes particulary relevant
when dealing with N = 4 supergravity in d = 5 dimensions, inasmuch as the symplectic
Majorana spinors allow to make the action of the R-symmetry manifest.

6We take γ4 = iγ0123 in C`(4, 1). There is of course the opposite sign choice, leading to an inequivalent

irrep of C`(4, 1).
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In analogy with (A.43), we can define the charge conjugates of a spinor Ψ in (9+1)
dimensions and a spinor ε in 5 Euclidean dimensions as

Ψc = B−1
9,1Ψ∗ , where B9,1ΓMB−1

9,1 = Γ∗M , BT
9,1 = B9,1 (A.44)

εc = B−1
5 ε∗ , where B5γαB

−1
5 = γ∗α , BT

5 = −B5 , (A.45)

where B5 and B9,1 are the corresponding unitary intertwiners. We then find

B9,1 = B4,1 ⊗B5 ⊗ σ3 . (A.46)

Notice that B5 is unitary and antisymmetric, and therefore for a spinor ε in five Euclidean
dimensions we have (εc)c = −ε. In particular, in terms of the gauge-covariantly constant
spinors ε± introduced in section 2, we have that defining ε− as the charge conjugate of
ε+, this is e−

3i
2
χε− ≡

(
e

3i
2
χε+

)c
, implies that

(
e−

3i
2
χε−

)c
= −e 3i

2
χε+. We also define

the unitary intertwiner C9,1 (the charge-conjugation matrix) in (9 + 1) dimensions, which
satisfies

C9,1ΓMC−1
9,1 = −ΓTM C9,1 = BT

9,1Γ0 = B9,1Γ0 . (A.47)

Notice that defining Ψc in the (9+1)-dimensional space by using the intertwiner B9,1 intro-
duced above (as opposed to using an intertwiner B−9,1 satisfying B−9,1ΓMB

−†
9,1 = −Γ∗M ) allows

one to choose a basis, if so desired, where the charge conjugation operation in D = 10 re-
duces to complex conjugation. In this basis all the C`(9, 1) gamma-matrices are real, with
B9,1 = 1 and a corresponding (9+1) charge-conjugation matrix C9,1 = BT

9,1Γ0 = Γ0.

B Type IIB supergravity

In this appendix we briefly review the field content and equations of motion of type IIB
supergravity [24, 25]. We follow the conventions of [7, 22, 23] closely, and adapt our
fermionic conventions accordingly.

B.1 Bosonic content and equations of motion

In the SU(1, 1) language of [24], the bosonic content of type IIB supergravity includes the
metric, a complex scalar B, “composite” complex 1-forms P and Q (that can be written
in terms of B), a complex 3-form G, and a real self dual five-form F(5). The corresponding
equations of motion read (to linear order in the fermions)

D ∗ P = −1
4
G ∧ ∗G (B.1)

D ∗G = P ∧ ∗G∗ − iG ∧ F(5) (B.2)

RMN = PMP
∗
N + PNP

∗
M +

1
96
F(5)MP1P2P3P4

F
P1P2P3P4

(5)N

+
1
8

(
GM

P1P2G∗NP1P2
+GN

P1P2G∗MP1P2
− 1

6
gMNG

P1P2P3G∗P1P2P3

)
(B.3)
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together with the self-duality condition ∗F(5) = F(5). Similarly, the Bianchi identities read

dF(5) −
i

2
G ∧G∗ = 0 (B.4)

DG+ P ∧G∗ = 0 (B.5)

DP = 0 . (B.6)

In this language there is a manifest local U(1) invariance and Q is the corresponding
gauge field, with field-strength dQ = −iP ∧ P ∗. Similarly, G has charge 1 and P has
charge 2 under the U(1), so D ∗ G ≡ d ∗ G − iQ ∧ ∗G and D ∗ P ≡ d ∗ P − 2iQ ∧ ∗P .
Notice that Einstein’s equation (B.3) has been rewritten by using the trace condition
R = 2PRP ∗R + 1

24G
P1P2P3G∗P1P2P3

.
In the body of the paper we have worked in the SL(2,R) language which is more

familiar to string theorists. The translation between the two formalisms involves a gauge-
transformation and field-redefinitions.7 Here we just quote the result that links this for-
malism with the fields used in the rest of the paper. Writing the axion-dilaton τ and the
NSNS and RR 3-forms H(3) and F(3) as

