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1 Introduction

Supersymmetric Yang-Mills theory (SYM) attracts broad interests as a candidate of the

physics beyond the standard model [1]. It is also a promising candidate for the nonpertur-

bative formulation of the superstring theory [2–7]. Although it is important to study its

nonperturbative properties for both applications, and one of the most successful nonpertur-

bative approaches for gauge theory is the lattice simulation, however, notorious difficulty of

the lattice SYM prevented it for long time. Sometime ago there appeared a breakthrough

for two-dimensional theories of extended supersymmetries [8–14], (see also [15] for a recent

review); the correct continuum limit is obtained without parameter fine tunings for most of

these models, at least at perturbative level.1 Furthermore it turned out that by combining

two-dimensional lattice with matrix model technique (fuzzy sphere) [19], 4d N = 4 theory

is constructed without relying on the parameter fine tunings to all order in perturbation

theory [20, 21]. (For other very elegant formulation in the planar limit, which preserves 16

supersymmetries manifestly, see [22–24]. This method is applicable to various kind of theo-

ries for which lattice and/or fuzzy sphere technique are not applicable [25, 26].) These for-

mulations provide robust ways to test the AdS5/CFT4 correspondence, the gauge/gravity

1There is a lattice formulation of 3d maximally supersymmetric Yang-Mills without fine tuning [13]. For

4d N = 1 pure supersymmetric Yang-Mills, the chiral symmetry guarantees supersymmetric continuum

limit. Recent results are found in [16–18].
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duality [6, 7] and matrix string conjecture [4, 5] at nonperturbative level. In one dimension,

such a program has been pursued extensively by using a non-lattice method [27] and the

gauge/gravity duality [6, 7] has been confirmed very precisely [28–32], including the stringy

α′ corrections [30, 32]. The lattice simulations are also applicable for this system and qual-

itatively consistent results have been obtained [33–35]. We can expect study of two and

four dimensional theories will provide even richer insights; in two dimensions simulations

in this context are already ongoing [36–38] and it is urgent to establish the validity of the

lattice models at nonperturbative level by detailed simulations.

However there is a possible obstacle for simulations: supersymmetric theories with

eight and sixteen supersymmetries suffer from the sign problem [39].2,3 On the other hand,

with four supersymmetries (i.e. 4d N = 1 pure SYM and its dimensional reductions), there

is no sign problem. It can easily be seen as follows. In Weyl notation, with an appropriate

choice of the gamma matrices, the Dirac operator is written as

D ≡ iσµDµ, (1.1)

where σ0 = −i12 and σi(i = 1, 2, 3) are Pauli matrices. By using σ2(iσµ)σ2 = (iσµ)∗ and

the fact that Dµ is real in adjoint representation, we obtain

σ2 /Dσ2 = D∗. (1.2)

Therefore, if ϕ is an eigenvector corresponding to an eigenvalue λ, σ2ϕ∗ is also an eigen-

vector, with eigenvalue λ∗. They are linearly independent and eigenvalues appear in a pair

(λ, λ∗). This assures the positivity of the determinant after removing λ = 0 modes.

At discretized level, positivity of the determinant can be lost. In zero dimension (ma-

trix model) [41], there is no sign problem, because there is no need for the regularization. In

1d theory and fuzzy sphere construction of three and four dimensional theories [22–24], by

using the momentum cutoff prescription [27] the determinant is positive even at discretized

level [42].

In lattice constructions of two-dimensional SYM, the determinant is in general complex

at discretized level. In Sugino’s model [9] for two-dimensional theory, however, the sign

problem disappears as one approaches to the continuum [43, 44]; that is, if one performs

the phase-quenched simulation, distribution of the phase factor of the determinant4 peaks

at 1 in the continuum limit. Therefore the phase quench approximation becomes exact at

continuum. In this case, in addition to the absence of sign, the agreements with analytic

calculations in small volume region have been observed as well [36] by using techniques

developed in [45]. Therefore the absence of the sign is the property of the correct continuum

limit, as expected. Numerical studies of this model can also be found in [46–48].

2In the case of maximally supersymmetric matrix quantum mechanics, agreement with the dual gravity

prescription has been observed by ignoring the phase of the Pfaffian, even when the sign fluctuates vio-

lently [29, 31]. It has also been observed that the Pfaffian is almost real positive for SU(2) [32]. It would

be nice to understand why it happens, but it is out of scope of the present paper.
3Even if there is a sign problem, measurement of the sign factor itself is interesting because it is related

to the Witten index with a suitable normalization [40].
4Strictly speaking, in Sugino model fermions are Majorana and hence we calculate the Pfaffian.

– 2 –



J
H
E
P
0
1
(
2
0
1
1
)
0
5
8

On the other hand, for other two-dimensional lattice models which are supposed to

have the same continuum limit, an existence of the sign problem has been reported [49,

50]. In Cohen-Kaplan-Katz-Unsal (CKKU) model, which is equivalent to a model by

D’Adda et.al. [14] with a specific choice of parameters, Giedt reported that the determinant

has a complex phase, and the phase fluctuates violently if one chooses random lattice

configurations [49]. However the importance sampling has not been performed in [49],

and hence this result has nothing to do with the continuum limit as the author remarked

correctly. This model was studied later with importance sampling in [50],5 where the

sign problem was reported as well. However, it is not clear whether it is a property of

the continuum, because they could not evaluate physical quantities because of the “sign

problem” and hence could not estimate how close to the continuum limit they have reached.

