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1 Introduction

In the past two decades, T-duality [1, 2] has been highly successful in helping increase our

understanding of string theory. In the 1990s, S, T and U-dualities were used to relate the

five different string theories. The existence of these dualities was crucial in the conjecture

that the five string theories are different limits of a theory that is the strong coupling limit

of type IIA string theory, M-theory [3, 4]. T-duality has also provided insights into the

study of D-branes, which would perhaps be inaccessible otherwise. For example, Myers [5]

used consistency of the world-volume action for the D-brane with T-duality to find the

correct coupling of background Ramond-Ramond fields to D-branes, which was used to

discover the Myers effect. Furthermore, another important application of T-duality has

been to use it to generate solutions in supergravity [6].

In Buscher’s formulation of T-duality [7, 8], a shift symmetry of a target space coor-

dinate, which corresponds to an isometry in the target space of the sigma-model, is used

to make a field redefinition in the sigma model. The new sigma model is classically of

the same form as the original sigma model except for the sigma model couplings, i.e. the

metric and the 2-form field, which are different. The two sigma models are equivalent

quantum-mechanically if the dilaton also transforms. This shows that the string theories

described by the two sigma models with different couplings, which correspond to different

backgrounds for the string theories, are equivalent. The transformed background fields are

related to the original fields by the killing vector that corresponds to the isometry.

Recently, this idea has been generalised to the case where the target space has a

fermionic isometry, or supersymmetry, as opposed to an isometry, to find a duality of tree-

level type II string theory, fermionic T-duality [9, 10]. Under this duality the background

Ramond-Ramond fields and the dilaton transform and the metric and the NSNS 2-form field
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are invariant. Analogously to T-duality, the transformation of the background supergravity

fields are given by the Killing spinors corresponding to the supersymmetry in superspace.

Given the success of T-duality, we expect that fermionic T-duality will also make im-

portant contributions to our understanding of string theory. In fact, fermionic T-duality

was introduced to explain the dual superconformal symmetry of planar scattering ampli-

tudes in N = 4 super Yang-Mills theory [9, 10], which has no obvious origin in the weak

coupling computations of these amplitudes in which this symmetry was found [11, 12].

There have also been other studies of fermionic T-duality [13–17].

However, in contrast to T-duality, fermionic T-duality generically transforms a real

supergravity background into a complex supergravity background. An ordinary T-duality

along a time-like direction can then be applied to get back a real background. This

means that the application of fermionic T-duality as a solution generating mechanism,

one of the key applications of T-duality, is limited to supergravity solutions with a timelike

Killing vector.

In this paper, we consider fermionic T-duality from the spacetime viewpoint, rather

than the worldsheet perspective in which it was found. We consider a general ansatz for

the transformation of the Ramond-Ramond fields and the dilaton involving Killing spinors

in both type IIA and type IIB supergravity. We then systematically impose that the

supergravity equations are invariant under this transformation, i.e. we impose that the

transformed fields are solutions of the supergravity equations. We find that the symmetry

includes fermionic T-duality, as it must, but it also admits real transformations of the

supergravity fields.

The structure of the paper is as follows. In section 2, we review Büscher’s T-duality

and show how a symmetry in the target space allows a field redefinition in the worldsheet

theory that gives rise to a duality. We also review the transformation rules of fermionic

T-duality [9] in this section. Then, in section 3, we set our conventions by stating the type

IIA supergravity Lagrangian and equations, and we construct the symmetry for type IIA

supergravity. In section 4, we construct an analogous symmetry for type IIB supergravity.

Finally, in section 5, we make some comments and outline future work.

2 Review of T-duality and fermionic T-duality

Büscher [7, 8] showed that T-duality in curved backgrounds arises as a symmetry of the

sigma-model. Consider the bosonic string sigma-model

S =
1

4πα′

∫

d2σ
[√

hhαβgab∂αX
a∂βX

b + ǫαβBab∂αX
a∂βX

b + α′
√
hR(2)φ(X)

]

.

The field Xa is the position of the point (σ1, σ2) on the worldsheet in spacetime; gab is

the metric on the target space; Bab is the antisymmetric gauge potential; φ is the dilaton

and R(2) is the curvature of the worldsheet metric h. Imposing conformal invariance in

the quantum theory gives the equations of motion for the background fields [18]. In 26
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dimensions, the equations of motion for the metric, two-form field and dilaton are

Rab −
1

4
H cd

a Hbcd + 2∇a∇bφ = 0,

∇cH
c
ab − 2 (∂cφ)Hc

ab = 0,

4 (∂φ)2 − 4�φ−R+
1

12
H2 = 0, (2.1)

respectively. The tensor Rab is the Ricci tensor associated to the metric on the target space

and Habc = 3∂[aBbc].

If there is a Killing vector in the target space, k, then we can choose a coordinate

system — we will let Xa be such a coordinate system — in which k = ∂/∂X0. In this

coordinate system, the metric, two-form field and the dilaton are independent of the X0

coordinate. We can then write

∂αX
0 = Vα,

in the action, but we must impose the constraint that Vα is exact. For Euclidean world-

sheets of spherical topology we can impose this constraint using a Lagrange multiplier term

ǫαβX̂0∂αVβ.

So we can write the action as

S =
1

4πα′

∫

d2σ
(√

hhαβ
[

g00VαVβ + 2g0iVα∂βX
i + gij∂αX

i∂βX
j
]

+ǫαβ
[

2B0iVα∂βX
i +Bij∂αX

i∂βX
j
]

+ 2ǫαβX̂0∂αVβ + α′
√
hR(2)φ(X)

)

, (2.2)

where a = (0, i).

The equation of motion for X̂0 gives that V is closed, which for a spherical worldsheet

implies that V is exact, so we get back the original theory. The V equation of motion is

Vα = − 1

g00

[

g0i∂αX
i +

ǫ β
α√
h

(

B0i∂βX
i + ∂βX̂

0
)

]

.

Integrating the action over V we get the dual action that has the same form as the original

action except that the metric and the two-form field are now

g̃00 =
1

g00
,

g̃0i =
B0i

g00
, B̃0i =

g0i

g00
,

g̃ij = gij −
g0ig0j −B0iB0j

g00
,

B̃ij = Bij −
g0iB0j −B0ig0j

g00
. (2.3)

We would like to impose the condition that the T-dual theory is also conformally in-

variant. This can be imposed at one-loop using either the results of reference [18], i.e.
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equations (2.1), or by considering the change in the measure of the path-integral. Either

method suggests that the dilaton is shifted [7, 8] to

φ̃ = φ− 1

2
log g00. (2.4)

Note that if we take the special case of toroidal compactification on a flat background,

then we get the well-known result that the radius of the compactification circle is inverted

and the string coupling constant, which is the exponential of the expectation value of the

dilaton, is modified by a factor of
√
α′/R.

The argument given here is valid only for spherical worldsheets, hence the duality has

only been proved to first order in string perturbation theory. By gauging the isometry

the duality can be extended to higher genus worldsheets, but in this case the isometry

orbits must be compact, or in other words the shift symmetry has to be along a compact

coordinate [19].

Recently, Berkovits and Maldacena [9] have generalised Büscher’s formulation of T-

duality to the case where the worldsheet action is invariant under constant shifts of space-

time fermionic coordinates θJ , J = 1, . . . n. They show that under this duality the metric

and the NS-NS 2-form potential do not change, and they give the transformation of the

Ramond-Ramond fields in terms of the bispinor field strength.

In type IIA string theory the bispinor field strength is

F =
1

2
F (2)

a1a2
γa1a2 +

1

4!
F (4)

a1...a4
γa1...a4γ11,

where the 2-form F (2) and 4-form F (4) are the RR field strengths. In our notation,

γ−matrices are 32 by 32 matrix representations of the ten-dimensional Clifford algebra;

two Majorana-Weyl spinors describing N = 2A supersymmetry are combined into a single

Majorana-Dirac spinor. In type IIB string theory the Ramond-Ramond field strengths are

the 1-form F (1), 3-form F (3) and the self-dual 5-form F (5), and we define the R-R bispinor

field strength by

F = F (1)
aγ

aσ1 +
1

3!
F (3)

a1...a3
γa1...a3

(

iσ2
)

+
1

2.5!
F (5)

a1...a5
γa1...a5σ1.

In type IIB theory, two Majorana-Weyl spinors, ε and ε̂, with the same chirality are

combined into an SO(2) vector

ǫ =

(

ε

ε̂

)

,

which are rotated amongst each other by acting with eiσ2θ, and on which Pauli matrices

act on in the obvious way.

Fermionic T-duality transforms the bispinor field strength in the following way:

eφ′

F ′ = eφF ± 32

N
∑

I,J=1

(εI ⊗ ε̂J)MIJ , (2.5)
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where we take + in type IIB theory and − in type IIA string theory. We will always

combine two type IIA Weyl spinors into a Dirac spinor and type IIB spinors into an SO(2)

vector. However, in equation (2.5), and only there, the spinors are Weyl Killing spinors.

Furthermore, under fermionic T-duality, the dilaton is transformed to

φ′ = φ+
1

2

n
∑

I=1

(

log

(

1

2
M−1

))

II

, (2.6)

where M−1 satisfies

∂a

(

M−1
)

IJ
= 2ǭIγaγ11ǫJ

for type IIA theory, and

∂a

(

M−1
)

IJ
= 2ǭIγaσ

3ǫJ

for type IIB theory — of course ǫ has a different meaning for each theory, as described

above. The spinors, ǫJ , are Killing spinors corresponding to the constant shift symmetry

of the fermionic coordinate θJ in superspace

θI → θI + ρI ,

where ρI is a Grassmann-valued constant. Since this symmetry is abelian, {ǫIQI , ǫJQJ} =

0, where there is no summation over I and J. However, from the supersymmetry algebra

{ǫIQI , ǫJQJ} = ǭIγ
aǫJPa,

where P is the generator for translations. Therefore,

ǭIγaǫJ = 0, (2.7)

for all I, J = 1, . . . , n ∈ Z
+. This condition can only be satisfied non-trivially for complex

ǫ, so, in general, the transformation sends real supergravity backgrounds into complex

backgrounds.

Fermionic T-duality preserves the number of supersymmetries, which is necessary in

order for it to be a duality of string theory. Explicitly, the Killing spinors in the T-dual

theory are

ǫ′I = MIJǫJ . (2.8)

3 Type IIA supergravity symmetry

In our conventions, summarised in appendix A, the type IIA supergravity action is

S =
1

2κ2

∫

d10x
√
g

{

e−2φ

[

R+ 4(∂φ)2 − 1

12
H2

]

− 1

2

[

1

2
F (2)2 +

1

4!
F (4)2

]

− 1

144

1√
g
ǫ ∂C(3)∂C(3)B

}

. (3.1)

The first square bracket is the action for the NSNS fields, the metric g, the 2-form field

B, and the dilaton. The second set of terms constitute the action for the RR fields, the
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1-form potential C(1), and the 3-form potential C(3). The last term is the Chern-Simons

term. The field strengths, H,F (2), F (4) are defined by

H = dB,

F (2) = dC(1),

F (4) = dC(3) −H ∧ C(1).

