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1 Introduction

A remarkable formula has been found for scattering amplitudes in N = 4 SYM [1]. For
scattering amplitudes of n-particles and degree Nk−2MHV the formula is a contour inte-
gral in the grassmannian G(k, n) whose residues are conjectured to compute all leading
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singularities of scattering amplitudes in N = 4 SYM. The formula may be written

A(Z1, . . . , Zn) =
1

volGL(2)

∫
dk×nC

(1) . . . (n)

k∏
r=1

δ4|4(CriZi) , (1.1)

where external states are described by twistors ZAi = (µ̃αi , λ̃iα̇, η
A
i ) and Cri are homogeneous

coordinates on the grassmannian. Individual residues describe primitive leading singular-
ities of loop amplitudes and residue theorems provide all of the important relationships
between them [1].

Contours that compute tree-level amplitudes may be constructed in a physical way
with a particle interpretation in the grassmannian [2]. There are many ways to evaluate
the tree-level contours that are related by residue theorems. For example, many choices
correspond a BCFW expansion of the tree amplitude, where each residue is a primitive
leading singularity of a p-loop amplitude at NpMHV [3]. Another residue theorem leads to
CSW rules for the tree-level NMHV amplitude and more generally to the Risager expansion
for tree amplitudes of higher degree [4].

In [5], an alternative grassmannian integral has been proposed that manifests dual su-
perconformal invariance, and where external states are described by momentum twistors [6].
This has been derived from equation (1.1) in [7]. It has also been shown [8] that the grass-
mannian formula transforms to a total derivative under the Yangian generators [9],

jAB =
n∑
i=1

ZAi
∂

∂ZBi
(1.2)

j(1)A
B =

∑
i<j

(−1)C
[
ZAi

∂

∂ZCi
ZCj

∂

∂ZBj
− (i↔ j)

]
(1.3)

and that this property uniquely determines the form of the integrand [10, 11]. The indi-
vidual residues of the grassmannian integral are therefore Yangian invariants.

The identification of residues of the grassmannian integral with leading singularities is
an important problem that is the focus of this paper. We show that holomorphic inverse
soft factors [1], which create new leading singularities by adding additional particles, have a
very simple action on momentum twistors.1 We also explain how a holomorphic inverse soft
factor acts on grassmannian residues and use this to identify large classes of residues with
primitive leading singularities at NMHV and N2MHV. The simple action on momentum
twistors then allows explicit expressions for the corresponding Yangian invariants to be
written down.

2 Inverse soft factors

In this section we introduce the operation of an inverse soft factor [1] and show that it
has a very simple action on scattering amplitudes when written in terms of momentum
twistors [6].

1Anti-holomorphic inverse soft factors are also very useful and have been discussed recently in [12].
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2.1 Momentum space

We consider scattering amplitudes in N = 4 SYM with external states labelled in on-
shell superspace by i = {λαi , λ̃α̇i , ηAi }. The null four-momenta of external particles are
then pαα̇i = λαi λ̃

α̇
i and fermionic parts of the supermomenta are qαAi = λαi η

A
i . Here we

will consider mainly leading singularities which are rational functions of the kinematic
variables. Since tree amplitudes may be expressed as sums of leading singularities then all
statements may equally be applied to tree amplitudes [13, 14]. Let us denote a generic
leading singularity with n particles by

On(1, . . . , n). (2.1)

A holomorphic inverse soft factor takes an n-particle leading singularity and forms
a new leading singularity of the same MHV degree with (n + 1) particles. Consider any
leading singularity On(a, b, . . .) where particles a and b are adjacent, then following [1] we
define the inverse soft limit that adds particle c in between a and b by the following formula,

On+1(a, c, b, . . .) ≡ 〈ab〉
〈ac〉〈cb〉On(a′, b′, . . .) (2.2)

The primed labels in equation (2.2) denote shifted external variables i′ = {λi, λ̃′i, η′i} where
the right-handed spinors and grassmann parameters have been shifted

λ̃′a = λ̃a +
〈cb〉
〈ab〉 λ̃c λ̃′b = λ̃b +

〈ca〉
〈ba〉 λ̃c

η′a = ηa +
〈cb〉
〈ab〉ηc η′b = ηb +

〈ca〉
〈ba〉ηc . (2.3)

A straightforward application of the Schouten identity confirms that momentum and su-
permomentum are conserved in the inverse soft factor.

The inverse soft factor is designed so that

O(a, c, b, . . .) −→ 〈ab〉
〈ac〉〈cb〉O(a, b, . . .) as λc −→ 0 . (2.4)

In words, the inverse soft factor creates a leading singularity whose limit as the additional
particle becomes soft reproduces the original. The soft behaviour in equation (2.4) comes
entirely from the tree-level MHV superamplitude

AMHV(1, . . . , n) =
1

〈12〉 . . . 〈n1〉δ
4
( n∑
i=1

λiλ̃i

)
δ8
( n∑
i=1

λiηi

)
, (2.5)

which appears as a pre-factor in all superamplitudes in N = 4 SYM. Therefore the inverse
soft factor should add another particle to this superamplitude, changing AMHV(1, . . . , n)
into AMHV(1, . . . , n+1). This follows simply from the conservation of momentum and from
the prefactor in the definition (2.2). In the following we solve momentum and supermo-
mentum conservation and remove the tree-level MHV superamplitude prefactor. Therefore
we consider only the shift (2.3) of the kinematic variables.
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Figure 1. The null polygon formed by the region momenta coordinates.

2.2 Region momenta

We now implement the inverse soft limit in terms of region momenta [15]. The region
momenta {xi, θi} are introduced by solving supermomentum conservation

λiλ̃i = xi+1 − xi λiηi = θi+1 − θi , (2.6)

where xn+1 ≡ x1 and θn+1 ≡ θ1. The region momenta are then null separated

(xi+1 − xi)2 = 0 (θi+1 − θi)2 = 0 (2.7)

and form a null polygon in region momentum space (see figure 1). The primary coordinates
are now {λi, xi, θi} and the right-handed spinors {λ̃i} become secondary derived variables.