In this paper, we resolve the confusion mentioned above. We show the absence of sign

problem in the Sugino model and the CKKU model in the continuum limit. (In Sugino

model, the absence of sign has been explicitly reported for SU(2) theory in [43, 44]. For

N > 2 theory, we briefly checked but have not mentioned it in [36], because our emphasis

was put on other physical quantities. In this paper we show the detail for SU(N) with

N > 2, together with new data for SU(2).) The action in the continuum is obtained from

4d N = 1 SYM through the dimensional reduction, and is given by

S=
N

λ

∫ Lx

0
dx

∫ Ly

0
dy Tr

{

1

4
F 2

µν +
1

2
(DµXi)

2− 1

4
[Xi,Xj ]

2− 1

2
ψ̄ΓµDµψ−

i

2
ψ̄Γi[Xi, ψ]

}

,

(1.3)

where µ and ν run x and y, i and j run 1 and 2, and ΓI = (Γµ,Γi) are gamma matrices

in four dimensions. Xi are N × N hermitian matrices, ψα are N × N fermionic matrices

with a Majorana index α and the covariant derivative is given by Dµ = ∂µ − i[Aµ, · ]. The

only parameters of the model are the size of circles Lx and Ly. (Note that the coupling

constant can be absorbed by redefining the fields and coordinates. Therefore we take the

’t Hooft coupling λ to be 1. Then the strong coupling corresponds to the large volume.)

We study this system by using two lattice models (CKKU and Sugino) numerically and

show the absence of the sign problem. We evaluate expectation values of some physical

quantities and see that the results show nice agreements. Note that small volume behavior

of the Sugino model is consistent with known analytic estimates [36].

One obstacle for the simulation is the existence of the flat direction, along which two

scalar fieldsX1 and X2 commute. In contrary to a theory on R
1,3, there is no superselection

of the moduli parameter in this case. That is, eigenvalues of scalars are determined dy-

namically. Therefore, some mechanism which restrict eigenvalues to a finite distribution is

necessary for the stable simulation. In addition, to obtain an interesting dynamical system,

having a (small) finite region for the eigenvalues is important as well; if the eigenvalues of

the scalar spread so large, the theory would run into the abelian phase, which is just a free

5In [50], the bosonic fields are defined as ez where z is a complex field, and thus a natural way of

extracting physical quantities is different from the original CKKU model. For SU(N) gauge group as

in [50], this definition is different from a general complex field originally defined in [8]. We would like to

thank S. Catterall for detailed explanations on his work.
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theory.6 In this work, we introduce soft SUSY-breaking mass to scalar fields

µ2N

∫

d2x
∑

i=1,2

TrX2
i , (1.4)

so that the flat direction is lifted.7 It is crucial to control the flat direction for various

reasons. We have just mentioned two of them — stability of the simulation and interesting

non-abelian phase. There is one more; in order to guarantee the correct continuum limit,

the eigenvalue must be smaller than the cut off scale ∼ 1/a. Especially in the CKKU

model, we can decompose the bosonic field to appear scalars X as a log of positive Hermi-

tian variables H [51],

H = exp(aX), (1.5)

where a is the lattice spacing. In order to obtain the tree level action, one has to assume

aX ≪ 1, expand it in powers of aX and neglect higher order terms. Therefore, unless aX ≪
1, one cannot get to the continuum limit even at tree level. Actually it turns out that one

of previous works, whose conclusion contradicts with ours, does not satisfy this condition.

This paper is organized as follows. In section 2 we study the CKKU model. We

introduce the model in section 2.1 and then consider a structure of the Dirac operator in

section 2.2. Then we show the absence of the sign problem in section 2.3. In section 3

we show the absence of the sign problem in Sugino model. Then in section 4 we confirm

that two models (CKKU and Sugino) converge to the same continuum limit. To our best

knowledge, this is the first result from the CKKU model in the continuum limit and shows

in fact we can take a supersymmetric continuum limit without any fine tunings. In section 5

we explain why previous works by other authors fail to capture the continuum physics.

2 CKKU model

In this section we study the CKKU model. In section 2.1 we introduce the model. Then

in section 2.2 we discuss the structure of light modes in the model, which is crucial for the

analysis of the sign problem shown in section 2.3.

2.1 The model

Here we consider the U(N) gauge group. Note that the U(1) part is decoupled in the

continuum limit and hence the physics is the same as SU(N) theory. The action is given by

S = Na2
∑

~n

Tr

{

1

2

(

x̄~n−x̂x~n−x̂ − x~nx̄~n + ȳ~n−ŷy~n−ŷ − y~nȳ~n

)2
+ 2|x~ny~n+x̂ − y~nx~n+ŷ|2

+
√

2 (α~nx̄~nλ~n − α~n−x̂λ~nx̄~n−x̂) +
√

2
(

β~nȳ~nλ~n − β~n−ŷλ~nȳ~n−ŷ

)

−
√

2
(

α~ny~n+x̂ξ~n − α~n+ŷξ~ny~n

)

+
√

2
(

β~nx~n+ŷξ~n − β~n+x̂ξ~nx~n

)

6Which phase is preferred is in fact a dynamical question. At large-N , the flat direction is lifted and the

system stays non-abelian phase; see [36]. This phase is an analogue of the black 1-brane solution in type

IIB supergravity.
7For 8 and 16 SUSY models, there exists SUSY-preserving mass deformation [20, 21].
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+a2µ2

(

x~nx̄~n − 1

2a2

)2

+ a2µ2

(

y~nȳ~n − 1

2a2

)2
}

+Na2
∑

~n

{

a2ν2

∣

∣

∣

∣

Tr(x~nx̄~n)

N
− 1

2a2

∣

∣

∣

∣

2

+ a2ν2

∣

∣

∣

∣

Tr(y~nȳ~n)

N
− 1

2a2

∣

∣

∣

∣

2
}

. (2.1)

Here x, y are N × N complex matrices and α, β, λ, ξ are N × N complex Grassmanian

matrices. They are related to the fields in the continuum by

x =
1

a
√

2
+
X1 + iA1√

2
, y =

1

a
√

2
+
X2 + iA2√

2
, (2.2)

ψ =

(

λ

ξ

)

, ψ̄ = i(α, β). (2.3)

The fermion is in the Weyl representation and is complex. Hence we study the determi-

nant of the Dirac operator rather than the Pfaffian. The Dirac operator D is obtained by

writing the fermion part as ψ̄jiαxDijαx,klβyψklβy, where suffixes i, j, k, l refer to color, α, β

to spinor and x, y to coordinate.