The Bianchi identities for the field strengths are

dH = 0, (3.2)

dF (2) = 0, (3.3)

dF (4) −H ∧ F (2) = 0. (3.4)

The equations of motion are

d
(

e−2φ ⋆ H
)

+ F (2) ∧ ⋆F (4) − 1

2
F (4) ∧ F (4) = 0, (3.5)

d ⋆ F (2) +H ∧ ⋆F (4) = 0, (3.6)

d ⋆ F (4) −H ∧ F (4) = 0. (3.7)

The Einstein equation is

Rab = −1

4
gab�φ+

1

2
gab (∂φ)2 − 2∇a∇bφ+

1

4

(

HacdH
cd

b − 1

12
gabH

2

)

+
1

2
e2φ

(

F (2)
acF

(2) c
b − 1

16
gabF

(2)2
)

+
1

12
e2φ

(

F
(4)

acdeF
(4) cde

b − 3

32
gabF

(4)2
)

, (3.8)

and the dilaton equation of motion is

R+ 4�φ− 4 (∂φ)2 − 1

12
H2 = 0. (3.9)

We can check the consistency of these equations by showing that the contracted Bianchi

identity holds. Indeed, using the Bianchi identities and equations of motion for the field

strengths and the Einstein equation,

∇a(Rab −
1

2
gabR) = −∂bφ

(

R+ 4�φ− 4 (∂φ)2 − 1

12
H2

)

,

which vanishes by the dilaton equation of motion.

The Killing spinor equations from the variations of the gravitino and dilatino are

∇aǫ−
1

8
Habcγ

bcγ11ǫ−
1

16
eφF

(2)
bcγ

bcγaγ11ǫ+
1

192
eφF

(4)
bcdeγ

bcdeγaǫ = 0, (3.10)
(

γa∂aφ− 1

12
Habcγ

abcγ11 −
3

8
eφF

(2)
abγ

abγ11 +
1

96
eφF

(4)
abcdγ

abcd

)

ǫ = 0, (3.11)

respectively.
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We will consider a transformation in the RR fields only. We also allow the dilaton to

transform because at the quantum level this restores the conformal invariance of the string

sigma model. For a string theory to be quantum mechanically consistent, it can be shown

that the background fields must satisfy the supergravity equations of motion by imposing

the vanishing of the beta-function [18, 20], or imposing κ−invariance of the Green-Schwarz

action [21, 22]. The other NSNS fields, the metric and the 3-form field strength H, are

invariant under the transformation.

We consider the most general ansatz for the transformation of the fields:

eφF
(2)

ab → eφ′

F
′(2)

ab = eφF
(2)

ab + ǭIγab(S1 + S2γ11)ηJMIJ ,

eφF
(4)

abcd → eφ′

F
′(4)

abcd = eφF
(4)

abcd + ǭIγabcd(S3 + S4γ11)ηJMIJ , (3.12)

where φ′,MIJ , S1, . . . , S4 are arbitrary functions, and spinors ǫI , ηI , I = 1, . . . , n, satisfy the

gravitino and dilatino Killing spinor equations. Both of the RR field strengths transform

with the same spinors and functions, for if they transformed with different spinors and

functions, then, for example, upon requiring that the Bianchi identity for the transformed

4-form field strength, equation (3.4), holds, they would be identified. We will identify them

from the onset in the interests of clarity and terseness. Furthermore, from equation (3.5),

φ′ can be identified as the transformed dilaton, which we will write as

φ′ = φ+X,

where X is an unknown function.

Let us consider each Bianchi identity and equation of motion in turn. First, consider

the transformed Bianchi identity for the RR 2-form, equation (3.3). Using the gravitino

Killing spinor equation

∇[aF
′(2)

bc] = ∇[a

(

e−XF
(2)

bc] + e−(φ+X)ǭIγbc] (S1 + S2γ11) ηJMIJ

)

= −e−X
(

F
(2)

[bc + e−φǭIγ[bc (S1 + S2γ11) ηJMIJ

)

∂a]X

− e−(φ+X)ǭIγ[bc (S1 + S2γ11) ηJMIJ∂a]φ

+ e−XǫαI η
β
J

(

1

4
e−φHde[a

(

S1

(

γbc]γ
deγ11

)

(αβ)
+ S2

(

γbc]γ
de
)

[αβ]

)

+
1

8
F

(2)
de

(

S1

(

γ[bcγ
deγa]γ11

)

(αβ)
− S2

(

γ[bcγ
deγa]

)

[αβ]

)

− 1

96
F

(4)
defg

(

S1

(

γ[bcγ
defgγa]γ11

)

(αβ)
− S2

(

γ[bcγ
defgγa]

)

[αβ]

))

MIJ

+ e−(φ+X)ǭIγ[bc∂a] [(S1 + S2γ11)MIJ ] ηJ . (3.13)

The Greek indices, α, β = 1, . . . , 32, are spinor indices.

Now we can use the dilatino Killing spinor equation to express the term involving the

derivative of the dilaton in the expression above in terms of the field strengths. As ǫI and

ηJ satisfy the dilatino Killing spinor equation, (3.11),

ǫαI γabc

(

γd∂dφ− 1

12
Hdefγ

defγ11 −
3

8
eφF

(2)
deγ

deγ11 +
1

96
eφF

(4)
defgγ

defg

)(αβ)

ηβ
J = 0.

(3.14)
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Using1

γa1...amγ
b1...bn =

min(m,n)
∑

k=0

ckmnγ
[b1...bn−k

[a1...am−k
δ
bn−k+1
am−k+1

. . . δ
bn]
am], (3.15)

where

ckmn = (−1)kn+ 1

2
k(k+1) m!n!

k!(m− k)!(n − k)!
,

and

(γa1...an)αβ = (−1)
1

2
n(n+1)+1 (γa1...an)βα ,

(γa1...anγ11)
αβ = (−1)

1

2
n(n+3) (γa1...anγ11)

βα , (3.16)

equation (3.14) implies that

ǭIγ[bcηJ∂a]φ− 1

12
Hde[aǭI

(

3γ de
bc] − 2δd

b δ
e
c]

)

γ11ηJ

− 1

8
eφF

(2)
deǭI

(

γ de
abc −6γ[aδ

d
b δ

e
c]

)

γ11ηJ +
1

24
eφF

(4)
defg ǭI

(

γ def
[ab δg

c]−2γdδe
aδ

f
b δ

g
c

)

ηJ =0.

Similarly,

ǭIγ[bcγ11ηJ∂a]φ− 1

12
Hde[aǭI

(

3γ de
bc] − 2δd

b δ
e
c]

)

ηJ − 3

4
eφF

(2)
deǭIγ

d
[bc δ

e
a]ηJ

− 1

288
eφF

(4)
defg ǭI

(

γ defg
abc − 36γ de

[b δf
c δ

g
a]

)

γ11ηJ = 0.

Substituting the two equations above in equation (3.13) and using the gamma matrix

identities (3.15) and (3.16), equation (3.13) becomes

∇[aF
′(2)

bc] =

−e−X
(

F
(2)

[bc+e−φǭIγ[bc(S1+S2γ11)ηJMIJ

)

∂a]X+e−(φ+X)ǭIγ[bc∂a][(S1+S2γ11)MIJ ]ηJ

− 1

3
e−(φ+X)HabcǭI(S1γ11+S2)ηJMIJ +

1

2
e−XF

(2)
deǭI

(

2S1γ[aδ
d
b δ

e
c]γ11 − S2γ

d
[bc δ

e
a]

)

ηJMIJ

+
1

144
e−XF

(4)
defg ǭI

(

48S1γ
dδe

aδ
f
b δ

g
c + S2

(

γ defg
abc + 36γ de

[a δf
b δ

g
c]

))

ηJMIJ .

The expression above must vanish for the transformed Bianchi identity to be satisfied. Since

we are considering generic supergravity solutions, by looking at the terms proportional to

the RR 2-form field strength we conclude that

∂aX = S1ǭIγaγ11ηJMIJ and S2ǭIγabcηJMIJ = 0. (3.17)

From the terms proportional to the NSNS field strength we get that

ǭI (S1γ11 + S2) ηJMIJ = 0, (3.18)

1This identity can be proved by using induction on m with n = 1 and then by induction on n.
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and from the terms involving the RR 4-form field strength we get

S1ǭIγaηJMIJ = 0 and S2ǭIγabcγ11ηJMIJ = 0, (3.19)

using S2ǭIγabcηJMIJ = 0, from equation (3.17). Finally from the remaining terms we

have that

ǭIγ[bc

(

∂a]X (S1 + S2γ11)MIJ − ∂a]

[

(S1 + S2γ11)MIJ

]

)

ηJ = 0. (3.20)

Using similar techniques to those used above, we can also show that

∇[aF
′(4)

bcde]−2H[abcF
′(2)

de] = −e−X
(

F
(4)

[bcde + e−φǭIγ[bcde (S3 + S4γ11) ηJMIJ

)

∂a]X

−2e−(φ+X)H[abcǭIγde] ((S2 + S3) γ11 + (S1 + S4)) ηJMIJ

+
1

20
e−XF

(2)
fg ǭIS3

(

γ fg
abcde − 20γ[abcδ

f
d δ

g
e]

)

γ11ηJMIJ

+
1

120
e−XF

(4)
fghiǭI

(

10S3

(

γ fgh
[bcde δi

a] + 12γ f
[ab δ

g
c δ

h
d δ

i
e]

)

+S4

(

γ fghi
abcde − 120γ[aδ

f
b δ

g
c δ

h
d δ

i
e]

)

γ11

)

ηJMIJ

+e−(φ+X)ǭIγ[bcde∂a] [(S3 + S4γ11)MIJ ] ηJ , (3.21)

∇bF
′(2)

ba−
1

6
HbcdF

′(4)
abcd = −e−X

(

F
(2)

ba + e−φǭIγba (S1 + S2γ11) ηJMIJ

)

∂bX

+ e−(φ+X)ǭIγba∂
b [(S1 + S2γ11)MIJ ] ηJ

− 1

6
e−(φ+X)HbcdǭIγ

bcd
a ((S1 + S4)γ11 + (S2 + S3)) ηJMIJ

+
1

4
e−XF

(2)
bcǭI

(

4S1γ
bδc

aγ11 + S2γ
bc

a

)

ηJMIJ

− 1

6
e−XF

(4)
bcdaǭIS2γ

bcdηJMIJ (3.22)

and

∇dF
′(4)

dabc −
1

144
ǫabcd1...d7

Hd1d2d3F ′(4)d4...d7 =

−e−X
(

F
(4)

dabc + e−φǭIγdabc (S3 + S4γ11) ηJMIJ

)

∂dX

+e−(φ+X)ǭIγdabc∂
d [(S3 + S4γ11)MIJ ]ηJ +

3

2
e−XF

(2)
d[cǭI

(

S3γ
d

ab] γ11 − 2S4γaδ
d
b]

)

ηJMIJ

− 1

48
e−XF

(4)
defg ǭI

(

S3

(

γ defg
abc + 36γ de

[a δf
b δ

g
c]

)

+ 48S4γ
dδe

aδ
f
b δ

g
cγ11

)

ηJMIJ . (3.23)

For the transformed equation of motion for the RR 4-form field to hold, from equa-

tion (3.23), the following must be satisfied

∂aX = −S4ǭIγaγ11ηJMIJ , (3.24)

S4ǭIγaηJMIJ = 0 , (3.25)

S3ǭIγabcηJMIJ = 0 , S3ǭIγabcγ11ηJMIJ = 0 , (3.26)

ǭIγabcd

(

∂dX (S3 + S4γ11)MIJ − ∂d
[

(S3 + S4γ11)MIJ

]

)

ηJ = 0 . (3.27)
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Note that if, for example,

ǭIγabcγ11ηJMIJ = 0 ,

then

ǭIγa1...a7
ηJMIJ = 0 ,

for

γa1...am = −(−1)
1

2
(10−m)(10−m+1)

(10 −m)!
ǫa1...amb1...b10−m

γb1...b10−mγ11 , (3.28)

proved in appendix B.