τ ≡ C(0) + ie−Φ , F(3) = dC(2) − C(0)dB(2) , H(3) = dB(2) , (B.7)

for the 3-form G we have8 [22]

G = ieΦ/2
(
τdB − dC(2)

)
= −

(
e−Φ/2H(3) + ieΦ/2F(3)

)
, (B.8)

and similarly

P =
i

2
eΦdτ , Q = −1

2
eΦdC(0) . (B.9)

In terms of these fields, the equations of motion (B.1)–(B.3) become [7] (to linear order in
the fermions)

0 = d(eΦ ∗ F(3))− F(5) ∧H(3) (B.10)

0 = d(e2Φ ∗ F(1)) + eΦH(3) ∧ ∗F(3) (B.11)

0 = d(e−Φ ∗H(3))− eΦF(1) ∧ ∗F(3) − F(3) ∧ F(5) (B.12)

0 = d ∗ dΦ− e2ΦF(1) ∧ ∗F(1) +
1
2
e−ΦH(3) ∧ ∗H(3) −

1
2
eΦF(3) ∧ ∗F(3) (B.13)

RMN =
1
2
e2Φ∇MC(0)∇NC(0) +

1
2
∇MΦ∇NΦ +

1
96
FMP1P2P3P4F

P1P2P3P4
N

+
1
4
e−Φ

(
HM

P1P2HNP1P2 −
1
12
gMNH

P1P2P3HP1P2P3

)
+

1
4
eΦ

(
FM

P1P2FNP1P2 −
1
12
gMNF

P1P2P3FP1P2P3

)
(B.14)

7The gauge transformation has the form P → e2iθP , Q→ Q+ dθ, G→ e
i
2 θG, where θ is a τ -dependent

phase. These phases are then absorbed by a redefinition of the fermions. More details can be found

in [34, 35], for example.
8Note that our forms F(3) and G are related to the traditional string theory forms F(3)st = dC(2) and

Gst = F(3)st − τH(3) by F(3) = F(3)st − C(0)H(3) and G = −iGst/
√

Imτ . It’s not our fault.
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while the Bianchi identities (B.4)–(B.6) now read

dF(5) + F(3) ∧H(3) = 0 (B.15)

dF(3) + F(1) ∧H(3) = 0 (B.16)

dF(1) = 0 (B.17)

dH(3) = 0 . (B.18)

These identities are solved by writing F(5) = dC(4) − C(2) ∧ H(3), F(1) = dC(0), together
with H(3) = dB(2) and F(3) = dC(2) − C(0)dB(2) as in (B.7).

B.2 Fermionic content and equations of motion

Our conventions for the type IIB fermionic sector are based on those of [34, 36], with slight
modifications needed to conform with our bosonic conventions. The type IIB fermionic
content consists of a chiral dilatino λ and a chiral gravitino Ψ, with equations of motion
given by (to linear order in the fermions)

D̂/λ =
i

8
F/ (5)λ+O(Ψ2) (B.19)

ΓABCD̂BΨC = −1
8
G/ ∗ΓAλ+

1
2
P/ ΓAλc +O(Ψ3) (B.20)

Here, D̂ denotes the flux-dependent supercovariant derivative, which acts as follows:

D̂/λ =
(
/̂∇− 3i

2
/Q

)
λ− 1

4
ΓAG/ΨA − ΓAP/Ψc

A (B.21)

D̂BΨC =
(
∇̂B − i

2
QB

)
ΨC +

i

16
F/ (5)ΓBΨC − 1

16
SBΨc

C , (B.22)

where ∇̂B denotes the ordinary 10-d spinor covariant derivative and we have defined

SB ≡ 1
6
(
ΓBDEFGDEF − 9ΓDEGBDE

)
. (B.23)

The gravitino and dilatino have opposite chirality in d = 10, and we choose Γ11ΨA =
−ΨA, Γ11λ = +λ. Since F(5) is self-dual, our conventions then imply F/ (5) = −Γ11F/ (5).
Thus, for any spinor ε satisfying Γ11ε = −ε we have F/ (5)ε = 0 and F/ (5)ΓAε = {F/ (5),ΓA}ε =
1
12F(5)ACDEFΓCDEF ε. The corresponding SUSY variations of the fermions read

