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1 Introduction

In local string model building, the degrees of freedom that comprise the Standard Model are
assumed to be localized within a small neighborhood of the compactification manifold, ar-
ranged such that one can in principle take a decoupling limit, in which the four-dimensional
Planck scale is sent off to infinity [1–4]. The gauge and matter fields are engineered via
branes wrapping small cycles of a geometric singularity, and decoupling is achieved by
a combined decompactification and zero slope limit. The decoupled theory reduces to a
pure four-dimensional quantum field theory (QFT), with a priori freely tunable coupling
constants. In recent years, there has been some notable progress in local model building
of supersymmetric grand unified field theories (GUTs) via F-theory [5–9]. See [10] for a
recent review of F-theory GUTs. In this setting, the existence of a decoupling limit turns
out to be quite restrictive: it requires that the gauge fields must live on spacetime filling
seven-branes that wrap a del Pezzo surface. As argued in [8], decoupling gravity from an
F-theory GUT imposes significant restrictions, and provides a way to narrow the search for
potentially promising vacua. The local approach in M-theory is less well developed, but
presumably gives rise to a similarly restrictive framework.

Local string model building is only the first stage of a modular bottom-up approach to
string phenomenology [1–4] in which the task of embedding particle physics within string
theory is made more tractable, by decomposing it into a sequence of four steps:

(i) Geometrically engineer a (semi-)realistic GUT via a local M-theory or F-theory
model.

(ii) Investigate its low energy phenomenology, while assuming that couplings can be
tuned.

(iii) Formulate the topological and geometric compatibility conditions that follow from
the requirement that the local model can be embedded inside a global string com-
pactification.

(iv) Establish the existence of stabilized compactifications that fulfill these requirements.

Each stage has its own set of challenges and potential for learning new lessons. In the
first two steps one develops a link between the effective field theory language of GUT
phenomenology and the geometric language of extra dimensions, strings and branes. This
local geometric perspective is flexible yet restrictive, and when combined with minimal
naturalness requirements, produces a concrete and predictive framework. Via the last two
steps one imposes the requirement that the local model can be extended into a UV com-
plete theory with gravity. This second half of the program is harder, as it involves dealing
with the full complexity and apparent arbitrariness of the closed string landscape, but is
equally essential, since one should expect to uncover additional non-trivial restrictions and
predictions. Central model building components, such as supersymmetry breaking, may
involve all four stages.

Here we concern ourselves with the first step, the map between the geometric ingredi-
ents of F-theory and four-dimensional quantum field theory. In a strict decoupling limit,
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the two systems should be equivalent: all higher dimensional and stringy degrees of free-
dom should either be explicitly encoded in terms of four-dimensional quantum fields, or
integrated out and absorbed via computable threshold corrections. This raises the obvious
question:

What is the subspace of all four-dimensional QFTs that can be obtained via a decoupling
limit of F-theory?

We will find that the landscape of decoupling limits of F-theory is distinctly smaller than
the space of all four-dimensional QFTs. Specifically, for any F-theory GUT with a given
matter content, we will establish a concrete upper bound on the gauge coupling. Con-
versely, for a given gauge coupling, we will find restrictions on the possible matter content
of the gauge theory.

1.1 F(uzz) theory as the decoupling limit of F-theory

Suppose we set out to engineer a grand unified theory by means of a stack of seven-branes,
wrapped on a contractible del Pezzo four-cycle S of an F-theory compactification. To gain
a better understanding and control over the physical content of the model, it is helpful to
isolate the four-dimensional QFT data from the string and extra dimensional degrees of
freedom. However, as long as the four-cycle S has some finite size, the seven-brane theory
still has an elaborate spectrum of Kaluza-Klein (KK) and string excitations, and interacts
with the closed strings in its neighborhood. To get a decoupled four-dimensional gauge
theory, we must let the four-cycle S shrink to zero size1

Volclosed(S) → 0, (1.1)

where Volclosed(S) denotes the volume of the four-cycle S evaluated in the closed string
metric. The relevant RG scale, which typically would be equal to MGUT, is assumed to
be far below the string scale. This assumption amounts to taking a zero slope limit. The
small volume limit pushes up the KK mass scale, and the zero slope limit decouples the
massive string excitations. The combined limit decouples the closed string dynamics, and
sends the four-dimensional Planck mass to infinity.2

Local geometric engineering of four-dimensional gauge theories thus typically requires
that parts of the internal geometry become highly curved. Besides the decoupling argu-
ment, there is also a more dynamical motivation for considering the small volume limit. A
general important issue is how the moduli that determine the local size and shape of the
seven-brane worldvolume in fact get stabilized. One common way that volume moduli are
stabilized is through instanton effects. This is potentially problematic for the GUT volume
modulus, because if we are to treat the gauge coupling as a fixed parameter up to high
scales (in accord with the paradigm of unification), the corresponding modulus must have

1We use units with 2πα′ = 1. The zero slope limit then corresponds to working at energy scales below

the scale of massive string excitations.
2The assumption that gravity can be decoupled from a local F-theory model imposes conditions on

possible global completions [11–13].
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a very large mass. On the other hand, the naive mass-squared induced by an instanton
of the GUT theory is suppressed by e−2π/αGUT . In particular, to achieve an appropriate
GUT scale mass for the volume modulus, it would seem necessary to consider a regime of
parameters where some volume has collapsed to zero size, so as to enhance the associated
instanton induced mass scale. Related to this is the problem noted in [14] that one expects
at least some of the parameters of the model to be stabilized at strong coupling or high
curvature. Our approach is to turn this problem on its head. Rather than trying to avoid
high curvature or strong coupling, we instead set out to make use of the fact that closed
string moduli may naturally be stabilized in a small volume regime.

The commonly used approach to study string and brane dynamics in a highly curved
setting is to make use of the fact that the geometric methods remain accurate for charac-
terizing topological and holomorphic gauge theory data, which can be computed at large
volume and extrapolated to the small volume limit. However, as we will now argue, there
is another physical mechanism and independent reason for why the geometric perspective
remains valid and useful even in the zero volume limit.

To explain our argument, let us consider the value of the four-dimensional gauge cou-
pling in the decoupling limit. In the context of compactifications of perturbative type IIB
vacua with D7-branes, the four-dimensional gauge coupling is given by

4π
g2

GUT

=
Volopen(S)

(2π)2gs
(1.2)

where Volopen(S) denotes the internal volume of the GUT seven-brane as measured by the
open string metric. Since we are interested in producing four-dimensional gauge theories
with a perturbative coupling, we must ensure that the open string volume remains finite,
while taking the small closed string volume limit (1.1). From the DBI action, we read off
that at large closed string volume the open string volume can be expressed as

Volopen(S) = Volclosed(S) +
∫
S
B ∧ B + · · · . (1.3)

Here B is the background two-form flux on the D7-branes, given by the sum

B = F + B̂ (1.4)

of the worldvolume U(1) flux F = dA and the pull-back B̂ of the NS two-form field BNS to
the seven-brane worldvolume. In addition, the “· · · ” refers to various correction terms asso-
ciated with the Kähler form. In the Volclosed(S)→ 0 limit we can keep Volopen(S) finite, pro-
vided we switch on a non-zero background B-flux along the internal directions. The decou-
pling limit (1.1) then produces a four-dimensional gauge theory with finite gauge coupling

4π
g2

GUT

=
1

(2π)2gs

∫
S
B ∧ B . (1.5)

Note that because B ∧ B is a topological quantity, we expect this formula to be correct in
the decoupling limit we are considering.
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In flat space, taking the zero slope limit at zero closed string volume, in tandem with
holding the two-form field B and the open string metric Gopen

ij fixed coincides with the
Seiberg-Witten limit. This produces a non-commutative gauge theory along the internal
directions of the seven-brane [15].3 Non-commutative theories on tori [16] and in flat
space [15] have been studied extensively in the literature. Some generalizations of the flat
space case have been studied in the string theory literature for example in [17, 18]. See for
example [19–21] for reviews of some aspects of non-commutative geometry and its possible
applications to physics. Though somewhat orthogonal to the limit we consider here, related
fluxes are often considered in theories of magnetized branes (see [22] for a review).

Our present application requires a non-trivial generalization of the flat space situation
considered in [15], but it seems reasonable to assume that the same conclusion should carry
over to our context. In other words, we learn that from the perspective of the seven-brane,
the internal four-cycle should be treated as a non-commutative or “fuzzy” space SNC with
a finite volume and a non-trivial symplectic form equal to B. At a schematic level, the
commutative coordinates (z, z̄) on S should be replaced by operators (Z,Z†) which satisfy
a commutation relation of the form4

[Zi, Z
†
j ] = θij , θij = B−1

ij . (1.6)

The four uncompactified space-time dimensions remain as ordinary commuting directions.
Motivated by this observation, we will set out to develop some basic algebraic tools that

are needed to build local F-theory models with a non-commutative internal geometry S.
In this paper, we will show that all the necessary ingredients can be realized on an internal
fuzzy geometry with only a finite number of points. The number of points on S is equal to
the dimension of the associated state space on which the non-commuting coordinates Zi
and Z†j act as linear operators. The space of functions on S is identified with the space of all
linear maps from this state space to itself, and is therefore finite-dimensional. Hence by de-
sign, the decoupled seven-brane theory has a finite Kaluza-Klein expansion, and reduces to
a pure four-dimensional quantum field theory with a finite number of fields. Our goal in the
following sections is to develop the basic elements of the non-commutative geometry probed
by the seven-brane and give a precise algebraic prescription for computing the spectrum of
fields, the Lagrangian and the gauge and Yukawa interactions of the four-dimensional QFT.

At a practical level, making the internal space non-commutative also provides us with
a regulator for the seven-brane, which softens the usually problematic high energy behavior
of gauge theory in extra dimensions. Ordinarily, one would appeal to a lattice formulation,
which comes at the cost of destroying some of the geometric structure of the internal space.
By contrast, the fuzzy prescription provides us a way to retain the holomorphic geometry
used to define the compactification in the first place. Schematically, the higher-dimensional

3In most discussions of D-brane engineering of non-commutative gauge theories, one only considers the

NS 2-form BNS. The U(1) flux F = dA can be viewed as the integral part of BNS. Indeed, it is clear that

in the presence of a U(1) magnetic field and in a suitable low energy limit, the charged endpoints of the

open strings will relax into the states of the lowest Landau level, which can be thought of as occupying unit

Planck cells of a non-commutative geometry.
4Here, and in the following, we assume that B is a (1,1)-form.
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Figure 1. F(uzz) theory arises from F-theory via a decoupling limit in which Mpl is sent to infinity.
It represents a four-dimensional QFT, but preserves the geometric higher dimensional perspective
of the local F-theory construction. The extra dimensions are non-commutative, and give rise to a
finite KK spectrum. The arrows in the above diagram are not surjective and the diagram does not
commute: each reverse arrow represents an embedding into a more complete theory, which give rise
to non-trivial consistency requirements on the possible GUT models that can arise from F-theory.

fields become operators via the replacement:

φ(xµ, z, z)→ φ(xµ, Z†, Z) =
∑
n,m

φn,m(xµ)Z†nZm (1.7)

where each φn,m(xµ) corresponds to a four-dimensional field. As we show, when the internal
space S is compact, the oscillators Z and Z† act on a finite-dimensional Hilbert space. As
a consequence, our power series truncates to a polynomial, and only a finite number of the
φn,m wind up being dynamical four-dimensional fields. Similar conclusions about models
with fuzzy extra dimensions have been drawn from a somewhat different viewpoint for
example in [23–25].

Each point on the non-commutative space S can be viewed as a localized quantum
state, that occupies one unit Planck cell. The size of the Planck cells is governed by the
B-field, and the total number of points is given by the symplectic volume

# points in S =
1

(2π)2

∫
S
B ∧ B. (1.8)

For small B, there are only a few fuzzy points. To recover the commutative continuum
gauge theory, one needs to take the large B-field limit. In order to quantize S, the periods
of B around any two-cycle Σa within S must be an integer multiple of 2π. This in particular
ensures that the right-hand side of (1.8) is an integer.

At a general point in moduli space, when S has finite size, the periods of B do not
automatically take quantized values. The quantization constraint is a natural consequence
of the small volume limit, both from a dynamical and a topological perspective. Like any
stringy axion, the BNS-periods acquire a periodic potential, generated via string instantons
wrapping the associated 2-cycles. It is reasonable to expect that in the small volume limit,
when the string instantons are unsuppressed, the induced potential enforces the constraint
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that B has integer periods. Topologically, shrinking a two-cycle Σ can be thought of as
going towards a geometric transition point, at which the three-chain bounded by Σ turns
into a three-cycle B3. Cutting off the non-compact geometry, B3 becomes compact. It
is then consistent to find that

∫
Σ B '

∫
B3
H3 attains a quantized value at this geometric

transition point. Thus, after taking the zero volume limit, the periods of B do not represent
freely tunable moduli, but are more properly viewed as discrete parameters.

An illustrative alternative perspective on the situation is as follows. The integral part
of the periods of B and of the symplectic volume

∫
S B ∧B represent, respectively, wrapped

five-branes and three-branes, that are dissolved inside of the seven-brane. In the decoupling
limit, the internal open string volume of the wrapped seven-brane is fully supported by the
induced D3-brane charge. This suggests that one can view the seven-brane as completely
built up from constituent D3-branes, each occupying one Planck cell. The fuzzy points on
S are in one-to-one correspondence with the constituents D3-branes. We will return to this
perspective later, in section 7.

(αGUT)−1 ' number of fuzzy points. Our considerations uncover some useful new
insights into the structure of the subspace of four-dimensional QFTs that can arise as a
decoupling limit of F-theory. As a particular example, we can combine equations (1.5)
and (1.8) to obtain the following intriguing relation between the four-dimensional gauge
coupling and the number of fuzzy points on the internal space

4π
g2

GUT

=
1
gs

(
# points in S

)
(1.9)

A priori, it would seem that one could relax the proportionality between the GUT gauge
coupling and the number of points on S by varying the value of the string coupling gs over
its full range. However, gs is not an arbitrarily adjustable coupling constant.

In an F-theory compactification, the axio-dilaton τ = C0 + i/gs represents the shape
of the elliptic fiber of the Calabi-Yau fourfold. Like any complex structure modulus, this
shape can be stabilized by turning on appropriate fluxes. In general τ does not stabilize
at a constant value, but varies non-trivially over the compactification manifold. In the
neighborhood of seven-branes, τ behaves in a well prescribed but possibly singular way.
(For example, near a D7-brane it behaves as τ ∼ 1

2πi log z.) The string coupling at the
seven-brane thus depends on the value of the short-distance cut-off near the brane. In this
paper we shall assume that τ varies adiabatically over the holomorphic divisor defined by
the GUT seven-brane, and so we shall specify a cut-off value for τ compatible with its
profile near an E-type Yukawa point. In principle such position dependence can also be
taken into account [26], though throughout this paper we shall neglect this subtlety.

A closely related point is that building an F-theory GUT necessarily involves non-
perturbative (p, q) seven-branes, around which τ has a monodromy given by some non-
trivial element of the SL(2,Z) S-duality group. One could argue that a self-contained
discussion of non-commutative seven-branes must be formulated in an SL(2,Z) covariant
way. The non-commutativity parameter of a (p, q) seven-brane gauge theory is given by
the overall U(1) flux

B = F+ pB̂NS− qB̂RR. (1.10)
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Similarly, we need to generalize the formula (1.5) for the four-dimensional gauge coupling
by replacing the prefactor 1/gs by the (p, q) seven-brane tension (in string frame). Upon
switching to Einstein frame, this provides an S-duality invariant characterization of the
parameters of the seven-brane gauge theory. Note in particular, that the covariance under
S-duality allows one to impose the restriction that gs is always less than one (or more accu-
rately, less than 2/

√
3). See [27] for a discussion of the DBI action for (p, q) seven-branes.5

Now, in a local F-theory model, the requirement that the theory incorporates all the
necessary matter and Yukawa couplings dictates that the seven-brane worldvolume must
contain a locus where the singularity type is enhanced to E6. At the E6 singularity, the
value of τ is fixed to be equal to the cubic root of unity. Combining this with our argument
above, we learn that in an F-theory GUT, the string coupling is naturally stabilized at the
special value gs = 2/

√
3 . Hence it is reasonable to fix gs to be close to this maximal value.