Now, if equations (3.17), (3.24)–(3.26) hold, then the expressions in equations (3.21)

and (3.22) vanish only if

(S1 + S4)ǭIγabηJMIJ + (S2 + S3)ǭIγabγ11ηJMIJ = 0, (3.29)

ǭIγ[bcde

(

∂a]X (S3 + S4γ11)MIJ − ∂a]

[

(S3 + S4γ11)MIJ

]

)

ηJ = 0 (3.30)

and

(S1 + S4)ǭIγabcdγ11ηJMIJ + (S2 + S3)ǭIγabcdηJMIJ = 0, (3.31)

ǭIγab

(

∂bX (S1 + S2γ11)MIJ − ∂b
[

(S1 + S2γ11)MIJ

]

)

ηJ = 0, (3.32)

respectively.

In summary, the Killing spinors and functions that describe the transformation must

satisfy

∂aX = S1ǭIγaγ11ηJMIJ , (S1 + S4)ǭIγaγ11ηJMIJ = 0,

ǭI (S1γ11 + S2) ηJMIJ = 0,

S1ǭIγaηJMIJ = 0, S4ǭIγaηJMIJ = 0,

S2ǭIγabcηJMIJ = 0, S2ǭIγabcγ11ηJMIJ = 0,

S3ǭIγabcηJMIJ = 0, S3ǭIγabcγ11ηJMIJ = 0,

(S1 + S4)ǭIγabηJMIJ + (S2 + S3)ǭIγabγ11ηJMIJ = 0,

(S1 + S4)ǭIγabcdγ11ηJMIJ + (S2 + S3)ǭIγabcdηJMIJ = 0,

ǭIγ[bc

(

∂a]X (S1 + S2γ11)MIJ − ∂a]

[

(S1 + S2γ11)MIJ

]

)

ηJ = 0,

ǭIγab

(

∂bX (S1 + S2γ11)MIJ − ∂b
[

(S1 + S2γ11)MIJ

]

)

ηJ = 0,

ǭIγ[bcde

(

∂a]X (S3 + S4γ11)MIJ − ∂a]

[

(S3 + S4γ11)MIJ

]

)

ηJ = 0

ǭIγabcd

(

∂dX (S3 + S4γ11)MIJ − ∂d
[

(S3 + S4γ11)MIJ

]

)

ηJ = 0 (3.33)

in order for the Bianchi identities and equations of motion for the transformed RR fields

to be satisfied.

Let us consider the NSNS 3-form equations. The Bianchi identity for the NSNS 3-form

field is invariant under the transformation, so we do not need to consider it. However, using
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the Killing spinor equations and equations (3.33), the equation of motion for the NSNS

3-form, (3.5), reduces to

e−(φ+2X)FcdǭI

(

(3S3 − S4γ11) δ
c
aδ

d
b − S3γ

cd
ab

)

ηJMIJ

− e−(φ+2X)S3FabcdǭIγ
cdγ11ηJMIJ − 4e−2(φ+X)ǭIγ[aηJ∂b] (S4MIJ)

+
1

2
e−2(φ+X) (ǭIγabcd (S3 + S4γ11) ηJ)

(

ǭKγ
cd (S1 + S2γ11) ηL

)

MIJMKL

− 1

48
e−2(φ+X) (ǭIγcdef (S3 + S4γ11) ηJ) (ǭKγ

cdef
ab (S3γ11 + S4) ηL)MIJMKL = 0. (3.34)

The supergravity fields we are considering are generic, so, in particular from the term

proportional to the RR 2-form field, we must have that

S3ǭIγabcdηJMIJ = 0,

which implies that S3 = 0, for this is precisely the combination that enters in the transfor-

mation of the 4-form RR field strength. Furthermore, since S3 = 0, from

(S1 + S4)ǭIγabηJMIJ + (S2 + S3)ǭIγabγ11ηJMIJ = 0

we get that

S2ǭIγabγ11ηJMIJ ∝ ǭIγabηJMIJ ,

hence without loss of generality we can set S2 = 0.

Since S2 and S3 vanish, we must have that at least one of

ǭIγabηJMIJ , ǭIγabcdγ11ηJMIJ

are non-zero in order for the transformation to be non-trivial. Therefore, using equations

(S1 + S4)ǭIγabηJMIJ = 0, (S1 + S4)ǭIγabcdγ11ηJMIJ = 0,

from the set of equations (3.33) with S2 = S3 = 0, we deduce that

S4 = −S1.

Without loss of generality we can let S1 = 1.

Furthermore, from the first term in equation (3.34), the spinors must satisfy

ǭIγ11ηJMIJ = 0. (3.35)

The last two terms in equation (3.34) are quartic in spinors and they can be simplified

using Fierz identities.

The Fierz identity for commuting spinors λ, χ, ψ, ϕ in d−dimensions is

(

λ̄Mχ
) (

ψ̄Nϕ
)

= 2−[d/2]
∑

I

(

λ̄MOINϕ
) (

ψ̄OIχ
)

,
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where M,N are arbitrary combination of gamma matrices and

{OI} = {I, γa, iγab, iγabc, γabcd, . . . }

forms a basis for 2[d/2] × 2[d/2] matrices and

{OI} = {I, γa, iγab, iγabc, γabcd, . . . }

is the dual basis.

Using Fierz identities, equation (3.34) with

S1 = −S4 = 1, S2 = S3 = 0,

ǭIγ11ηJMIJ = 0

becomes

4ǭIγ[aηJ∂b]MIJ−
(

16
(

ǭIγ[aγ11ηJ

) (

ǭKγb]ηL

)

−(ǭIγabηJ) (ǭKγ11ηL)+(ǭIγabγ11ηJ) (ǭKηL)

+
1

2
(ǭIγabcdηJ)

(

ǭKγ
cdγ11ηL

)

+
1

48
(ǭIγabcdefγ11ηJ)

(

ǭKγ
cdefηL

)

)

MIJMKL = 0.

We can use equation (3.35) again to simplify the above equation to

4ǭIγ[aηJ∂b]MIJ −
(

16
(

ǭIγ[aγ11ηJ

) (

ǭKγb]ηL

)

+ (ǭIγabγ11ηJ) (ǭKηL)

+
1

2
(ǭIγabcdηJ)

(

ǭKγ
cdγ11ηL

)

+
1

48
(ǭIγabcdefγ11ηJ)

(

ǭKγ
cdefηL

)

)

MIJMKL = 0.

(3.36)

So far, having only the dilaton and Einstein equation to consider, we have the following

conditions on the Killing spinors and functions in the transformation of the fields:

S1 = −S4 = 1, (3.37)

S3 = S2 = 0, (3.38)

∂aX = ǭIγaγ11ηJMIJ , (3.39)

ǭIγ11ηJMIJ = 0, (3.40)

ǭIγaηJMIJ = 0, (3.41)

ǭIγ[bcηJ

(

∂a]XMIJ − ∂a]MIJ

)

= 0, (3.42)

ǭIγabηJ

(

∂bXMIJ − ∂bMIJ

)

= 0, (3.43)

ǭIγ[bcdeγ11ηJ

(

∂a]XMIJ − ∂a]MIJ

)

= 0, (3.44)

ǭIγabcdγ11ηJ

(

∂dXMIJ − ∂dMIJ

)

= 0 (3.45)

and equation (3.36).

The Dilaton equation for the transformed fields is

R+ 4�φ′ − 4
(

∂φ′
)2 − 1

12
H2 = 0,
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which using the dilaton equation for the original fields implies that

�X = 2∂aφ∂
aX + ∂aX∂

aX. (3.46)

Using equation (3.39) and the Killing spinor equation from the variation of the gravitino,

�X = ∇a (ǭIγ
aγ11ηJMIJ)

= −3

4
eφFbcǭIγ

bcηJMIJ +
1

48
eφFbcdeǭIγ

bcdeγ11ηJMIJ + ǭIγ
aγ11ηJ∂aMIJ .

However, since ǫI and ηI , for all I = 1 . . . , n, satisfy the dilatino Killing spinor equa-

tion, (3.11),

ǫαI

(

γ11

(

γa∂aφ− 1

12
Habcγ

abcγ11 −
3

8
eφF

(2)
abγ

abγ11 +
1

96
eφF

(4)
abcdγ

abcd

))

(αβ)

ηβ
J = 0,

hence, using equation (3.16),

−3

4
eφFbcǭIγ

bcηJMIJ +
1

48
eφFbcdeǭIγ

bcdeγ11ηJMIJ = 2ǭIγ
aγ11ηJ∂aφMIJ .

Therefore,

�X = 2ǭIγ
aγ11ηJ∂aφMIJ + ǭIγ

aγ11ηJ∂aMIJ .

So, from equation (3.46), the transformed dilaton equation is satisfied if

ǭIγ
aγ11ηJ (ǭKγaγ11ηLMIJMKL − ∂aMIJ) = 0. (3.47)

Finally, we have to find conditions on the spinors and functions in the transformation

in order for the Einstein equation to be satisfied for the transformed fields. Using equa-

tions (3.37), (3.38) and (3.46) and the Einstein equation for the original fields, Einstein’s

equation becomes

1

4
gab�X − 2∇a∇bX + eφ

(

F
(2) c

(a ǭIγb)cηJ − 1

16
gabF

(2)
cdǭIγ

cdηJ

)

MIJ

− 1

6
eφ

(

F
(4) cde

(a ǭIγb)cdeγ11ηJ − 3

32
gabF

(4)
cdef ǭIγ

cdefγ11ηJ

)

MIJ

+
1

2

(

(ǭIγacηJ) (ǭKγ
c

b ηL) − 1

16
gab (ǭIγcdηJ)

(

ǭKγ
cdηL

)

)

MIJMKL

+
1

12

(

(ǭIγacdeγ11ηJ)
(

ǭKγ
cde

b γ11ηL

)

− 3

32
gab(ǭIγcdefγ11ηJ)

(

ǭKγ
cdefγ11ηL

)

)

MIJMKL =0 .