It is convenient to introduce (semi-)compact decomposition of the bosonic fields [51]

x =
1√
2a
U1H1, y =

1√
2a
U2H2, (2.4)

where Ui are unitary, Hi are Hermitian and positive definite, and

Ui = exp(iaAi), Hi = exp(aXi). (2.5)

From x and y, Hi can be obtained as

H1 =
√

2a2x†x, H2 =
√

2a2y†y. (2.6)

A mass parameter µ gives mass to U(N) scalar fields. The last two terms are not

present in the original proposal;8 it gives mass only to U(1) part of the scalar. As observed

in [28, 36], at large volume and/or with periodic boundary condition for the fermion, flat

direction in SU(N) sector is dynamically lifted and nonabelian phase (i.e. bound state of

scalar eigenvalues) becomes meta-stable. (It becomes stabler as N increases.) On the other

hand U(1) flat direction is never lifted, and in the CKKU model, it can destroy the lattice

structure. But to stabilize this U(1) flat direction we do not have to turn on the U(N) mass

µ; the U(1) mass ν is fine enough. Given that the U(1) sector is free and decouples from the

dynamics, nonzero value of ν does not affect the supersymmetry in the SU(N) sector in the

continuum limit. We explicitly confirm this statement numerically (See figures 5, 6, 7, 8).

Note that this decoupling contains a delicate issue. At lattice level, the U(1) and SU(N)

secters are not completely decoupled. In order to stabilize the lattice structure, the heavy

U(1) mass is suitable. However, if the U(1) mass is too large, the SUSY breaking effect in

the U(1) sector becomes large and it might be mediated through the lattice artifact to the

8We would like to thank O. Aharony for suggesting the use of U(1) mass term.
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SU(N) sector. Our numerical results support the decoupling in a wide range of the U(1)

mass. It would be nice if the decoupling could be explained analytically. We will show that

with non-zero value of ν the obtained values of the observables are the same as those from

SU(N) Sugino model (see section 4), which justifies the treatment of the U(1) mass term.

At finite volume and finite N we need nonzero µ to completely remove the instability, but

at large-N we can take µ = 0 and ν 6= 0 so that the supersymmetry in the SU(N) sector

is fully restored already at finite volume. It enables one to study interesting finite-volume

physics like black hole/black string phase transition [52, 53].

2.2 Structure of light modes

At the classical vacuum of the U(N) theory, the Dirac operator has 2N2 fermion zero-

modes, which correspond to zero-momentum. Apart from the classical vacuum, 2(N2 − 1)

of them are lifted and there remain two zero-modes which correspond to the U(1) part. At

a discretized level, because of the special property of the CKKU model, only one of them

is exactly zero [49]. The other approaches to zero in the continuum limit. Let us call it

the pseudo zero-mode.

In our simulation, the phase quenched ensemble with det
√
MM † is used, where M =

iD. To avoid the exact zero-mode, we add a regulator term to MM † in the simulation,

MM † →MM † + ǫ1. (2.7)

In practice ǫ is fixed to be a small enough value (ǫ ∼ 10−6) compared to all nonzero

eigenvalues of MM †.

When we calculate the determinant, we remove the exact zero-mode and the pseudo

zero-mode by hand. (In practice we remove one exact zero eigenvalue and smallest nonzero

eigenvalue of the Dirac operator.) As we will see, removal of the pseudo zero-mode is

crucial to establishing the positivity of the determinant. The reason is simple — in the

continuum, the Dirac operator has positive determinant because its eigenvalues form pairs

(λ, λ∗) after removing zero-modes. The reason why we can remove this pseudo zero mode

is clear; it will decouple from the dynamics in any case. The corresponding zero-modes

which should be removed in the lattice simulation are the exact zero-mode and the pseudo

zero-mode. If the lattice artifact to zero-modes had a pair structure which keeps the pos-

itivity of the determinant we would not need to remove these two modes. However, phase

of the pseudo zero-mode fluctuates violently and it dominates the fluctuation of the phase

of the determinant because pseudo zero-mode does not appear in a pair; without removing

it the phase of the determinant becomes completely random, just because the phase of the

pseudo zero-mode is random.

We numerically calculated the eigenvalues and the determinant of iD. We observed

that at very small lattice spacing, the other 2(N2 − 1) light modes have a pair structure

(λ,−λ∗), which is exactly expected from the continuum argument.