Setting gs ' 1, equation (1.9) turns into a direct equality between 1/αGUT and the number
of points on S

1
αGUT

' # points in S (1.11)

Given a typical value αGUT ' 1/25, this prescribes that the number of points in S must
be equal to an integer on the order of 20 to 30. Given that S is four-dimensional, this is a
rather small number — which means that non-commutative effects can be sizable.6

1.2 Outline

The rest of this paper is organized as follows. In section 2 we review the main ingredients
of commutative F-theory. One of our goals will be to translate the holomorphic data of
the commutative theory to the non-commutative setting. In section 3 we develop some
aspects of fuzzy toric geometry. A general non-commutative Kähler manifold can be writ-
ten as a subspace of a toric space and we define forms and differential calculus on such
subspaces. Using this construction, in section 4 we formulate the main ingredients of Fuzz
theory, and develop the theory of seven-branes that wrap a non-commutative four-cycle.
Sections 5 and 6 contain some applications of Fuzz theory. In section 7 we comment on the
limit where the number of fuzzy points N becomes large, and on the possible closed string
duals. Section 8 contains our conclusions. Additional details of fuzzy P1 and P1 × P1 are
given in appendices A and B.

2 Review of commutative F-theory

In this section we briefly review the main geometric elements of F-theory constructions [28–
30].

5For bound states of seven-branes of different (p, q)-type, turning on a B-field would appear differently

to the constituent branes. For example, the exceptional seven-branes with gauge group E6, E7 and E8 can

be realized as bound states of the form En = An−1BC2, where A, B and C correspond to seven-branes of

different (p, q) type. As the B-flux experienced by each type of seven-brane factor is different, it is as if we

had switched on a GUT breaking flux, breaking the corresponding group to SU(n− 1)× SU(2)×U(1).
6Note that even if one relaxes the assumption that the local string coupling is close to one, the require-

ment that gs . 1 (since one can always go to an S-duality frame in which this is the case) gives the same

strong upper bound on the number of points.
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To achieve four-dimensional N = 1 supersymmetry, we compactify F-theory on an
elliptically fibered Calabi-Yau fourfold, fibered over a complex threefold B3. The elliptic
fiber is infinitesimally small, and the base B3 represents the actual compactification mani-
fold of the IIB string theory. A minimal presentation of the Calabi-Yau fourfold is in terms
of the Weierstrass equation

y2 = x3 + f(zi)x+ g(zi), (2.1)

where the f ’s and g’s are given by sections of suitable line-bundles over the base B3. We
can represent f and g as polynomials of the complex coordinates zi that parameterize
B3. At any point zj on the base, equation (2.1) defines a torus with shape modulus τ ,
which specifies the value of the IIB axion and dilaton field via τ = C0 + ie−φ. In F-theory
compactications, this axio-dilaton field varies non-trivially over the internal directions.

The location of seven-branes in the compactification is specified by the discriminant
locus

∆ = 4f3 + 27g2 = 0, (2.2)

where the elliptic curve degenerates. The discriminant locus (2.2) in general factorizes into
several irreducible components:

∆ =
∏
α

∆α(zi) = 0. (2.3)

Each vanishing locus (∆α = 0) defines a hypersurface Sα in B3 where a seven-brane is
located. In the direct neighborhood of a seven-brane worldvolume Sα, the Calabi-Yau
fourfold can be represented as a local K3 fibration over Sα. The ADE degeneration of the
local K3 then dictates the gauge group of the worldvolume gauge theory on the seven-brane.

Our main interest in the present context will be the study of the worldvolume theory
of the “GUT seven-brane” wrapping the hypersurface

S =
(
∆GUT = 0

)
. (2.4)

This seven-brane hosts the gauge sector of the F-theory GUT, which for concreteness we
will take to have gauge group G = SU(5). In accord with the decoupling principle, we will
restrict our attention to the case that the four-cycle S can shrink to zero size within the base
B3. This condition requires that S describes a del Pezzo surface. The detailed geometric
aspects of del Pezzo geometries will not be important to us in what follows, except that it
is always possible to represent them as intersections of hypersurfaces inside of a toric space.

In the vicinity of S, we can switch to a local coordinate z such that z = 0 indicates
the location of the GUT seven-brane. In this case, the presence of an SU(5) gauge theory
on the GUT brane indicates the discriminant locally looks as:

∆ = z5
∏

∆α 6=∆GUT

∆α(zj , z). (2.5)

Here we have treated the local coordinate z somewhat differently from the other coordinates
zj parameterizing the local region of the threefold. At a typical point at z = 0, the equation
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∆ = 0 defines an A4 singularity. Further enhancement in the singularity type indicates
where chiral matter localizes. Each vanishing locus

Σα =
(
∆α(zj , z) = 0

)
∩ (z = 0) (2.6)

defines a complex curve inside of S, at which the GUT seven-brane intersects with one or
more other seven-branes. We will refer to these intersections Σα as “matter curves”, since
they give rise to six-dimensional matter. This matter arises from the ground states of open
strings that connect the two stacks of seven-branes, and correspondingly, are charged as
“bifundamentals” under the two gauge groups.

The existence of chiral four-dimensional matter can be assured by activating appropri-
ate background fluxes on the worldvolume of the flavor seven-branes. These fluxes specify
that the higher-dimensional matter transform as sections of vector bundles defined on the
matter curves, and the localized chiral zero modes are then guaranteed to exist and are
counted via the appropriate index theorem. The intersections between the matter curves
indicate additional enhancements of the singularity type, and give rise to Yukawa couplings
of the compactification. We will now briefly describe in a bit more detail how the matter
curves and their intersections can be described from the point of view of the worldvolume
gauge theory of the GUT seven-brane.

2.1 Seven-brane gauge theory

The worldvolume theory of the GUT seven-brane is given by a partially twisted version of
the maximally supersymmetric gauge theory defined on R3,1×S. We follow conventions as
in [6] (see also [5]). The four-dimensional effective theory is obtained by treating the eight-
dimensional fields as a collection of four-dimensional fields parameterized by points of S.
In [6], the component form of the Lagrangian was presented in which the eight-dimensional
gauge symmetry was manifest. For brevity, here we present a formulation of the higher-
dimensional gauge theory which is manifestly N = 1 supersymmetric [31, 32]. Organize the
eight-dimensional fields according to four-dimensional N = 1 supermultiplets, the gauge
sector of the seven-brane theory then consists of: an adjoint-valued vector multiplet V ,
which represents an ordinary function on S, a collection of adjoint-valued chiral superfields
A, which transform as a (0, 1)-form along the internal directions, and a collection of adjoint-
valued chiral superfields Φ which combine into a (2, 0)-form on S.

The eight-dimensional Lagrangian L can then be written in four-dimensional super-
space notation as

L =
∫
d4θ K +

∫
d2θ W + h.c. + WZW , (2.7)

where the WZW term is a non-local term which vanishes in WZ gauge [31]. The gauge
sector Kähler potential decomposes into a contribution from Φ and A:

Kgauge = KΦ +KA (2.8)

where the Kähler potential is fixed by the inner product (·, ·) induced by the open string
Hermitian metric associated with the gauge bundles for Φ and A:

KΦ=
(
Φ†e−V, Φ eV

)
(2.9)
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KA=
(
(∂ +A)†e−V, (∂ +A)eV

)
− (∂†e−V, ∂eV

)
. (2.10)

For example, a canonical Kähler potential for Φ is given by the pairing
(Φ†,Φ)canonical = Φ†Φ.7 The F-terms are:

Wgauge= Tr
(
W 2
α

)
+ Tr

(
Φ ∧ (∂A+A ∧A)

)
. (2.11)

The fields V , A and Φ all have non-trivial profiles on the internal manifold S, and thus
decompose into a full KK tower of massive four dimensional fields. The bulk zero mode
content will in general depend on the choice of background gauge field flux. The zero mode
spectrum will consist of the constant modes of the vector multiplet, and possibly additional
chiral superfields descending from Φ and A. In realistic applications, one typically requires
the flux to be chosen so as to exclude these additional zero modes.

2.2 Matter localization

The singularity type of an elliptic fibration enhances along the intersection of seven-branes.
Consider two stacks of seven-branes, one wrapping the four-cycle S and the other one
wrapping a transverse four-cycle Sα, with respective gauge groups G and Gα. The physics
near the intersection curve Σα = S ∩ Sα can be modelled in terms of a breaking pattern
of GΣ ⊃ G × Gα, where GΣ is the gauge group that specifies the enhanced singularity
type along the matter curve Σα [33]. In a local patch on the GUT seven-brane S near the
matter curve we can view both stacks of seven-branes as part of one stack, and adopt a GΣ

gauge theory perspective. The breaking pattern can then be viewed as induced via a vev
Φ0 of the Higgs scalar field valued in the adjoint of the enhanced gauge group GΣ. The
Higgs field Φ0 represents the geometric distance between the two seven-brane stacks on S
and Sα. Hence it is non-zero everywhere except at the location of the matter curve.

The GΣ gauge theory has the same matter content (V,Φ, A) as the G gauge theory
on the GUT seven-brane, except that all fields transform as adjoints of the enlarged gauge
group GΣ. Φ0 is a vev of the (2,0) field Φ, that takes the form of a vortex configuration
centered at the matter curve Σα. In the vicinity of the matter curve, localized fluctuation
modes Ψα of Φ and Aα of A satisfy the equations [6]:

∂AΨα +
[
Φ0, Aα

]
= 0 (2.12)

k ∧ ∂AAα +
[
Φ†0, Ψα

]
= 0 (2.13)

where k is the Kähler form in the patch. The commutator with the Higgs field gives a
mass to Aα and Ψα, and modes localize where this commutator vanishes. These modes
organize as six-dimensional fields which represent the open strings that stretch between
the two stacks of seven-branes.

The thickness of the vortex is governed by the slope of the Higgs field, or in geometric
terms, the angle at which the two seven-brane worldvolumes S and Sα intersect each other.
When this angle is large, open strings that stretch between the two sets of seven-branes

7To emphasize the connection with the usual Kähler potential, we deviate from the standard inner

product notation, and include the explicit Hermitian conjugation.
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acquire a large mass as soon as they separate from the matter curve. In the large Higgs field
limit, the derivative terms drop out of the equation of motion (2.12) of the fluctuation fields[

Φ0, Aα
]
=0,

[
Φ†0, Ψα

]
= 0. (2.14)

The commutator equation is equivalent to the algebraic data defining the location of the
holomorphic matter curves.

Working in a neighborhood of the compact curve Σα, it is enough to consider a config-
uration where the Higgs field Φ0 takes values in the Cartan subalgebra of GΣ. Introduce
Cartan generators hi and generators tα parameterized by simple roots of GΣ. For simplic-
ity, let us now assume that the symmetry enhancement at the matter curve Sα amounts
to intersecting with just a single seven-brane, so that Gα = U(1). The matter curve Σα is
then associated with some specified simple root α, and the corresponding localized matter
fields can be decomposed as Ψ = Ψα tα and A = Aαtα. Using that [ hi, tα ] = 〈α, hi〉tα, the
equation of motion (2.14) then assumes the form

〈α, Φ0〉Aα=0 , 〈α, Φ†0〉Ψα = 0 . (2.15)

The fluctuation fields must vanish everywhere except at the location of the matter curve

Σα =
(
〈α, Φ0 〉 = 0

)
. (2.16)

The large Higgs field limit thus amounts to a delta function approximation: the matter
fields Ψα and Aα turn into distribution valued fields on S, transforming in irreducible
representations Rα of the unbroken gauge group G, specified by the simple root α of the
enlarged gauge group associated with the matter curve Σα.8 It is important to note that
here we are describing the representation content of a six-dimensional field. Dimension-
ally reducing, four-dimensional matter fields localized on the curve will transform in the
representation Rα, as well as the conjugate representation which we denote by R−α. To
emphasize this point, we shall sometimes write such fields as Aα and Ψ−α.

The above description of the matter localization in terms of a Higgs bundle of a gauge
theory with an extended gauge group is in general only valid in a local patch around each
matter curve. In principle, one could consider the special situation in which all matter
curves admit a unified description as some appropriate Higgs bundle of some maximal
rank gauge theory defined globally over S [11]. The prescribed choice for this maximal
rank gauge group would be E8, and the local geometry would then take the form of a
partially unfolded E8 singularity. However, the assumption that such a unified perspective
exists is very restrictive, and the required global conditions are not easily satisfied. Instead,
we will view the collection of the matter curves and associated matter representations as
extra data, external to the seven-brane gauge theory on S, and specified by the local
geometry of the Calabi-Yau fourfold.

8The representation Rα is specified via the decomposition of the adjoint representation of GΣ into

irreducible representations of G × Gα ⊂ GΣ: ad(GΣ) = ad(G) ⊕ ad(Gα) ⊕ ⊕τ (Rτ ,R
′
τ ), so that τ = α

corresponds to one or more of the summands. When Gα = U(1), Rα is an irreducible representation of G.
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Along the matter curve Σα, the equation of motion (2.12) for the localized fields
reduces to

∂A+A′Ψα = 0, k ∧ ∂A+A′Aα = 0 . (2.17)

Here ∂A+A′ denotes the Dolbault operator associated with the difference of the background
gauge fields defined on the two seven-brane stacks, restricted to Σα. The independent solu-
tions to these equations are the charged massless chiral matter fields of the four-dimensional
gauge theory. The number of zero modes depends on the choice of gauge bundle. This
bundle data is dictated by the breaking patterns of the fibration singularities of the com-
pactification, and also by the choice of background fluxes. The number of chiral zero modes
on a matter curve can be adjusted by turning on an appropriate background U(1) flux on the
transverse seven-brane worldvolume Sα, as well as by activating fluxes of the GUT brane.

The intersection of matter curves gives rise to Yukawa couplings in the four-
dimensional theory. At the intersection, the singularity type of the ADE fibration
enhances further to Gp. This situation can locally be modelled in terms of Higgsing of a
Gp gauge theory. Such intersections can either involve just two matter curves meeting or
three intersecting matter curves. Though the latter possibility may look fine-tuned, both
possibilities are generic from the perspective of the Gp gauge theory, and in the geometry
this naturally occurs once the data of the fibration is included.

Putting this all together, the matter sector is described by an N = 1 supersymmetric
Lagrangian defined on R3,1 × S, specified by a Kähler and superpotential of the form [6]

Kmatter =
(

Ψ †−α, e
−V−V ′Ψ−α

)
+
(
Aα
†, eV+V ′Aα

)
(2.18)

Wmatter =Ψ−α ∧ ∂A+A′Aα + fαβγ Ψα ∧Aβ ∧Aγ . (2.19)

In the above we have included possible couplings to the gauge fields of the flavor
seven-branes, with their associated vector multiplet V ′ and internal gauge field A′. In
our conventions, matter fields Aα and Ψ−α on a curve Σα respectively transform in the
representation Rα, and its conjugate R−α. Here fαβγ is only non-zero if the corresponding
three matter curves intersect, and if the tensor product of the three representations
Rα⊗Rβ⊗Rγ contains the trivial representation; in this case, fαβγ denotes the appropriate
Clebsch-Gordon coefficient. The matter fields are all viewed as distributions on S that
are localized on the associated matter curves. Note that the Yukawa couplings involve the
overlap of three such distributions. This triple overlap needs to be regularized, by locally
resolving the matter curves as Higgs vortices, as described above. In section 4 we will see
that in the non-commutative theory, this triple overlap is automatically well-defined, and
the Yukawa couplings are immediately finite.