δλ = P/ εc +
1
4
G/ ε (B.24)

δΨA =
(
∇̂A − i

2
QA

)
ε+

i

16
F/ (5)ΓAε−

1
16
SAε

c . (B.25)

C d = 5 equations of motion

In this appendix we present the dimensional reduction of the fermionic equations of motion
in full detail, and rewrite them in final form in terms of the fields (3.18)–(3.21) which possess
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diagonal kinetic terms in the effective action. In the calculations below we encounter a
number of expressions involving ε± that need evaluation. We collect them here:

J/ ε+ =
1
2
iQε+ = 2iε+ J/ ε− =

1
2
iQε− = −2iε− (C.1)

Ω/ ε−e−
3
2
iχ = 4ε+e

3
2
iχ Ω/ ε+e

3
2
iχ = −4ε−e−

3
2
iχ (C.2)

γαγαε+ = 4ε+ γαJ/ γαε+ = γᾱΩ/ γᾱε− = 0 . (C.3)

C.1 Reduction of the dilatino equation of motion

We begin by performing the reduction of the D = 10 equation of motion for the dilatino,
as given in (B.19).

C.1.1 Derivative operator

We first reduce the 10-d derivative operator ∇̂A−(3i/2)QA acting on the dilatino. Defining

eW
(
∇̂/ − 3i

2
Q/

)
λ ≡ L+

λ ⊗ ε+e
3i
2
χ ⊗ u− + L−λ ⊗ ε−e−

3i
2
χ ⊗ u− (C.4)

we find

L±λ =
(
D/+

1
2
∂/W +

3
4
ieφ(∂/a)

)
λ(±) +

1
4
iΣ−2F/2λ

(±) ∓
(
e−4UΣ−1 +

3
2

Σ2

)
λ(±) , (C.5)

where D/λ(±) =
(∇/ ∓ 3

2 iA/1

)
λ(±) is the gauge-covariant five-dimensional connection acting

on λ(±).

C.1.2 Couplings

We now reduce the various terms involving the couplings of the dilatino, including the
flux-dependent terms in the supercovariant derivative. Defining

eW
(
i

8
F/ (5)λ+

1
4

ΓAG/ΨA

)
≡ R+

1λ ⊗ ε+e
3i
2
χ ⊗ u− +R−1λ ⊗ ε−e−

3i
2
χ ⊗ u− (C.6)

we find

R(±)
1λ = eZ+4Wλ(±) − 1

2
ie−4U /K1λ

(±) ∓ 1
2
iΣ /K2λ

(±) ∓ Σ/L(±)
2 λ(∓)

− 1
4
iγa/G3ψ

(±)
a − 1

4
γa/G2ψ

(±)
a +

1
4
/G3

(
ϕ(±) + 4ρ(±)

)
− 1

4
i/G2

(
ϕ(±) − 4ρ(±)

)
± 1

2
γa/G1ψ

(±)
a ± 1

2
i/G1ϕ

(±) ∓ iγa /N (±)
1 ψ(∓)

a ± /N (±)
1 ϕ(∓)

∓ γaN (±)
0 ψ(∓)

a ∓ iN (±)
0 ϕ(∓) , (C.7)

where we have introduced the notation /L
(+)
2 = (1/2!)L2 abγ

ab and /L
(−)
2 = (1/2!)L∗2 abγ

ab.
Similarly, defining

eWΓAP/Ψc
A ≡ R+

2λ ⊗ ε+e
3i
2
χ ⊗ u− +R−2λ ⊗ ε−e−

3i
2
χ ⊗ u− (C.8)
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we obtain

R(±)
2λ =± P/ ψ(∓)c

a ± iP/
(

4ρ(∓)c + ϕ(∓)c
)
. (C.9)

where, in a slight abuse of notation, P/ = (1/2)
(
∂/φ+ ieφ∂/a

)
when appearing in 5-d equa-

tions. In terms of the quantities computed above, the 10-d dilatino equation reduces to
two equations for the five-dimensional fields, given by

L(±)
λ −R(±)

1λ −R(±)
2λ = 0 . (C.10)

C.2 Reduction of the gravitino equation of motion

We now reduce the equation of motion for the D = 10 gravitino, as given in (B.20).