Since the region momenta solve supermomentum conservation we remove the MHV
prefactor and focus on the remainder, which we denote by R(λi, xi, θi). Now consider
adding the particle (n+ 1) with an inverse soft factor — see figure 2. The only variables to
be shifted are those associated to particles n and 1. Therefore, to maintain supermomentum
conservation, only the region momentum (x1, θ1) may be shifted. Suppressing the unshifted
variables we have

Rn(x1, θ1) −→ Rn+1(xn+1, θn+1;x1, θ1) ≡ Rn(x′1, θ
′
1) (2.8)

where the shifted region momenta {x′n, θ′n} are to be determined. Now referring to figure 2,
momentum conservation requires that

p′1 = x2 − x′1 p′n = x′1 − xn (2.9)

whereas the region momenta of the resulting (n+ 1)-particle leading singularity satisfy

p1 = x2 − x1 pn = x1 − xn (2.10)

with similar expressions for the fermionic components. Subtracting equations (2.9)
and (2.10) we find two expressions for the shifted region momentum

x′1
αα̇ = xαα̇1 −

〈n+ 1n〉
〈1n〉 λα1 λ̃

α̇
n+1

= xαα̇n+1 +
〈n+ 1 1〉
〈n 1〉 λαnλ̃

α̇
n+1. (2.11)
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Figure 2. The action of an inverse soft factor on the null polygon in region momentum space.

whose equality is guaranteed by momentum conservation and is found directly with an
application of the Schouten identity. To express the inverse soft factor in correctly in
region momenta we should rewrite λ̃n+1 in terms of the primary variables, but we will now
find more convenient variables for the inverse soft factor.

2.3 Momentum twistors

We now explain how an inverse soft factor acts on leading singularities when expressed as
functions of momentum twistors [5, 6] which are designed to manifest the dual supercon-
formal symmetry of scattering amplitudes in N = 4 SYM [15].

The cusps xi of the null polygon formed by the region momenta define lines Xi in
momentum twistor space through the standard twistor correspondence — see figure 3.
Since the cusps are null separated (xi − xi−1)2 = 0, then adjacent lines Xi−1 and Xi

intersect and define momentum twistors Wi. The spinor components of the momentum
twistor Wi = (λiα, µα̇i , χ

A
i ) are then defined by the incidence relations that simply state the

the momentum twistor Wi is incident on the point xi in region momentum space,

µα̇i = −ixαα̇i λαi χAi = −iθAαi λαi (2.12)

The components of the momentum twistors are also directly related to the original mo-
mentum superspace variables by the following

iλ̃i =
〈i− 1, i〉µi+1 + 〈i+ 1, i− 1〉µi + 〈i, i+ 1〉µi−1

〈i− 1, i〉〈i, i+ 1〉
iηi =

〈i− 1, i〉χi+1 + 〈i+ 1, i− 1〉χi + 〈i, i+ 1〉χi−1

〈i− 1, i〉〈i, i+ 1〉 . (2.13)

Now consider adding particle n + 1 with an inverse soft factor. Since only the dual
coordinates (x1, θ1) are shifted then only the line X1 is changed in momentum twistor space.
However, from equation (2.11) we find that the momentum twistor W1 is unchanged

µ′1
α̇ = −ix′1αα̇λ1α = −ixαα̇1 λ1α = µα̇1 (2.14)
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Figure 3. The momentum twistor correspondence with dual momentum space.

X ′
1
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W1
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W1

Figure 4. Adding particle {n+ 1} with an inverse soft factor in momentum twistor space.

and so none of the momentum twistors are shifted in the inverse soft factor. The inverse
soft factor simply shifts the line X1 and adds an additional line Xn+1 together with the
momentum twistor Wn+1 formed from their intersection — see figure 4.

Leading singularities are rational functions of the momentum twistors and once the
MHV superamplitude has been removed they have weight zero in each momentum super-
twistor. Consider then adding particle (n + 1) to a leading singularity Rn(W1, . . . ,Wn)
that depends on some subset of the momentum twistors {W1, . . . ,Wn}. Then the result-
ing leading singularity Rn+1(W1, . . . ,Wn) is the same function of the original momentum
twistors,

Rn+1(W1, . . . ,Wn) ≡ Rn(W1, . . . ,Wn). (2.15)

The new leading singularity does not depend on the new momentum twistor Wn+1. How-
ever, the relationship between the momentum twistors and the external momenta has been
changed non-trivially. In the opposite direction, soft limits are equally as simple in mo-
mentum twistor space. A leading singularity has non-zero soft limit λi → 0 when it does
not depend on the momentum twistor Wi. For example, when particle n becomes soft we
have

R(W1, . . . ,Wn−1) −→ R(W1, . . . ,Wn−1) as λn −→ 0 , (2.16)

so that the result of the soft limit is the same function of original momentum twistors.
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Figure 5. The resulting factorisation when an internal propagator goes on-shell.

Dual superconformal transformations act linearly on superamplitudes written in terms
of momentum twistors. The standard superconformal generators are then the level-one
generators of the Yangian algebra. Once the tree-level MHV superamplitude has been
removed, the Yangian generators written in terms of momentum twistors are [8]

jA
B =

n∑
i=1

WiA
∂

∂WiB
(2.17)

j(1)
A
B

=
∑
i<j

(−1)C
[
WiA

∂

∂WiC
WjC

∂

∂WjB
− (i↔ j)

]
(2.18)

It has been shown that the grassmannian formula written in momentum twistor variables
transforms as a total derivative under the generators, and therefore all residues of the
grassmannian formula are Yangian invariant [8]. Since it is conjectured that all leading
singularities are residues of the grassmannian formula then we would expect the inverse
soft factor to be a Yangian invariant operation. It is straightforward to check by acting
with the level-one generators directly that this is indeed the case.