2.3 Absence of the sign problem

As we have explained, it is important to control the flat direction in order to study contin-

uum physics. In figure 1 we show histories of the extent of the scalar fields in the lattice

– 6 –
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Figure 1. [CKKU] History of the average scalar extent, in the lattice unit (left) and in the physical

unit (right). At each sweep the average over x and i of
√

Tr(aXi(x))2/N (a contraction w.r.t. i

is not taken), where aXi ≡ logHi, is plotted. Clear convergence as ∼ a in the left panel, which

corresponds to fixed physical extent of the scalar in the right panel, can be seen. The physical volume

is L = 1.0, the U(N) mass is µ = 1.0 and the U(1) mass is ν = 5.0. The gauge group is U(2).

unit (left) and in the physical unit (right). When the extent is close to the cutoff scale, 1 in

the lattice unit, the simulation is not reliable. As we can see from the left panel of figure 1,

at the physical volume L = 1.0, the U(N) mass µ = 1.0 and the U(1) mass ν = 5.0, scalars

take sufficiently small values, which shows that the flat direction is well under control to

guarantee the correct continuum limit. Thus there is no instability caused by a lattice

artifact. Moreover the scalar fields stay finite in physical unit (the right panel). That is,

this lattice model describes a system without the flat direction in the continuum limit. The

obtained continuum system has no instability along the flat direction. It is expected of

course, because we added a mass term. Note that if the scalar converged in the lattice unit

but diverged in physical unit we would obtain a continuum limit with flat direction, which is

just a free theory in the Abelian phase. As the mass is decreased, the flat direction emerges

gradually. In figure 2 we show the histories at L = 0.5 with a few values of µ. With 8 × 8

(a = 0.0625) lattice the fluctuation is not violent even at µ = 0.2 (the left panel). As one

can easily imagine, with smaller lattice the instability — caused by the lattice artifact —

appears more easily; see the right panel. This plot uses the same physical parameters as the

left panel, but a smaller lattice. Note that for the smaller lattice (i.e. larger lattice spacing)

more spikes appear at µ = 0.2, which is a signal of the instability. The reason is obvious —

with smaller µ the extent of the scalar in physical unit is larger, and to make it to be small

in lattice unit lattice spacing must be smaller. By extrapolating to µ = 0 by using data

from stable region, we obtain a finite extent of the scalar (figure 3; here we have assumed a

simple linear extrapolation, based on the obtained plot). Therefore we can expect the phase

we are looking at is smoothly connected to the meta-stable non-abelian phase [27, 28, 36].

In the following, for all data we show, we have confirmed the simulation does not run

away to the flat direction.

Now we are ready to study the sign problem. As discussed in detail in appendix A, the

determinant of iD has a sign (−1)N−1, at least for the constant configurations. Therefore,

– 7 –
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Figure 2. [CKKU] History of the average scalar extent in the U(2) theory at L = 0.5, ν = 5.0 and

µ = 1.0, 0.5 and 0.2. At each sweep the average of
√

Tr(aXi(x))2/N is plotted. (left) 8 × 8 lattice,

even at µ = 0.2 the flat direction is under control. (right) 6 × 6 lattice, the flat direction appears

around µ = 0.2. Note the difference of the scales between the panels.
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Figure 3. [CKKU] Mass dependence of
〈
√

1

N
TrX2

i
(x)
〉

× (lattice spacing) in the U(2) CKKU

model. As in figures 1 and 2, a contraction w.r.t. i is not taken and an average over i and x is

taken. The lattice size is 8 × 8, the physical volume is 0.50 × 0.50 and the U(1) mass is ν = 5.0.

throughout this section, we multiply (−1)N−1 to the phase factor of the determinant so

that it localizes around +1.

In short, what happens both in the CKKU and Sugino is

• For fixed lattice spacing, the phase fluctuation becomes smaller at smaller volume

and/or smaller N .

• For fixed N and fixed volume, the phase disappears in the continuum limit (small

lattice spacing).

Let us start with the U(2) theory. In figure 4 we have shown how the distributions of

the argument of the determinant peaks to 0. In each panel, the physical volume is fixed and

the number of sites is changed. There is a clear tendency that the peak becomes sharper

as one goes closer to the continuum.

In order to justify our treatment of the U(1) mass, we have checked the U(1) mass

dependence of the Wilson loop (figure 5), the norm of the SU(N) part of scalar (figure 6),
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Figure 4. [CKKU] Distribution of the argument of the determinant in U(2) theory. The U(N) mass

is µ = 1.0 and the U(1) mass is ν = 5.0. The physical volume is L = 0.5 (left) and L = 0.75 (right).
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Figure 5. [CKKU] The U(1) mass dependence of the Wilson loop in the U(2) CKKU model. The

U(N) mass is fixed to µ = 1.0 and the physical volume is fixed to 1.0 × 1.0.

the distribution of the argument of the determinant (figure 7) and its cosine (figure 8).

One can see that there is almost no U(1) mass dependence.

In figure 9 we have plotted the phase distribution at various values of the U(N) mass

µ, while other parameters are fixed. It turns out that the µ-dependence is small.

In figure 10 we plot the phase distribution in the U(3) theory. The distribution is

broader compared to the U(2) case, but peaks around 0 in the continuum limit.

In figure 11 we plot the real part of the phase. It is clearly seen that it approaches to

1 as lattice spacing becomes small for each physical volume. The scalar mass dependence

of the real part is plotted in figure 12, which shows almost no dependence. The detailed

values are listed in tables 1, 2 and 3.

3 Absence of the sign problem in Sugino model

In this section, we study the Sugino model9 and observe the argument of the Pfaffian of

the Dirac operator. As before, we use the scalar mass term to regularize the flat direction

9See appendix B for the details of the model.
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Figure 6. [CKKU] The U(1) mass dependence of
〈
√

1

N
TrX2

i
(x)
〉

× (lattice spacing) in the U(2)

CKKU model. As in figures 1 and others, a contraction w.r.t. i is not taken and an average over i

and x is taken. The U(N) mass is fixed to µ = 1.0 and the physical volume is fixed to 1.0 × 1.0.
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Figure 7. [CKKU] The distribution of the argument of the determinant in the U(2) CKKU model,

with various values of the U(1) mass ν. The left panel is for 4 × 4 lattice and the right is for 8× 8

lattice. The U(N) mass is fixed to µ = 1.0 and the physical volume is fixed to 1.0 × 1.0. A factor

(−1)N−1 is multiplied.

of the potential. As shown in [36], we have checked that the scalar eigenvalues remain close

enough to the origin. Therefore we are observing the non-abelian phase, and at the same

time, can avoid an unphysical vacuum with large scalar eigenvalues of the cutoff scale. The

configurations for N = 2 is taken in this work, while those for N = 3, 4, 5 are taken from

the previous work [36].