C.2.1 Derivative operator

Here we define

eWΓaBC
(
∇̂B − i

2
QB

)
ΨC = L(+)a ⊗ ε+e

3i
2
χ ⊗ u+ + L(−)a ⊗ ε−e− 3i

2
χ ⊗ u+ (C.11)

eW σ̃2ΓαΓαBC
(
∇̂B − i

2
QB

)
ΨC = L(+)

base ⊗ ε+e
3i
2
χ ⊗ u+ + L(−)

base ⊗ ε−e−
3i
2
χ ⊗ u+ (C.12)

eWΓfBC

(
∇̂B − i

2
QB

)
ΨC = L(+)

f ⊗ ε+e
3i
2
χ ⊗ u+ + L(−)

f ⊗ ε−e− 3i
2
χ ⊗ u+ (C.13)

where σ̃2 ≡ 14 ⊗ 14 ⊗ σ2. Then, for the components of the derivative operator in the
external manifold directions we find

L(±)a = γabc
(
Db +

1
2
∂bW +

1
4
ieφ(∂ba)

)
ψ(±)
c

− 1
4
iΣ−2γ[cF/2γ

a]ψ(±)
c ∓

(
Σ−1e−4U +

3
2

Σ2

)
γabψ

(±)
b

− 4iγab
[
Db +

1
2
∂bW +

1
4
ieφ(∂ba)

]
ρ(±) − i(Σ−1∂/Σ)γaρ(±) + 4i(∂/U)γaρ(±)

± 2i
(
3Σ2 + Σ−1e−4U

)
γaρ(±) − 1

2
Σ−2F2 bdγ

bγaγdρ(±)

− iγab
[
Db +

1
2
∂bW +

1
4
ieφ(∂ba)

]
ϕ(±) − i(Σ−1∂/Σ)γaϕ(±)

± 2iΣ−1e−4Uγaϕ(±) +
1
4

Σ−2F2 bcγ
cγabϕ(±) . (C.14)

Similarly, the components in the direction of the KE base yield

L(±)
base = − 4iγab

[
Da +

1
2
∂aW +

1
4
ieφ(∂aa)

]
ψ

(±)
b + iγb(Σ−1∂/Σ)ψ(±)

b − 4iγb(∂/U)ψ(±)
b

+
1
2

Σ−2F2 daγ
aγbγdψ

(±)
b ± 2i

(
Σ−1e−4U + 3Σ2

)
γbψ

(±)
b

− 12
[
D/+

1
2

(∂/W ) +
1
4
ieφ(∂/a)

]
ρ(±) ± 2

(
2Σ−1e−4U + 9Σ2

)
ρ(±) − 3iΣ−2F/2ρ

(±)

− 4
[
D/+

1
2
∂/W +

1
4
ieφ(∂/a)− 3

4
(Σ−1∂/Σ)− (∂/U)

]
ϕ(±)

± 2Σ−1e−4Uϕ(±) − 2iΣ−2F/2ϕ
(±) . (C.15)
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Finally, for the fiber component of the derivative operator we obtain

L(±)
f =− iγab

[
Da +

1
2
∂aW +

1
4
ieφ(∂aa)

]
ψ

(±)
b + iγb(Σ−1∂/Σ)ψ(±)

b

± 2iΣ−1e−4Uγbψ
(±)
b +

1
4

Σ−2F2 daγ
abγdψ

(±)
b

− 4
[
D/+

1
2
∂/W +

1
4
ieφ(∂/a) +

3
4

(Σ−1∂/Σ) + ∂/U

]
ρ(±)

± 2Σ−1e−4U
(

2ϕ(±) + ρ(±)
)
− iF/2Σ−2

(
ϕ(±) + 2ρ(±)

)
. (C.16)

C.2.2 Couplings

Next, define

eW
(
−1

8
G/ ∗Γaλ− i

16
ΓaBCF/ (5)ΓBΨC

)
= R(+)a

1 ⊗ ε+e
3i
2
χ ⊗ u+

+R(−)a
1 ⊗ ε−e− 3i

2
χ ⊗ u+ (C.17)

eW
(
−1

8
σ̃2ΓαG/ ∗Γαλ− i

16
σ̃2ΓαΓαBCF/ (5)ΓBΨC

)
= R(+)