3 Leading singularities

A leading singularity of an l-loop amplitude is specified by 4l propagators going on-shell and
a solution to the resulting cut conditions. Leading singularities are then associated with
channel diagrams, having 4l lines denoting cut propagators and (3l+ 1) vertices indicating
tree amplitudes in the resulting factorisation [16–18]. Primitive leading singularities are
those containing only MHV and MHV3 vertices and correspond to individual grassmannian
residues [3]. Any leading singularity may then be expressed as a sum of primitive leading
singularities by repeated BCFW expansion of the vertices. Therefore in the following we
focus exclusively on primitive channel diagrams.

3.1 Generalised unitarity in twistor space

Consider computing the residue of a loop amplitude when one of its internal propagators
goes on-shell. Only Feynman diagrams containing this propagator contribute to the residue
and standard LSZ arguments ensure that the residue is the product of two subamplitudes
on either side of the cut, summed over all possible internal states — see figure 5. This
calculation is building block for all generalised unitarity calculations.
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Figure 6. The dictionary between the twistor space support of primitive leading singularities and
their channel diagrams.

In N = 4 SYM the sum over particles and helicities may be replaced by a grassmann
integral and the tree amplitudes by superamplitudes with external states labelled in on-shell
superspace [19, 20]. The unitarity cut then becomes (see figure 5)∮

d4p

p2
d4η A1(. . . , {p, η})A2({−p, η}, . . .) , (3.1)

where the contour |p2| = ε constrains the integral to the null cone. In split signature, this
may be transformed directly into twistor space (not to be confused with momentum twistor
space) via a half Fourier Transform [21] leading to the standard twistor inner product [3]∫

D3|4W A1(. . . ,W )A2(W, . . .) . (3.2)

This simple form of the unitarity cut in twistor space allows an imediate translation between
the channel diagram and the twistor space support of leading singularities [3, 22]. This
dictionary is summarised below in figure 6.

3.2 Inverse soft factors and channel diagrams

The inverse soft factor may be understood as a simple application of generalised unitarity.
Adding the particle c to the leading singularity On(a, b, . . . ) then the result On+1(a, c, b, . . .)
corresponds simply to the channel diagram shown in figure 7.
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Figure 7. The action of an inverse soft factor on the channel diagrams of a leading singularity

This result may be demonstrated with generalised unitarity in on-shell superspace [19].
The solution of the cut conditions for the on-shell loop momenta in On(l1, l2, . . .) have been
written down explicitly when at least one corner is massless in [23]. In the spinor notation
the relevant solution becomes (see notation in figure 7)

l1 = λa

(
λ̃a +

〈bc〉
〈ba〉 λ̃c

)
l2 = λb

(
λ̃b +

〈ac〉
〈ab〉 λ̃c

)
. (3.3)

Performing the grassmann integrations and evaluating on the above solution to the cut
conditions, the corresponding grassmann parameters ηla and ηla are determined to be

ηl1 = ηa +
〈bc〉
〈ba〉ηc

ηl2 = ηb +
〈ac〉
〈ab〉ηc . (3.4)

Finally the three-particle superamplitudes in figure 7 turn into the correct MHV factor in
equation (2.2) so that we recover the required result

〈ab〉
〈ac〉〈cb〉O(l1, ηl1 ; l2, ηl2) (3.5)

where the loop momenta and grassmann parameters are given in equations (3.3) and (3.4).
We will use this interpretation of the inverse soft limit extensively in the following to
identify grassmannian residues with leading singularities and find expressions for them in
terms of momentum twistors.

Translating the statements about channel diagrams to those about twistor support,
we find that the result of an inverse soft factor is supported where the additional twistor c
is collinear with a and b. Figure 8 indicates the twistor support when particle c is added
between particles a and b on adjacent MHV vertices. In general, whenever three points
{a−1, a, a+1} are collinear in twistor space, then the leading singularity is independent of
the momentum twistor Wa in momentum space in agreement with the action of an inverse
soft limit.

– 9 –



J
H
E
P
0
1
(
2
0
1
1
)
0
5
5

a

b

a

b

c

Figure 8. The action of an inverse soft factor on the twistor space support.

=

a

c

b

a

c

b

a

c

b

=

a

c

b

Figure 9. The inverse soft factors that simply add more particles to an existing MHV vertex.

In many cases an inverse soft factor simply adds another particle to an existing MHV
vertex without changing the sturcture of the channel diagram. We have already seen that
adding particle c between two legs a and b of the same MHV vertex adds an additional
particle to that vertex. Similarly, adding c between particle a on an MHV vertex and
particle b on an adjacent MHV3 vertex again adds an additional particle to the MHV
vertex — see figure 9.

4 Grassmannian residues

Having discussed the action inverse soft limits on leading singularities, we now turn to the
application of identifying primitive leading singularities with residues of the grassmannian
integral [1]. For Nk−2MHV superamplitudes with n particles, the formula is a contour
integral in the grassmannian G(k, n). When external states are transformed to dual twistor
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space (where MHV amplitudes are supported on a line in our conventions) we have

A(W1, . . . ,Wn) =
1

volGL(2)

∫
dk×nC

(1) . . . (n)

k∏
r=1

d4|4Yr

n∏
i=1

δ4|4(Wi − CriYr) , (4.1)

where (i) = (i, . . . , i+ k) are minors of the (k× n)-matrix Cri of homogeneous coordinates
on G(k, n). Local residues are defined by (k − 2)(n− k − 2) conditions on the minors and
as we will discuss correspond to projective configurations of n points in CPk−1 with certain
localisation properties.

4.1 Projective geometry in the grassmannian

Projective geometry in the grassmannian plays an important role in understanding the
individual residues of the grassmannian integral [2]. Here we would like to understand how
the geometry of projective configurations arises.

