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1 Introduction

In the past two decades, T-duality [1, 2] has been highly successful in helping increase our
understanding of string theory. In the 1990s, S, T and U-dualities were used to relate the
five different string theories. The existence of these dualities was crucial in the conjecture
that the five string theories are different limits of a theory that is the strong coupling limit
of type ITA string theory, M-theory [3, 4]. T-duality has also provided insights into the
study of D-branes, which would perhaps be inaccessible otherwise. For example, Myers [5]
used consistency of the world-volume action for the D-brane with T-duality to find the
correct coupling of background Ramond-Ramond fields to D-branes, which was used to
discover the Myers effect. Furthermore, another important application of T-duality has
been to use it to generate solutions in supergravity [6].

In Buscher’s formulation of T-duality [7, 8], a shift symmetry of a target space coor-
dinate, which corresponds to an isometry in the target space of the sigma-model, is used
to make a field redefinition in the sigma model. The new sigma model is classically of
the same form as the original sigma model except for the sigma model couplings, i.e. the
metric and the 2-form field, which are different. The two sigma models are equivalent
quantum-mechanically if the dilaton also transforms. This shows that the string theories
described by the two sigma models with different couplings, which correspond to different
backgrounds for the string theories, are equivalent. The transformed background fields are
related to the original fields by the killing vector that corresponds to the isometry.

Recently, this idea has been generalised to the case where the target space has a
fermionic isometry, or supersymmetry, as opposed to an isometry, to find a duality of tree-
level type II string theory, fermionic T-duality [9, 10]. Under this duality the background
Ramond-Ramond fields and the dilaton transform and the metric and the NSNS 2-form field



are invariant. Analogously to T-duality, the transformation of the background supergravity
fields are given by the Killing spinors corresponding to the supersymmetry in superspace.

Given the success of T-duality, we expect that fermionic T-duality will also make im-
portant contributions to our understanding of string theory. In fact, fermionic T-duality
was introduced to explain the dual superconformal symmetry of planar scattering ampli-
tudes in N' = 4 super Yang-Mills theory [9, 10], which has no obvious origin in the weak
coupling computations of these amplitudes in which this symmetry was found [11, 12].
There have also been other studies of fermionic T-duality [13-17].

However, in contrast to T-duality, fermionic T-duality generically transforms a real
supergravity background into a complex supergravity background. An ordinary T-duality
along a time-like direction can then be applied to get back a real background. This
means that the application of fermionic T-duality as a solution generating mechanism,
one of the key applications of T-duality, is limited to supergravity solutions with a timelike
Killing vector.

In this paper, we consider fermionic T-duality from the spacetime viewpoint, rather
than the worldsheet perspective in which it was found. We consider a general ansatz for
the transformation of the Ramond-Ramond fields and the dilaton involving Killing spinors
in both type IIA and type 1IB supergravity. We then systematically impose that the
supergravity equations are invariant under this transformation, i.e. we impose that the
transformed fields are solutions of the supergravity equations. We find that the symmetry
includes fermionic T-duality, as it must, but it also admits real transformations of the
supergravity fields.

The structure of the paper is as follows. In section 2, we review Biischer’s T-duality
and show how a symmetry in the target space allows a field redefinition in the worldsheet
theory that gives rise to a duality. We also review the transformation rules of fermionic
T-duality [9] in this section. Then, in section 3, we set our conventions by stating the type
ITA supergravity Lagrangian and equations, and we construct the symmetry for type ITA
supergravity. In section 4, we construct an analogous symmetry for type I1IB supergravity.
Finally, in section 5, we make some comments and outline future work.

2 Review of T-duality and fermionic T-duality

Biischer [7, 8] showed that T-duality in curved backgrounds arises as a symmetry of the

sigma-model. Consider the bosonic string sigma-model
1
5= drar / 0 [ VAR 400 X205 X" + € By0u X 05 X" + o'VhED 9(X)|
T

The field X is the position of the point (o!,0?) on the worldsheet in spacetime; g, is
the metric on the target space; B, is the antisymmetric gauge potential; ¢ is the dilaton
and R® is the curvature of the worldsheet metric h. Imposing conformal invariance in
the quantum theory gives the equations of motion for the background fields [18]. In 26



dimensions, the equations of motion for the metric, two-form field and dilaton are

1
Rap — 4Hacdecd +2V,Vy = 0,

VHCyy —2(0e0) H, =0,

4(0¢)* —40¢ — R+ 112H2 =0, (2.1)

respectively. The tensor R, is the Ricci tensor associated to the metric on the target space
and Habc = 36[aBbc}.