2.3 U(1) fluxes

In perturbative IIB string theory, it is convenient to combine the B-field and overall field
strength in the direction of the trace U(1) of a U(n) gauge theory into the quantity B.
At first this may seem less straightforward in F-theory, because the gauge group on a
seven-brane is really SU(n), and not U(n). Let us first note that the compactification
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geometry supports non-trivial three-form fluxes, and so generically non-trivial B-periods
will be present. As explained in the Introduction, in the decoupling limit, the B-periods
take quantized values.

In gauge theory terms there is also a notion of an overall U(1) which is shared between
intersecting seven-branes. For example, SU(6) contains a 5 × 5 U(5) block and a 1 × 1
U(1) block which are subject to the condition that detU(5)×detU(1) = 1, which is often
denoted as the subgroup S(U(5)× U(1)) ⊂ SU(6). Thus, switching on a flux on the U(5)
factor is compensated by a flux on the U(1) factor. In F-theory, intersecting seven-brane
configurations can be described by such breaking patterns, so we see that there is still a
notion of B on a seven-brane.

Activating the flux B induces a net D3-brane and five-brane charge on the seven-brane
worldvolume. In an F-theory compactification, the D3-brane tadpole can be cancelled
by the Euler character of the Calabi-Yau fourfold [34]. Returning to the gauge theory
description of B fields on seven-branes, we see that the five-brane tadpole induced by one
stack of seven-branes can be cancelled by a compensating contribution to the net five-brane
charge induced by other intersecting seven-branes.

A convenient and by now standard way to break the SU(5) gauge group down to the
Standard Model gauge group is to activate a background flux on the GUT brane, in the
direction of the hypercharge U(1) generator [8, 9]

FY =
3∑

a=1

Fa 1a, (2.20)

where a = 1, 2, 3 labels the three SM gauge group factors. The gauge and matter fields
then organize into Standard Model representations. The hypercharge flux also affects the
line bundle data on the matter curves. This opens up the possibility of distinguishing the
Higgs fields of the MSSM from the other chiral matter content. The Higgs fields localize
on matter curves where the U(1) hypercharge flux is non-vanishing, and the other chiral
matter of the MSSM localizes on curves where the net hyperflux vanishes. This gives a
natural geometric solution to the doublet-triplet splitting problem [8].

The GUT symmetry breaking via hypercharge flux will in general perturb exact cou-
pling constant unification. The geometric volume one would associate with each gauge
coupling constant will in general be different, because the hyperflux contributes to the
effective open string metric seen by each gauge group factor.

In the decoupling limit where the closed string volume is taken to zero, the geometric
formula for the three Standard Model gauge couplings is then:

4π
g2

a

=
1

(2π)2gs

∫
S
Ba ∧ Ba (2.21)

with Ba = Fa + B where B denotes the ambient two-form flux turned on to support
the open string volume of the cycle. To preserve coupling constant unification at this
geometric level, one would need to choose the hyperflux such that the right-hand side
of (2.21) takes approximately the same value for all three gauge groups. In models with a
realistic spectrum, this condition is already met.
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3 Fuzzy toric geometry

Our aim in the following sections will be to develop the four-dimensional field theory of a
seven-brane wrapping a non-commutative four-cycle. To this end, we now develop some
tools for dealing with such geometries.

The standard prescription for defining a non-commutative space is to start with the
algebra of functions of a commutative space, and to then deform this structure to a more
general algebra. Though this provides a general way to work with non-commutative geome-
tries, it can also be somewhat unwieldy. In this section we present a practical quantization
prescription for working with non-commutative or “fuzzy” geometries which exploits the
additional structure present in toric geometries. In subsequent sections we shall use this
prescription to study the low energy theory of seven-branes wrapping a fuzzy four-cycle.

In the commutative setting, one convenient way to realize a wide variety of possible
compact spaces is via toric constructions. The main idea is that the compact space of
interest, such as the ones that are relevant to F-theory, can be viewed as the intersection
of hypersurfaces inside of a larger toric space. Our strategy in this section will be to
first develop a suitable non-commutative analogue of toric spaces. This prescription can
be applied in situations where all toric coordinates are non-commutative, and also in
situations where some subset are non-commutative, while the others remain commutative.
Subspaces of these fuzzy toric geometries will then provide us with a prescription for
realizing non-commutative Kähler surfaces. The construction we present bears a formal
resemblance to that given in [35], though as far as we are aware, the geometric interpreta-
tion presented here has not appeared in the literature before.9 We shall therefore proceed
somewhat systematically.

Let us first review classical toric geometry. In physics terms, toric geometries are
characterized by the gauged linear sigma model (GLSM). Recall that in a GLSM, there are
r chiral superfields z1, . . . , zr, and a gauge group U(1)s = U(1)(1)×. . .×U(1)(s) under which
these chiral superfields are charged. Hence each coordinate zi is labeled by an s-component
charge vector ~qi. In addition, the zi obey s D-term constraints:

r∑
i=1

~qi |zi|
2 = ~ζ. (3.1)

The classical vacua of the 1 + 1 dimensional theory then correspond to gauge equivalent
orbits of the zi subject to the D-term constraints of line (3.1). These vacua then define the
classical geometry of the symplectic quotient

X(~ζ ) = Cr//U(1)s (3.2)

which is an r − s complex dimensional manifold. More general spaces are obtained by
considering hypersurfaces in X, specified as the vanishing locus of one or more weighted
homogeneous polynomials P~w(z1, . . . , zr). The weights ~w are constrained by the condition
that P~w has a well-defined GLSM charge.

9For another approach to defining non-commutative toric geometries, see [36].
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This toric characterization can be straightforwardly quantized and used to construct
a general class of non-commutative geometries. In principle one would need to show that
this particular quantization prescription is the correct one for describing the zero slope
limit of an open string theory on a wrapped seven-brane in a B-field. We will not try to
give such a derivation here, but do note that the GLSM formulation given here appears to
be a particularly suitable starting point for making such an attempt.

3.1 Quantization procedure

We now provide a quantization prescription for this toric setup. In general terms, the
data necessary to quantize our system consists of a symplectic form ω defined on the
ambient space Cr, which we use to define commutation relations. The D-term constraint
of the classical toric geometry is then promoted to the Hamiltonian constraint of the
quantized system. Imposing the Hamiltonian constraint on the state space associated
with the quantized ambient space produces the non-commutative toric space X.

Let us now describe each step in more detail. We begin by quantizing Cr, by viewing it
as a symplectic manifold with a closed symplectic form ω. To keep our treatment as simple
as possible, we choose ω to be a (1,1)-form. In the F-theory context, this means that we
assume that the B-flux is a (1, 1)-form on the seven-brane worldvolume.10 Assuming ω does
not vanish, Darboux’s theorem ensures that there exists a general coordinate redefinition
on Cr such that ω takes the form

ω =
r∑
i=1

idzi ∧ dzi (3.3)

This defines a Poisson bracket for the z’s and z’s: {zi, zj}PB = δij . This means that the
metric on Cr takes the general form

ds2 =
r∑

i,j=1

Gijdzidzj (3.4)

with Gij some general matrix. In this section, we will mostly focus on the symplectic
geometry. In particular, we shall define the toric U(1)s action on the zi’s and the GSLM
D-term constraint with respect to this symplectic coordinate basis.

We now take the quantization step and replace each coordinate zi and zj by operators
Zi and Z†j obeying the commutation relations:[

Zi, Z
†
j

]
=~NCδij , (3.5)[

Zi, Zj
]
=
[
Z†i , Z

†
j

]
= 0 , (3.6)

for i, j = 1, . . . , r. The parameter ~NC is Planck’s constant, which here has the dimension
of an area: it sets the size of the Planck cell on the fuzzy space. For convenience, we shall
mostly work in units where ~NC = 1.

10For a discussion of local F-theory models with non-commutativity induced by a holomorphic bi-vector,

see [37, 38].
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To build up the quantized geometry, we introduce a vacuum state |0〉 annihilated by
the Zi. Acting with creation operators on the vacuum realizes a Fock space

F (Cr) = span

{
r∏
i=1

(
Z†i
)ni

√
ni!
| 0 〉

}
. (3.7)

The basis elements of F(Cr) can be thought of as the quantized points of Cr, and the Fock
space is obtained by treating these points as basis elements of a linear vector space. For
brevity, we shall often refer to these vector spaces as defining the non-commutative space
itself, since the distinction will be largely unimportant in what follows.

We now want to take the symplectic quotient, and define the non-commutative version
of the toric space X(~ζ). As we will see, the FI-parameters ~ζ that determine the overall size
and shape of X(~ζ) will be quantized (in the sense that they can only take integer values) via
the requirement that the various compact two-cycles inside X support an integer number
of Planck cells. Treating the Zi as the quantized analogues of the GLSM fields, there is an
associated set of U(1)s charges for each Zi. Concretely, the vector of D-term operators

~D =
r∑
i=1

~qiZ
†
iZi, (3.8)

now assumes the natural role of the vector of conserved charges that generate the U(1)s

rotations. These conserved charges will act like Hamiltonians on the large phase space Cr.
The toric space is obtained by treating these Hamiltonians as operator constraints.

The Fock space F(Cr) admits a grading in terms of the spectrum of the ~D operator

F (Cr) =⊕
~ζ

FX(~ζ ) (3.9)

so that for all states |Ψ〉 in the subspace FX(~ζ ), the vector ~D takes the fixed value ~ζ:

~D |Ψ〉 = ~ζ |Ψ〉 . (3.10)

This defines the quantized analogue of the D-term equation (3.1) in the commuting case.
Geometrically, the ~ζ’s define quantized versions of the FI parameters of the GLSM, and
thus specify the Kähler data of the non-commutative toric space X(~ζ ). Roughly speaking,
we view FX(~ζ) as the vector space of fuzzy points on X(~ζ ).11 We recover the commutative
geometry in the limit in which we simultaneously rescale all of the components of the vector
~ζ to infinity, while also requiring that the quantization parameter ~NC tends to zero.

The sign and magnitude of the FI parameters determine the compact and non-compact
directions of the geometry. Indeed, the values of the FI parameters determine the Kähler
volumes for the toric space. Viewing the norms |zi|2 as coordinates of Rr

≥0, each D-
term constraint defines a hyperplane in this space, and the toric space lies at the mutual

11Later when we discuss differential forms we will extend this definition to also include “fermionic points”.

Since the context will hopefully be clear, we shall use similar notation to refer to both the bosonic space,

and its fermionic extension.
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Figure 2. Toric diagram for commutative P1×P1 and its fuzzy analogue. The commutative geome-
try is described by the classical vacua of a U(1)×U(1) GLSM with four chiral superfields u1, u2, v1,
v2 with GLSM charges (+1, 0) for the ui’s and (0,+1) for the vi’s. Viewing the norms |ui|2 and |vi|2
as coordinates of R4

≥0, the D-term constraints |u1|2+|u2|2 = ζI and |v1|2+|v2|2 = ζII define two hy-
persurfaces which intersect over a two-dimensional compact subspace. Here we have projected this
space onto a two-dimensional plane, where it corresponds to a rectangle with sides of lengths ζI and
ζII . Each side corresponds to a P1 factor of the geometry. In the non-commutative theory, the D-
term becomes a quantized Hamiltonian constraint, and the state space of points is finite-dimensional.
The North and South poles of the commutative P1’s then become highest and lowest su(2) angular
momentum states of the fuzzy theory. See appendix A for further discussion of fuzzy P1.

intersection of all the hyperplanes. In the non-commutative setting, the intersection of
these hyperplanes is replaced by discretized data. In particular, this means that finite area
intersections of hyperplanes translate to subspaces with an upper bound on the oscillator
number. Non-compact intersections of hyperplanes correspond to subspaces with no such
bound. Changing the values of the FI parameters can cause the geometry to undergo a
flop transition. Such transitions correspond to changing the oscillator content of the Fock
space. See section 5 for further discussion of a fuzzy flop transition.

For compact toric manifolds, the subspaces FX(~ζ ) are finite dimensional. The basis
elements of FX(~ζ ) correspond to the points of the fuzzy toric space X(~ζ ), and hence the
total number of points equals the dimension of this vector space

# points inX(~ζ ) ≡ dimFX(~ζ ) . (3.11)

From a semi-classical viewpoint, this equals the number of Planck cells in X.
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3.2 Functions and line bundles

Having specified the formal spaces of interest, we now introduce functions and line bundles
over a non-commutative toric variety X(~ζ ).

Fuzzy functions. In commutative geometry, a complex function on a space X is defined
as a map from X to C. In the non-commutative setting, one can similarly consider linear
maps from the state space FX(~ζ) to C. The collection of all such maps is a linear space
with the same dimension as the state space FX(~ζ) itself. There is, however, a more
substantive notion of functions on a fuzzy space, namely as the space of functions of the
non-commutative coordinates on X.

Since the fuzzy coordinates do not commute among each other, we cannot view them
as having some precise classical value, but rather as operators that act non-trivially on
the other coordinates. Taking this into account, it is natural to define the space of non-
commutative functions as the space of linear maps from the state space FX(~ζ) to itself.
Indeed, every linear operator from the state space FX(~ζ) to itself can be presented in
terms of polynomials built from the creation and annihilation operators Z† and Z. More
precisely, they are given by polynomials F (Z†, Z), which have zero GLSM charge:

Ω0(X) ≡
{
F (Z†, Z) :

[
~D, F

]
= 0

}
. (3.12)

A matrix representative for an element of FX(~ζ )⊗ F∗X(~ζ ) is then given by evaluating the
operator in a specified basis of states.

On the function space we can define a natural non-commutative star product, given
by operator multiplication

(F ∗G)(Z†, Z) = F (Z†, Z) ·G(Z†, Z) (3.13)

Since functions are defined as normal ordered expressions, the right-hand side of (3.13) must
be decomposed into a sum of normal ordered terms via Wick contractions. In the matrix
representation of functions, the star product is simply given by matrix multiplication. In
the following we will not explicitly write the star product ∗, as it will be automatically
understood that functions are normal ordered expressions in the oscillators.

An important feature of our present discussion is that when all of the GLSM charges
are positive, it is not possible to write down any functions which are purely holomorphic in
the Z’s. This reflects the fact that on a space of positive curvature, a holomorphic function
will have a pole somewhere on the surface. Holomorphic sections of non-trivial line bundles
correspond to holomorphic polynomials in the Z’s.

Fuzzy line bundles. We now present a prescription for defining line bundles on a fuzzy
toric space. Roughly speaking, non-trivial line bundles can be thought of as non-square
matrices.12 In terms of GLSM data, we can characterize the data of a line bundle in terms
of operators built from the zi’s. In particular, we can organize all operators according to

12Line bundles on fuzzy P1 and the generalization to fuzzy Pn have been discussed in [39] and [40].
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their GLSM charges. The space of operators with the same GLSM charge ~Q then define
sections of a line bundle of degree ~Q, which we call L( ~Q).

In the non-commutative setting these sections are represented by polynomials in the
Zi and Z†i oscillators with GLSM charge ~Q. In other words, the space of sections valued
in the line bundle L( ~Q) is defined as the space of polynomials G(Z†, Z) that satisfy13

L( ~Q) =
{
G(Z†, Z) :

[
~D, G

]
= − ~QG

}
. (3.14)

Expressions given purely in terms of the Z’s with no Z†’s correspond to holomorphic
sections of non-trivial line bundles.

Fixing the Kähler class of the fuzzy space, we can present sections of the line bundle
L( ~Q) in terms of a collection of rectangular matrices valued in FX(~ζ − ~Q)⊗F∗X(~ζ).

3.3 Fuzzy p-forms

We now construct differential forms on a non-commutative toric space X. Our strategy
will be to first construct the requisite geometry on Cr, and to then perform the symplectic
quotient to construct differential forms on X.