Since superamplitudes in N = 4 are invariant under little group transformations which
rescale the twistors [20] then the grassmannian formula (4.1) is invariant provided the
homogeneous coordinates transform in addition

Wi −→ tiWi Cri −→ tiCri. (4.2)

Therefore the little group transformations form a subgroup of the global GL(n) symmetry
of the grassmannian formula

Wi −→ Li
jWj Cri −→ Li

jCrj . (4.3)

Since multiples of the identity act trivially, there is a free action of H = (C∗)n/C∗ and we
may pass to the quotient G(k, n) /H. On the other hand, since columns can be rescaled
separately, the homogeneous coordinates Cri define a configuration of n points in the
projective space CPk−1. However, there is in addition a local GL(k) symmetry

Cri −→ ΛrsCsi (4.4)

which acts projectively on the configurations of points. Therefore the equivalence classes
of projective configurations under GL(k) match up with the grassmannian G(k, n) modulo
little group transformations. This is called the Gelfand-MacPherson correspondence [24],

G(k, n) /H = (Pk−1)n /GL(k). (4.5)

The characteristic properties of grassmannian residues are therefore properties of pro-
jective configurations of n-points in CPk−1 that are invariant under local GL(k) transfor-
mations. Such properties are exactly localisation properties, meaning that some sets of
points are constrained to lie in projective subspaces of dimension (k − 2) or less. We con-
jecture that the specification of such localisation properties in CPk−1 provides a complete
classification of all grassmannian residues.
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4.2 Grassmannian localisation and twistor support

The grassmannian localisation on curves of degree (k − 1) in CPk−1 has been important
in understanding tree amplitudes and the connection to twistor string theory [2, 25, 26].
However, here we focus on individual residues and CPk−1 localisation on projective planes
of various codimension.

The grassmannian localisation of n points in projective space CPk−1 is related to
support in twistor space CP3 through the delta-functions in the grassmannian integral [3, 4]

∫ k∏
r=1

d4|4Yr

n∏
i=1

δ4|4(Wi − CriYr). (4.6)

Immediately there are constraints on the twistor space support arising purely from the
dimension of the space CPk−1. In particular MHV amplitudes are supported on a line and
NMHV amplitudes on a plane in twistor space.

Further grassmannian localisation in CPk−1 is tested by the vanishing of the minors
of G(k, n); when the minor (i1, . . . , ik) vanishes then the points {i1, . . . , ik} lie in a codi-
mension one projective subspace in CPk−1. When the minors vanish to higher orders (the
corresponding matrix has rank < (k− 1)) then further localisation conditions are imposed
- we will see many examples of this when k = 4 in the following sections. For NMHV and
N2MHV amplitudes the CPk−1 localisation translates directly into statements about the
twistor space support:

− NMHV: (i1 i2, i3) = 0 implies that the points {i1, i2, i3} are collinear in twistor space.

− N2MHV: (i1 i2 i3 i4) = 0 implies that the points {i1, i2, i3, i4} are coplanar in twistor
space.

However, for N3MHV amplitudes and higher the relationship is less immediate and in this
paper we focus almost exclusively on NMHV and N2MHV amplitudes.

4.3 The momentum twistor grassmannian

In [5] an equivalent grassmannian integral in G(k− 2, n) has been found where the natural
variables are momentum twistors. Once the overall MHV superamplitude has been cleared
the integral becomes (denoting p = k − 2)

R(W1, . . . ,Wn) =
1

volGL(p)

∫
dn×pD

(D1 . . . Dp) . . . (Dn . . . Dp−1)

p∏
r=1

δ4|4(DriWi) . (4.7)

where (Di . . . Di+p) are minors of the matrix Dri of homogeneous coordinates on G(k−2, n).
Individual residues are again defined by (k − 2)(n− k − 2) conditions on the minors. The
minors (Di . . . Di+p) are directly proportional to the minors (i) of the original G(k, n)
grassmannian upt to kinematic factors [7] so there is a clear correspondence between the
residues of the two grassmannian integrals.

The original G(k, n) grassmannian integral is naturally written with external states
transformed to twistor space and therefore manifests the standard superconformal symme-
try. It is also more suited for the geometric interpretation and identification of residues.
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On the other hand, the G(k−2, n) grassmannian is written in terms of momentum twistors
and manifests dual superconformal invariance. The smaller minors means that it is also
simpler to calculated individual residues. In fact individuals residues are invariant under
the Yangian of the superconformal (or dual superconformal) algebra [8, 9] and the Yangian
symmetry determines uniquely the correct integrand of the grassmannian integral [10].

5 NMHV amplitudes

For NMHV amplitudes the momentum twistor grassmannian is G(1, n) = CPn and the
integral formula (4.7) becomes

R(W1, . . . ,Wn) =
1

vol(C∗)

∫
dnD

D1 . . . Dn
δ4|4(DiWi) . (5.1)

The homogeneous coordinates Di on projective space CPn correspond directly to the minors
(i) of the G(3, n) grassmannian. Residues are then defined by the vanishing of (n − 5)
coordinates Di and are labelled by the corresponding minors or more conveniently here by
the five corresponding minors (i1) . . . (i5) that do not vanish.

All residues are automatically supported on a plane in twistor space. When the (i) = 0
there is grassmannian localisation with {i−1, i, i+1} collinear in CP2. The residue then has
support when twistors {i−1, i, i+1} are collinear. From the delta functions in equation (5.1)
it is clear the residue is then independent of momentum twistor Wi.

5.1 Inverse soft factors

When particle i is added in between i − 1 and i + 1 by an inverse soft factor then the
resulting residue is supported where the twistors {i − 1, i, i + 1} are collinear. Therefore
the minor (i) vanishes on this residue and it is independent of momentum twistor Wi in
agreement with the general arguments made in section 2. The inverse soft factor then has
a simple action on residues; adding the particle j to the residue (i1) . . . (in−5) then we have

(i1) . . . (in−5) −→ (i1) . . . (in−5)(j) (5.2)

or equivalently labelling residues by the minors that do not vanish then (l1) . . . (l5) −→
(l1) . . . (l5) where the set {l1, . . . , l5} is the complement of {i1, . . . , in−5} in {1, . . . , n}.