Let us start with SU(2). In figure 13, we plot the distribution of the argument of the

Pfaffian for fixed physical volume on the left panel. The peak around 0 becomes sharper as

we go close to the continuum. On the right panel, the scalar mass dependence is plotted.

Heavier mass gives slightly shaper peak around 0, but the mass-dependence is small. The

average of the real part of the Pfaffian phase factor is plotted in figure 14, which shows

clear convergence to 1 as the lattice spacing becomes small. (Note that SU(2) case in the

plot corresponds to the continuum limit, which uses the fixed volume.) See also figure 12

for the scalar mass dependence.
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Figure 8. [CKKU] The expectation value of real part of the determinant phase factor vs. the U(1)

mass ν, in the U(2) CKKU model. The U(N) mass is fixed to µ = 1.0 and the physical volume is

fixed to 1.0 × 1.0. A factor (−1)N−1 is multiplied.
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Figure 9. [CKKU] The scalar mass dependence of the argument of the determinant in the U(2)

theory. The lattice size is 6× 6, the physical volume is fixed to 0.5× 0.5. The U(N) mass is varied

while the U(1) mass is fixed to be ν = 5.0.
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Figure 10. [CKKU] The argument of the determinant in the U(3) theory. The physical volume is

the L = 1.00, the U(N) mass is µ = 1.0 and the U(1) mass is ν = 5.0.
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Figure 11. [CKKU] The expectation value of the real part of the determinant phase factor vs. the

lattice spacing. A factor (−)N−1 is multiplied. µ = 1.0, ν = 5.0.
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Figure 12. [CKKU and Sugino] The scalar mass µ dependences of the real part of the phase factor

in the SU(2) theory (Sugino model, 4× 4 lattice) and the U(2) theory (CKKU model, 6× 6 lattice

and ν = 5.0). The physical volume is 0.5 × 0.5 for both cases.

In figure 15, we plot the lattice spacing dependence for the SU(3) theory on the left

panel. The peak becomes sharper as we go closer to the continuum. On the right panel, we

show that the phase distribution with fixed lattice size 4 × 4. The peak becomes sharper

at smaller volume (or equivalently at smaller lattice spacing).

The dependence on N is plotted in figure 16. As N becomes large, the distribution

spreads. This can be also seen in figure 14, where the lattice spacing dependence of the

real part of the phase factor is plotted for N = 2, 3 and 5. The smaller the lattice spacing

is, the closer the real part to 1. And larger N shows slower approach to 1.

The results are listed in terms of the real part of the phase factor in tables 4 and 5.

4 Comparison of the CKKU model and the Sugino model

In order to confirm that our simulation captures the continuum physics, we compare the

CKKU model and the Sugino model. In the latter, detailed studies have been performed;

it correctly reproduces analytic results in continuum [36] and also restoration of the full su-

– 12 –



J
H
E
P
0
1
(
2
0
1
1
)
0
5
8

N L Nx = Ny Real part of the phase factor

2 0.50 4 0.926(8)

0.50 6 0.948(8)

0.50 8 0.974(5)

0.75 4 0.896(9)

0.75 6 0.919(8)

0.75 8 0.935(8)

1.00 4 0.807(13)

1.00 6 0.908(8)

1.00 8 0.907(9)

3 1.00 4 0.748(14)

1.00 5 0.771(20)

1.00 6 0.813(18)

Table 1. [CKKU] The real part of the phase factor in the U(N) theory. The U(N) mass and the

U(1) mass are fixed to µ = 1.0 and ν = 0.5, respectively.

N µ Real part of the phase factor

2 0.3 0.943(7)

0.4 0.950(6)

0.5 0.945(7)

0.6 0.958(6)

0.7 0.946(8)

0.8 0.953(7)

0.9 0.965(6)

1.0 0.948(8)

Table 2. [CKKU] The real part of the phase factor in the U(2) theory. The physical volume is

fixed to be 0.5 × 0.5 and the lattice size is 6 × 6. The U(1) mass is fixed to ν = 5.0.

persymmetry has been confirmed [54]. Here we compare the simulation result of the CKKU

model with the one of the Sugino model with periodic boundary condition for fermions.

Because the simulation of Sugino model was performed with SU(N) gauge group while

for the CKKU model gauge group was chosen to be U(N), we compare the absolute value

of the Wilson loop W = 1
N

Tr ei
H

dxAx , from which the U(1) part decouples. As can be seen

from figure 17, two models give the same result in the continuum limit. We also compare

the size of the SU(N) part of the scalar fields (figure 18). Two models agree reasonably

well with each other. Therefore we conclude that the both models converge to the same

continuum limit as expected.
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N ν Real part of the phase factor

Nx = Ny = 4 Nx = Ny = 8

2 0.0 0.709(16) 0.897(10)

0.2 0.694(16) 0.893(10)

0.4 0.692(16) 0.906(09)

0.6 0.710(16) 0.911(08)

0.8 0.726(15) 0.908(09)

1.0 0.740(15) 0.911(08)

5.0 0.807(13) 0.910(09)

10.0 0.803(13) 0.913(09)

50.0 0.823(13) 0.902(10)

Table 3. [CKKU] The real part of the phase factor in the U(2) theory, with various values of U(1)

mass ν. The physical volume is fixed to be 0.5 × 0.5 and the lattice size is 4 × 4 and 8 × 8. The

U(N) mass is fixed to µ = 1.0.
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Figure 13. [Sugino] The argument of the Pfaffian for the SU(2) case. The physical volume is fixed

to 0.5 × 0.5. The left panel is with various lattice spacings and the right is with various scalar

masses µ.