Let us begin with differential forms on Cr. To this end, introduce a set of fermionic
oscillators obeying the anti-commutation relations:{

Ci, C
†
j

}
=~NCδij , (3.15){

Ci, Cj
}

=
{
C†i , C

†
j

}
= 0 , (3.16)

for i, j = 1, . . . , r. In what follows we continue to set ~NC = 1. The Ci’s are the quantized
versions of the differentials dzi, and the C†i ’s are the quantized analogues of the dzi’s. Note
that with this prescription the non-commutative analogue of the identity dz∧dz = −dz∧dz
is violated due to Wick contraction between C and C†. This additional non-commutative
structure provides a covariant extension of functions to differentials. We can view the
oscillators (Zi, Z

†
j , Ci, C

†
j ) as coordinates on the quantized cotangent bundle T ∗Cr.

Introducing a vacuum state |0〉 annihilated by the Zi and the Ci, the Fock space of
states spanned by acting with Z†i and C†i then provides a natural extension of the fuzzy
points of Cr:

F(T ∗holCr) = span

{
r∏
i=1

(
Z†i
)ni

√
ni!

(
C†i
)σi | 0 〉 } . (3.17)

Geometrically, the subspace of states with fermion number zero corresponds to the space
of fuzzy points on Cr, and the subspace of states with fermion number zero or one
corresponds to the fuzzy points of the holomorphic cotangent bundle T ∗holCr. Here, we
are viewing the cotangent bundle as a phase space in which the bosonic points correspond
to the “position coordinates” and the fermion number one points are the “momentum
coordinates”. Similarly, the n-fermion subspace is the nth exterior power ΛnT ∗holCr. The

13Our sign conventions are chosen to maximally adhere to the sign conventions in the commutative theory.

For example, a positive degree line bundle on P1 has holomorphic sections.
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Fock space corresponds to exterior powers of the holomorphic cotangent bundle. We
view the Hermitian conjugate space of states as the fuzzy points of the anti-holomorphic
cotangent bundle of Cr and its exterior powers:

F(T ∗
hol

Cr) = F(T ∗holCr)∗. (3.18)

Differential forms of Cr correspond to maps which send one fuzzy point of F(T ∗holCr)
to another. The most general operator of this type can be expanded as a power series in
the oscillators which is normal ordered in the Z’s, and anti-normal ordered in the C’s. An
operator with p C oscillators and q C† oscillators is then given by the (p, q)-form:

ω(p,q) =
∑
I,J

fI,J(Z†, Z) Ci1 ∧ . . . ∧ Cip ∧ C
†
j1
∧ . . . ∧ C†jq (3.19)

where I = (i1, . . . , ip) and J = (j1, . . . , jq) are multi-indices running over i and j holomor-
phic and anti-holomorphic indices respectively.

The space of all (p, q)-forms admits a Z2 grading according to whether there are an
even or odd number of fermionic oscillators. The wedge product of differential forms is
given by operator multiplication(

ω1 ∧∗ ω2

)
(Z†, Z, C,C†) = ω1(Z†, Z, C,C†) · ω2(Z†, Z, C,C†) (3.20)

This non-commutative wedge product preserves the Z2 grading. Note, however, that the
∧∗-product involves non-trivial Wick contractions between the fermionic oscillators. This
means that, as opposed to the commutative theory, the wedge product of a (p, q)- and
(p′, q′)-form will generally be of mixed (p, q)-type. This feature should be viewed as addi-
tional non-commutative structure along the cotangent space direction of the fuzzy space.

3.3.1 Dolbeault operators

On the space of differential forms on Cr, we can define the operators ∂ and ∂ which act on
a form ω as:

∂ω=
r∑
i=1

[
Zi, ω

]
C†i , ∂ω =

r∑
i=1

Ci
[
Z†i , ω

]
. (3.21)

By virtue of the non-trivial commutator between Z and Z†, this acts as a differential
operator. As opposed to the commutative theory, ∂ and ∂ do not commute. Nevertheless,
we can still define Dolbeault cohomology. Just as in the commutative theory, the operators
∂ and ∂ map (p, q) forms to (p, q + 1) and (p+ 1, q)-forms, and are both nilpotent:

∂
2 = 0 and ∂2 = 0. (3.22)

Note that when ∂ acts on (0, q)-forms, the definition given in equation (3.21) can also be
written as a super-commutator with the operator ∂ =

∑
i ZiC

†
i , which manifestly satisfies

∂
2 = 0. Thus, we can also speak of a Dolbeault complex in this case as well. This latter

version of ∂ can then be interpreted as a BRST operator. As a matter of notation, we will
sometimes write

∂ω(0,q) =
[
∂, ω(0,q)

}
, ∂ω(p,0) =

[
∂, ω(p,0)

}
. (3.23)
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3.3.2 p-forms on toric spaces

We now turn to differential forms on the symplectic quotient X = Cr//U(1)s. To frame our
discussion, first recall how differentials are constructed in the symplectic quotient of the
commutative geometry. There, the restriction to the cotangent bundle T ∗X requires us to
impose the projection onto the subspace of the holomorphic cotangent bundle orthogonal
to the Hamiltonian vector fields associated with the U(1)s action, and to the gradients d ~D
of the D-term constraint. Concretely, this means that we need to project the forms onto
those components that are orthogonal to the holomorphic and anti-holomorphic gradients
∂ ~D and ∂ ~D of the D-terms.

We now extend our Hamiltonian constraints to the extended phase space. In the
GLSM, we can consider operators made from bosons, but also operators involving fermions.
These bosons and fermions combine into supermultiplets of the two-dimensional gauge
theory. Thus, we see that the fermions also possess a GLSM charge, and our Hamiltonian
constraint must be modified to reflect this fact. The natural extension of the original
Hamiltonian constraint is then given by extending the definition of the D-term constraint
operators ~D to act on the fermionic coordinates:

~D =
r∑
i=1

(
~qi Z

†
iZi + ~qiC

†
iCi

)
(3.24)

This operator ~D acts on functions and forms via the commutator ad(~D)ω ≡ [~D, ω]. The
constraint on the rest of the “phase space” for the holomorphic cotangent bundle of X is
enforced by the operator:

∂ ~D =
∑
i

~qiZ
†
iCi. (3.25)

The ket states |Ψ〉 that define the holomorphic cotangent bundle and its exterior powers
Λ•T ∗holX are then given by the subspace of F(T ∗holCr) which satisfy the D-term constraint
and are annihilated by ∂ ~D:

~D |Ψ〉 = ~ζ |Ψ〉 , and ∂ ~D |Ψ〉 = 0. (3.26)

Importantly, all of the original bosonic fuzzy points are retained by this extension.
Indeed, what has been added is the additional structure of the holomorphic cotangent
bundle. Further note that precisely because this is a holomorphic object, it is appropriate
to only enforce a vanishing condition from ∂ ~D, and not its Hermitian conjugate:

∂ ~D =
∑
i

~qiZiC
†
i . (3.27)

To avoid cluttering notation, we shall refer to the entire state space defined in this way as
FX(~ζ).

The bra states 〈Ψ| which are elements of the anti-holomorphic cotangent bundle and
its exterior powers Λ•T ∗

hol
X similarly satisfy

〈Ψ| ~D = 〈Ψ|~ζ , and 〈Ψ|∂ ~D = 0 . (3.28)
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Differential forms on X are given by operators which send a state of FX(~ζ ) to another
state of FX(~ζ ). Compatibility with the Hamiltonian constraints (3.26) imposed by ~D and
∂ ~D require that a (p, q)-form ω(p,q) on X satisfies:[

~D, ω(p,q)

]
= 0 and

[
∂ ~D, ω(p,q)

]
= 0. (3.29)

In other words, ω(p,q) must have zero GLSM charge and preserve the structure of T ∗holX.
Note that in (3.29) we do not impose that ω(p,q) commutes with ∂ ~D. So when act-

ing to the left, the form does not need to preserve the hermitian conjugate GLSM con-
straints (3.28). Our definition of differential forms on X thus looks asymmetric under
complex conjugation on X. However, the following observation restores the symmetry.
Physical quantities are given by the matrix element of (products of) differential forms
between bra and ket states, that satisfy (3.26) and (3.28). Consider such a matrix element

〈µ|ω(p,q)|ν 〉. (3.30)

The bra states span the dual space to FX(~ζ), in the sense that any bra state in the
big Fock space F(T ∗

hol
Cr) can be decomposed into an element of F∗X(~ζ) — that is, a

state that satisfies the conditions (3.28) — plus a state in the orthocomplement of F∗X(~ζ).
So in equation (3.30), the inner product with the ket state |ν〉 automatically projects
the state 〈µ|ω(p,q) along the component in F∗X(~ζ), that satisfies (3.28). By explicitly
implementing this projection, we can map a fuzzy differential form ω(p,q) on X in the
‘holomorphic representation’ (3.29) into an equivalent differential form ω(p,q) on X in the
‘anti-holomorphic representation’, satisfying[

~D, ω(p,q)

]
= 0 and

[
∂ ~D, ω(p,q)

]
= 0. (3.31)

Next consider the Dolbeault operator on X. The adjoint action of the D-term
constraint ~D and the Dolbeault operators on functions and forms are compatible, in the
sense that [

ad
(
~D
)
, ∂
]

=
[
ad
(
~D
)
, ∂
]

= 0 (3.32)

This property guarantees that the conditions of line (3.29) are preserved by the action
of the Dolbeault operators. In other words, ∂ and ∂ map differential forms on X to
differential forms on X, and thus properly project to Dolbeault operators on X. Just
as for the commutative theory, the explicit form of the Dolbeault operator on X will in
general not be as simple as its presentation on Cr.

This provides us with a prescription for constructing differential forms on X. In
general, given a differential form of the commutative geometry, there is a corresponding
differential form on X, given as a polynomial expression in the Z and C oscillators. Since
Dolbeault cohomology is also retained in the fuzzy theory, this means that in practice, there
is a direct translation of all of the necessary algebraic data of the commutative geometry.

At a practical level, all of the differential forms on X can be viewed as descending
from (p, q)-forms on Cr. Viewing X as embedded in Cr, there is a corresponding projection
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operator given by summing over an orthonormal basis of states for FX(~ζ):

πX(~ζ) =
∑

|µ〉∈FX(~ζ)

|µ〉 〈µ| . (3.33)

Given a (p, q)-form ω(p,q) on Cr, the restriction to X(~ζ) is given by sandwiching between
projection operators:

ω(p,q)|X(~ζ)
= πX(~ζ) · ω(p,q) · πX(~ζ). (3.34)

For actual computations, the explicit basis of differential forms for a toric space will
depend on details of the geometry. Indeed, there is a certain amount of redundancy built
into our description because there are more Z and Z† coordinates than the dimension of
the fuzzy toric space. For explicit computations, it is often convenient to eliminate this
redundancy. To do this, we choose a collection of holomorphic and anti-holomorphic mono-
mials in the Z’s and Z†’s which we refer to as EI and EJ . The Ek’s should correspond to
monomials in the Z’s such that for each monomial, it is not possible for all of the Z’s to
simultaneously vanish (while satisfying the D-term constraint). The collection of such E’s
determines the Stanley-Reisner ideal of the toric variety X [41].14 We then introduce a col-
lection of differentials: dEI = [∂,EI ] and dEJ = [∂,EJ ] . A priori there could be additional
non-vanishing differentials on X, which we can add to the collection of dE’s and dE’s. This
is really an issue in the commutative geometry, so we shall not dwell on this subtlety here.
A general differential form on X can then be expanded in terms of this basis as

ω(p,q) =
∑
I,J

: fI,J(Z†, Z)⊗ ∧IdEI ∧J dEJ : . (3.35)

In the following, we will also consider (p, q)-forms on X that take values in a non-trivial
line bundle L( ~Q). These are characterized as forms with non-zero U(1)s GLSM charge:

[ ~D, ω(p,q)] = − ~Qω(p,q). (3.36)

Note that varying with respect to the Z’s, the phase space constraint on differential forms
is the same as before

[∂ ~D, ω(p,q)] = 0. (3.37)

Indeed, a (p, q)-form valued in the line bundle L( ~Q) can be viewed as a linear map from
FX(~ζ) to FX(~ζ − ~Q). The Dolbeault operator ∂A acting on such line-bundle valued (p, q)
forms requires a non-trivial connection, which is defined using the projection operators
introduced in equation (3.33) as

∂Aω(p,q) = πX(~ζ − ~Q) · ∂ω(p,q) · πX(~ζ) (3.38)

14See [42] for a recent discussion of Stanley-Reisner ideals in the physics literature.
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3.4 Subspaces

Consider a subspace P of the ambient toric space X defined as the vanishing locus
of a weighted homogeneous polynomial which we denote (by abuse of notation) by
P~w(z1, . . . , zr). To specify the embedding of (P = 0) in X, we can also introduce a lo-
cal basis of differential forms corresponding to directions normal to the divisor labelled as
dP , and directions parallel to the divisor, which we label as dz‖.

In the quantized version of this construction, the polynomial P becomes an operator
P (Z1, . . . , Zr) with fixed GLSM charges:[

~D, P
]

= ~w P. (3.39)

Moreover, the formal differential dP is now given by

dP =
[
∂, P

]
, (3.40)

with ∂ =
∑

iCiZ
†
i . The formal differential dP can be viewed as the local holomorphic

direction normal to the fuzzy subspace.
The subspace of states in FX(~ζ) annihilated by both P and dP then defines the vector

space of fuzzy points associated with P :

FP (~ζ ) = kerP ∩ ker dP. (3.41)

Provided the polynomial P has positive GLSM charge with respect to each U(1)i factor,
the space of states annihilated by P will always be non-trivial.15 Hence, there is always a
sense in which we can speak of the collection of fuzzy points associated with this divisor.
We can also consider more general intersections of hypersurfaces (P1 = 0)∩ . . .∩ (PM = 0).
The associated vector space generated by the collection of points of this subspace are then
given by the overlap: FP1∩...∩PM (~ζ) = FP1(~ζ) ∩ . . . ∩ FPM (~ζ).

Functions and differential forms on a subspace P are defined by a similar procedure
to that used for X. Viewing FP (~ζ) as the exterior powers of the holomorphic cotangent
bundle of P , a differential form corresponds to a map from FP (~ζ) back to itself. Let us
now describe this procedure in practical terms.

One way to obtain the function space on P is to introduce projection operators πP
given in terms of an orthonormal basis {|µ〉} spanning FP (~ζ) as:

πP =
∑

|µ〉∈FP (~ζ)

|µ〉 〈µ| . (3.42)

The projection operator πP can be viewed as the characteristic function localized on the
subspace FP (~ζ). A general function GP on P is then given by sandwiching a polynomial
G(Z†, Z) in the oscillators Z† and Z between two projection factors

GP = πP ·G · πP . (3.43)

15To prove this, we view P as a linear map from FX(~ζ) to FX(~ζ− ~w), with ~w the weight of the polynomial

P . It follows from the rank nullity theorem that dim kerP + dim im P = dimFX(~ζ). Since all components

in the vector ~w are positive this implies: dim kerP = dimFX(~ζ)−dim im P ≥ dimFX(~ζ)−FX(~ζ− ~w) > 0,

where the final inequality follows from the fact that the degrees of the polynomial in P are all positive.
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Again by evaluating specific matrix elements in a basis for FP (~ζ)⊗F∗P (~ζ), we can present
such zero forms as explicit matrices. Similar considerations hold for further restrictions
onto intersections of subspaces P1, . . . , Pn.