1 base ⊗ ε+e
3i
2
χ ⊗ u+

+R(−)
1 base ⊗ ε−e−

3i
2
χ ⊗ u+ (C.18)

eW
(
−1

8
G/ ∗Γfλ− i

16
ΓfBCF/ (5)ΓBΨC

)
= R(+)

1 f ⊗ ε+e
3i
2
χ ⊗ u+

+R(−)
1 f ⊗ ε−e−

3i
2
χ ⊗ u+ . (C.19)

We find

R(±)a
1 =

(
−1

8
i/̃G3 ±

1
4
/̃G1 −

1
8
/̃G2

)
γaλ(±) ∓

(
1
2
i /̃N (±)

1 +
1
2
Ñ (±)

0

)
γaλ(∓)

+ eZ+4Wγbaψ
(±)
b −

1
2
ie−4Uγ[b /K1γ

a]ψ
(±)
b +e−4U{ /K1, γ

a}ρ(±)− 1
4
e−4U [ /K1, γ

a]ϕ(±)

∓ 1
2
iΣγ[b /K2γ

a]ψ
(±)
b ∓ Σγ[b/L

(±)
2 γa]ψ

(∓)
b − 1

4
Σ
(
±[ /K2, γ

a]ϕ(±) ∓ 2i[/L(±)
2 , γa]ϕ(∓)

)
+ Σγa

(
± /K2ρ

(±) ∓ 2i/L(±)
2 ρ(∓)

)
(C.20)

R(±)
1 base =

(
1
2
/̃G3+

i

2
/̃G2

)
λ(±)+e−4U{γb, /K1}ψ(±)

b −6ie−4U /K1ρ
(±)+4eZ+4W (ϕ(±)+3ρ(±))

− Σ
[
±i /K2

(
iγaψ(±)

a + ϕ(±) + 2ρ(±)
)
± 2/L(±)

2

(
iγaψ(∓)

a + ϕ(∓) + 2ρ(∓)
)]

(C.21)

R(±)
1 f =

(
1
8
/̃G3 ±

1
4
i/̃G1 −

1
8
i/̃G2

)
λ(±) ±

(
1
2
/̃N (±)

1 − 1
2
iÑ (±)

0

)
λ(∓)

− 1
4
e−4U [γb, /K1]ψ(±)

b ∓ 1
4

Σ[γb, /K2]ψ(±)
b ± 1

2
iΣ[γb, /L(±)

2 ]ψ(∓)
b

+ 4eZ+4Wρ(±) ∓ iΣ /K2ρ
(±) ∓ 2Σ/L(±)

2 ρ(∓) . (C.22)
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We now reduce the couplings to the charge conjugate spinors in the gravitino equation.
We write

1
2
eWP/ Γaλc +

1
16
eWΓaBCSBΨc

C = R(+)a
2 ⊗ ε+e

3i
2
χ ⊗ u+

+R(−)a
2 ⊗ ε−e− 3i

2
χ ⊗ u+ (C.23)

1
2
eW σ̃2ΓαP/ Γαλc +

1
16
eW σ̃2ΓαΓαBCSBΨc

C = R(+)
2 base ⊗ ε+e

3i
2
χ ⊗ u+

+R(−)
2 base ⊗ ε−e−

3i
2
χ ⊗ u+ (C.24)

1
2
eWP/ Γfλc +

1
16
eWΓfBCSBΨc

C = R(+)
2 f ⊗ ε+e

3i
2
χ ⊗ u+

+R(−)
2 f ⊗ ε−e−

3i
2
χ ⊗ u+ (C.25)

obtaining

R(±)a
2 = ± 1

2
P/ γaλ(±)c ± 1

8
iG ebc

3

(
δdeγ

aγbc − δaeγdγbc −
1
3
γadγebc

)
ψ

(∓)c
d

± 1
4
G eb

2

(
δdeγ

aγb − δaeγdγb −
1
2
γadγeb

)
ψ

(∓)c
d

− 1
2
G1eγ

edaψ
(∓)c
d − iN (±)

1e γedaψ
(±)c
d +N (±)