If there is a Killing vector in the target space, k, then we can choose a coordinate
system — we will let X be such a coordinate system — in which & = 9/0X". In this
coordinate system, the metric, two-form field and the dilaton are independent of the X°
coordinate. We can then write

0, X" =V,

in the action, but we must impose the constraint that V, is exact. For Euclidean world-

sheets of spherical topology we can impose this constraint using a Lagrange multiplier term

EaﬁXoaaVIg.
So we can write the action as
1 . . )
S=, / d*c (\/hh“ﬁ [900Va Vs + 290 Va0 X" + 61500 X 05X ]

+e% (2B Va0 X' + Bij0a X 95X7] + 2627 X009, V5 + a’\/hR(2)¢(X)> . (2.2)

where a = (0,1).
The equation of motion for X0 gives that V is closed, which for a spherical worldsheet
implies that V is exact, so we get back the original theory. The V equation of motion is

eaﬁ

Vvh

Integrating the action over V' we get the dual action that has the same form as the original
action except that the metric and the two-form field are now

1 .
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We would like to impose the condition that the T-dual theory is also conformally in-

variant. This can be imposed at one-loop using either the results of reference [18], i.e.



equations (2.1), or by considering the change in the measure of the path-integral. Either
method suggests that the dilaton is shifted [7, 8] to

¢=0¢— ; log goo- (2.4)

Note that if we take the special case of toroidal compactification on a flat background,
then we get the well-known result that the radius of the compactification circle is inverted
and the string coupling constant, which is the exponential of the expectation value of the
dilaton, is modified by a factor of v/a//R.

The argument given here is valid only for spherical worldsheets, hence the duality has
only been proved to first order in string perturbation theory. By gauging the isometry
the duality can be extended to higher genus worldsheets, but in this case the isometry
orbits must be compact, or in other words the shift symmetry has to be along a compact
coordinate [19].

Recently, Berkovits and Maldacena [9] have generalised Biischer’s formulation of T-
duality to the case where the worldsheet action is invariant under constant shifts of space-
time fermionic coordinates 6/, J = 1,...n. They show that under this duality the metric
and the NS-NS 2-form potential do not change, and they give the transformation of the
Ramond-Ramond fields in terms of the bispinor field strength.

In type IIA string theory the bispinor field strength is
ai...aq

F=lpe

92 aras’ Y11,

where the 2-form F®) and 4-form F® are the RR field strengths. In our notation,
~vy—matrices are 32 by 32 matrix representations of the ten-dimensional Clifford algebra;
two Majorana-Weyl spinors describing N/ = 24 supersymmetry are combined into a single
Majorana-Dirac spinor. In type IIB string theory the Ramond-Ramond field strengths are
the 1-form F()| 3-form F®) and the self-dual 5-form F®), and we define the R-R bispinor
field strength by

1
3

1
2.5

F = F(l)a,yao_l + a1...a501.

ai...as’)

PO (i) 4y PO

In type IIB theory, two Majorana-Weyl spinors, ¢ and £, with the same chirality are

which are rotated amongst each other by acting with ei"29, and on which Pauli matrices

combined into an SO(2) vector

act on in the obvious way.
Fermionic T-duality transforms the bispinor field strength in the following way:

N
I =e?F£32 ) (e ®2,) My, (2.5)
I,J=1



where we take + in type IIB theory and — in type ITA string theory. We will always

combine two type ITA Weyl spinors into a Dirac spinor and type IIB spinors into an SO(2)

vector. However, in equation (2.5), and only there, the spinors are Weyl Killing spinors.
Furthermore, under fermionic T-duality, the dilaton is transformed to

oot (),

I=1
where M~ satisfies
O (M7Y),, = 2e17am11€s
for type IIA theory, and
Oy (M_l)U = 2€17.0°€
for type IIB theory — of course € has a different meaning for each theory, as described

above. The spinors, €7, are Killing spinors corresponding to the constant shift symmetry
of the fermionic coordinate #” in superspace