(3.48)

Now, consider

ǭI

[

γ(a|γ11

(

∇|b)−
1

8
H|b)cdγ

cdγ11−
1

16
eφF

(2)
cdγ

cdγ|b)γ11 +
1

192
eφF

(4)
cdefγ

cdefγ|b)

)]

ηJ = 0.
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Adding this to the same expression, but with ǫI and ηJ interchanged we get

ǭIγ(aγ11∇b)ηJ + η̄Jγ(aγ11∇b)ǫI +
1

8
eφF

(2)
cdǭI

(

4γ c
(a δ

d
b) + gabγ

cd
)

ηJ

− 1

96
eφF

(4)
cdef ǭI

(

8γ cde
(a δf

b)
+ gabγ

cdef
)

γ11ηJ = 0,

using equations (3.15) and (3.16). The above equation and the equation obtained by con-

tracting the two free indices in the above equation can be used to reduce equation (3.48) to

1

4
gab�X − 2∇a∇bX + 2∇(a

(

ǭIγb)γ11ηJ

)

MIJ − 1

4
gab∇c (ǭIγ

cγ11ηJ)MIJ

+
1

2

(

(ǭIγacηJ) (ǭKγ
c

b ηL) − 1

16
gab (ǭIγcdηJ)

(

ǭKγ
cdηL

)

)

MIJMKL

+
1

12

(

(ǭIγacdeγ11ηJ )
(

ǭKγ
cde

b γ11ηL

)

− 3

32
gab(ǭIγcdefγ11ηJ)

(

ǭKγ
cdefγ11ηL

)

)

MIJMKL=0.

(3.49)

Using equation (3.39) to simplify the terms on the first line, Fierz identities and equa-

tions (3.40) and (3.41), it can be shown that equation (3.49) is

− 2ǭIγ(aγ11ηJ

(

∂b)MIJ + 2ǭKγb)γ11ηLMILMKJ

)

+
1

4
gabǭIγ

cγ11ηJ (∂cMIJ + 2ǭKγcγ11ηLMILMKJ)

+

(

4 (ǭIγaηL) (ǭKγbηJ) +
1

2
(ǭIγ

c
a γ11ηJ) (ǭKγbcγ11ηL) +

1

12

(

ǭIγ
cde

a ηJ

)

(ǭKγbcdeηL)

+
1

16
gab(ǭIηJ)(ǭKηL)− 1

2
gab(ǭIγcηL)(ǭKγ

cηJ)− 1

32
gab(ǭIγcdγ11ηJ)

(

ǭKγ
cdγ11ηL

)

− 1

128
gab (ǭIγcdefηJ )

(

ǭKγ
cdefηL

)

)

MIJMKL = 0. (3.50)

This is a quartic condition on the spinors. Moreover, from equations (3.36), (3.42)–(3.45)

and equation (3.47) we also have that the spinors must satisfy

4ǭIγ[aηJ

(

∂b]MIJ − 4ǭKγb]γ11ηLMILMKJ

)

−
(

(ǭIγabγ11ηJ) (ǭKηL)

+
1

2
(ǭIγabcdηJ )

(

ǭKγ
cdγ11ηL

)

+
1

48
(ǭIγabcdefγ11ηJ)

(

ǭKγ
cdefηL

)

)

MIJMKL = 0,

(3.51)

ǭIγ[abηJ

(

∂c]MIJ + 2ǭKγc]γ11ηLMILMKJ

)

+

(

1

2

(

ǭIγ
d

[ab ηJ

)

(

ǭKγc]dγ11ηL

)

+
1

6
(ǭIγabcγ11ηJ) (ǭKηL) − 1

4

(

ǭIγ
de

[ab ηJ

)

(

ǭKγc]deγ11ηL

)

+
1

3
(ǭIγabcdγ11ηJ)

(

ǭKγ
dηL

)

+
2

3
(ǭIγabcdγ11ηL)

(

ǭKγ
dηJ

)

− 1

36
(ǭIγabcdefγ11ηJ)

(

ǭKγ
defηL

)

)

MIJMKL = 0, (3.52)

ǭIγabηJ

(

∂bMIJ + 2ǭKγ
bγ11ηLMILMKJ

)

+

(

(ǭIγaηJ) (ǭKγ11ηL) + 2 (ǭIγaηL) (ǭKγ11ηJ )

− 3

4
(ǭIγabcηJ )

(

ǭKγ
bcγ11ηL

)

− 1

12
(ǭIγabcdηJ)

(

ǭKγ
bcdγ11ηL

)

)

MIJMKL = 0, (3.53)

– 14 –



J
H
E
P
0
1
(
2
0
1
1
)
0
3
2

ǭIγ[abcdγ11ηJ

(

∂e]MIJ + 2ǭKγe]γ11ηLMILMKJ

)

+

(

(

ǭIγ[abcγ11ηJ

) (

ǭKγde]γ11ηL

)

+
(

ǭIγ
f

[abc ηJ

)

(

ǭKγde]fηL

)

+
1

5
(ǭIγabcdefηJ)

(

ǭKγ
fηL

)

+
2

5
(ǭIγabcdefηL)

(

ǭKγ
fηJ

)

−1

4

(

ǭIγ
fg

[abcd
γ11ηJ

)

(

ǭKγe]fgγ11ηL

)

+
1

20
(ǭIγabcdefgγ11ηJ)

(

ǭKγ
fgγ11ηL

)

)

MIJMKL = 0,

(3.54)

ǭIγabcdγ11ηJ

(

∂dMIJ + 2ǭKγ
dγ11ηLMILMKJ

)

+

(

3
(

ǭIγ[abηJ

) (

ǭKγc]ηL

)

+ 6
(

ǭIγ[abηL

) (

ǭKγc]ηJ

)

+
1

2
(ǭIγabcηJ) (ǭKηL) +

3

2

(

ǭIγ
d

[ab γ11ηJ

)

(

ǭKγc]dγ11ηL

)

−3

4

(

ǭIγ
de

[ab ηJ

)

(

ǭKγc]deηL

)

− 1

12
(ǭIγabcdefγ11ηJ)

(

ǭKγ
defγ11ηL

)

)

MIJMKL = 0,

(3.55)

ǭIγ
aγ11ηJ (∂aMIJ + 2ǭKγaγ11ηLMILMKJ) +

(

(ǭIγ
aηJ) (ǭKγaηL) + 2 (ǭIγ

aηL) (ǭKγaηJ)

− 1

12

(

ǭIγ
abcηJ

)

(ǭKγabcηL) − 1

12

(

ǭIγ
abcγ11ηJ

)

(ǭKγabcγ11ηL)

)

MIJMKL = 0, (3.56)

respectively, where Fierz identities have been used to rewrite equations (3.42)–(3.45) and

equation (3.47).

The only set of quadratic constraints on the spinors that we have found that solve

equations (3.50)–(3.56) is

ǭIγaηJ = 0, ǭIηJMIJ = 0, ǭIγabγ11ηJMIJ = 0

ǭIγabcηJMIJ = 0, ǭIγabcγ11ηJMIJ = 0, ǭIγcdefηJMIJ = 0,

∂aMIJ = −2ǭKγaγ11ηLMILMKJ .

We have shown that the type IIA supergravity equations admit a symmetry described

by the following transformations of the dilaton and RR field strengths

φ→ φ′ = φ+X,

eφF
(2)

ab → eφ′

F
′(2)

ab = eφF
(2)

ab + ǭIγabηJMIJ ,

eφF
(4)

abcd → eφ′

F
′(4)

abcd = eφF
(4)

abcd − ǭIγabcdγ11ηJMIJ , (3.57)

where the Killing spinors must satisfy

ǭIγaηJ = 0, (3.58)

ǭIγ11ηJMIJ = 0, (3.59)

ǭIηJMIJ = 0, ǭIγabγ11ηJMIJ = 0, (3.60)

ǭIγabcηJMIJ = 0, ǭIγabcγ11ηJMIJ = 0, ǭIγcdefηJMIJ = 0, (3.61)

∂aX = ǭIγaγ11ηJMIJ , (3.62)

∂aMIJ = −2ǭKγaγ11ηLMILMKJ . (3.63)
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Equation (3.63) is equivalent to

∂a(M
−1)IJ = 2ǭJγaγ11ηI , (3.64)

and equation (3.62) can be solved to find X up to a constant of integration:

X =
1

2

n
∑

I=1

(

logM−1
)

II
. (3.65)

The integrability conditions arising from equations (3.62) and (3.64) are trivial because

∇[a∇b]X =
1

2
HabcǭIγ

cηJMIJ and ∇[a∇b](M
−1)IJ = HabcǭJγ

cηI ,

which vanish by equation (3.58).

In the transformations given by Berkovits and Maldacena the spinors ǫI and ηI are

identified. This is sufficient for

ǭIηJMIJ = 0, ǭIγabγ11ηJMIJ = 0,

ǭIγabcηJMIJ = 0, ǭIγabcγ11ηJMIJ = 0, ǭIγcdefηJMIJ = 0.

When ǫI and ηI are identified, only the symmetric part of MIJ contributes in the transfor-

mations of the fields, so without loss of generality we can let MIJ be symmetric in I and J,

as a consequence of which the above equations are satisfied. If we identity ǫI and ηI then

we recover the transformations of Berkovits and Maldacena, but with an extra condition

on the spinors, namely that

ǭIγ11ǫJMIJ = 0.

When n = 1, we can explicitly show that the solution to

ǭη = 0, ǭγabγ11η = 0,

ǭγabcη = 0, ǭγabcγ11η = 0, ǭγcdefη = 0

is

ǫ ∝ η.

However, when n > 1, these conditions do not reduce to the transformation rules of

fermionic T-duality.

4 Type IIB supergravity symmetry

The type IIB supergravity action is

S =
1

2κ2

∫

d10x
√
g

{

e−2φ

[

R+ 4(∂φ)2 − 1

12
H2

]

−1

2

[

F (1)2 +
1

3!
F (3)2 +

1

2.5!
F (5)2

]

− 1

192

1√
g
ǫC(4)∂B∂C(2)

}

. (4.1)
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In type IIB supergravity the RR fields are the scalar C(0), the 2-form C(2) and the 4-form

C(4). In terms of potentials B,C(0), C(2) and C(4), the field strengths are defined to be

H = dB, F (1) = dC(0), F (3) = dC(2) −HC(0),

F (5) = dC(4) − 1

2
C(2) ∧H +

1

2
B ∧ dC(2).

The 5-form field strength is constrained to be self-dual.

The Bianchi identities for the field strengths are

dH = 0, (4.2)

dF (1) = 0, (4.3)

dF (3) −H ∧ F (1) = 0, (4.4)

dF (5) −H ∧ F (3) = 0. (4.5)

The equations of motion are

d
(

e−2φ ⋆ H
)

− F (1) ∧ ⋆F (3) − F (3) ∧ F (5) = 0, (4.6)

d ⋆ F (1) +H ∧ ⋆F (3) = 0, (4.7)

d ⋆ F (3) +H ∧ F (5) = 0. (4.8)

The equation of motion for the 5-form field strength, F (5), is equivalent to the Bianchi

identity for the 5-form, equation (4.5), as it is self-dual. Moreover, the Einstein equation

is

Rab = −1

4
gab�φ+

1

2
gab (∂φ)2 − 2∇a∇bφ+

1

4

(

HacdH
cd

b − 1

12
gabH

2

)

+
1

2
e2φF (1)

aF
(1)

b +
1

4
e2φ

(

F
(3)

acdF
(3) cd

b − 1

12
gabF

(3)2
)

+
1

96
e2φF

(5)
acdefF

(5) cdef
b , (4.9)

noting that F (5)2 vanishes because the 5-form field is self-dual. Finally, the dilaton equa-

tion of motion is the same as the type IIA supergravity dilaton equation of motion, equa-

tion (3.9). Also, the twice-contracted Bianchi identity is again satisfied using the equations

of motion for the fields.