0 γabψ
(±)c
b

± 1
24
G3ebcγ

aebc
(
ϕ(∓)c + 4ρ(∓)c

)
∓ 1

8
iG2ebγ

aeb
(
ϕ(∓)c − 4ρ(∓)c

)
± 1

4
iγa/G2ϕ

(∓)c − 1
2
iG1bγ

baϕ(∓)c + iγa/G1ρ
(∓)c

+N (±)
1b γbaϕ(±)c − 2γa /N (±)

1 ρ(±)c − 2ieγaN (±)
0 ρ(±)c , (C.26)

R(±)
2 base = ± 2iP/ λ(±)c + 2i /N (±)

1

(
ϕ(±)c + 2ρ(±)c

)
− 2N (±)

0

(
ϕ(±)c + 2ρ(±)c

)
+ /G1

(
ϕ(∓)c + 2ρ(∓)c

)
∓ i/G3

(
ϕ(∓)c + 3ρ(∓)c

)
− 2iN (±)

0 γdψ
(±)c
d − 2 /N (±)

1 γdψ
(±)c
d + i/G1γ

dψ
(∓)c
d

∓ 1
6
G3ebcγ

debcψ
(∓)c
d ± 1

2
iG2ebγ

debψ
(∓)c
d (C.27)

and

R(±)
2 f = ± i1

2
P/ λ(±)c ∓ 1

24
G3ebcγ

debcψ
(∓)c
d ∓ 1

4
iG db

2 γbψ
(∓)c
d +

1
2
iG1eγ

edψ
(∓)c
d

−N (±)
1e γedψ

(±)c
d ∓ i/G3ρ

(∓)c + /G1ρ
(∓)c + 2i /N (±)

1 ρ(±)c − 2N (±)
0 ρ(±)c . (C.28)

In terms of the quantities computed above, the 10-d gravitino equation reduces to the
following set of equations for the five-dimensional fields:

0 = L(±)a −R(±)a
1 −R(±)a

2 (C.29)

0 = L(±)
base −R(±)

1 base −R(±)
2 base (C.30)

0 = L(±)
f −R(±)

1 f −R(±)
2 f . (C.31)
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Instead of working with the equations of motion given in this form, it is convenient to
rewrite them in terms of the fields (3.18)–(3.21) whose kinetic terms are diagonal. We do
so below.

C.3 Equations of motion in terms of diagonal fields

The d = 5 equations of motion for the diagonal fields (3.18)–(3.21) are given by

0 = L(±)

λ̃
−R(±)

1λ̃
−R(±)

2λ̃
(C.32)

0 = L(±)a
ζ −R(±)a

1 ζ −R(±)a
2 ζ (C.33)

0 = L(±)
η −R(±)

1 η −R(±)
2 η (C.34)

0 = L(±)
ξ −R(±)

1 ξ −R(±)
2 ξ (C.35)

Here,

L(±)

λ̃
= eW/2L(±)

λ (C.36)

= D/λ̃(±) +
1
4
iΣ−2F/2λ̃

(±) ∓
(
e−4UΣ−1 +

3
2

Σ2

)
λ̃(±) +

3
4
ieφ(∂/a)λ̃(±) (C.37)

where now D/λ̃(±) =
(∇/ ∓ 3i

2 A/
)
λ̃(±) and

R(±)

1λ̃
= eW/2R(±)

1λ (C.38)

=
(
eZ+4W − 1

2
ie−4U /K1 ∓

1
2
iΣ /K2

)
λ̃(±) ∓ Σ/L(±)

2 λ̃(∓)

+
(
−1

4
iγa/G3 −

1
4
γa/G2 ±

1
2
γa/G1

)
ζ(±)
a ∓

(
iγa /N (±)

1 + γaN (±)
0

)
ζ(∓)
a

+
(

1
6
/G3 −

1
6
i/G2

)
η(±) ∓ 4

3
iN (±)

0 η(∓) +
1
4

(
/G3 + i/G2 ∓ 2i/G1

)
ξ(±)

∓
(
/N (±)

1 + iN (±)
0

)
ξ(∓) (C.39)

Similarly,

R(±)

2λ̃
= eW/2R(±)

2λ = ±γaP/ ζ(∓)c
a . (C.40)