5.2 Residues

The individual residues of the NMHV grassmannian integral may all be evaluated from the
momentum twistor integral with the result [5]

(i)(j)(k)(l)(m) = R(i, j, k, l,m) . (5.3)

The quantity R(i, j, k, l,m) is the basic dual superconformal invariant which is a homoge-
neous function of five momentum twistors [5]. It is antisymmetric under interchange of any
two of its arguments and being a residue of the grassmannian formula is Yangian invariant.
This Yangian invariant forms the basic building block for superamplitudes of any degree
in N = 4 SYM.
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Figure 11. A channel diagram corresponding to the Yangian invariant R(i, j, k, l − i, l).

The simplest case is when two pairs of minors are adjacent. In this case the grassman-
nian residue becomes the standard dual superconformal invariant R(n, i − 1, i, j − 1, j) ≡
Rn;ij appearing in BCFW expansions of the NMHV tree superamplitude [13, 27], for ex-
ample,

ANMHV(1, . . . , n) = AMHV
n ×

∑
1<i,j<n

Rn;ij . (5.4)

where in such sums i and j must be separated by at least two. Individually, the residues
are one-loop leading singularities (see figure 10) reflecting the original derivation of the
BCFW recursion relations from the IR consistency of one-loop amplitudes [14].

In the more generic cases R(i, j, k, l − 1, l) and R(i, j, k, l,m) the residues correspond
to two-loop and three-loop leading singularities respectively [3]. The channel diagrams are
constructed from the twistor support which is turn immediate from the vanishing minors
— see figures 11 and 12. It is clear from the dependence on momentum twistors that the
generic residues may all be constructed by inverse soft factors. The action on the channel
diagrams then agrees with the general arguments in section 3.

This exhausts all residues of the grassmannian integral and therefore we expect that
there are no further Yangian invariants relevant for NMHV amplitudes. In general it is
conjectured that there are no new Yangian invariants corresponding to primitive leading
singularities past 3p-loops for NpMHV amplitudes [3].
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6 N2MHV amplitudes

For N2MHV amplitudes the momentum twistor grassmannian is G(2, n) and after the MHV
superamplitude has been cleared the grassmannian integral formula becomes

R(1, . . . , n) =
1

vol(GL(2))

∫
d2nD

(D1D2) . . . (DnD1)

2∏
r=1

δ4|4(DriWi) . (6.1)

The 2× 2 minors (DiDi+1) are proportional to the minors (i) = (i− 1, i, i+ 1, i+ 2) of the
G(4, n) grassmannian which are labelled by their second column. Individual residues may
now be standard and composite [1, 2]. Standard residues are defined by (2n− 12) minors
vanishing to first order, while composite residues by fewer than (2n−12) minors with some
vanishing to second order.

Individual residues are determined by their grassmannian localisation in CP3 which
translates directly into statements about twistor space support of the corresponding leading
singularity. The residues are specified by the vanishing minors (a1) · · · (am) with m ≤
(2n−12) and by their collinear localisation [2]. In addition it is useful to label the coplanar
localisation so that following [2] we have the subscript and superscript notation:

− (· · · )m ⇒ {m− 1,m,m+ 1} are collinear in CP3

− (· · · )m ⇒ the complement of particles {m− 1,m,m+ 1} are coplanar in CP3.

A useful tool to understand the structure of vanishing minors is the factorisation
of minors [2]. In order to see this consider the two adjacent minors (2) ≡ (1234) and
(3) ≡ (2345) whose simultaneous vanishing require the coplanarity of the two sets points
{1234} and {2345}. This may happen in two ways; firstly the points {12345} are all
coplanar, or secondly the points {234} are collinear. For eight particles, this factorisation
is denoted by

(2)(3)⇒
{

(2)(3)7

(2)(3)3
(6.2)
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although for more particles, we cannot include the coplanarity label (. . .)7 in the case that
the points {12345} are collinear.

The generic N2MHV residue is highly composite with many minors vanishing to second
order. For example, we will examine the eight-particle residues of the form (1)(2)2(3)72
where the notation (2)2 means that this minor vanishes to second order. However, for
large numbers of particles this notation becomes cumbersome and the information may be
recovered from the collinear labels. Therefore we will omit such labels, denoting the above
simply by (1)(2)(3)72.

6.1 Inverse soft factors

Consider adding the particle i is added in between i − 1 and i + 1 with an inverse soft
factor. Then we have shown that the result has support where the points {i−1, i, i+1} are
collinear in twistor space. For N2MHV amplitudes, this requires one further condition on
each of the minors (i− 1) and (i) in order to produce the required factorisation (i− 1)(i)i
in which {i − 1, i, i + 1} are collinear. Therefore adding particle j to a generic residue
(i1) . . . (ik)

l1,...,ln
j1,...,jm

with an inverse soft factor produces the following residue

(i1) . . . (ik)
l1,...,ln
j1,...,jm

−→ (i1) . . . (ik)(j − 1)(j)li,...,lnj1,...jmj
(6.3)

Following the earlier convention, if the minor (j − 1) already vanishes to first order before
the inverse soft factor then the label will not be repeated in the resulting residue.

6.2 Residues

We will not attempt to identify all N2MHV residues with leading singularities, but instead
examine classes of residues built from inverse soft limits,which illustrate important features
and patterns. Hopefully this will then allow the reader to construct many further examples.
However, we will identify all leading singularities appearing in BCFW expansions of the
tree-level superamplitude, where each term is a two-loop primitive leading singularity [3].

6.2.1 The standard BCFW terms

First we consider generic residues appearing in solutions of the BCFW expansion of the
N2MHV tree superamplitude written down in [27]. From their twistor space support [28]
it is straightforward to show that these terms correspond to pentabox channel diagrams
with generic numbers of legs [3].

Consider eight-particle residues where the three adjacent minors (6),(7) and (8) vanish
and the two pairs of adjacent minors factorise:

(6)(7)⇒
{

(6)(7)3

(6)(7)7

(7)(8)⇒
{

(7)(8)4

(7)(8)8

One possible residue is (6)(7)(8)34
78 where the four points {6781} are collinear and the minor
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Figure 13. The twistor support and channel diagrams of two standard BCFW terms.