The Killing spinor equations from the variation of the gravitino and dilatino are

∇aǫ−
1

8
Habcγ

bcσ3ǫ−1

8
eφ

(

F
(1)

bγ
bγa

(

iσ2
)

ǫ+
1

3!
F

(3)
bcdγ

bcdγaσ
1ǫ+

1

2.5!
F

(5)
bcdefγ

bcdefγa

(

iσ2
)

ǫ

)

=0,

(4.10)
(

γa∂aφ− 1

12
Habcγ

abcσ3 + eφF (1)
aγ

a
(

iσ2
)

+
1

12
eφF

(3)
abcγ

abcσ1

)

ǫ = 0, (4.11)

respectively.

We now consider the most general transformation of the RR field strengths and we

will also allow the dilaton to transform:

eφF (1)
a → eφ′

F ′(1)
a = eφF (1)

a + ǭIγaS
(1)ηJMIJ ,

eφF
(3)

abc → eφ′

F
′(3)

abc = eφF
(3)

abc + ǭIγabcS
(2)ηJMIJ ,

eφF
(5)

abcde → eφ′

F
′(5)

abcde = eφF
(5)

abcde + ǭIγabcdeS
(3)ηJMIJ ,
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where MIJ is an arbitrary function; the spinors ǫI , ηI satisfy the gravitino and dilatino

Killing spinor equations;

S(1,2,3) =
∑

µ

S(1,2,3)
µ σ⋆µ,

σ⋆µ =
(

I, σ1, iσ2, σ3
)µ
. The field φ′ is some arbitrary field, which is identified with the

transformed dilaton upon considering the NSNS 3-form equation of motion with trans-

formed fields. We let

φ′ = φ+X,

where X is some arbitrary function.

Note that the RR fields need not a priori transform with the same spinors and co-

efficients. However, as in section 3, if we let them transform with different spinors and

coefficients, then we will find from equation (4.4), for example, that the spinors and func-

tions have to be identified.

As in section 3, we let the NSNS fields g and H be invariant under the transformation.

It is important that the 5-form field strength remains self-dual after the transformation.

The Hodge dual of δF (5) is

⋆
(

ǭIγa1...a5
S(3)ηJMIJdxa1∧. . .∧dxa5

)

= ǭI

(

1

5!
ǫa1...a5b1...b5γ

b1...b5

)

S(3)ηJMIJdxa1∧. . .∧dxa5

= ǭI (γa1...a5
γ11)S

(3)ηJMIJdxa1 ∧ · · · ∧ dxa5 ,

by identity (3.28). Hence if we let γ11ηJ = ηJ then the transformed 5-form field strength

is self-dual. Recall that in type IIB supergravity all the Killing spinors have the same

chirality, hence γ11ǫI = ǫI .

We will now find the constraints that the various functions and the Killing spinors

must satisfy so that the transformed fields satisfy the Bianchi identities and the equations

of motion. First, let us consider the Bianchi identities. Using the gravitino Killing spinor

equation, the Bianchi identity for the transformed RR 1-form field strength is

∇[aF
′(1)

b] = ∇[a

(

e−XF
(1)

b] + e−(φ+X)ǭIγb]S
(1)ηJMIJ

)

= −e−X∂[aX
(

Fb] + e−φǭIγb]S
(1)ηJMIJ

)

− e−(φ+X)∂[aφǭIγb]S
(1)ηJMIJ

+ e−XMIJǫ
α
I

(

1

8
e−φHcd[a

(

(

γ cd
b]

)

αβ

(

S(1)σ3
)

+
(

γ cd
b]

)

βα

(

σ3S(1)
)

)

+
1

8
F (1)

c

(

(

γ[bγ
cγa]

)

αβ

(

iS(1)σ2
)

−
(

γ[bγ
cγa]

)

βα

(

iσ2S(1)
))

+
1

8.3!
F

(3)
cde

(

(

γ[bγ
cdeγa]

)

αβ

(

S(1)σ1
)

+
(

γ[bγ
cdeγa]

)

βα

(

σ1S(1)
)

)

+
1

16.5!
F

(5)
cdefg

(

(

γ[bγ
cdefgγa]

)

αβ

(

iS(1)σ2
)

−
(

γ[bγ
cdefgγa]

)

βα

(

iσ2S(1)
)

))

ηβ
J

+ e−(φ+X)ǭIγ[b∂a]S
(1)ηJMIJ + e−(φ+X)ǭIγ[bS

(1)ηJ∂a]MIJ = 0.

Now, from the dilatino Killing spinor equation

ǭIγbaS
(1)

(

γc∂cφ− 1

12
Hcdeγ

cdeσ3 + eφF (1)
cγ

c(iσ2) +
1

12
eφF

(3)
cdeγ

cdeσ1

)

ηJ = 0.
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. Adding the above equation to

η̄JγbaS
(1)t

(

γc∂cφ− 1

12
Hcdeγ

cdeσ3 + eφF (1)
cγ

c(iσ2) +
1

12
eφF

(3)
cdeγ

cdeσ1

)

ǫI = 0,

. where St is the transpose of S, and using the first identity in the set of equations (3.16)

we can show that

ǭI∂[aφγb]S
(1)ηJ = ǫαI

(

1

48
Hcde

(

(

γbaγ
cde
)

αβ

(

S(1)σ3
)

+
(

γbaγ
cde
)

βα

(

σ3S(1)
)

)

− 1

4
eφF (1)

c

(

(γbaγ
c)αβ

(

S(1)iσ2
)

− (γbaγ
c)βα

(

iσ2S(1)
))

− 1

48
eφF

(3)
cde

(

(

γbaγ
cde
)

αβ

(

S(1)σ1
)

+
(

γbaγ
cde
)

βα

(

σ1S(1)
)

))

ηJ .

Therefore, using the above equation and performing some gamma matrix manipula-

tions, using equations (3.15) and (3.16), we can show that

∇[aF
′(1)

b] = e−(φ+X)ǭIγ[b

(

∂a]

(

S(1)MIJ

)

− ∂a]XS
(1)MIJ

)

ηJ − e−X∂[aXF
(1)
b]

− 1

24
e−(φ+X)HcdeǭI

(

γ cde
ba + γcδd

b δ
e
a

)(

S
(1)
0 σ3 + S

(1)
3 I

)

ηJMIJ

+
1

4
e−XF (1)

c ǭI

(

γ c
ba

(

S
(1)
0 iσ2 − S

(1)
2 I

)

− 4γ[bδ
c
a]

(

S
(1)
1 σ3 − S

(1)
3 σ1

))

ηJMIJ

+
1

4
e−XF

(3)
cd[aǭI

(

γ cd
b]

(

S
(1)
2 σ3 + S

(1)
3 iσ2

)

− 2γcδd
b]

(

S
(1)
0 σ1 + S

(1)
1 I

))

ηJMIJ

− 1

24
e−XF

(5)
bacdeǭIγ

cde
(

S
(1)
0 iσ2 − S

(1)
2 I

)

ηJMIJ .

This expression must vanish if the transformed RR 1-form field strength is to satisfy the

Bianchi identity. We are considering generic supergravity fields, so the expression vanishes

only if

∂aX = ǭIγa

(

S
(1)
1 σ3 − S

(1)
3 σ1

)

ηJMIJ , (4.12)

ǭIγabcde

(

S
(1)
0 σ3 + S

(1)
3 I

)

ηJMIJ = 0, (4.13)

ǭIγa

(

S
(1)
0 σ3 + S

(1)
3 I

)

ηJMIJ = 0, (4.14)

ǭIγabc

(

S
(1)
0 iσ2 − S

(1)
2 I

)

ηJMIJ = 0, (4.15)

ǭIγabc

(

S
(1)
2 σ3 + S

(1)
3 iσ2

)

ηJMIJ = 0, (4.16)

ǭIγa

(

S
(1)
0 σ1 + S

(1)
1 I

)

ηJMIJ = 0, (4.17)

ǭIγ[b

(

∂a]

(

S(1)MIJ

)

− ∂a]XS
(1)MIJ

)

ηJ = 0. (4.18)
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We can also show that

∇[aF
′(3)

bcd] + F
′(1)

[aHbcd] =

e−(φ+X)ǭIγ[bcd

(

∂a]

(

S(2)MIJ

)

− ∂a]XS
(2)MIJ

)

ηJ − e−X∂[aXF
(3)
bcd]

− 1

48
e−(φ+X)HefgǭI

(

(

γ efg
bcda + 36γ e

[bc δ
f
d δ

g
a]

)(

S
(2)
0 σ3 + S

(2)
3 I

)

+ 48γ[bδ
e
cδ

f
d δ

g
a]

(

S
(1)
0 I+

(

S
(1)
1 − S

(2)
2

)

σ1 +
(

S
(1)
2 − S

(2)
1

)

iσ2 + S
(1)
3 σ3

)

)

ηJMIJ

+
1

2
e−XF

(1)
[a ǭIγbcd]

(

S
(2)
3 σ1 − S

(2)
1 σ3

)

ηJMIJ

− 1

48
e−XF

(3)
efg ǭI

(

(

γ efg
bcda + 36γ e

[bc δ
f
d δ

g
a]

)(

S
(2)
0 σ1 + S

(2)
1 I

)

+ 48γ[bδ
e
cδ

f
d δ

g
a]

(

S
(2)
2 σ3 + S

(2)
3 iσ2

)

)

ηJMIJ

− 1

4
e−XF

(5)
ef [bcdǭI

(

γeδf
a]

(

S
(2)
0 iσ2 − S

(2)
2 I

)

+ γ ef
a]

(

S
(2)
1 σ3 − S

(2)
3 σ1

))

ηJMIJ ,

∇[aF
′(5)

bcdef ] +
10

3
F

′(3)
[abcHdef ] =

e−(φ+X)ǭIγ[bcdef

(

∂a]

(

S(3)MIJ

)

− ∂a]XS
(3)MIJ

)

ηJ − e−X∂[aXF
(5)
bcdef ]

− 1

72
e−(φ+X)HghiǭI

(

(

γ ghi
bcdefa + 90γ g

[bcde δ
h
f δ

i
a]

)(

S
(3)
0 σ3 + S

(3)
3 I

)

+ 240γ[bcdδ
g
eδ

h
f δ

i
a]

(

S
(2)
0 I +

(

S
(2)
1 − S

(3)
2

)

σ1 +
(

S
(2)
2 − S

(3)
1

)

iσ2 + S
(2)
3 σ3

)

)

ηJMIJ

− 1

12
e−XF (1)

g ǭIγ
g

bcdefa

(

S
(3)
0 iσ2 − S

(3)
2 I

)

ηJMIJ

− 1

72
e−XF

(3)
ghiǭI

(

γ ghi
bcdefa

(

S
(3)
0 σ1 + S

(3)
1 I

)

+
(

9γ gh
[bcdef δi

a] + 60γ[bcdδ
g
eδ

h
f δ

i
a]

)(

S
(3)
2 σ3 + S

(3)
3 iσ2

)

)

ηJMIJ

+
1

4
e−XF

(5)
g[defaǭI

(

5γ g
bc]

(

S
(3)
0 iσ2 − S

(3)
2 I

)

− 4γbδ
g
c]

(

S
(3)
1 σ3 − S

(3)
3 σ1

))

ηJMIJ .