Differential forms of a subspace P of X can be obtained in the same way, by restriction
of (p, q) forms on X to P . In the commutative theory, we can decompose a general (p, q)
form as ω(p,q) = ω‖+ω⊥ where ω⊥ has formal differentials which include dP or dP , and ω‖
is defined as the remainder. Formally setting to zero ω⊥ then defines the restriction of the
form. In the fuzzy theory, the analogous prescription is given by projecting out dP , and
performing an appropriate restriction on the remaining components. All of this is captured
by sandwiching a general fuzzy (p, q) form between two projection operators:

ω(p,q)|P = πP · ω(p,q) · πP . (3.44)

In the commutative theory, it is often convenient to adopt differentials intrinsic to a sub-
space such as P . In most of our applications, it will be enough to work in terms of the
ambient space differentials defined on the larger toric space X.

3.5 Integration

Finally, we need to provide a suitable prescription for integrating functions and forms.
Consider some non-commutative subspace P of dimension d inside of the toric space

X = Cr//U(1)s. We wish to define integration over P . To motivate our definition, we first
characterize a natural prescription for integrating forms over the underlying commutative
space P . This space P is a symplectic manifold with a symplectic form ωP that gets
inherited from the standard symplectic form ω (given in (3.3)) defined on Cr, by applying
the appropriate projection operator. As is clear from the construction of P , the symplectic
form ωP is a (1,1)-form on P . Hence we can use it define the integration of general (p, p)
forms W(p,p) over P , by taking the wedge product with the required number of ωP ’s to
produce a volume form which is then integrated over P∫

P
W =

∫
P
ωP ∧ . . . ∧ ωP ∧W . (3.45)

Equivalently, we can first use the inverse of the symplectic form ωP to contract all indices
of W(p,p), and define a function W (0) via

W (0) = Wi1...ipj̄1...j̄p ω
i1j̄1
P . . . ω

ipj̄p
P (3.46)

We can then multiply this function with the standard symplectic volume element and
integrate ∫

P
W =

∫
P
ωP ∧ . . . ∧ ωP ·W (0) . (3.47)

The latter prescription is most directly generalized to the non-commutative context.
Given a function W (0)(Z†, Z) defined on the space P , the analogue of the integral (3.47)

is to take the trace over the bosonic state space FP (~ζ)∑
|µ〉∈FP (~ζ)

〈µ| W (0)(Z†, Z) |µ〉 (3.48)
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Indeed, the states in FP (~ζ) represent the points on P , and the trace amounts to summing
the values of the function W (0)(Z†, Z) evaluated at all the points of the geometry.

The contraction (3.46) from a differential form W to a function W (0) also has a direct
non-commutative realization. The fuzzy (p, p)-form represents an operator W (Z†, Z, C,C†)
on the extended state space, that includes the anti-commuting oscillators. Let |0〉C denote
the fermionic vacuum state annihilated by the C oscillators. We then define

W (0)(Z†, Z) = C〈 0 |W (Z†, Z, C,C†)| 0 〉C (3.49)

Note that we defined the (p, q)-differentials W (Z†, Z, C,C†) to be anti-normal ordered
in the fermionic oscillators. The above vacuum expectation value thus generates Wick
contractions between the C† and C oscillators. These Wick contractions contract the form
indices with the inverse symplectic form. So the two steps (3.48) and (3.49) provide a
direct fuzzy realization of the commutative integration prescription as given above.

4 F(uzz) theory

After collecting the necessary geometrical tools, we now return to our original task of de-
scribing the worldvolume gauge theory of a stack of seven-branes wrapping a fuzzy internal
del Pezzo four-cycle S, supported by a non-zero B-flux, within an F-theory compactifica-
tion. Our approach will be as follows.

We can locally specify the elliptically fibered Calabi-Yau four-fold in the neighborhood
of the seven-branes via a Weierstrass equation

y2 = x3 + f(z ; Zj)x+ g(z ;Zj). (4.1)

Here z denotes an ordinary commuting local coordinate, chosen such that the stack of
seven-branes is located at z = 0. The other coordinates Zj will be used to represent
non-commutative coordinates that parametrize the fuzzy four-cycle S.

Following the general treatment presented in section 3, we start by defining the Zi
as coordinates on some ambient toric variety X = Cr//U(1)s, which we can view as the
classical vacuum of a GLSM. The four-cycle S wrapped by the GUT seven-brane is defined
as an intersection of hypersurfaces within X. Concretely, X has dimension r − s so the
Kähler surface S is defined as the intersection of r − s − 2 hypersurfaces P1, . . . , Pr−s−2,
each of complex codimension one, inside of X.

We can now apply the quantization procedure for a general toric space X given in
section 3, and promote the coordinates Zi and Z†i to annihilation and creation operators.
This provides us with a non-commutative deformation of the toric space X, and an asso-
ciated finite-dimensional state space FX(~ζ), specified by a set of discrete FI-parameters ~ζ.
From this ambient toric space, we obtain the fuzzy four-cycle S and the associated state
space FS(~ζ) by applying the quantized version of the projections onto the hypersurfaces
P1, . . . , Pr−s−2, following the procedure outlined in subsection 3.4.

Our main interest will be in formulating the gauge theory living on the seven-brane
worldvolume R3,1×S, and the spectrum and interactions of chiral matter localized on fuzzy
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divisors inside of this space. Applying our discussion of non-commutative spaces provided
above, we introduce a Fock space FS(~ζ) associated with the vector space of points of
S. The vector space of points of the matter curves then correspond to subspaces of this
larger Fock space. We can expand the functions f(z;Zi) and g(z;Zj) that appear in the
Weierstrass equation (4.1) in powers of z. The coefficients are then defined as sections of
the appropriate line bundles on the ambient toric space X, restricted to the hypersurface
S. The discriminant ∆ = 4f3 + 27g2 then locally looks as

∆ = z5
∏

∆α 6=∆GUT

∆α(Zj , z) . (4.2)

The discriminant locus ∆ = 0 decomposes into the set of fuzzy divisors ∆α(Zj , z) = 0.
Along the locus z = 0, the component ∆α(Zj , z = 0) defines the equation of a matter curve
in S. These divisors need to be treated as operator equations that restrict the state and
function space of the matter curves, on which the chiral matter lives.

4.1 Fuzzy seven-branes

In this section we will describe how to construct the eight-dimensional Lagrangian L
of a fuzzy seven-brane. This Lagrangian defines an operator L(Z†, Z, C,C†) built from
the bosonic and fermionic oscillators. The four-dimensional Lagrangian L is given by
integrating L over the non-commutative internal space S using the prescription outlined
in subsection 3.5:

L=
∑

|µ〉∈FS(~ζ)

〈µ | L(0)(Z†, Z) |µ 〉 (4.3)

where in the above, the sum runs over an orthonormal basis of bosonic states of FS(~ζ).
Here, L(0) is the bosonic projection of L:

L(0)(Z†, Z) = C〈 0 | L(Z†, Z, C,C†) | 0 〉C (4.4)

Since S is compact and its state space is finite-dimensional, the sum in equation (4.3)
truncates to a finite number of terms. The effective action then involves only a finite
number of four-dimensional fields.

Gauge sector. The worldvolume theory of the seven-brane describes an eight-
dimensional gauge theory of R3,1 × S with gauge group G, as well as chiral modes which
localize on matter curves Σα.

As before, we shall find it convenient to organize the fields in terms of four-dimensional
N = 1 supersymmetry. The field content of the gauge sector includes an adjoint-valued
vector multiplet V , a collection of adjoint-valued chiral superfields A and Φ, which trans-
form respectively as an ordinary function, a (0, 1)-form and a (2, 0)-form on S. So the
dependence on the internal fuzzy coordinates of these fields is of the form

V =V (Z†, Z)

A=Ai(Z†, Z)C†i (4.5)

– 28 –



J
H
E
P
0
1
(
2
0
1
1
)
0
4
4

Φ=Φij(Z†, Z)Ci ∧ CJ

The presentation of the Lagrangian is similar to the commutative case, though the interpre-
tation of the fields is quite different. Returning to our discussion around equations (2.7)–
(2.11), the Lagrangian density L takes the form:

L =
∫
d4θ K +

∫
d2θ W + h.c. + WZW . (4.6)

where the WZW term is a non-local term which vanishes in WZ gauge [31]. Repeating the
equations already presented in the commutative case, first consider the eight-dimensional
gauge sector of the seven-brane action. In terms of four-dimensional N = 1 superspace,
the D-terms are:

Kgauge = KΦ +KA (4.7)

where the Kähler terms for Φ and A are:

KΦ =
(
Φ†e−V, Φ eV

)
(4.8)

KA =
(
(∂ +A)†e−V, (∂ +A)eV

)
− (∂†e−V, ∂eV

)
. (4.9)

The F-terms are:

Wgauge= Tr
(
W 2
α

)
+ Tr

(
Φ ∧ (∂A+A ∧A)

)
. (4.10)

Here we chose the gauge kinetic term to be quadratic. Since all fields are now normal
ordered functions of the oscillators, the multiplication between fields proceeds via a star
product. In addition the pairing (·, ·) present in the above definition represents the fact
that in general, the pairing of a field with its conjugate need not be the same as the inner
product associated with the Fock space. Each field consists of a zero mode component,
as well as an infinite sum of Kaluza-Klein excitations. Note, however, that the finite size
of the fuzzy space causes this infinite sum to truncate to a finite number of dynamical
degrees of freedom.

Fuzzy matter. In the non-commutative theory, matter localization proceeds via the
same mechanism as in the commutative case. A matter curve

Σα =
(

∆α(Zj , z) = 0
)
∩ (z = 0) (4.11)

is the intersection of the GUT seven-brane at z = 0 with another component of the dis-
criminant locus of equation (4.2), and indicates a local enhancement of the singularity type
of the elliptic fibration. We denote by ∆α(Zj) the restriction of ∆α(Zj , z) to (z = 0).

The degrees of freedom in a local patch near Σα can then be captured by means of
a gauge theory with an enlarged gauge group GΣ, in the presence of a vortex shaped
Higgs profile Φ0 that induces a breaking pattern GΣ ⊃ G × Gα. The matter curve Σα

then corresponds to the locus where the component of the Higgs field along the simple
root vanishes 〈α,Φ0〉 = 0. All these data can be straightforwardly reproduced within the
non-commutative setting, by using the technology developed in section 3.
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Here we will follow a more practical approach, and directly take the limit in which the
Higgs field generating the breaking pattern is very large. This limit is particularly natural
in the decoupling limit, in which the closed string volume of the four-cycle wrapped by
the seven-brane is taken to zero. Then following the discussion in subsection 2.2, we can
introduce the chiral matter content by associating to Σα two chiral superfields

Aα=Aα,i(Z†, Z)C†i (4.12)

Ψα=Ψα,ij(Z†, Z)Ci ∧ Cj

transforming in the representation Rα of the unbroken gauge group G. These fields are
localized on the matter curve. Just as in the commutative theory, the six-dimensional mode
content is chiral, and therefore the theory of an isolated matter curve is anomalous. These
anomalies are cancelled through the presence of Chern-Simons terms of the seven-brane,
which induce anomaly inflow (and outflow) between the curves and closed string modes.
In practice, the cancellation of all such anomalies is guaranteed by compactifying on an
elliptic Calabi-Yau fourfold.

To describe the localization of matter fields in the non-commutative geometry, we first
construct the state space FΣα(~ζ) associated to the matter curve. Following the prescription
outlined in section 3.4, we introduce the operator ∆α(Z). We then define FΣα(~ζ) as the
subspace of the total state space FS(~ζ) annihilated by ∆α(Z)

FΣα(~ζ) = ker(∆α). (4.13)

The fact that Aα and Ψ−α localize on Σα means that they are given by differential forms
on S, though the bosonic content of this form is localized on a subspace. Introduce a
bosonic projection operator π(0)

Σ onto the subspace FΣα which acts as the identity on the
fermionic oscillators. Given a bulk form Ψ on S, one way to localize its bosonic content
is to sandwich it in between such bosonic projections via π

(0)
Σ · Ψ · π(0)

Σ . Let us stress
that we view these matter fields as forms on S.16 This is distinct from the notion of a
differential form defined exclusively on a subspace, as in subsection 3.4. In addition, in
the commutative theory, there is the phenomenon of seven-brane monodromy [11, 43–46].
Again, the main point here is that algebraic expressions of the commutative theory have
direct analogues in the fuzzy theory, so the explicit presentation of the higher-dimensional
modes in such cases is really an issue in the commutative theory. Once we have this
commutative data, the non-commutative translation follows. Accordingly, we can write
an eight-dimensional matter sector Lagrangian, specified by a Kähler potential and
superpotential of the same form as equation (2.18):

Kmatter =
(

Ψ †−α, e
V Ψ−α

)
+
(
Aα
†, eVAα

)
(4.14)

Wmatter =Ψ−α ∧ ∂AAα + fαβγ Ψα ∧Aβ ∧Aγ . (4.15)

16This is essentially the same procedure one follows in the spectral cover construction [11, 43] in which

an auxiliary local Calabi-Yau threefold O(KS)→ S is erected over the GUT seven-brane. Zero modes are

identified with elements of appropriate Ext groups on the threefold as Extp(V,V ′) for sheaves V and V ′

with support on subspaces.

– 30 –



J
H
E
P
0
1
(
2
0
1
1
)
0
4
4

Mode decomposition. In the commutative setting the matter fields of the higher-
dimensional theory transform as forms of appropriate line bundles. The zero mode content
is computed by the Dolbeault cohomology, and the KK spectrum is given by the higher
harmonics of the Laplacian operator.

All of these statements have analogues in the non-commutative setting. Consider
first the spectrum of zero modes. Because we still have a notion of a Dolbeault operator,
we can define Dolbeault cohomology for fuzzy line bundles, following the same algebraic
prescription in the commmutative theory. Similar considerations hold for the cohomology
theory of line bundles on subspaces. Our discussion also holds for non-toric spaces
as well. Indeed, in the commutative theory, there is a well-known prescription for
determining cohomology groups based on the Koszul complex. The main idea in Koszul
complex computations is that once we have specified a divisor D of the toric space X,
the cohomology theory of a line bundle defined over D can be computed in terms of
the cohomology theory on X [47].17 Roughly speaking, the elements of the cohomology
groups should be viewed as operators which are “holomorphic” in the sense that they are
annihilated by the Dolbeault operator of the fuzzy subspace.

Sections and forms of a line bundle not annihilated by the Dolbeault operator then
determine the spectrum of KK modes. To illustrate the general treatment of chiral matter
fields, consider the modes associated with a higher-dimensional field Ψ( ~Q) corresponding
to a section of a degree ~Q fuzzy line bundle L( ~Q). This field is given by a formal sum of
normal ordered polynomials in the oscillators Z and Z† of weighted degree ~Q:

Ψ( ~Q) =
∑

I, ~v−~u= ~Q

ψI(~u,~v)σI(~u)(Z
†)σI(~v)(Z) (4.16)

where in the above, the σ’s are a basis of polynomials of a given weight[
~D, σI(~u)

]
= +~u σI(~u)

[
~D, σI(~v)

]
= −~v σI(~v) . (4.17)

The overall weight of Ψ( ~Q) is fixed to be equal to ~v−~u = ~Q. The indices I label the linearly
independent weighted homogeneous polynomials, and the coefficients ψI(~u,~v) correspond to

four-dimensional chiral superfields. Note that the sum in Ψ( ~Q) runs over an infinite set of
terms. The terms with ~u = 0 are to be viewed as the massless modes (corresponding to
holomorphic sections), and the terms with ~u 6= 0 define massive Kaluza-Klein excitations.