(7) vanishes to second order, however we will study this residue in the following section.
We can define standard residues of the form (6)(7)(8)47 and (6)(7)(8)38 together with one
more minor. In these cases the coplanar label follows automatically with the vanishing of
the third minor. Here we consider the two residues (3)(6)(7)(8)38 and (3)(6)(7)(8)47. The
twistor support is determined from the localisation and translated into channel diagrams
— see figure 13. Expressions in terms of momentum twistors may be found by computing
the residues explicitly [5] or more easily by generalised unitarity with the result:

(3)(6)(7)(8)38 = R(5, 6, 7, 1, 2)R(V, 2, 3, 4, 5) V = 〈5, 6, 7, [1〉2]

(3)(6)(7)(8)47 = R(8, 1, 2, 5, 6)R(U, 2, 3, 4, 5) U = 〈8, 1, 2, [5〉6] . (6.4)

Now consider adding particle 9 to the residue (3)(6)(7)(8)47 with an inverse soft factor in
order to form the composite nine-particle residue (3)(6)(7)(8)(9)479. Following the results of
section 3 this adds an additional particle to an existing MHV vertex in the channel diagram
— see figure 14. Adding particles {10, . . . , n} in the same way leads to the composite residue
(3)(6) . . . (n)479...n which is the same function of momentum twistors as in equation (6.4)
and whose channel diagram simply has more external legs on an MHV vertex. The residue
is then independent of the momentum twistors {W7,W9,W10, . . . ,Wn} in agreement with
the collinear localisation.

Let us now consider a second example of BCFW terms arising from a composite eight-
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Figure 14. BCFW residues with eight and nine particles related by an inverse soft factor.

particle residue. When minors (1) and (2) vanish we have the factorisation

(1)(2)⇒
{

(1)(2) 6

(1)(2) 2

and may impose the conditions that both {81234} are coplanar and that {123} are collinear.
This is three conditions on two minors and therefore composite residues of the form
(1)(2)(i)62 may be defined. Here we consider the residue (1)(2)(5)62 where the minor (5) van-
ishes so that in addition {4567} are coplanar — see figure 15. Then we have the following
expression in momentum twistors:

(1)(2)(5)62 = R(1, 3, 4, 7, 8)R(U, 4, 5, 6, 7) U = 〈1, 3, 4, [7〉8] . (6.5)

Adding particle 9 with inverse soft factors again adds an additional particle to one of the
MHV vertices in the channel diagram and corresponds to the residue (8)(9)(1)(2)(5)629

which is the same function of momentum twistors — see figure 15. Again further particles
{10, . . . , n} may be added in the same way.

The two above examples illustrate the construction of BCFW type residues with inverse
soft factors. Starting with different eight-particle residues, all such BCFW terms can be
found in this way and we can write down general expressions for the residues. The generic
BCFW channel diagrams are those shown in figure 16 and their images under the reversal
of particle labels i −→ n− i. Following [27] we have the notation

Rn;ab;cd ≡ R(U, c− 1, c, d− 1, d)

Rn;ba;cd ≡ R(V, c− 1, c, d− 1, d) (6.6)

for particular dual superconformal invariants where we have defined the momentum twistors

U ≡ 〈n, a− 1, a, [b− 1〉Wb] and V ≡ 〈n, b− 1, b, [a− 1〉Wa] , (6.7)
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Figure 15. Adding the particle 9 to the residue (1)(2)(5)62 with an inverse soft factor.

which are naturally associated with on-shell loop momenta in the corresponding channel
diagrams. Then the leading singularities in figure 16 correspond to the following residues

(i) Rn;abRn;cd = {0}{n,a−1,a,b−1,b,c−1,c,d−1,d}

(ii) Rn;abRn;ab;cd = {0}{n,a−1,a,c−1,c,d−1,d,a−1,a}

(iii) Rn;abRn;ba;cd = {0}{n,c−1,c,d−1,d,a−1,a,b−1,b} (6.8)

where again overlines denote the complement of the enclosed set in {1, . . . , n}. The notation
{0} means that all of the minors are vanishing.

6.2.2 The boundary BCFW terms

We now consider so called boundary terms in BCFW solutions for the N2MHV tree super-
amplitude [27]. These correspond to primitive leading singularities whose channel diagrams
are pentaboxes where the shared MHV vertex has no external legs [3].

Let us now consider again eight-particle residues where the three adjacent minors (6),
(7) and (8) vanish and we have the factorisation of the two adjacent pairs,

(6)(7)⇒
{

(6)(7)3

(6)(7)7

(7)(8)⇒
{

(7)(8)4

(7)(8)8
.

Now consider the composite residue (6)(7)(8)34
78 where the two collinear subscript labels

imply that the minor (7) is vanishing to second order (see figure 17). Note that the points
{6781} being collinear automatically implies that {56781} and {67812} are coplanar. In
momentum twistors we have

(6)(7)(8)34
78 = R(1, 2, 3, 5, 6)R(U, V, 3, 4, 5) (6.9)
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Figure 17. An example of inverse soft factors applied to a BCFW boundary term.

where have defined momentum twistors U = 〈1, 2, 3, [5〉6] and V = 〈1, 5, 6, [2〉3] again
associated with fixed on-shell loop momenta. Note that even for such boundary terms
the result may be written simply as a product of two basic R-invariants; a result that is
made transparent by performing the generalised unitarity calculation directly in momentum
twistor space [29]. It is then immediate to add particles {9, . . . , n} to an MHV vertex in the
channel diagram corresponding to the residue (6)(7) . . . (n)34

78...n which is the same function
of momentum twistors.