91—>91+p15

where pr is a Grassmann-valued constant. Since this symmetry is abelian, {e;Qr,e;Q s} =

0, where there is no summation over I and J. However, from the supersymmetry algebra

{e1Qr,eQ 5} = €rye Py,

where P is the generator for translations. Therefore,
€1va€7 = 0, (2.7)

for all I,J =1,...,n € Z". This condition can only be satisfied non-trivially for complex
€, so, in general, the transformation sends real supergravity backgrounds into complex
backgrounds.

Fermionic T-duality preserves the number of supersymmetries, which is necessary in
order for it to be a duality of string theory. Explicitly, the Killing spinors in the T-dual
theory are

€ = Mjjey. (2.8)

3 Type IIA supergravity symmetry

In our conventions, summarised in appendix A, the type IIA supergravity action is

1 1
S=, . / dlox\/g{e_2¢ [R+4(6¢)2 - 12}#}

11 2 1 2 1 1
_ (2) @ _ (3) 5(3)
9 |:2F + 4!F ] 144 \/ge@C’ oC B}. (3.1)

The first square bracket is the action for the NSNS fields, the metric g, the 2-form field
B, and the dilaton. The second set of terms constitute the action for the RR fields, the



1-form potential C"), and the 3-form potential C'®). The last term is the Chern-Simons
term. The field strengths, H, F®, F4) are defined by

H =dB,
F® =qcW,
FW =d4c® — g AcW.

The Bianchi identities for the field strengths are

dH =0, (3.2)
dF® =, (3.3)
dF®Y — HAF® =, (3.4)
The equations of motion are
d <e—2¢ X H> +F@ A xp® ;F(‘l) AFW =, (3.5)
dx F@ + HAxFW =0, (3.6)
dx FW — g A FW =, (3.7)

The Einstein equation is

1 1 1 1
Ry = _4gab|:|¢ + 2gab (8¢)2 — 2V, Vpo + 4 <HacdeCd - 129abH2>

! 2 2 @e 1 : 1 (4) (4) ede 3 2
F@ pEe F© 2 ( r B P .
+ 26 ( ac b 169&1) + 126 acde A 329ab , (3 8)

and the dilaton equation of motion is

R+ 40¢ — 4 (9¢)? — 11215(2 =0. (3.9)

We can check the consistency of these equations by showing that the contracted Bianchi
identity holds. Indeed, using the Bianchi identities and equations of motion for the field
strengths and the Einstein equation,

V(R — s guR) = ~040 (R 406 - 4(09)° - 1121{2) |

which vanishes by the dilaton equation of motion.
The Killing spinor equations from the variations of the gravitino and dilatino are

1 1 1
Va€ — 8Habc’ch’Y11€ — 166¢F(2%,C’ch’)’a7116 + 199 e¢F(4%)cdefydeefyae =0, (3.10)
1 3 2 1 4
(,ya a¢ _ 12Habc7abc’711 _ 8e¢F( )ab'yab'hl + 966¢F( )ade,yabcd> e =0, (3‘11)

respectively.



We will consider a transformation in the RR fields only. We also allow the dilaton to
transform because at the quantum level this restores the conformal invariance of the string
sigma model. For a string theory to be quantum mechanically consistent, it can be shown
that the background fields must satisfy the supergravity equations of motion by imposing
the vanishing of the beta-function [18, 20], or imposing k—invariance of the Green-Schwarz
action [21, 22]. The other NSNS fields, the metric and the 3-form field strength H, are
invariant under the transformation.

We consider the most general ansatz for the transformation of the fields:

e‘bF(QLb — ed)/F/(ng = ed)F(QBIb + €rvap(S1 + S2y11)ns M1,

4 14 4 _
ed’F( 21bcd — e? F/( 3bcd = e¢F( Lbcd + €rVabed(S3 + Say11)ns My, (3.12)
where ¢/, M7, S1,...,Sy are arbitrary functions, and spinors €7, 77, I = 1,...,n, satisfy the

gravitino and dilatino Killing spinor equations. Both of the RR field strengths transform
with the same spinors and functions, for if they transformed with different spinors and
functions, then, for example, upon requiring that the Bianchi identity for the transformed
4-form field strength, equation (3.4), holds, they would be identified. We will identify them
from the onset in the interests of clarity and terseness. Furthermore, from equation (3.5),
¢’ can be identified as the transformed dilaton, which we will write as

¢ =¢+ X,

where X is an unknown function.