Both of the above expressions must vanish for the Bianchi identities for F ′(3) and F ′(5),

respectively, to hold. So we have that

∂aX = ǭIγa

(

S
(2)
2 σ3 + S

(2)
3 iσ2

)

ηJMIJ , (4.19)

ǭIγabc

(

S
(2)
0 σ3 + S

(2)
3 I

)

ηJMIJ = 0, (4.20)

ǭIγa

(

S
(1)
0 I +

(

S
(1)
1 − S

(2)
2

)

σ1 +
(

S
(1)
2 − S

(2)
1

)

iσ2 + S
(1)
3 σ3

)

ηJMIJ = 0, (4.21)

ǭIγabc

(

S
(2)
3 σ1 − S

(2)
1 σ3

)

ηJMIJ = 0, (4.22)

ǭIγabc

(

S
(2)
0 σ1 + S

(2)
1 I

)

ηJMIJ = 0, (4.23)
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ǭIγa

(

S
(2)
0 iσ2 − S

(2)
2 I

)

ηJMIJ = 0, (4.24)

ǭIγ[bcd

(

∂a]

(

S(2)MIJ

)

− ∂a]XS
(2)MIJ

)

ηJ = 0, (4.25)

and

∂aX = ǭIγa

(

S
(3)
1 σ3 − S

(3)
3 σ1

)

ηJMIJ , (4.26)

ǭIγa

(

S
(3)
0 σ3 + S

(3)
3 I

)

ηJMIJ = 0, (4.27)

ǭIγabcde

(

S
(3)
0 σ3 + S

(3)
3 I

)

ηJMIJ = 0, (4.28)

ǭγabc

(

S
(2)
0 I +

(

S
(2)
1 − S

(3)
2

)

σ1 +
(

S
(2)
2 − S

(3)
1

)

iσ2 + S
(2)
3 σ3

)

ηJMIJ = 0, (4.29)

ǭIγabc

(

S
(3)
0 iσ2 − S

(3)
2 I

)

ηJMIJ = 0, (4.30)

ǭIγa

(

S
(3)
0 σ1 + S

(3)
1 I

)

ηJMIJ = 0, (4.31)

ǭIγabc

(

S
(3)
2 σ3 + S

(3)
3 iσ2

)

ηJMIJ = 0, (4.32)

ǭIγabc

(

S
(3)
0 iσ2 − S

(3)
2 I

)

ηJMIJ = 0, (4.33)

ǭIγ[bcdef

(

∂a]

(

S(3)MIJ

)

− ∂a]XS
(3)MIJ

)

ηJ = 0, (4.34)

respectively.

The NSNS 3-form field strength does not change, so the Bianchi identity for the 3-form

field is the same as before.

Now, we assume that equations (4.12)–(4.34) hold and consider the equations of mo-

tion. As before, using the Killing spinor equations for ǫI and ηJ , the equation of motion

for the transformed RR 1-form field strength can be simplified to

∇aF ′(1)
a +

1

6
HabcF

′(3)abc =

e−(φ+X)ǭIγ
a
(

∂a

(

S(1)MIJ

)

− ∂aXS
(1)MIJ

)

ηJ

+
1

6
e−(φ+X)HabcǭIγ

abc
(

S
(2)
0 I+

(

S
(2)
1 −S(1)

2

)

σ1+
(

S
(2)
2 −S(1)

1

)

iσ2+S
(2)
3 σ3

)

ηJMIJ =0.

So, we get the following conditions:

ǭIγabc

(

S
(2)
0 I +

(

S
(2)
1 − S

(1)
2

)

σ1 +
(

S
(2)
2 − S

(1)
1

)

iσ2 + S
(2)
3 σ3

)

ηJMIJ = 0, (4.35)

ǭIγ
a
(

∂a

(

S(1)MIJ

)

− ∂aXS
(1)MIJ

)

ηJ = 0. (4.36)

Similarly, the equation of motion for the transformed 3-form field strength becomes

∇aF
′(3)

abc +
1

6
HdefF

′(5)
bcdef =

e−(φ+X)ǭIγabc

(

∂a
(

S(2)MIJ

)

− ∂aXS(2)MIJ

)

ηJ

+
1

6
e−(φ+X)Hdef ǭIγbcdef

(

S
(3)
0 I+

(

S
(3)
1 −S(2)

2

)

σ1+
(

S
(3)
2 −S(2)

1

)

iσ2+S
(3)
3 σ3

)

ηJMIJ =0.
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hence we need to impose

ǭIγabcde

(

S
(3)
0 I +

(

S
(3)
1 − S

(2)
2

)

σ1 +
(

S
(3)
2 − S

(2)
1

)

iσ2 + S
(3)
3 σ3

)

ηJMIJ = 0, (4.37)

ǭIγabc

(

∂a
(

S(2)MIJ

)

− ∂aXS(2)MIJ

)

ηJ = 0. (4.38)

We also need to show that the transformed fields satisfy the equation of motion for

the NSNS 3-form:

∇a
(

e−2φ′

Habc

)

− F ′(1)aF
′(3)
abc −

1

6
F ′(3)defF

′(5)
bcdef =

− 2e−2(φ+X)∂aXHabc − e−(φ+2X)MIJ

(

F (1)a ǭIγabcS
(2)ηJ + F

(3)
abcǭIγ

aS(1)ηJ

+
1

6
F (3)def ǭIγbcdefS

(3)ηJ +
1

6
F

(5)
bcdef ǭIγ

defS(2)ηJ

)

− e−2(φ+X)
(

ǭIγ
aS(1)ηJ

)(

ǭKγabcS
(2)ηL

)

MIJMKL

− 1

6
e−2(φ+X)

(

ǭIγ
defS(2)ηJ

)(

ǭKγbcdefS
(3)ηL

)

MIJMKL = 0, (4.39)

where the NSNS 3-form equation of motion with the original supergravity fields has been

used in the first equality.

Using the gravitino Killing spinor equation and the self-duality of the 5-form RR field

strength we can show that

F (1)a ǭIγabcS
(2)
2 iσ2ηJMIJ = 4∇[b

(

ǭIγc]ηJ

)

S
(2)
2 MIJ − 2HabcǭIγ

aS
(2)
2 σ3ηJMIJ

− 1

6
eφF

(3)
def ǭI

(

γ def
bc + γdδe

bδ
f
c

)

S
(2)
2 σ1ηJMIJ

− 1

6
eφF

(5)
bcdef ǭIγ

defS
(2)
2 iσ2ηJMIJ , (4.40)

and using the dilatino Killing spinor equation and equations (4.20)–(4.22) we get that

F (1)a ǭIγabc

(

S
(2)
0 I + S

(2)
1 σ1 + S

(2)
3 σ3

)

ηJMIJ = −2∂[bφǭIγc]S
(2)
0 iσ2ηJMIJ

+
1

12
Hdef ǭI

(

γ def
bc − 6γdδe

bδ
f
c

)

S
(2)
3 iσ2ηJMIJ

+
1

12
eφF

(3)
def ǭI

(

γ def
bc − 6γdδe

bδ
f
c

)

S
(2)
1 iσ2ηJMIJ = 0. (4.41)

Substituting the above equations into equation (4.39), and using equations (4.19), (4.21)
and (4.37), the NSNS 3-form equation of motion becomes

− 4∇[b

(

ǭIγc]ηJ

)

S
(2)
2 MIJ +2∂[bφǭIγc]S

(2)
0 iσ2ηJMIJ−

1

12
Hdef ǭI

(

γ def
bc +18γdδe

bδ
f
c

)

S
(2)
3 iσ2ηJMIJ

− 1

4
eφF

(3)
def ǭI

(

γ def
bc +2γdδe

bδ
f
c

)

S
(2)
1 iσ2ηJMIJ−

1

6
eφF

(5)
bcdef ǭIγ

def
(

S
(2)
0 I+S

(2)
1 σ1+S

(2)
3 σ3

)

ηJMIJ

−
(

ǭIγ
aS(1)ηJ

)(

ǭKγabcS
(2)ηL

)

MIJMKL−
1

6

(

ǭIγ
defS(2)ηJ

)(

ǭKγbcdefS
(3)ηL

)

MIJMKL = 0.

(4.42)

The supergravity fields are generic so the terms proportional to each supergravity field in

the above expression must vanish. In particular, if we consider the expression proportional
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to the RR 5-form field strength, then as this expression is exactly the expression that enters

in the transformation of the RR 3-form field strength

S
(2)
0 = S

(2)
1 = S

(2)
3 = 0,

and without loss of generality we can set

S
(2)
2 = 1.

Similarly, by using the Killing spinor equations to substitute in for

F
(3)

abcǭIγ
aS(1)ηJ and F

(3)
def ǭIγ

def
bc S(3)ηJ

in equation (4.39), instead of F
(1)

a ǭIγ
a
bcS

(2)ηJ , we can show that

S(1) = σ1 and S(3) = σ1.

Letting

S(1) = S(3) = σ1 and S(2) = iσ2,

conditions (4.12)–(4.38) become

∂aX = ǭIγaσ
3ηJMIJ , (4.43)

ǭIγaηJMIJ = 0, (4.44)

ǭIγ[bσ
1ηJ

(

∂a]MIJ − ∂a]XMIJ

)

= 0, (4.45)

ǭIγ[bcdiσ
2ηJ

(

∂a]MIJ − ∂a]XMIJ

)

= 0, (4.46)

ǭIγ[bcdefσ
1ηJ

(

∂a]MIJ − ∂a]XMIJ

)

= 0, (4.47)

ǭIγ
aσ1ηJ (∂aMIJ − ∂aXMIJ) = 0, (4.48)

ǭIγabciσ
2ηJ (∂aMIJ − ∂aXMIJ ) = 0. (4.49)

The NSNS 3-form field strength equation of motion, equation (4.42), becomes

4∇[b

(

ǭIγc]ηJ

)

MIJ +
(

ǭIγ
aσ1ηJ

) (

ǭKγabciσ
2ηL

)

MIJMKL

+
1

6

(

ǭIγ
def iσ2ηJ

)

(

ǭKγbcdefσ
1ηL

)

MIJMKL = 0,

and using equation (4.44) this reduces to

4ǭIγ[bηJ∂c]MIJ +

(

(

ǭIγ
aσ1ηJ

)(

ǭKγabciσ
2ηL

)

+
1

6

(

ǭIγ
def iσ2ηJ

)

(

ǭKγbcdefσ
1ηL

)

)

MIJMKL =0.

(4.50)

Fierz identities can be used to simplify the terms that are quartic in spinors. Just as

the tensor product of a combination of gamma matrices, M and N, can be expanded in

the basis {OI} = {I, γa, iγab, iγabc, γabcd, . . . },

Mα
βN

γ
δ = 2−[d/2]

∑

I

(

MOIN
)α

δ
O γ

I β,
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we can expand the tensor product of 2×2 matrices, Σ and Ξ, in the basis σµ = (I, σ1, σ2, σ3),

ΣABΞCD = 2−1
∑

µ

(ΣσµΞ)AD σ
µ
CB ,

where uppercase Latin letters are SO(2) vector indices. Hence, for type IIB theory spinors,

the Fierz identity is

(

λ̄MΣχ
) (

ψ̄NΞϕ
)

=
1

64

∑

I,µ

λ̄
(

MOIN
)

(ΣσµΞ)ϕψ̄ (OIσ
µ)χ.