In the same way, for the ζ(±)
a equation of motion we find

L(±)a
ζ = eW/2L(±)a (C.41)

= γabc
[
Db +

1
4
ieφ(∂ba)

]
ζ(±)
c ∓

(
e−4UΣ−1 +

3
2

Σ2

)
γacζ(±)

c

− 1
4
iΣ−2γ[cF/2γ

a]ζ(±)
c +

[
i(∂/U)γa ∓ ie−4UΣ−1γa

]
ξ(±)

− 1
2
i(Σ−1∂/Σ)γaη(±) +

1
6

Σ−2F/2γ
aη(±) ± i

3
(
e−4UΣ−1 − 3Σ2

)
γaη(±) (C.42)

– 31 –



J
H
E
P
0
1
(
2
0
1
1
)
1
0
0

R(±)a
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1 (C.43)

=
(
−1

8
i/̃G3 −

1
8
/̃G2 ±

1
4
/̃G1

)
γaλ̃(±) ∓

(
1
2
i /̃N (±)

1 +
1
2
Ñ (±)

0

)
γaλ̃(∓)

+
(
eZ+4Wγca − 1

2
ie−4Uγ[c /K1γ

a] ∓ 1
2
iΣγ[c /K2γ

a]

)
ζ(±)
c ∓ Σγ[c/L

(±)
2 γa]ζ(∓)

c

+
(
−ieZ+4W +

1
2
e−4U /K1

)
γaξ(±) +

(
−2i

3
eZ+4W ∓ 1

6
Σ /K2

)
γaη(±)

± 1
3
iΣ/L(±)

2 γaη(∓) (C.44)

and

R(±)a
2 ζ = eW/2R(±)a

2 (C.45)

= ∓ 1
2
P/ γaλ̃(∓)c ± 1

8
iG ebc

3

[
1
3
γdaγebc + (δdeγ

a − δaeγd)γbc
]
ζ

(∓)c
d

±
(

1
8
G eb

2 γeγ
daγb ∓ 1

2
G1bγ

abd

)
ζ
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(
−iN (±)

1b γabd +N (±)
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ζ
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d
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(

1
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i

12
/G2
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2
3
iN (±)

0 γaη(±)c

∓ 1
8

(/G3 − i/G2 ∓ 2i/G1) γaξ(∓)c − 1
2

(
/N (±)

1 − iN (±)
0

)
γaξ(±)c . (C.46)

For the η(±) equation of motion we have

L(±)
η = eW/2

(
L(±)

f +
i

3
γaL(±)a

)
(C.47)

=
2
3

[
D/+

1
4
ieφ(∂/a)

]
η(±) +

(
− 5

18
iΣ−2F/2 ∓ 2

9
e−4UΣ−1 ± 5

3
Σ2
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η(±)
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[

1
3

Σ−2γcF/2 + iγc(Σ−1∂/Σ)± 2
3
ie−4UΣ−1γc ∓ 2iΣ2γc
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c

∓ 4
3
e−4UΣ−1ξ(±) (C.48)

R(±)
1η = eW/2

(
R±1 f +

i

3
γaR(±)a

1

)
(C.49)
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i/̃G2

)
λ̃(±) ∓ 4

3
iÑ (±)

0 λ̃(∓)

+
(
−4

3
ieZ+4Wγc ∓ 1

3
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(
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2 η(∓) (C.50)
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= ∓ 1
6
γd (/G3 + i/G2) ζ(∓)c
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4
3
iN (±)

0 γdζ
(±)c
d

± 1
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Finally, for the ξ(±) equation of motion we have

L(±)
ξ = eW/2

(
iγaL(±)a + L(±)

base − L(±)
f

)
(C.53)

= 2
[
D/+

1
4
ieφ(∂/a)

]
ξ(±) +
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iΣ−2F/2ξ

(±) ± 3
(
2e−4UΣ−1 − Σ2

)
ξ(±)

+
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]
ζ(±)
c ∓ 8

3
e−4UΣ−1η(±) (C.54)
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(
iγaR(±)a

1 +R(±)
1 base −R(±)

1 f
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(C.55)
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(
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/̃G3 +

1
2
i/̃G2 ∓ i/G1

)
λ̃(±) ∓
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2 /̃N (±)
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and
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2 +R(±)
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