Before concluding this section, let us comment on the flat direction. In [36] it has been

shown that the flat direction is lifted dynamically at large-N , both in the continuum theory

and in the Sugino model, and the Sugino model converges to the correct supersymmetric

continuum limit. In this section we have seen the CKKU model converges to the same limit

as well, and hence we can expect the same uplift of the flat direction in the CKKU model.

5 Why was a “sign problem” observed in previous works?

In [49] it has been pointed out that the sign of the fermion determinant of N = (2, 2)

CKKU model fluctuates violently if one chooses randomly generated lattice field configu-

rations. However, as correctly argued in [49], it does not mean a problem in the continuum
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Figure 14. [Sugino] The real part of the phase factor in the SU(2), SU(3) and SU(5) theories, with

the physical volume 0.236 × 0.236–1.414× 1.414.
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Figure 15. [Sugino] The argument of the Pfaffian in the SU(3) theory. The scalar mass is µ = 0.20.

The left panel is for a fixed volume 0.707×0.707 and thus different lattice spacings. The right panel

is for a fixed 4 × 4 lattice with various physical volumes (thus various lattice spacings).
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Figure 16. [Sugino] The argument of the Pfaffian in the SU(3), SU(4) and SU(5) theories. The

lattice size is 4 × 4 and the physical volume is 0.707× 0.707.
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N Nx = Ny scalar mass µ Real part of the phase factor

2 2 0.2 0.907(4)

3 0.2 0.933(3)

4 0.2 0.953(2)

4 0.3 0.958(2)

4 0.4 0.958(2)

4 0.5 0.968(2)

Table 4. [Sugino] The real part of the phase factor in the SU(2) theory. The physical volume is

fixed to be 0.5 × 0.5.

N L Nx = Ny Real part of the phase factor

3 0.236 4 0.950(3)

0.354 4 0.922(4)

0.707 4 0.857(5)

0.707 5 0.891(14)

0.707 6 0.935(7)

1.414 4 0.742(7)

1.414 6 0.822(14)

4 0.707 4 0.788(21)

5 0.354 4 0.82(3)

0.707 4 0.72(4)

1.414 4 0.42(5)

Table 5. [Sugino] The real part of the phase factor in the SU(3), SU(4) and SU(5) theories. The

scalar mass is µ = 0.2.
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Figure 17. [CKKU and Sugino] The expectation value of the Wilson loop 〈|W |〉 at µ = 1.0 and

ν = 5.0. The extrapolation to the continuum limit has been performed. The gauge group is U(2)

and SU(2), respectively.
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Figure 18. [CKKU and Sugino] The extent of the scalar
√

Tr(Xi(x))2/N (contraction w.r.t i is

not taken). The masses are µ = 1.0 (Sugino and CKKU) and ν = 5.0 (CKKU). The extrapolation

to the continuum limit has been performed. For CKKU, only the SU(N) part is plotted. The gauge

group is U(2) and SU(2), respectively.

limit — randomly generated configurations are usually measure zero in the path integral,

and hence it is necessary to study the distribution of the phase in the phase quenched

simulation. If the distribution peaks around one (i.e. determinant is real positive) in the

continuum limit, the sign problem does not exist. More crucial thing is the treatment of

the pseudo zero-mode. As already mentioned in [49], removing only the exact zero-mode

leads to the fluctuation of the phase factor. The pseudo zero-mode, which should give

zero eigenvalue and should be decoupled in the continuum limit, gives non-zero eigenvalue

due to the lattice artifact.10 Since what we want to extract from the lattice simulation is

the continuum limit, we must remove a contribution from the pseudo zero-mode when we

calculate the determinant. Then we obtain the correct positive determinant.

Next let us consider a result from an importance sampling in N = (2, 2) theory [15, 50].

According to the plot in the paper, the distribution of the scalar eigenvalues is large; the

tail of the distribution reaches to (lattice spacing)−1. However, in order for the lattice

considered there to converge to the continuum limit at tree level, the scalar eigenvalues

must be of order (lattice spacing)0. Therefore it is plausible that the simulation does

not capture the continuum physics.11 In a simulation of the maximally supersymmetric

theory reported in [50] the distribution of the scalar eigenvalues is narrower compared to

N = (2, 2) theory, but it is still wide (larger than the size of fluctuation in 4 × 4 lattice in

figure 1). Therefore it is difficult to obtain robust statements for the continuum limit unless

studying smaller lattice spacing using bigger lattice. Another subtlety is that in [50] the

system is projected to SU(N) from U(N). Although it is reported that there is no effect

to the supersymmetry in this projection, it might have affected to the sign of determinant.