We now consider a second example of BCFW boundary terms that are standard

– 20 –



J
H
E
P
0
1
(
2
0
1
1
)
0
5
5

(7)(8)(1)(2)46
1

1

2 3
4

5

6

(7)(8)(1)(2)5
28

78

4

5

3

6

7

8

2
1

Figure 18. Further examples of BCFW boundary terms and the corresponding residues.

residues of the eight-particle grassmannian formula of the form (7)(8)(1)(2). The three
pairs of adjacent minors factorise as follows

(7)(8)⇒
{

(7)(8) 4

(7)(8) 8

(8)(1)⇒
{

(8)(1) 5

(8)(1) 1

(1)(2)⇒
{

(1)(2) 6

(1)(2) 2

and there are two solutions not imposing singular kinematics, which are the residues
(7)(8)(1)(2)582 and (7)(8)(1)(2)46

1 (see figure 18). The momentum twistor expressions are,
for example,

(7)(8)(1)(2)46
1 = R(2, 3, 4, 5, 6)R(U, V, 6, 7, 8) (6.10)

where we have defined U = 〈4, 5, 6, [2〉3] and V = 〈2, 3, 4, [5〉6]. Again adding further
particles {9, . . . , n} to an MHV vertex leaves the dual superconformal invariant unchanged.

Beginning with the eight-particle residue (7)(8)(1)(2)46
1 we can construct the generic

boundary term with the same channel diagram by inverse soft factors — see figure 19. The
momentum twistor expression is always a product of two basic R-invariants with shifted
arguments and in this case we have

(j − 1){i,j−1,j,k−1,k,l−1,l} = R(i, j − 1, j, l − 1, l)R(U, V, j, k − 1, k) (6.11)

where we have defined the following momentum twistors

U = 〈i, j − 1, j, [l − 1〉Wl] and V = 〈i, l − 1, l, [j − 1〉Wj ]. (6.12)

that are associated to cut propagators in the channel diagram. Similarly one can construct
by inverse soft factors all such boundary terms corresponding to degenerate cases of the
pentaboxes (i),(ii) and (iii) in figure 16 from the previous subsection.
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Figure 19. The generic boundary term found from (7)(8)(1)(2)461 by inverse soft factors.

6.2.3 The tree amplitude

In momentum twistor notation, the Drummond an Henn [27] solution of the BCFW recur-
sion leads to the following expression for the N2MHV tree-level superamplitude

∑
1<i<j<n

R(n, i−1, i, j−1, j)

 ∑
i<k<l≤j

R(n̂, k−1, k, l−1, l̂) +
∑

j≤k<l<n
R(n, k̂−1, k, l−1, l)

 (6.13)

where we have amputated the overall tree-level MHV superamplitude and defined the
momentum twistor Ŵn = 〈n, j−1, j, [i−1〉Wi]. The hatted momentum twistors l̂ and k̂−1
indicate that the corresponding arguments are shifted in the boundary cases as follows:

l̂ =

{
l if l < j

〈n, i−1, i, [j−1〉j] if l = j
(6.14)

k̂−1 =

{
k−1 if k > j

〈n, i−1, i, [j−1〉j] if k = j
. (6.15)

In a previous paper [3], we have shown that the terms in equation (6.13) are primitive
two-loop leading singularities of the pentagonal type discussed in detail in sections 6.2.1
and 6.2.2. Hence, terms appearing in standard solutions of the BCFW recursion relations
for the N2MHV tree amplitude are certainly residues of the G(2, n) grassmannian formula.
For example, the 20 primitive leading singularities appearing in the Drummond and Henn
expression (6.13) are identified with G(2, 8) residues through their twistor support as

(1)(5)(6)(7)27 (1)(2)(5)(6)26 (1)(2)(3)(6)63 (8)(1)(2)(6)61 (1)(4)(5)(6)25
(5)(6)(7)23

67 (3)(6)(7)37 (3)(4)(6)(7)47 (1)(3)(6)(7)7 (3)(4)(6)(7)38

(3)(4)(7)84 (7)(1)(3)(4)8 (3)(4)(5)81
45 (1)(3)(4)(5)85 (1)(2)(3)(4)86

3

(8)(1)(4)41 (8)(1)(4)(5)15 (8)(1)(2)(4)1 (6)(7)(8)(1)17 (8)(1)(2)56
12 .

However, we should note that the method of identification presented here does not identify
the relative signs needed to obtain the correct tree amplitude.
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Figure 20. Examples of residues with kissing box channel diagrams that may not be constructed
by inverse soft factors from lower point leading singularities.

6.2.4 Kissing boxes

Here we will consider residues corresponding to kissing box channel diagrams that appear
as leading singularities of two-loop amplitudes. Consider standard eight-particle residues
of the form (2)(3)(5)(6), then each pair of minors factorises as follows,

(2)(3)⇒
{

(2)(3) 7

(2)(3) 3

(5)(6)⇒
{

(5)(6) 2

(5)(6) 6

and there are here two solutions (2)(3)(5)(6)27 and (2)(3)(5)(6)36 not imposing singular
kinematics. The first residue has localisation where the points {45678} and {12345} are
collinear and corresponds to a kissing box channel diagram shown in figure 20. Here the
residue may easily be calculated from generalised unitarity with the result,

(2)(3)(6)(7)27 = R(5, 6, 7, 8, 1)R(8, 1, 2, 3, 4). (6.16)

First we take the opportunity to study a residue that cannot be constructed by inverse
soft factors. Consider the nine-particle residue (2)(3)(5)(6)(7)2 — see figure 20. It is clear
from the channel diagram that any attempt to construct this residue from (2)(3)(6)(7)27

by adding particle 9 will result in a three-loop leading singularity. The same conclusion
is also clear from the absence of a collinearity subscript. Such new channel diagrams, not
constructible by inverse soft factors, appear with each additional particle.

The generic kissing box channel diagrams may all be constructed by inverse soft factors,
but generically the process must be start from a residue with more than eight particles. The
most generic kissing boxes constructed from the residues (2)(3)(6)(7)27 and (2)(3)(5)(6)(7)2

by inverse soft factors are shown in figure 21.
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Figure 22. The generic four-mass box coefficients and the corresponding grassmannian residues.