The presence of an infinite number of terms might at first appear contrary to the
intuition that making the geometry non-commutative truncates the Kaluza-Klein spectrum.
Here this occurs once we fix an overall size for the fuzzy space on which Ψ( ~Q) localizes.
Indeed, tracing over the state space of bosonic points, the kinetic term is∑

|µ〉∈FS(~ζ)

∫
d4θ 〈µ|

(
Ψ( ~Q)†,Ψ( ~Q)

)
|µ〉 . (4.18)

17See for example [48] for a recent discussion in the physics literature for how this algorithm is implemented

in practice.
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Writing the explicit bundle indices in the open string metric, the pairing is given by inserting
the appropriate Hermitian metric in between the two factors, so that(

Ψ( ~Q)†,Ψ( ~Q)
)

= Ψ( ~Q)† ·Gopen ·Ψ( ~Q). (4.19)

Thus, once the magnitude of the vector ~v given in equation (4.16) becomes sufficiently
large, all states of FS(~ζ) will be annihilated. Hence the number of dynamical four-
dimensional fields is finite. Similar considerations hold for the massive modes descending
from differential-forms valued in the line bundle L( ~Q).

The field content of the seven-brane theory is then given by sums over operators
defined as in equation (4.16). These fields correspond to chiral superfields in the case of
the modes Φ and A, which propagate in the bulk, and their analogues Ψα and Aα which
localize on a curve. To treat all such modes on a uniform footing, we shall simply write
all of the modes as Ψi and Ai, where i = S denotes the modes propagating in the bulk,
and i = Σ denotes a mode localized on the subspace Σ.

One of the virtues of the above description is that it provides us with an explicit list
of the Kaluza-Klein modes. The actual mass matrix for the KK modes will depend on the
details of the open string metric. Nevertheless, the fact that we can now catalogue this
spectrum means that we can treat this theory in four-dimensional terms.

GUT breaking by a U(1)Y hypercharge flux works just as in the commutative
theory [8, 9]. In four dimensions, the unbroken gauge group is the commutant of
U(1)Y inside of SU(5)GUT, and the fuzzy modes organize into representations of
SU(3)C × SU(2)L × U(1)Y . The hypercharge flux (2.20) can either be viewed as a
component of the non-commutativity parameter of each MSSM gauge group factor, or as a
background flux of the SU(5) gauge theory, with non-commutativity parameter set by the
overall U(1) flux B. From our discussion above we see that these two ways of representing
the hypercharge flux are completely equivalent.

Fluxes from the GUT seven-brane as well as flavor seven-branes affect the line bundle
data of the gauge and matter fields. After activating a hyperflux, the massless mode content
in the gauge sector corresponds to the Standard Model gauge group, as well as massive
vector multiplets which also transform in the adjoint representation of the Standard Model
gauge group. In addition, there will also be Kaluza-Klein modes corresponding to the
off-diagonal components of the GUT group.

Matter delocalization. Fuzz theory retains much of the structure of the commutative
local F-theory model, though there are also differences. An example of a new phenomenon
is that matter localization on curves may break down in the non-commutative setting. To
illustrate the general issue, consider the weighted homogeneous polynomial P (Z1, . . . , Zr)
in the Z’s. Our definition of matter localized along the vanishing locus of P is given by
states |ψ〉 in FX(~ζ) subject to the condition:

P (Z1, . . . , Zr) |ψ〉 = 0. (4.20)

Note, however, that when the FI parameter ~ζ is sufficiently small and the weighted
degree of the operator P (Z1, . . . , Zr) is sufficiently high, all of the states of FX(~ζ) will be
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annihilated. In other words, in this case, there is no sense in which the matter remains
localized. Rather, the matter field spreads out over the entire space. In the commutative
theory, the degree of P determines the genus of the curve. Here, we see that high genus
matter curves do not really correspond to curves at all.

This in turn raises the question as to how to count the number of such delocalized
matter fields. Ordinarily in the commutative theory, the main task is to specify a
line bundle over an ambient toric space. Once this is accomplished, we can perform
an appropriate restriction of this line bundle to subspaces, and count the number of
associated zero modes. Here we face the issue that when the space is sufficiently small,
the notion of a subspace itself breaks down, and thus the restriction of line bundles onto
a given subspace also becomes ill-defined.

Our definition of holomorphic sections of a line bundle, however, remains well-defined
at arbitrary values of the radii because it is determined by purely algebraic data. Indeed,
at an abstract level, we have specified the zero modes localized on a matter curve simply as
appropriate polynomials in the Z and C oscillators sandwiched between projection factors
πP . When the projection πP acts as the identity, the matter field is no longer localized.

One consequence of this delocalization is that the number of points sampled by the
Yukawa coupling will now increase. This then causes a jump in the rank of the Yukawa cou-
pling matrix. Assuming a suitable hierarchy in the presentation of the original holomorphic
sections, matter delocalization then induces novel textures for Yukawas.

4.2 A toy example: Yukawa couplings on fuzzy P1 × P1

In this section we illustrate the general ideas developed earlier, and compute the Yukawa
couplings in a toy model based on fuzzy P1 × P1. Even though the general discussion we
have presented applies equally well to cases where the GUT surface S is non-toric, note
that because P1 × P1 is itself toric, we can bypass some of this general discussion and
simply treat the GLSM for P1 × P1. For simplicity, we focus on the case where all matter
fields remain localized on well-defined subspaces. We find that just as in the commutative
theory, only one overlap of wave functions is non-zero. However, background fluxes can
distort this structure, producing flavor hierarchies [37, 49].

Let us first describe the geometry of fuzzy P1 × P1. The classical GLSM for P1 × P1

is a U(1)2 = U(1)I × U(1)II gauge theory with chiral superfields ui and vi for i = 1, 2.
Under the two U(1) factors, the charges of ui and vi are (+1, 0) and (0,+1). The fields are
subject to the D-term constraints:

|u1|2 + |u2|2 = ζI
(4.21)

|v1|2 + |v2|2 = ζII .

The symplectic quotient C4//U(1)2 yields P1×P1. The ui and vi correspond to projective
coordinates for the two P1 factors.

We now turn to the non-commutative geometry. Here we focus on the bosonic content,
treating all differential forms more implicitly. Introduce bosonic oscillators for each P1
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factor, Ui for P1
I and Vi for P1

II . These are subject to the commutation relations:[
Ui, U

†
j

]
=
[
Vi, V

†
j

]
= δij (4.22)

with all other commutators vanishing.
Next, introduce a vacuum |0〉 annihilated by the U ’s and V ’s. The Fock space F(C4)

is given by acting on the vacuum state with the creation operators. The basis elements of
F(C4) are

|n1, n2;m1,m2〉 =
(Un1

1 Un2
2 V m1

1 V m2
2 )†√

n1!n2!m1!m2!
|0〉 . (4.23)

We introduce FX(NI , NII) as the subspace of F(C4) subject to the oscillator number
constraint

n1 + n2 = NI ,
(4.24)

m1 +m2 = NII .

This corresponds to the linear space of bosonic points for a P1
I × P1

II with FI parameters
NI and NII .

We now compute the Yukawa coupling associated with a triple intersection of matter
curves. In the commutative geometry, we consider a configuration of matter fields in
the local patch where u2 and v2 are both non-zero. Local coordinates for this patch are
u = u1/u2 and v = v1/v2. The configuration of matter curves we consider are described
by Higgsing of U(3) gauge theory down to U(1)3 according to the background vev:

Φ0 =

 v 0 0
0 0 0
0 0 u

 . (4.25)

In this patch, the three matter curves of this configuration correspond to enhancements in
the singularity type at u = 0, v = 0 and u = v. In terms of the original ui and vi variables,
the three matter curves are:

P1
I = P1

(12) = (v1 = 0)

P1
II = P1

(23) = (u1 = 0) (4.26)

P1
diag = P1

(13) = (u1v2 = v1u2),

where we have indicated the color space assignment associated with each curve.
We now discuss matter localization. We are interested in states of FX(NI , NII) which

are respectively annihilated by V1, U1 or U1V2 −U2V1. The set of states annihilated by V1

and U1 are:

kerV1=span
{
|n1, n2; 0, NII 〉 : n1 + n2 = NI

}
(4.27)

kerU1=span
{
|0, NI ;m1,m2 〉 : m1 +m2 = NII

}
.
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Geometrically, kerV1 corresponds to P1
I×|South〉II and kerU1 corresponds to |South〉I×P1

II .
See appendix A for further discussion of fuzzy P1.

Next consider the set of states annihilated by U1V2 − U2V1. One state which is anni-
hilated by this operator is the South pole state of both P1 factors:

|South〉I ⊗ |South〉II = |0, NI ; 0, NII〉 (4.28)

To generate the remaining states of the diagonal P1, note that U1V2−U2V1 commutes with
the diagonal raising operator

Jdiag
+ = J

(I)
+ + J

(II)
+ = U †1U2 + V †1 V2 (4.29)

In other words, the remaining states of the diagonal P1 are obtained by acting by successive
powers of Jdiag

+ :

ker(U1V2 − U2V1) = span
{(
Jdiag

+

)m|0, NI ; 0, NII〉 : m ≥ 0
}
. (4.30)

We now present a computation of Yukawa couplings for this configuration of matter
curves. To keep the computation as symmetric as possible, we assume that the modes on
P1
I and P1

II correspond to (0, 1)-forms with localized bosonic content, while the modes of
P1

diag correspond to (2, 0)-forms with localized bosonic content.
The number of zero modes is controlled by the line bundle assignments on each matter

curve. For simplicity, we view the line bundles as descending from bulk line bundles on
P1×P1. The localized matter fields are then given by a projection on the bosonic content.
Actually, the line bundle assignments need only be defined over the matter curves, so we
merely view this as a useful device for deducing the operator content of the localized modes.
Stated in terms of the commutative geometry, the configuration of line bundles we take for
the three matter curves are:

LI = OP1
I×P1

II
(d σ2 ),

LII = OP1
I×P1

II
(d σ1 ), d = g − 1, (4.31)

Ldiag = OP1
I×P1

II
(−d (σ1 + σ2)),

where σ1 and σ2 denote the divisor classes for P1
I and P1

II . In the fuzzy setting, differential
forms of these bundles correspond to operators of fixed degree. Note that the tensor product
LI⊗LII⊗Ldiag is indeed trivial, so the product AI∧∗AII∧∗Ψdiag can indeed form a Yukawa.
Further, the restriction of each line bundle onto the appropriate matter curve yields a degree
d line bundle on both P1

I and P1
II , while on P1

diag we find a degree −2d line bundle.
To compute the Yukawa couplings for this configuration, we first specify the profile of

the zero mode wave-functions. First consider the zero modes localized on P1
I . Such modes

correspond to zero-forms on P1
I , and have the form content of a one-form on P1

II . Since line
bundles on P1 are fully classified by their degree, holomorphic sections of this line bundle
can be presented as holomorphic polynomials in U1 and U2 of homogeneous degree d. The
g = d+ 1 zero mode wave functions are then:

A(12) = πP1
(12)
·

d∑
i=0

a
(12)
i U i1U

d−i
2 · πP1

(12)
(4.32)
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here we are suppressing the one-form content to avoid cluttering the presentation. The
π’s denote bosonic projection factors to the matter curves and the a’s correspond to four-
dimensional chiral superfields, and define the coefficients of the degree d polynomials.
Similar considerations hold for the g zero modes localized on P1

II so that:

A(23) = πP1
(23)
·

d∑
i=0

a
(23)
i V i

1V
d−i

2 · πP1
(23)
. (4.33)

Next consider the zero modes associated with Ψdiag. Since we have already demanded
the bulk line bundle assignments tensor to the trivial bundle, we deduce that the GLSM
charge is (−d,−d) + (2, 2) for the zero modes of Ψdiag. Here we have split up the contribu-
tions to the GLSM charge from the (2, 0) form, and its localized coefficient. Suppressing
the form content, such zero modes can all be written as:

Ψ(31) = πP1
(31)
·
∑
i

a
(31)
i Oi(U †, V †) · πP1

(31)
. (4.34)

To be a section of the appropriate line bundle, an operator Oi must commute with U1V2−
U2V1. In other words, acting on the vacuum by Oi can be viewed as generating a state of
a P1

diag with 2d+ 1 points:

FP1
diag

(2d+ 1) = span
{(
Jdiag

+

)m(
U †2
)d(

V †2
)d∣∣0〉 : 0 ≤ m ≤ 2d

}
. (4.35)

There are 2d + 1 linearly independent Oi’s of this form. We order the modes in accord
with the basis of states given above so that for example O0 =

(
U †2
)d(

V †2
)d and O2d =(

U †1
)d(

V †1
)d. The zero modes localized on the diagonal P1

diag are then given as:

Ψ(31) = πP1
(31)
·

2d∑
i=0

a
(31)
i Oi(U †, V †) · πP1

(31)
(4.36)

where in the above expression we have suppressed the form content of the zero mode.
Having specified the zero mode content of the theory, we now compute the Yukawa

couplings for this toy model. We introduce a convenient basis of states for the zero mode
wave functions:

Ψ(i)
(31) = πP1

(31)
· a(31)

i Oi(U †, V †) · πP1
(31)

.

A
(j)
(12) = πP1

(12)
· a(12)

j U j1U
d−j
2 · πP1

(12)
(4.37)

A
(k)
(23) = πP1

(23)
· a(23)

k V k
1 V

d−k
2 · πP1

(23)

Working at fixed discretized FI parameters (NI , NII) for the two P1 factors, we must
evaluate the superpotential:

Wijk =
∑

|µ〉∈FX(NI ,NII)

〈µ|Ψi ∧∗ Aj ∧∗ Ak |µ〉 . (4.38)
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By inspection, the presence of the projection factors causes most of the Yukawas to
vanish. Indeed, working at fixed Kähler volumes, the only state common to all three
fuzzy divisors is the mutual South pole (4.28). Thus, we can replace the general projection
operators presented by the projection onto the South pole state, which we denote by πSouth.
As a geometric operation, the projection makes sense regardless of the FI parameters for
our toric space. The relevant projection is then given by a direct sum over the projection
operators we would obtain by working at a fixed value of the FI parameters:

πSouth =
∑

MI ,MII

∣∣0,MI ; 0,MII

〉 〈
0,MI ; 0,MII

∣∣ . (4.39)

The superpotential can therefore be written as:

Wijk=
〈
0, NI ; 0, NII

∣∣ a(31)
i Oi(U †, V †)·πSouth

·a(12)
j U j1U

d−j
2 ·π

South
·a(23)
k V k

1 V
d−k

2

∣∣0, NI ; 0, NII

〉
.

Since we have fixed the overall Kähler class of X, we now substitute the projection
operator πSouth:

Wijk = a
(31)
i a

(12)
j a

(23)
k × 〈 0, NI ; 0, NII |Oi(U †, V †) |0, NI− d; 0, NII− d 〉 ×

×
〈
0, NI− d; 0, NII− d

∣∣U j1Ud−j2

∣∣0, NI ; 0, NII− d
〉
×

×
〈
0, NI ; 0, NII− d

∣∣V k
1 V

d−k
2

∣∣0, NI ; 0, NII

〉
. (4.40)

To obtain a non-zero result, it is necessary to exclude all dependence on the oscillators
U1, V1, U †1 and V †1 . In other words, the only non-zero Yukawa coupling occurs for
i = j = k = 0. A straightforward calculation then gives

Wijk =
NI !NII !

(NI − d)!(NII − d)!
× δi0δj0δk0 × a

(31)
i a

(12)
j a

(23)
k . (4.41)

Thus, as expected, we obtain only a single non-vanishing Yukawa coupling.
For commutative seven-branes, small changes to the rank of the superpotential can

be phrased in terms of non-commutative deformations of the holomorphic structure in a
patch of the Yukawa point [37]. This corresponds to a holomorphic deformation of the
oscillator algebra.

5 Geometric applications

In this section we study some other potential applications of the formulation of non-
commutative toric geometry developed in section 3.