One interesting observation in [50] for the maximally supersymmetric theory is that

10As discussed in [49], one can regard this artifact is caused by the orbifold projection, which does not

commute with manipulation needed to prove the positivity of the determinant.
11It has been remarked that large phase fluctuation arise when scalars take large expectation values [55],

and that this “fluctuation of sign” suggests the SUSY breaking because it can make the Witten index

vanish. However, if such configuration corresponded to continuum theory, it must be an abelian phase,

which does not have any dynamics, and hence the supersymmetry cannot be broken.
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the phase is close to one when the gauge group is SU(2). The same behavior is observed

also in one-dimensional theory [32]. In this case there is no apparent kinematic reason like

the pair structure of eigenvalues, and it is not clear if the absence of sign persists in the

large volume and/or in the continuum limits. However, if it survives to some extent, it

may allow detailed study of the SU(2) theory by phase-quench or reweighting.

In N = (4, 4) theory, it has been reported that a lattice model a la CKKU suffers

from the sign problem [56]. This 8 supercharge system is known to have the sign problem

in general so the result itself is reasonable. It is interesting to see whether the result

changes when pseudo zero-mode is removed, although we do not expect the pair structure

of eigenvalues in this theory. In addition, it is not clear whether the flat direction was

under control in [56], which is an important point to be studied.

6 Conclusion

In this paper we established the absence of the sign problem in 2d N = (2, 2) super Yang-

Mills theory on lattice. We studied two different lattice models: The Sugino model and

the Cohen-Kaplan-Katz-Unsal (CKKU) model. We have clarified the structure of the light

modes in the CKKU model and pointed out the importance of the removal of the pseudo

zero mode. We also confirmed that the both lattice models provide the same continuum

physics as expected.

As we pointed out in section 5, and also discussed in [36], in order to obtain correct

continuum limit it is crucial to control the scalar flat direction. From this point of view, it

is possible that some of the past simulations for two-dimensional super Yang-Mills theories

failed to capture the continuum physics. It is urgent to check whether the scalar flat

direction was under control.
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A An overall sign of the determinant of Dirac operator in the CKKU

model

Let us introduce the following notation,

V ab
1 (~n) =

√
2 a tr(Tax~nTb), (A.1)

V̄ ab
1 (~n) =

√
2 a tr(Tax̄~nTb), (A.2)
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V ab
2 (~n) =

√
2 a tr(Tay~nTb), (A.3)

V̄ ab
2 (~n) =

√
2 a tr(Taȳ~nTb), (A.4)

where Ta is a Hermitian gauge generator normalized as tr(TaTb) = δab. Vµ and V̄µ are

related by

V̄µ = (V ∗
µ )T = V †

µ . (A.5)

The fermionic part of the action is expressed as12

SF = i(αa
~n, β

a
~n)

(

Dab
~n~m|αλ D

ab
~n~m|αξ

Dab
~n~m|βλ Dab

~n~m|βξ

)(

λb
~m

ξb
~m

)

= i(αa
~n, β

a
~n)Dab

~n~m

(

λb
~m

ξb
~m

)

(A.6)

with

Dab
~n~m|α,λ = −i

(

δ~n,~mV̄1(~n) − δ~m,~n+1̂V
∗
1 (~n)

)ab

, (A.7)

Dab
~n~m|β,λ = −i

(

δ~n,~mV̄2(~n) − δ~m,~n+2̂V
∗
2 (~n)

)ab

, (A.8)

Dab
~n~m|α,ξ = −i

(

−δ~n,~mV2(~n+ 1̂) + δ~m,~n−2̂V̄
∗
2 (~n − 2̂)

)ab

, (A.9)

Dab
~n~m|β,ξ = −i

(

δ~n,~mV1(~n+ 2̂) − δ~m,~n−1̂V̄
∗
1 (~n− 1̂)

)ab

, (A.10)

where each of the fermion components is defined as

α~n = Taα
a
~n, etc. (A.11)

Assuming the bosonic fields are constants we obtain the momentum representation as

D(p) = −i
(

V̄1 − eiap1V ∗
1 −V2 + e−iap2 V̄ ∗

2

V̄2 − eiap2V ∗
2 V1 − e−iap1 V̄ ∗

1

)

. (A.12)

We further decompose it into

D(p) =

(

e−
iap1

2 0

0 e−
iap2

2

)

D′(p)

(

1 0

0 e
iap1

2
+

iap2
2

)

, (A.13)

where D′ has the same determinant as D. The explicit form of D′ is

D′(p) = −i
(

V1 e
−

iap1
2 − V ∗

1 e
iap1

2 −V2 e
iap2

2 + V ∗
2 e

−
iap2

2

V2 e
−

iap22
2 − V ∗

2 e
iap2

2 V1 e
iap1

2 − V ∗
1 e

−
iap1

2

)

. (A.14)

Note that because of a factor a/2 in the exponents, D′(p) is not periodic w.r.t. 2π/a so that

we have to be careful about the treatment of the the boundary of the Brillouin zone. We

use a region −π/a < pi ≤ π/a, where −π/a is not included. It is easy to see that it satisfies

σ2D
′(p)σ2 = D′∗(−p). (A.15)

12A factor N/a in front of D, which is irrelevant to the argument here, is omitted.
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Therefore, for p which has −p in our Brillouin zone, we have the following quartet of the

eigenvalues:13

λ(p), λ(−p), λ∗(p), λ∗(−p) (A.16)

and the contribution to the determinant is always positive. For p = 0, we have a pair

λ(0), λ∗(0) which has a positive contribution as well. Note that for p = 0, D(p) = D′(p)

thus the eigenvalues of D(p = 0) make a pair (λ, λ∗) as well.

If the lattice is (odd) × (odd), we do not have pi = π/a modes so the determinant of

D′ and thus that of D is positive.