Using the Fierz identity multiple times, we can show that

(

ǭIγ
aσ1ηJ

) (

ǭKγabciσ
2ηL

)

+
1

6

(

ǭIγ
a1...a3iσ2ηJ

) (

ǭKγa1...a3bcσ
1ηL

)

=

−16
(

ǭIγ[bσ
3ηL

)(

ǭKγc]ηJ

)

+
(

ǭIγ
aiσ2ηJ

)(

ǭKγabcσ
1ηL

)

+
1

6

(

ǭIγ
a1...a3σ1ηJ

)(

ǭKγa1...a3bciσ
2ηL

)

.

So from equation (4.50), the NSNS 3-form equation of motion is satisfied if

4ǭIγ[bηJ

(

∂c]MIJ + 4ǭKγc]σ
3ηLMKJMIL

)

+
(

ǭIγ
aiσ2ηJ

) (

ǭKγabcσ
1ηL

)

MIJMKL

+
1

6

(

ǭIγ
a1...a3σ1ηJ

) (

ǭKγa1...a3bciσ
2ηL

)

MIJMKL = 0. (4.51)

The dilaton equation, (3.9), for the transformed fields simply reduces to

�X − 2∂aφ∂
aX − (∂X)2 = 0. (4.52)

Using ∂aX = ǭIγaσ
3ηJMIJ , and the Killing spinor equations, the above equation reduces

to

ǭIγ
aσ3ηJ

(

∂aMIJ − ǭKγaσ
3ηLMIJMKL

)

= 0,

which using Fierz identities becomes

ǭIγ
aσ3ηJ

(

∂aMIJ + 2ǭKγaσ
3ηLMILMKJ

)

+

(

(ǭIγaηJ) (ǭKγ
aηL) + 2 (ǭIγaηL) (ǭKγ

aηJ)

− 1

12
(ǭIγabcηJ )

(

ǭKγ
abcηL

)

− 1

12

(

ǭIγabcσ
3ηJ

)

(

ǭKγ
abcσ3ηL

)

)

MIJMKL = 0. (4.53)

This must hold in order for the dilaton equation to be satisfied for the transformed fields.

Now, let us consider the Einstein equation. We can use the gravitino Killing spinor

equation and the constraint from the dilaton equation of motion, equation (4.52), to show

that the Einstein equation reduces to

2∇(a

(

ǭIγb)σ
3ηJMIJ − ∂b)X

)

− 1

4
gab∇c

(

ǭIγ
cσ3ηJMIJ − ∂cX

)

− 2ǭIγ(aσ
3ηJ∂b)MIJ

+
1

4
gabǭIγ

cσ3ηJ∂cMIJ +
1

96

(

48
(

ǭIγaσ
1ηJ

) (

ǭKγbσ
1ηL

)

+ 24
(

ǭIγ
cd

a iσ2ηJ

)

(

ǭKγbcdiσ
2ηL

)

− 2gab

(

ǭIγcdeiσ
2ηJ

)

(

ǭKγ
cdeηLiσ

2
)

+
(

ǭIγ
cdef

a σ1ηJ

)

(

ǭKγbcdefσ
1ηL

)

)

MIJMKL = 0.
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The first two terms vanish because of equation (4.43), and we can use Fierz identities to

rewrite the terms that are quartic in spinors. Upon doing so, Einstein’s equation becomes

−2ǭIγ(aσ
3ǫJ
(

∂b)MIJ +2ǭKγb)σ
3ǫLMILMKJ

)

+
1

4
gabǭIγ

cσ3ǫJ
(

∂cMIJ +2ǭKγcσ
3ǫLMILMKJ

)

+
1

96

(

384 (ǭIγaηL) (ǭKγbηJ) + 48
(

ǭIγaiσ
2ηJ

) (

ǭKγbiσ
2ηL

)

+ 24
(

ǭIγ
cd

a σ1ηJ

)

(

ǭKγbcdσ
1ηL

)

+
(

ǭIγ
cdef

a iσ2ηJ

)

(

ǭKγbcdef iσ
2ηL

)

− 48gab (ǭIγcηJ) (ǭKγ
cηL) − 2gab

(

ǭIγcdeσ
1ηJ

)

(

ǭKγ
cdeσ1ηL

)

)

MIJMKL = 0. (4.54)

So, the transformed fields satisfy the type IIB supergravity equations if equations (4.43)–

(4.49), (4.51), (4.53) and (4.54) are satisfied. Using Fierz identities, equations (4.45)–(4.49)

are equivalent to

ǭIγ[aσ
1ǫJ
(

∂b]MIJ + 2ǭKγb]σ
3ǫLMILMKJ

)

−
(

1

4
(ǭIγabcηJ)

(

ǭKγ
ciσ2ηL

)

+
1

2

(

ǭIγabciσ
2ηJ

)

(ǭKγ
cηL) +

(

ǭIγabciσ
2ηL

)

(ǭKγ
cηJ) − 1

4

(

ǭIγ
cd

[a σ3ηJ

)

(

ǭKγb]cdσ
1ηL

)

− 1

24

(

ǭIγabcdeiσ
2ηJ

)

(

ǭKγ
cdeηL

)

)

MIJMKL = 0, (4.55)

ǭIγ[abciσ
2ǫJ
(

∂d]MIJ + 2ǭKγd]σ
3ǫLMILMKJ

)

−
(

3

4

(

ǭIγ
e

[ab σ
1ηJ

)

(

ǭKγcd]eηL

)

+
1

2

(

ǭIγ[abcσ
3ηJ

) (

ǭKγd]iσ
2ηL

)

+
1

4

(

ǭIγabcdeσ
1ηJ

)

(ǭKγ
eηL)+

1

2

(

ǭIγabcdeσ
1ηL

)

(ǭKγ
eηJ)

+
1

4

(

ǭIγ
ef

[abc iσ2ηJ

)

(

ǭKγd]efσ
3ηL

)

+
1

48
(ǭIγabcdefgηJ)

(

ǭKγ
efgσ1ηL

)

)

MIJMKL = 0,

(4.56)

ǭIγ[abcdeσ
1ǫJ
(

∂f ]MIJ + 2ǭKγf ]σ
3ǫLMILMKJ

)

−
(

5

3

(

ǭIγ[abcσ
3ηJ

) (

ǭKγdef ]σ
1ηL

)

+
5

4

(

ǭIγ
g

[abcd iσ
2ηJ

)

(

ǭKγef ]gηL

)

− 1

12
(ǭIγabcdefgηJ)

(

ǭKγ
giσ2ηL

)

+
1

4

(

ǭIγ
gh

[abcde σ1ηJ

)

(

ǭKγf ]ghσ
3ηL

)

+
1

6

(

ǭIγabcdefgiσ
2ηJ

)

(ǭKγ
gηL)

+
1

3

(

ǭIγabcdefgiσ
2ηL

)

(ǭKγ
gηJ)

)

MIJMKL = 0, (4.57)

ǭIγ
aσ1ǫJ

(

∂aMIJ + 2ǭKγaσ
3ǫLMILMKJ

)

− 1

12

(

ǭIγabcσ
1ηJ

)

(

ǭKγ
abcσ3ηL

)

MIJMKL = 0,

(4.58)

ǭIγabciσ
2ǫJ
(

∂cMIJ + 2ǭKγ
cσ3ǫLMILMKJ

)

+

(

2
(

ǭIγ[aηJ

) (

ǭKγb]σ
1ηL

)

+ 4
(

ǭIγ[aηL

) (

ǭKγb]σ
1ηJ

)

− 1

2

(

ǭIγ
cd

[a ηJ

)

(

ǭKγb]cdσ
1ηL

)

+
1

2

(

ǭIγabcσ
3ηJ

) (

ǭKγ
ciσ2ηL

)

− 1

12

(

ǭIγabcdeiσ
2ηJ

)

(

ǭKγ
cdeσ3ηL

)

)

MIJMKL = 0, (4.59)
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respectively.

A solution to equations (4.51), (4.53)–(4.59) is

ǭIγaηJ = 0, ǭIγaiσ
2ηJMIJ = 0,

ǭIγabcηJMIJ = 0, ǭIγabcσ
1ηJMIJ = 0,

ǭIγabcσ
3ηJMIJ = 0, ǭIγabcdeiσ

2ηJMIJ = 0,

∂aMIJ = −2ǭKγaσ
3ηLMILMKJ .

Therefore, the type IIB supergravity symmetry is described by the following transfor-

mations of the RR fields and dilaton

φ→ φ′ = φ+X,

eφF (1)
a → eφ′

F ′(1)
a = eφF (1)

a + ǭIγaσ
1ηJMIJ ,

eφF
(3)

abc → eφ′

F
′(3)

abc = eφF
(3)

abc + ǭIγabciσ
2ηJMIJ ,

eφF
(5)

abcde → eφ′

F
′(5)

abcde = eφF
(5)

abcde + ǭIγabcdeσ
1ηJMIJ , (4.60)

where

γ11ǫI = ǫI , γ11ηI = ηI , (4.61)

ǭIγaηJ = 0, (4.62)

ǭIγaiσ
2ηJMIJ = 0, ǭIγabcηJMIJ = 0, ǭIγabcσ

1ηJMIJ = 0, (4.63)

ǭIγabcσ
3ηJMIJ = 0, ǭIγabcdeiσ

2ηJMIJ = 0, (4.64)

∂aX = ǭIγaσ
3ηJMIJ , (4.65)

∂aMIJ = −2ǭKγaσ
3ηLMILMKJ . (4.66)

Equation (4.66) is equivalent to

∂a(M
−1)IJ = 2ǭJγaσ

3ηI , (4.67)

and up to a constant of integration

X =
1

2

n
∑

I=1

(

logM−1
)

II
. (4.68)

The integrability conditions for equations (4.65) and (4.66) are satisfied by equa-

tion (4.62).

If ǫI = ηI then the equations in the lines labelled by (4.63) and (4.64) are satisfied, and

the transformations are precisely the transformations found by Berkovits and Maldacena,

equations (2.5) and (2.6) in section 2. Furthermore, when n = 1 these equations can be

explicitly solved to show that ǫ ∝ η. When n > 1 this is no longer true, and the conditions

can be satisfied without identifying ǫI and ηI .

Note that, since in our transformations it is not necessary to identify ǫI and ηI , we

can solve

ǭIγaηJ = 0

for real spinors.
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5 Comments

In both type IIA and type IIB supergravity we have found a larger class of transformations

that include the transformations of Berkovits and Maldacena [9]. In both cases, when

n = 1, these transformations are precisely the transformations found by Berkovits and

Maldacena. However, for n > 1

ǫI ∝ ηI

is sufficient but no longer necessary for the conditions given by equations (3.60), (3.61)

and (4.63), (4.64) in the analysis for type IIA and type IIB supergravity, respectively, to

be satisfied. Indeed, in both cases, we have found spinors ǫI 6= ηI , where I = 1, 2, for which

MIJ is antisymmetric in its I, J indices and the above-mentioned conditions hold.