6.2.5 Four-mass box coefficients

Finally we consider residues corresponding to four-mass box coefficients — see figure 22.
We start from the eight-particle residues (1)(3)(5)(7)1,2 where the subscript indicates one of
two solutions to the cut conditions for the four mass box configuration [1]. These residues
have the following expressions in terms of momentum twistors [5],

R(X(i), 3, 4, 7, 8)R(Y(i), 1, 2, 5, 6). (6.17)

The momentum twistors X(i) and Y(i) with i = 1, 2 are determined by the two solutions
to the cut conditions of the four-mass box configuration and may be found in [5]. Note
however that there are many such representations of the four-mass box coefficients.

Since each MHV vertex in the channel diagram has two external states, particles may
be added to all them forming generic four-mass box coefficients — see figure 22. From the
general rule for inverse soft limits, the momentum twistor expressions are then

R(X(i), j, j + 1, l, l + 1)R(Y(i), i, i+ 1, k, k + 1) , (6.18)
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Figure 23. An inverse soft factor that increases the number of loops in the channel diagram.

where again the momentum twistors X(i) and Y(i) are determined by the two solutions to
the cut conditions. They may be obtained from the solutions for eight particles by replacing
momentum twistors {1, . . . , 8} with {i, i+1, j, j+1, k, k+1, l, l+1} in accordance with the
general rule for inverse soft factors. Adding particles in between legs on separated MHV
vertices will of course lead to higher loop leading singularities.

6.3 Higher loops

So far we have considered inverse soft factors that do not change the number of loops in
the channel diagram. Here we will consider an example studied above and find the most
generic residues that can be constructed by inverse soft factors. Hopefully this will serve
as representative of a similar procedure for all residues.

We consider the residue (3)(6)(7)(8)47 studied in section 6.2.1 which corresponds to a
standard BCFW type channel diagram. We first perform an inverse soft factor in between
particles 4 and 5 which lie on separate MHV vertices in the channel diagram. After
relabelling the external particles we find the following residue,

(3)(4)(5)(7)(8)(9)58 = R(9, 1, 2, 6, 7)R(U, 2, 3, 4, 5) U = 〈9, 1, 2, [6〉7] , (6.19)

which corresponds to a three-loop primitive channel diagram (see figure 23).
Adding further particles to MHV vertices by inverse soft factors we find the residue

(j − 1)(j)(l){i,j−1,j,j+1,k,l,l+1} = R(i, j − 1, j, l, l + 1)R(U, j, j + 1, k, l) (6.20)

where we have defined the momentum twistor U = 〈i, j− 1, j, [l〉Wl+1]. Finally we can add
further particles with inverse soft factors in between the remaining adjacent MHV vertices
to form the most generic residue constructed by inverse soft factors (see figure 24)

{0}{i,j−1,j,k,l,m,n,p} = R(i, j, k,m, p)R(U, k, l,m, n) (6.21)

where we now define U = 〈i, j, k, [n〉p] and the notation {0} means that all minors vanish
on this residue. All further inverse soft factors will simply add particles to existing MHV
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Figure 24. The most generic channel diagram constructed from the residue (3)(6)(7)(8)47 by inverse
soft factors and it twistor space support.

vertices without increasing the number of loops in the channel diagram. For large numbers
of particles, it is the generic situation that all of the minors are vanishing. The twistor
support then consists of a series of i ≤ 9 lines containing generic numbers of particles, that
intersect only with their neighbours in the chain. In such cases the channel diagram is
highly non-unique and the residues may be reached in many ways by inverse soft limits.
Any attempt to add further loops with inverse soft factors will now just add further particles
to existing vertices and therefore channel diagrams with more than six loops do not lead
to new Yangian invariants at N2MHV. More generally, similar arguments for NpMHV
amplitudes indicate that no new Yangian invariants appear for channel diagrams with
more than 3p loops [3].

7 Comments on higher MHV degree

For Nk−2MHV amplitudes with k ≥ 5 the passage from grassmannian localisation in CPk−1

to twistor support is not as immediate. However, the vanishing of minors to various orders
always leads directly to conditions on the grassmannian localisation in CPk−1. Therefore
grassmannian localisation seems to be more fundamental in the description of residues.

Consider N3MHV scattering amplitudes where the vanishing of the minor (2) = (12345)
implies that the the points {12345} lie in a 3-plane in CP4. Consider now that both minors
(2) and (3) vanish so that both sets of points {12345} and {23456} lie in 3-planes in CP4.
Then we have the following factorisation of minors corresponding to two ways this can
happen:

1. The points {123456} all lie in the same 3-plane in P4

2. The points {2345} lie in a 2-plane in P4.
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When the next adjacent minor (4) vanishes, for example, we can place four conditions
on three minors with the points {23456} coplanar in CP4 and the minor (3) vanishing to
second order. However, for N3MHV amplitudes the minors may vanish to third order. For
example the minor (1) can vanish to third order when points {234} become collinear in
CP4. Therefore to define residues at N3MHV requires the specification of the vanishing
minors that denote the sets of points lying in 3-planes, the sets of points lying in 2-planes,
and the sets of collinear points in CP4. Such information should specify the grassmannian
localisation and uniquely determine the residue at N3MHV.

More generally for Nk−2MHV amplitudes we conjecture that individual residues are
completely determined by specifying their localisation properties in CPk−1. In particular,
grassmannian residues are classified by the following information:

− A list vanishing minors specifying sets of k points that lie in (k − 2)-planes

− The sets of (k − 1) points that lie in (k − 3) planes

− . . .

− The sets of four points that are coplanar

− The sets of three points that are collinear.

As explained in section 4.2, in the NMHV and N2MHV cases, this means that the grassman-
nian residues are classified by their twistor suppert, and may be identified with primitive
leading singularities through their channel diagrams.

Following results presented here at N2MHV further examples at N3MHV, it is natural
to conjecture that all Nk−2HMV residues may be written as a product of (k − 2) basic
dual superconformal invariants R(U, V,X, Y, Z) for some choice of arguments that are as-
sociated with cut propagators in the corresponding channel diagrams. We leave for further
investigation the action of inverse soft limits on residues of higher MHV degree.
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