If the lattice is (even) × (even), since we have pi = π/a modes and pi = −π/a is not

in the Brillouin zone, the sign becomes non-trivial. For p1 = π/a, we have

σ2D
′(π/a, p2)σ2 = D′(π/a,−p2)

∗ (A.17)

for p2 6= π/2. Therefore we have a quartet (λ(p2), λ(−p2), λ(p2)
∗, λ∗(−p2)) for p2 6= 0 and

a doublet (λ, λ∗) for p2 = 0, both of them give positive contributions to the determinant.

The situation is the same when p2 = π/a. The remaining combination is p = (π/a, π/a).

This time we have

D′(p1 = π/a, p2 = π/a) = −
(

V̄1 + V ∗
1 V2 + V̄ ∗

2

V̄2 + V ∗
2 −V1 − V̄ ∗

1

)

(A.18)

which satisfies σ2D
′σ2 = −D′∗. The eigenvalues make a pair (λ,−λ∗). The sign contribu-

tion to the determinant from this sector is (−1)N
2

= (−1)N .

For iD, an extra factor i2N2×(num. of lattice sites) appears, and hence the phase is (−1)N

for both odd × odd and even × even lattices. Since we remove the two lightest modes —

one exact zero mode and one pseudo zero mode — the determinant of iD picks up an extra

factor i−2 and thus the determinant of iD has a sign (−1)N−1.

B The action of the Sugino model

Sugino’s lattice action [9] is given by14

Slattice = axay

∑

~x

{

3
∑

i=1

LBi(~x) +
6
∑

i=1

LF i(~x)

}

+ (auxiliary field), (B.1)

where

LB1(~x) =
N

8a2
xa

2
y

Tr[φ(~x), φ̄(~x)]2, (B.2)

LB2(~x) =
N

8a2
xa

2
y

TrΦ̂TL(~x)2, (B.3)

13Do not confuse eigenvalue λ with one of the fermion or ’t Hooft coupling.
14Here we follow the notation in [43] with a slightly different normalization. Although group theoretical

normalizations are different in [43] and [8], one can absorb them by rescaling the ’t Hooft couplings as

2λCKKU = λSugino. We set λ = λCKKU = 1.
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LB3(~x) =
N

2a3
xay

Tr
{(

φ(~x) − Ux(~x)φ(~x+ axx̂)Ux(~x)−1
)

×
(

φ̄(~x) − Ux(~x)φ̄(~x+ axx̂)Ux(~x)−1
) }

+
N

2axa3
y

Tr
{(

φ(~x) − Uy(~x)φ(~x+ ay ŷ)Uy(~x)
−1
)

×
(

φ̄(~x) − Uy(~x)φ̄(~x+ ayŷ)Uy(~x)
−1
) }

(B.4)

and

LF1(~x) = − N

8a2
xa

2
y

Tr (η(~x)[φ(~x), η(~x)]) , (B.5)

LF2(~x) = − N

2a2
xa

2
y

Tr (χ(~x)[φ(~x), χ(~x)]) , (B.6)

LF3(~x) = − N

2a3
xay

Tr
{

ψ0(~x)ψ0(~x)
(

φ̄(~x) + Ux(~x)φ̄(~x+ axx̂)Ux(~x)−1
)}

, (B.7)

LF4(~x) = − N

2axa3
y

Tr
{

ψ1(~x)ψ1(~x)
(

φ̄(~x) + Uy(~x)φ̄(~x+ ayŷ)Uy(~x)
−1
)}

, (B.8)

LF5(~x) = i
N

2a2
xa

2
y

Tr
(

χ(~x) ·QΦ̂(~x)
)

, (B.9)

LF6(~x) = −i N

2a3
xay

Tr
{

ψ0

(

η(~x) − Ux(~x)η(~x+ axx̂)Ux(~x)−1
) }

−i N

axa3
y

Tr
{

ψ1

(

η(~x) − Uy(~x)η(~x+ ayŷ)Uy(~x)
−1
) }

, (B.10)

where U(~x, µ) are gauge link variables, φ(~x) is a complex scalar, η(~x), χ(~x) and ψµ(~x) are

fermion field, ax and ay are lattice spacings,15 ǫ is a real parameter which must be chosen

appropriately for each N ,

Φ̂(~x) =
−i(P (~x) − P (~x)−1)

1 − |1 − P (~x)|2/ǫ2 , Φ̂TL(~x) = Φ̂(~x) − 1

N

(

TrΦ̂(~x)
)

· 1, (B.11)

where P (~x) = Ux(~x)Uy(~x + x̂)U †
x(~x + ŷ)U †

y (~x) is the plaquette variable, and Q generates

one of the four super transformations,

QUµ(~x) = iψµ(~x)Uµ(~x), (B.12)

Qψµ(~x) = iψµ(~x)ψµ(~x) − i
(

φ(~x) − Uµ(~x)φ(~x+ aµµ̂)Uµ(~x)−1
)

, (B.13)

Qφ(~x) = 0, (B.14)

Qχ(~x) = H(~x), (B.15)

QH(~~x) = [φ(~x), χ(~x)], (B.16)

Qφ̄(~x) = η(~x), (B.17)

Qη(~x) = [φ(~x), φ̄(~x)]. (B.18)

Sugino’s action Slattice is invariant under the supersymmetry generated by Q, because Q

is nilpotent up to commutators and S can be written in a Q-exact form.

15In the actual simulation we have used the isotropic lattice, ax = ay.

– 21 –



J
H
E
P
0
1
(
2
0
1
1
)
0
5
8

In [9], using super-renormalizability and symmetry argument, it was shown that other

three supersymmetries, which is broken by a lattice artifact at the discretized level, is re-

stored in the continuum limit. Furthermore, in [54], this restoration has been confirmed

explicitly by the Monte-Carlo simulation. Absence of operator mixing/renormalization is

has been shown perturbatively in [57].
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