5.1 A fuzzy flop

A well known phenomenon in commutative toric geometry are flop transitions. These
correspond to transitions in the large volume regime where changing the values of the FI
parameters of the GLSM causes some two-cycles to collapse, and new ones to take their
place. In this section we study the corresponding fuzzy flop.
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To keep our discussion concrete, we focus on the flop transition associated with the
small resolution of the conifold geometry O(−1) ⊕ O(−1) → P1. The GLSM data of the
conifold is given in terms of a single U(1) gauge theory and four chiral superfields u1, u2,
v1 and v2 so that the u’s have GLSM charge +1 and the v’s have GLSM charge −1. The
D-term constraint is:

|u1|2 + |u2|2 − |v1|2 − |v2|2 = ζ. (5.1)

When ζ > 0, the v’s should be viewed as normal coordinates to a P1 with Kähler class
proportional to ζ + |v1|2 + |v2|2, so that the u’s define coordinates for the P1. When ζ < 0,
the geometry undergoes a flop transition and the u and v coordinates exchange roles.

We now describe the fuzzy flop transition. Introduce operators Ui and Vi subject to
the commutation relations:

[Ui, U
†
j ] = [Vi, V

†
j ] = δij (5.2)

with all other commutators zero. Introducing the D-term operator:

D = U †1U1 + U †2U2 − V †1 V1 − V †2 V2, (5.3)

the Fock space FX(ζ) of bosonic states for the conifold with resolution parameter ζ is
spanned by

|n1, n2; ,m1,m2 〉 =
2∏

i,j=1

(
U †i
)ni(V †i )mj√
ni!
√
mj !

| 0 〉 with n1+ n2−m1−m2 = ζ. (5.4)

The P1 of minimal size is the subspace of states in FX(ζ) with either trivial U oscillator
number, or trivial V oscillator number. In particular, we see that for ζ > 0, there is a P1

generated by just the U creation operators

FP1(ζ > 0) =
{
|n1, n2; 0, 0〉 ; n1 + n2 = ζ

}
, (5.5)

while for ζ < 0, there is a P1 generated by just the V oscillators:

FP1(ζ < 0) =
{
|0, 0;m1,m2〉 ; m1 +m2 = ζ

}
. (5.6)

5.2 Fuzzy Landau-Ginzburg

One of the remarkable features of the GLSM description of a target space is that it provides
a common language for describing both the geometric and Landau-Ginzburg phases of a
string compactification [50]. In this paper we have been primarily focussed on the toric
phase of the GLSM. It is tempting, therefore, to see whether we can also extend this
discussion to provide a fuzzy analogue of Landau-Ginzburg vacua.

Rather than be overly general, we follow the main example presented in [50] and focus
on the GLSM defined by a single U(1) with r chiral superfields zi of charges qi > 0, and
another chiral superfield p with charge n < 0. A compact hypersurface is specified by
including a superpotential:

W = p ·G(z1, . . . , zr). (5.7)
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Anomaly freedom of the GLSM is equivalent to the Calabi-Yau condition that
q1 + · · · + qr = n. Further note that the superpotential W is neutral with respect to the
U(1) gauge symmetry. The D-term and F-term equations of motion are respectively:∑

i

qi|zi|2 − n|p|2 = ζ

(5.8)
G = 0 and p∂iG = 0.

In the geometric phase, ζ � 0 and G = p = 0. In the Landau-Ginzburg phase, we instead
have ζ � 0, p =

√
−ζ/n, and the vacua are described in terms of the Landau-Ginzburg

superpotential W̃ =
√
−ζ/nG(z1, . . . , zr) with vacua described by the critical points of W̃ .

Again, the data of the GLSM provides a canonical quantization prescription for the
fuzzy target. We restrict our attention to the bosonic states. Introduce operators Zi and
P subject to the commutation relations:

[Zi, Z
†
j ]=δij , [P, P †] = 1,

with all other commutators vanishing. Next introduce a vacuum |0〉 annihilated by the
Zi’s and P . We then construct a Fock space F(Cr+1) by acting on the vacuum state with
the Z†i ’s and P †.

The geometric phase (G) and Landau-Ginzburg phase (LG) of the target are then
given in terms of the Hamiltonian constraint operators:

DG =
∑
i

qiZ
†
iZi − nP

†P (5.9)

DLG = −nP †P (5.10)

The hypersurface constraint in the geometric phase is that G and P both annihilate a
state. The hypersurface constraint in the Landau-Ginzburg phase is that ∂iG annihilates
a state for all i = 1, . . . , r.

Let us consider now the vector space of points for each phase. In the geometric phase,
since P must annihilate a state, we see that the space of states is entirely described by
acting on the vacuum with the Z†i ’s. This then reproduces the toric prescription we have
been using throughout this paper.

The Landau-Ginzburg phase is qualitatively different. At radius N = −kn, the vector
space of points is given by:

FLG =
{ ∣∣ψ 〉 ∈ F(Cr+1) : ∂iG |ψ〉 = 0

}
(5.11)

where |ψ〉 is an element of the Fock space F(Cr+1) spanned by states of the form

|ni; k〉 =
r∏
i=1

(
Z†i
)ni

√
ni!

(
P †
)k

√
k!
|0〉 (5.12)

A candidate state is annihilated by r operators. This significantly limits the number of
points, at any choice of the fuzzy radius. For example, for the quintic G = Z5

1 + · · ·+ Z5
5 ,

we have that for each i, ∂iG = 5Z4
i annihilates the set of bosonic states. This means:

FLGquintic = span
{
|ni; k〉 : 0 ≤ ni ≤ 3

}
(5.13)
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Similar considerations hold for more generic choices of G.
One aspect of the commutative description which is missing from this discussion is the

fuzzy analogue of renormalization group flow to the Landau-Ginzburg phase. It would be
interesting to develop this discussion further. Let us also note that the approach to local
mirror symmetry in [51] (see also [52]) relies heavily on the interplay between the toric
phase of one geometry, and the Landau-Ginzburg phase of its mirror.

More generally, mirror symmetry constitutes a deep feature of stringy geometry. It is
quite tempting to speculate that since toric geometry provides a natural setting for setting
up mirror pairs [53], the Batyrev construction [54] may have a non-commutative analogue.

6 Physical applications

In this section we consider some other aspects and possible applications of Fuzz theory.

6.1 Discretuum of gauge couplings

One application already mentioned in the Introduction pertains to moduli stabilization.
There is a natural limit where the volumes of four-cycles collapse to zero size. In this
paper we have focussed on a limit where we expect these volumes to be at zero size, but in
which we nevertheless retain a perturbative gauge coupling constant, which is effectively
quantized in units of 1/gs. The basic relation we have found is that the number of points
N determines the Yang-Mills coupling via:

g2
YM

4π
=
gs
N

(6.1)

where N is in turn fixed by the amount of B-field flux passing through the seven-brane.
Different values of the discrete parameter N define different vacua of the theory.

These vacua are connected by domain walls in R3,1 which change the amount of B-flux
threading the seven-brane. A domain wall which can change the amount of B-flux must
be charged under the B-field, so we expect (in a perturbative IIB frame) the domain
wall is given by an NS5-brane wrapping a three-chain Γ3 with boundary on the two-cycle
Poincaré dual to the cohomology class of B.

To motivate this answer, consider again the case of the conifold transition with Nc

D5-branes wrapping the S2 of the resolved conifold. After passing through the geometric
transition, the amount of B-flux through the S2 becomes the amount of NS three-form flux
threading the non-compact three-cycle of the deformed conifold:∫

S2

BNS =
∫
B3

HNS. (6.2)

In a non-compact setting, HNS becomes quantized once we impose a suitable boundary
condition for the non-compact directions of the geometry. In this case, we write HNS =
k · Hmin

NS where Hmin
NS integrates over B3 to one unit of three-form flux. Changing the

amount of three-form flux threading B3 amounts to wrapping an NS5-brane on the three-
cycle Poincaré dual to Hmin

NS . In the present case, this is just the three-cycle B3. Thus, the
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tension of the domain wall connecting vacua is |∆k|Vol(B3)/g2
s , where |∆k| denotes the

change in HNS across the domain wall. Passing back to the original small resolution, this
NS5-brane wraps a non-compact three-chain with boundary on the S2.

One expects something similar to happen in the case of the fuzzy seven-brane theory.
Here, the Poincaré dual of the flux B defines a two-cycle [B] inside of the surface wrapped
by S. An NS5-brane wrapping a non-compact three-chain with boundary on [B] connects
vacua with different values of the B-flux. Similar considerations hold in other duality
frames.

Each value of N defines an effective tension for the seven-brane. Coupling this system
to gravity and assuming all other contributions to the vacuum energy density remain fixed,
this suggests that vacua with different values of N have different energy densities, which
are connected by domain walls with tension Vol(Γ3), where Γ3 is the three-chain wrapped
by the five-brane. Here we drop factors of gs since it is an order one quantity in F-theory.
In the thin-wall approximation, the tunnelling rate is then given by:

ΓN→N−k ∼ exp
(
−27π2

2
· kVol(Γ3)4

)
. (6.3)

6.2 Threshold corrections

One of the limitations of higher-dimensional gauge theories is that at energy scales above
the Kaluza-Klein scale, an entire tower of KK modes enter the spectrum limiting the range
of validity for the effective field theory. It is then necessary to embed the theory in an
ultraviolet completion of the field theory, such as string theory. In the case of fuzzy extra
dimensions, the number of dynamical KK modes truncates at finite order, regulating the
higher-dimensional theory.

At a practical level, making the internal directions non-commutative still retains much
of the geometric structure of the original commutative space. Truncating the KK spectrum
has another benefit, which is that it makes threshold corrections both easier to catalog and
to compute. One loop perturbation theory in a gauge theory with Ndeg degrees of freedom
is valid provided:

g2
YMNdeg

16π2
� 1. (6.4)

For a fuzzy seven-brane theory, we have the basic relation αGUT = gs/N . In tandem with
the expectation that Ndeg ∼ N2, this suggests g2

YMNdeg/16π2 = gsN/4π. For N ∼ O(30),
this might at first suggest that one loop perturbation theory breaks down, once all of the
KK modes are included.

This counting is a bit naive, however, because supersymmetry will induce some ad-
ditional suppression in the size of threshold corrections. Consider the contribution of the
bulk KK modes of the seven-brane to the running of the four-dimensional gauge coupling.
Up to subtleties connected with line bundle data (which will make some KK modes fill out
rectangular matrices), the KK modes transform as N×N matrices, where N is the number
of points. The mode content can be organized as N2 N = 1 adjoint-valued massive vector
multiplets, and N2 N = 2 adjoint-valued hypermultiplets. Since each massive vector mul-
tiplet can be viewed as a massless vector multiplet and an adjoint-valued chiral superfield,
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we see that the beta function vanishes at leading order in N2. One does expect subleading
corrections of order N , for example, from matter fields localized on curves. In this case, we
obtain the more reliable estimate that the effective number of degrees of freedom entering
a threshold correction is more on the order of Ndeg ∼ N . Thus, we obtain

g2
YMNdeg

16π2
∼ gs

4π
� 1 (6.5)

so that perturbation theory remains meaningful. Detailed studies of threshold effects in
commutative seven-branes in F-theory GUTs have appeared in [9, 55, 56]. It would be
interesting to revisit these analyses in the present context.

6.3 Low scale fuzz

In theories with a low scale for quantum gravity, there is a potential worry that pro-
cesses otherwise protected by making the Planck scale very high could now be violated
more significantly. In some sense, this is just a reflection of the fact that a typical string
compactification can look quite complicated at the string or Planck scale.

As we have emphasized in this paper, there are (at least) two Kaluza-Klein scales as-
sociated with an extra-dimensional theory in string theory: One for open string KK modes
MKK

open, and one for the closed string KK modes MKK
closed. Taking this distinction seriously, we

can in principle lower the scale of open string KK excitations all the way to the TeV scale:

MKK
open ∼ TeV (6.6)

while still keeping the closed string modes and quantum gravity effects decoupled.18

This type of scenario certainly shares features similar to those of TeV scale extra
dimensions [57], those of large extra dimensions [58, 59] and those with warped extra
dimensions [60, 61].19 Let us stress, however, that our limit is qualitatively different from
these scenarios, because we have explicitly decoupled the closed string modes from the
description. Indeed, since MKK

closed � MKK
open, non-commutative extra dimensions allow KK

gluons and other KK open string excitations with no accompanying KK gravitons. This
leads to some differences in the low energy phenomenology. For example, a common collider
signature of extra-dimensional scenarios involves production of KK gravitons. With fuzzy
extra dimensions, this signature would be absent.

There are clearly many possible variants of extra dimensional ideas and many mecha-
nisms previously discussed in such frameworks likely possess fuzzy analogues. Though it is
in principle possible to still maintain some aspects of GUTs in TeV to intermediate scale
extra-dimensional models, (see for example [63–67]), putting MKK

open near the TeV scale
instead suggests widening our scope beyond the GUT paradigm.

Indeed, one might contemplate models in which some or all of the Standard Model fields
have non-commutative counterparts. In extra-dimensional models, it is common to regulate

18In a scenario with TeV scale non-commutativity, but with MKK
closed = Mpl finite, the string scale Mstring

is equal to the geometric mean Mstring ∼
q
MKK

open ·MKK
closed ∼ 1011 GeV.

19See for example [62] for a collider study of some aspects of non-commutative extra dimensions.
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the extra dimensions with a lattice formulation. At the very least, working with a fuzzy
prescription would provide a way to maintain more of the smooth structure of the internal
geometry, and may also open up new avenues for model building with extra dimensions.

7 Towards a holographic dual

The seven-brane on a non-commutative four-cycle with N points can be viewed as tiled
by N D3-branes that each occupy one Planck cell. In the limit where the number of
fuzzy points becomes large, the D3-branes form a dense mesh, and the non-commutative
geometry converges to the commutative description. This structure hints at a possible
holographic dual description.20 Here we make some qualitative remarks about the form
of this holographic dual. Though the application is different, the appearance of fuzzy
geometry in Klebanov-Strassler type solutions has been studied for example in [68]. Our
situation also shares some similarities with the description given in [69] of extremal black
holes in IIA string theory in terms of D0-branes tiling the horizon (see also [70]).

Consider a seven-brane with gauge group G = SU(Nc) wrapped on a non-commutative
four-cycle with a large number of fuzzy points, N . The qualitative behavior of this theory
depends on the energy scale. At energies below the scale of Kaluza-Klein excitations, the
low energy theory consists of a single four-dimensional SU(Nc) gauge theory. The number
of seven-branes Nc cannot be too large without overclosing the compactification [28]. As
we proceed up in energy, additional light modes begin to enter the spectrum. For instance,
the vector multiplet of the non-commutative theory is given by a (0, 0)-form which can be
viewed as an N ×N matrix:

V ii ∈Mat(N ×N). (7.1)

The other bulk KK modes roughly fill out N ×N matrices with shifts N → N + qi set by
line bundle data. Matter on curves crudely correspond to N1/2 × N1/2 matrices, though
the precise exponent of the N scaling depends on details of the matter curve.

Once we pass the threshold for the open string KK states, we find additional degrees
of freedom. For example, the N2 massive vector multiplets can be viewed as N2 mass-
less vector multiplets transforming in N2 copies of SU(Nc), and N2 adjoint-valued chiral
superfields which give mass to these vector multiplets through their vevs.

The appearance of so many additional vector multiplets suggests that we have tiled the
seven-brane with a collection of D3-branes. Indeed, turning on a non-trivial B-flux through
the worldvolume of the seven-brane induces a net D3-brane charge equal to the number of
points N . These D3-branes have finite extent because they experience a collective Myers
effect induced by the background fluxes [71], and so rather than sitting at commutative
points, the D3-branes puff up and sit at fuzzy points of the non-commutative geometry. In-
deed, though it is tempting to speak of the classical position of N D3-branes located at vari-
ous positions on the seven-brane, in the non-commutative setting we cannot simultaneously

20In practical applications, αGUT = gs/N so that N ∼ O(30) when gs is an order one parameter (as in

F-theory). Insofar as this is a large number, this expansion is also potentially relevant in more phenomeno-

logical applications.
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diagonalize these positions. The configuration of D3-branes is therefore better viewed as fill-
ing out anN×N matrix. The gauge group of this configuration exactly matches what we ex-
pect in the fuzzy theory. The bifundamentals correspond to 3−3′ strings stretched between
the various D3-brane factors, and set the mass scale of open string Kaluza-Klein excitations.