Let us consider each Bianchi identity and equation of motion in turn. First, consider
the transformed Bianchi identity for the RR 2-form, equation (3.3). Using the gravitino
Killing spinor equation

v[aF/(Qb)c] = (e_XF(22)C] + e gm0 (S + Soyin) nJMIJ)
=X <F(2)[bc + e*¢€1’y[bc (S1 + S2711) 77JMIJ> Oy X

X E Ve (St + Sov11) 1 M1100

-X o B 1 —¢ de de

+e Terny <4e Hgela <51 <’ch]’Y ’Yu)(aﬁ) + 52 <’ch]’Y )[aﬁ}>
Le) de B de

+ 8F de <51 <wm 'yawn) ) So <'Y[bc7 %})m p

L) def def
_96F defg <Sl <7[bc’7 g%]%l) (f) — 5 <’7[bc’7 g’Ya]) (af] My

+ e~ 83,0, [(S1 + Sav11) Mig]ny. (3.13)

The Greek indices, o, 6 = 1,...,32, are spinor indices.

Now we can use the dilatino Killing spinor equation to express the term involving the
derivative of the dilaton in the expression above in terms of the field strengths. As e; and
7y satisfy the dilatino Killing spinor equation, (3.11),

1 3 . o 1 4 (o
€7 Yabe <7dad¢ - 12Hdef7def711 — 86¢F( Lﬂde%l + 966¢F( Zefﬂdef“”’> 0} =0.



Using?

min(m,n)
bi..bn __ k b1..by— 1 by br,
Yai...amY 1 = Z CmnV[al...am_k[ 1 k(;amj:l L. 6%,3]’ (315)
k=0
where
b= (—1fort3kEey T
El(m — k)!(n — k)!
and
(,yal...an)aﬁ _ (_1);n(n+1)+1 (,yal...an)ﬁa
1
(,Ym...an,yll)aﬁ _ (_1)2n(n+3) ('Yalman")/ll)ﬁa, (3.16)

equation (3.14) implies that

_ 1 _
€1V 0g) P — 1o Haela€r (3’ch}de - 25355}) Y1117
1

1 2) _
- e¢F( )deef <7abcde_67[aég(5§]) '71177‘]"’_246

4 _ d
5 P ger (08~ 20" 056,68 ) s =o0.
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Similarly,

e

_ 1 _ 3 2) _
6[7[6071177J8a}¢ - 12Hde[a61 (3'ch}de — 25?54) 0y — 46¢F( )deery[bcd(SZ]nJ

1 4 d
—_ 2886¢F( )defgel <7abc efg — 36’)/[bde(5cf(sg}> Y11MJg = 0

Substituting the two equations above in equation (3.13) and using the gamma matrix
identities (3.15) and (3.16), equation (3.13) becomes

(2) _
V[GF be]

—e X <F(2)[bc+e_¢€[’y[bc(51 —|—52’Y11)77JM[J> aa]X—Fe_((b—’—X)E[’y[bcaa} [(S1+Sov11)M1sns

1 1
— 3e—(¢+X)Habc€I(Swn +S9)ns M+ 2e_XF(2)de€1 <251’Y[a5§l5§]711 - SZV[bcd5Z]) nsMry

er (485177050067 + S5 (7,519 + 367,667 ) ) ms M.

|
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The expression above must vanish for the transformed Bianchi identity to be satisfied. Since
we are considering generic supergravity solutions, by looking at the terms proportional to
the RR 2-form field strength we conclude that

0uX = S1€1vav11myMpy;  and  S2€7vapensMpy = 0. (3.17)
From the terms proportional to the NSNS field strength we get that

ér (S1y1 + S2)nyMpy =0, (3.18)

!This identity can be proved by using induction on m with n = 1 and then by induction on n.