In the transformations of fermionic T-duality, the spinors were complexified in order

to find non-trivial solutions to

ǭIγaǫJ = 0.

Note that, in the transformations that we have constructed ηI does not necessarily have to

be identified with ǫI when n > 1. Therefore,

ǭIγaηJ = 0

can be solved for real spinors, keeping the transformation real.

Furthermore, when the two set of Killing spinors ǫI and ηI are identified the supersym-

metry of the transformed supergravity solution is the same as the original solution. In fact,

the Killing spinors in the new background can be written explicitly in terms of the Killing

spinors of the original background [9], equation (2.8). This must be true because fermionic

T-duality is a duality of string theory, so the transformation must preserve supersymmetry.

However, for our transformation it is not clear whether supersymmetry is preserved. If this

is case, then the transformation could be a useful tool for generating backgrounds with

lower supersymmetry.

In general, however, the conditions given in equations (3.58)–(3.61) and (4.62)–(4.64)

are difficult to solve explicitly. If this symmetry, and indeed fermionic T-duality, is to be

a more practical solution-generating mechanism then a new technique must be found to

solve these constraints.

The original motivation for fermionic T-duality was to understand the dual super-

conformal invariance found in maximally supersymmetric Yang-Mills theory. Similarly,

it is hoped that there will an understanding of the dual superconformal symmetry of

ABJM [23, 24] using fermionic T-duality in type IIA theory. The string theory dual to

ABJM [25] theory is type IIA string theory on AdS4 × CP
3, and there has been work on

trying to understand the self-duality of the AdS4 × CP
3 background under a combination

of T-duality and fermionic T-duality [13, 26, 27]. In [27], fermionic T-duality transforma-

tions on the partially κ-gauge fixed Green-Schwarz action is considered and found to be

singular. However, the partially κ-gauge fixed action for the AdS4 × CP 3 sigma model is

not well-defined for all string configurations. It is not clear in [27] whether the singularity

arises for this reason or not. The transformation rules for the type IIA supergravity fields
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derived in this paper can be used to perform the transformation from the target space

point of view. Indeed this has recently been done by Bakhmatov [28]. The results of this

paper are consistent with the singularity found in [27]. In [28] the transformation is done

solely in supergravity, and hence the work suggests that the singularity found in [27] does

not have its source in the sigma model. It is an intriguing problem to find out the origin

of this singularity at the supergravity level.

Finally, in the transformation rules for type IIA supergravity besides the conditions

which have analogues in the type IIB supergravity transformations we also found that

ǭIγ11ηJMIJ = 0

must hold. This condition may be physically interpreted as maintaining a zero Romans

mass [29], for the Romans mass can be thought of as a constant 0-form field strength [30].

This suggests that the fermionic symmetry that we have constructed for type IIA super-

gravity can be extended to massive type IIA supergravity. We will report on this problem

in a future paper.

Another problem that we would like to address in the future is the complexity of

the fermionic T-duality transformations, for in string theory the transformations cannot

be made real. Understanding the physical interpretation of the complexity may reveal

important, hitherto unknown, aspects of string theory.
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A Conventions

Below we summarise the conventions used in this work.

The metric signature is (− + · · ·+).

The permutation symbol is totally antisymmetric and its sign is defined by

ǫ01...9 = 1.

For a p−form A and q−form B

(dA)a1...ap+1
= (p + 1)∂[a1

Aa2...ap+1],

(A ∧B)a1...apb1...bq
=

(p + q)!

p!q!
A[a1...ap

Bb1...bq ],

(⋆A)a1 ...ad−p
=

1

p!
ǫ

b1...bp
a1...ad−p

Ab1...bp
.

The chirality matrix is

γ11 = −γ0γ1 . . . γ9.
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B Gamma matrix identity

Let {γa} be a matrix representation of the 10-dimensional Clifford algebra. Since γc1...c10 =

−ǫc1...c10γ11,

ǫa1...amb1...b10−m
γ11γ

b1...b10−m

= ǫa1...amb1...b10−m

(

1

10!
ǫc1...c10γc1...c10

)

γb1...b10−m

=
1

10!
ǫa1...amb1...b10−m

ǫc1...c10

10−m
∑

k=0

ck10(10−m)γ
[b1...b10−m−k

[c1...c10−k
δ
b10−m−k+1
c10−k+1

. . . δ
b10−m ]
c10] ,

using identity (3.15). Now, contracting the Kronecker delta functions with ǫc1...c10, the

expression becomes

1

10!
ǫa1...amb1...b10−m

10−m
∑

k=0

ck10(10−m)ǫ
c1...c10−kb10−m−k+1...b10−mγ

b1...b10−m−k
c1...c10−k

=

10−m
∑

k=0

ck10(10−m)

10!

(

−(10 − k)!k!δ
[c1
[a1
. . . δcm

am
δ
cm+1

b1
. . . δ

c10−k]
b10−m−k]

)

γ
b1...b10−m−k

c1...c10−k

= −
10−m
∑

k=0

ck10(10−m)

10!
(10 − k)!k!γ

b1...b10−m−k

a1...amb1...b10−m−k
,

but

γ
b1...b10−m−k

a1...amb1...b10−m−k
= 0,

unless k = 10 −m. Therefore,

ǫa1...amb1...b10−m
γ11γ

b1...b10−m = − 1

10!
c10−m
10(10−m)m!(10 −m)!γa1...am

= −(−1)(10−m)2+ 1

2
(10−m)(10−m+1)(10 −m)!γa1...am .

Hence,

γa1...am = −(−1)
1

2
(10−m)(10−m+1)

(10 −m)!
ǫa1...amb1...b10−m

γb1...b10−mγ11.
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[19] M. Roček and E.P. Verlinde, Duality, quotients and currents, Nucl. Phys. B 373 (1992) 630

[hep-th/9110053] [SPIRES].

[20] M.T. Grisaru, H. Nishino and D. Zanon, β-functions for the Green-Schwarz superstring,

Nucl. Phys. B 314 (1989) 363 [SPIRES].

[21] E. Witten, Twistor-like transform in ten-dimensions, Nucl. Phys. B 266 (1986) 245

[SPIRES].

[22] M.T. Grisaru, P.S. Howe, L. Mezincescu, B. Nilsson and P.K. Townsend, N = 2 superstrings

in a supergravity background, Phys. Lett. B 162 (1985) 116 [SPIRES].

[23] T. Bargheer, F. Loebbert and C. Meneghelli, Symmetries of tree-level scattering amplitudes

in N = 6 superconformal Chern-Simons theory, Phys. Rev. D 82 (2010) 045016

[arXiv:1003.6120] [SPIRES].

– 30 –

http://dx.doi.org/10.1088/1126-6708/1999/12/022
http://arxiv.org/abs/hep-th/9910053
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9910053
http://dx.doi.org/10.1016/0550-3213(95)00367-2
http://arxiv.org/abs/hep-th/9504081
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9504081
http://dx.doi.org/10.1016/0370-2693(87)90769-6
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B194,59
http://dx.doi.org/10.1016/0370-2693(88)90602-8
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B201,466
http://dx.doi.org/10.1088/1126-6708/2008/09/062
http://arxiv.org/abs/0807.3196
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0807.3196
http://dx.doi.org/10.1103/PhysRevD.78.126004
http://arxiv.org/abs/0807.3228
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0807.3228
http://dx.doi.org/10.1088/1126-6708/2007/01/064
http://arxiv.org/abs/hep-th/0607160
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0607160
http://dx.doi.org/10.1016/j.nuclphysb.2009.11.022
http://arxiv.org/abs/0807.1095
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0807.1095
http://dx.doi.org/10.1088/1126-6708/2009/04/120
http://arxiv.org/abs/0902.3805
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0902.3805
http://dx.doi.org/10.1016/j.nuclphysb.2009.09.020
http://arxiv.org/abs/0906.2510
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0906.2510
http://dx.doi.org/10.1088/1126-6708/2009/12/051
http://arxiv.org/abs/0909.5485
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0909.5485
http://dx.doi.org/10.1016/j.nuclphysb.2010.01.026
http://arxiv.org/abs/0912.3657
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0912.3657
http://arxiv.org/abs/1007.5142
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1007.5142
http://dx.doi.org/10.1016/0550-3213(85)90506-1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B262,593
http://dx.doi.org/10.1016/0550-3213(92)90269-H
http://arxiv.org/abs/hep-th/9110053
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9110053
http://dx.doi.org/10.1016/0550-3213(89)90157-0
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B314,363
http://dx.doi.org/10.1016/0550-3213(86)90090-8
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B266,245
http://dx.doi.org/10.1016/0370-2693(85)91071-8
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B162,116
http://dx.doi.org/10.1103/PhysRevD.82.045016
http://arxiv.org/abs/1003.6120
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1003.6120


J
H
E
P
0
1
(
2
0
1
1
)
0
3
2

[24] Y.-t. Huang and A.E. Lipstein, Dual superconformal symmetry of N = 6 Chern-Simons

theory, JHEP 11 (2010) 076 [arXiv:1008.0041] [SPIRES].

[25] O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal

Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091

[arXiv:0806.1218] [SPIRES].

[26] P.A. Grassi, D. Sorokin and L. Wulff, Simplifying superstring and D-brane actions in

AdS4 × CP (3) superbackground, JHEP 08 (2009) 060 [arXiv:0903.5407] [SPIRES].

[27] I. Adam, A. Dekel and Y. Oz, On the fermionic T-duality of the AdS4 × CP 3 σ-model,

JHEP 10 (2010) 110 [arXiv:1008.0649] [SPIRES].

[28] I. Bakhmatov, On AdS4 × CP 3 T-duality, arXiv:1011.0985 [SPIRES].

[29] L.J. Romans, Massive N = 2a supergravity in ten-dimensions, Phys. Lett. B 169 (1986) 374

[SPIRES].

[30] E. Bergshoeff, M. de Roo, M.B. Green, G. Papadopoulos and P.K. Townsend, Duality of type

II 7-branes and 8-branes, Nucl. Phys. B 470 (1996) 113 [hep-th/9601150] [SPIRES].

– 31 –

http://dx.doi.org/10.1007/JHEP11(2010)076
http://arxiv.org/abs/1008.0041
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1008.0041
http://dx.doi.org/10.1088/1126-6708/2008/10/091
http://arxiv.org/abs/0806.1218
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.1218
http://dx.doi.org/10.1088/1126-6708/2009/08/060
http://arxiv.org/abs/0903.5407
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0903.5407
http://dx.doi.org/10.1007/JHEP10(2010)110
http://arxiv.org/abs/1008.0649
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1008.0649
http://arxiv.org/abs/1011.0985
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1011.0985
http://dx.doi.org/10.1016/0370-2693(86)90375-8
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B169,374
http://dx.doi.org/10.1016/0550-3213(96)00171-X
http://arxiv.org/abs/hep-th/9601150
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9601150

	Introduction
	Review of T-duality and fermionic T-duality
	Type IIA supergravity symmetry
	Type IIB supergravity symmetry
	Comments
	Conventions
	Gamma matrix identity