At even higher energies, we pass back to an unHiggsed theory in which the 3−3′ strings
no longer condense. In this limit, the N D3-branes sit on top of each other at the tip of the
singularity, and organize according to an SU(Nc×N) gauge theory, with some appropriate
matter content and scalar potential that reflects the presence of the local del Pezzo geom-
etry. Viewed as a collection of Nc×N D3-branes sitting at a single point of the geometry,
the SU(Nc × N) gauge theory has Yang Mills coupling g2

HI = 4πgs. Taking the large N
limit suggests organizing our perturbative expansion according to the ’t Hooft parameter:

λHI = g2
HINc ×N = 4πgsNc ×N. (7.2)

At large λHI, we expect to obtain a holographic dual to the stack of Nc × N D3-branes,
supported by the five-form flux F5 [72]. The closed string modes in this dual geometry
correspond to glueball like excitations of the large N gauge theory. Since the number of
chiral matter fields is assumed to be much smaller than Nc × N , the flavor seven-branes
can to first order be treated in a probe approximation.

We could ask how one would recover the low energy fuzzy description from this
holographic dual perspective. Descending from the high energy theory, one enters a
regime where the wave functions of the D3-branes spread out over the seven-brane.
Viewed from a classical perspective, we are performing a breaking pattern of the form
SU(Nc ×N) ⊃ SU(Nc)N , where we rearrange the three-brane configuration into N stacks
of Nc D3-branes. The gauge coupling of the parent gauge theory descends directly to each
stack of D3-branes so that g2

HI = g2
MID. Note, however, that in the vicinity of each single

stack, the gauge group is only SU(Nc). The radius of curvature of a putative holographic
dual to this smaller stack would then be set by the ’t Hooft coupling λMID = 4πgsNc.
Insofar as gs is at most order one, and since we cannot arbitrarily increase the rank of a
seven-brane gauge group, we see that the holographic dual of this configuration will have
a string scale curvature.

Finally, we descend back down to the Higgs branch of the D3-brane configuration, in
which only a single SU(Nc) gauge group factor remains. This can be viewed as embedded
in the diagonal subgroup of SU(Nc)N . This breaking pattern affects the value of the gauge
coupling constant of the gauge theory on the Higgs branch so that:

g2
LO =

g2
HI

N
=

4πgs
N

. (7.3)

Thus we recover the by now familiar relation g2
YM = g2

LO = 4πgs/N .
Even though in the IR, the gauge symmetry has been broken to SU(Nc), the UV

presence of the large gauge group SU(N × Nc) is still reflected in the spectrum of KK
excitations of the low energy theory. This allows one to organize the perturbation
theory of the fuzzy seven-brane in terms of a large N expansion [73]. For example, the
vector multiplets organize as an N × N matrix V ii. The Feynman rules require that in
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IR UV

r

Figure 3. Depiction of the holographic dual to a seven-brane wrapping a non-commutative four-
cycle. In the open string picture, this configuration can alternatively be viewed as a collection of N
D3-branes sitting at the fuzzy points of the geometry. At higher holographic energy scales r, the
D3-branes can clump together, and we recover a corresponding weakly curved holographic dual.

interactions involving the vector multiplets V ii, an i index must link up with an i index.
This means that we have an analogue of the double line notation. In this 1/N expansion,
the corresponding ’t Hooft coupling would now be:

λLO ≡ g2
YMNc ×N = 4πgsNc. (7.4)

The resulting large N expansion for amplitudes can then be interpreted as the loop
expansion of a closed string theory which lives at the highly curved tip of the closed string
geometry. Indeed, for small Nc the ’t Hooft coupling is order one indicating that the
holographic dual geometry has string scale curvature. See figure 3 for a depiction.

8 Conclusions

Local model building provides a general strategy for embedding the Standard Model in
string theory by focussing first on the open string degrees of freedom, keeping the closed
string degrees of freedom decoupled. For seven-branes wrapping a compact four-cycle, fully
decoupling the closed string sector requires working in the zero slope limit, and simulta-
neously demanding that this four-cycle collapses to zero closed string volume. The open
string volume is still non-zero, and is supported by a two-form flux B. This is a quite
natural regime for high scale stabilization of Kähler moduli, and further, leads to signifi-
cant simplifications in the dynamics of the higher-dimensional gauge theory defined by the
seven-brane. In this limit, the internal geometry becomes non-commutative, and the spec-
trum of KK excitations for the seven-brane theory truncates. We have developed a general
effective action for fuzzy seven-branes, and have explored some of the consequences of
non-commutative extra dimensions. We now turn to some further avenues of investigation.
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Our approach to non-commutative toric spaces has been based on effectively quan-
tizing the data of a classical gauged linear sigma model. This appears to be a physically
reasonable starting point in particular because B-fields threading the worldvolume of
D-branes on Cr are well-understood, and the symplectic quotient provides a natural
formulation for treating more general toric spaces. Even so, the quantization procedure
is still at the level of a motivated ansatz. Deriving this structure from the gauged linear
sigma model would likely provide further insight into stringy realizations of fuzzy toric
spaces. Along these lines, we have seen that there are analogues of many by now standard
features of GLSM constructions such as flop transitions and Landau-Ginzburg phases. It
is far from clear that this exhausts the full list of possibilities, and it may be that there
are transitions which do not possess commutative analogues.

We have seen that the dynamics of seven-branes admits a 1/N expansion in the number
of points N of the non-commutative geometry. This suggests an intuitive picture based on
viewing the seven-brane as a collection of N puffed up D3-branes tiling the interior. De-
veloping gravity duals of such D3-brane configurations would likely provide further insight
into strongly coupled gauge theories built from such seven-branes, and would open up the
possibility of finding a holographic dual of weakly coupled low rank gauge theories, like the
Standard Model. This picture also suggests an intriguing interpolation between a single
unified SU(5) GUT model on a fuzzy seven-brane, and the collective dynamics of 5 × N
D3-branes. Though this is similar to what is expected in deconstructed extra-dimensional
theories [74], the construction we have presented retains additional geometric structure
which is typically absent in lattice regularization of higher-dimensional theories.
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A Fuzzy P1

In this appendix we present some additional features of fuzzy P1. We begin by making
contact with an alternative formulation of this space, which is equivalent to what we have
discused.

We start with commutative coordinates xi of R3 subject to the condition:

x2
1 + x2

2 + x2
3 = R2. (A.1)

The ordinary non-commutative construction then quantizes this information by promoting
the coordinates xi to operators Xi which satisfy the commutation relations of the su(2)
algebra:

[Xi, Xj ] = iθεijkXk. (A.2)
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Here θ is a formal quantization parameter. The overall size of the sphere is then fixed by
specifying a spin j representation of the angular momentum algebra:

X2
1 +X2

2 +X2
3 = θ2j(j + 1). (A.3)

Rescaling the X’s can be absorbed into a change of the quantization parameter θ. One
common convention is θ2 = 1/j, so that the volume of the sphere scales as j + 1.

To make contact between this description and the construction we have been using
in this paper, we first review the commutative toric description of P1. Recall that in the
commutative theory, P1 can be defined in terms of the GLSM of a single U(1) with two chiral
superfields u1, u2 of charge +1. The volume of the P1 is then fixed by the D-term constraint:

|u1|2 + |u2|2 = ζ. (A.4)

We now quantize this data. Denote the analogue of the ui by the quantized variables
Ui. Let |0〉 denote the vacuum state annihilated by the U ’s. The Fock space F(C2) is given
by all states obtained by acting on |0〉 with the U †’s. The spectrum of the D-term operator
D = U †1U1+U †2U2 then defines a grading of F(C2). We denote by FX(N) the bosonic points
of X = P1 with quantized FI parameter N . The space FX(N) is spanned by the states:

|n1, n2 〉 =
(U †1)n1(U †2)n2

√
n1!n2!

|0〉 (A.5)

with n1 + n2 = N .
Associated with the U ’s there is a canonical su(2) algebra given as:

Ji =
1
2
U †σiU (A.6)

where U † is a two-component vector, and the σ’s are the Pauli matrices. Introducing
J+ = J1 + iJ2 and J− = J1 − iJ2, the angular momentum generators are:

J+ = U †1U2

J− = U †2U1 (A.7)

J3 =
1
2

(U †1U1 − U †2U2).

The South pole state of P1 corresponds to:

|South〉 = | 0, N 〉. (A.8)

Indeed, acting by J− annihilates this state, and acting by J+ N + 1 times yields, up to a
constant of proportionality, the North pole state:

|North〉 = |N, 0 〉. (A.9)
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Line bundle cohomology on fuzzy P1. We now discuss line bundle cohomology for
fuzzy P1. Our general strategy is to map the algebraic data of the commutative theory to
the non-commutative geometry.

A general zero form of the degree Q line bundle OP1(Q) can be presented as a poly-
nomial in the u’s and u’s with net GLSM charge Q. Global sections of OP1(Q) correspond
to degree Q polynomials in the u’s:

H0(P1,O(Q)) =
{
G(u1, u2)|degG = Q

}
(A.10)

This implies that there are global sections forQ ≥ 0, but forQ < 0, OP1(Q) does not possess
any global sections. In particular, for Q ≥ 0, the number of global sections is Q+ 1.

The case of (0, 1)-forms is similar. The canonical line bundle of P1 is OP1(−2), so a
natural basis element for holomorphic one-forms will be deP1 , where eP1 has GLSM charge
+2. The condition that this monomial remains well-defined over all of P1 effectively fixes
eP1 to be u1u2, since the differentials d(u2

1) and d(u2
2) both vanish on P1. Note that

d(u1u2) = u1du2 + u2du1, so that since u1 and u2 cannot both simultaneously vanish, this
differential is the unique choice.21

To fix actual representatives, it is actually enough to work in terms of the Serre dual
description of the cohomology group. Using the isomorphism:

H1(P1,OP1(Q)) ' H0(P1,OP1(−Q)⊗OP1(−2))∗, (A.11)

we conclude that the elements of H1(P1,OP1(Q)) can be viewed as living in the dual space
to H0(P1,OP1(−Q− 2)). In other words, a convenient basis for this cohomology group can
be presented as:

H1(P1,OP1(Q)) ' {G(u∗1, u
∗
2)⊗ d(u1u2) : −degG− 2 = Q} (A.12)

where the u∗’s are to be viewed as dual coordinates such that u∗(u) = 1. This convention
requires the dual coordinates u∗ to have GLSM charge −1. Since the overall GLSM charge
of the one-forms is fixed to be Q, this implies degG = −Q−2, so that for Q ≥ −1, the coho-
mology group vanishes, and for Q < −2, the dimension of the cohomology group is −Q−1.

We now turn to the fuzzy cohomology groups. The quantized analogue of dui is the
fermionic oscillator Ci. To distinguish from the cohomology of the commutative geometry,
we refer to our P1 as X. Fixing a degree Q line bundle L(Q), the space H0(X,L(Q)) is
spanned by the operators:

H0(X,L(Q)) = {G(U1, U2) : [D,G] = −QG} (A.13)

21The set {u1u2} for P1 generates the Stanley-Reisner ideal for P1. More generally, for a toric variety

X, we can form a collection of minimal monomials such that for each monomial, not all of the factors can

simultaneously vanish. The main utility for our purposes is that such elements provide a convenient basis of

monomials to construct differential forms from. Stanley-Reisner ideals figure prominently in the proposed

algorithmic approach to line bundle cohomology in [42]. It would be interesting to use this algorithmic

approach to line bundle cohomology to find explicit representatives of fuzzy cohomology groups.
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Indeed, acting on the bra vacuum state 〈0| by elements of H0(X,L(Q)) generates a Q+ 1
dimensional vector space which is isomorphic to the dual vector space of points of a fuzzy
P1 of size Q:

F∗X(Q) = {〈0|G(U1, U2) : [D,G] = −QG} . (A.14)

Note that having non-trivial H0(X,L(Q)) requires Q ≥ 0.
Next consider the elements of the first cohomology group. The fuzzy analogue of Serre

duality is provided by acting with elements of H0(X,L(Q)) on the bra vacuum state 〈0|, and
elements of H1(X,L(Q)) on the ket vacuum state |0〉. Indeed, there is a canonical pairing
between U and U †. Thus, elements of H1(X,L(Q)) correspond to operators built exclusively
from creation operators. We restrict our discussion to cases where the commutative theory
cohomology group is non-trivial so that Q < −1. Exploiting the presence of this canonical
pairing, we can make the identification:

H1(X,L(Q)) =
{
G(U †1 , U

†
2)× (U †1C

†
2 + U †2C

†
1) : [D,G] = (Q+ 2)G

}
. (A.15)

Indeed, acting on the ket vaccum state |0〉 by degree −Q − 2 polynomials in the U †’s,
we see that each of the states of FX(−Q− 2) naturally pairs with a state of F∗X(−Q− 2)
associated with acting on the bra vacuum state 〈0| with operators of the cohomology group
H0(X,L(−Q−2)).

Let us note that in our discussion the U †’s play two roles: first as anti-holomorphic
coordinates for functions, and second as Serre dual coordinates for cohomology groups.

B Intersection theory on fuzzy P1 × P1

In this subsection we develop intersection theory on fuzzy P1 × P1. To set notation, we
introduce oscillators Ui and Vi for the respective factors P1

I and P1
II of P1

I ×P1
II . We denote

the vector space of bosonic points for P1
I×P1

II at Kähler classes NI and NII by FX(NI , NII).
In the commutative theory, divisors are defined as the vanishing locus of a biho-

mogeneous polynomial in the u’s and v’s. In the non-commutative geometry, this locus
is associated with the linear subspace of FX(NI , NII) annihilated by the corresponding
operator in U and V .

In the commutative geometry, divisors will typically intersect at some number of
points. We now discuss the analogous intersection number for fuzzy divisors. Given two
operators P and Q of respective bidegrees (p1, p2) and (q1, q2), the number of points in
the intersection is:

#(P = 0) ∩ (Q = 0) = dim(kerP ∩ kerQ). (B.1)

Intersection theory in the commutative theory is fully determined by the bidegrees of
the bihomogeneous polynomials P and Q. Indeed, letting σ1 and σ2 denote the divisors
corresponding to the two P1 factors of P1×P1 such that σi∩σj = 1−δij , the divisor classes
for P and Q are:

[P ] = p1σ2 + p2σ1
(B.2)

[Q] = q1σ2 + q2σ1.
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The intersection number of P and Q in the commutative theory is then given by:

[P ] ∩ [Q] = (p1σ2 + p2σ1) ∩ (q1σ2 + q2σ1) = p1q2 + p2q1. (B.3)

We now establish a similar relation in the non-commutative geometry, with the
intersection number given by equation (B.1). In order to keep our discussion as “generic”
as possible, we assume that each linear map induced by acting by either P or Q has trivial
cokernel.22

At the level of set theory, the mutual intersection of the two kernels is:

dim(kerP ∩ kerQ) = dim kerP + dim kerQ− dim kerPQ. (B.4)

Since we are assuming trivial cokernel for each operator, the rank nullity theorem implies:

dim kerP = NINII − (NI − p1)(NII − p2)

dim kerQ = NINII − (NI − q1)(NII − q2) (B.5)

dim kerPQ = NINII − (NI − p1 − q1)(NII − p2 − q2).

Returning to equation (B.4), we find:

dim(kerP ∩ kerQ) = p1q2 + p2q1, (B.6)

which we recognize as the intersection number for divisors in the commutative geometry.
Let us note that in less generic situations where some of the maps are not onto, or in cases
where the action by an operator annihilates all points, the effects of the non-commutativity
will be more prominent. It would be interesting to develop intersection theory for more
general fuzzy toric spaces.
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