and from the terms involving the RR 4-form field strength we get

S1€rvansMry =0 and  S2€rvapeyiinsMry =0, (3.19)

using So€ryapens My = 0, from equation (3.17). Finally from the remaining terms we
have that

€1[be (%X (S1+ Sov11) M1y — 9y [(S1 + So711) MIJ])UJ = 0. (3.20)
Using similar techniques to those used above, we can also show that
ViF Y =2 = = (PO, 4 € P, (S3 + Simn) mibi ) 0, X
—2e” ) Higpeervae ((S2 + S3) yi1 + (S1 + Sa)) 1y Mrs

I _x.@2 -
tog¢ Xpt )f96153 <’Yabcdefg - 20'7[abc(5£5§}) Yuins Miy
Le-Xxp o fahgi 7 s4h i
+100¢ " F fghiq<1053 (y[bcdeg 5y + 12y, 535d5;])
+54 <7abcdefghi - 1207[a5£53535i}> 711) nsMry
+e_(¢+X)EI’Y[bcde3a] [(Ss + Sayi1) Mrslns, (3.21)

1 _ —p=
v 6HdeF'(4(Zbcd =X <F(23m +e €0 (S1 + S2y11) 77JMIJ> "X

+ e 00 [(S1 + Sovi1) Mg ny
1 _ _
_ 66 (¢+X)Hbcdquab‘3d ((S1+ Sa)y11 + (S22 + S3)) nyMrs
1 _ _
+ e XF®) & <451’Yb5§’711 + Sﬂabc) nsMry
1 _ _
T 6" XU €182y My (3.22)
and
vdel(échabc - 1314 6abcdl...d7LIdICl2Cl3Pﬂ(ﬁl)dll“.d7 =

—e X (F(4Zlabc + e %€ Vdabe (S3 + Sami1) 77JMIJ> a'X

3
e T8 Y0007 (S5 + Savir) Myglng+ e_XF(Z)d[cgf (53'Yab} Ty~ 2547‘15?()1])77‘]]””

2
I x4 d
~48¢ X )defgel <53 (r}/abc efg 4 367[(1‘165559) + 48547%25555711) nyMry. (3.23)

|

For the transformed equation of motion for the RR 4-form field to hold, from equa-
tion (3.23), the following must be satisfied

0uX = —Sa€rvayinsMry (3.24)

Ss€rvans My =0, (3.25)

Ss€rvabensMry =0, Ss€rvabey11m My =0, (3.26)

€1Vabed (adX (S5 + Symi1) Mry — 0%[(Ss + Saynn) MIJ])UJ =0. (3.27)



Note that if, for example,
€rYabe 1117 M7 =0,

then
€1a...axMs My =0,
for )
(_1) 5 (10—=m)(10—m~+1)
Yai...am = T (10 . m)' Eal...ambl...blo_mfyblmbmim’hl 5 (328)

proved in appendix B.
Now, if equations (3.17), (3.24)—(3.26) hold, then the expressions in equations (3.21)
and (3.22) vanish only if

(S1+ Sa)érvansMry + (S2 + S3)érvay11msMry =0, (3.29)
€1V [bede ((%]X (S5 + Say11) M1y — 94 [(S3 + Sayin) MIJ])UJ =0 (3.30)
and
(S1 + Sa)érvaveav1msMpy + (S2 + S3)€rvaveans My = 0, (3.31)
€1Yab (3bX (S1+ Sovi1) My — 0°[(S1 + Sav1) MIJ])WJ =0, (3.32)
respectively.

In summary, the Killing spinors and functions that describe the transformation must
satisfy

0aX = S1€ryay11ns My, (S1+ Sa)ervayiunsMpy = 0,
ér (S1y11 + S2)nsMry; =0,

S1€ryans My =0, Sa€ryansMpy =0,
So€ryavensMry = 0, Sa€ryapey11n M1y = 0,
S3€1YabeNs M1y = 0, S3€rYabe Y117 M1y = 0,

(S1+ Sa)ervansMry + (S2 + S3)eérvapy11n My = 0,

(S1 + Sa)€rvabeayiini My + (S2 + S3)€rvabeans My = 0,
€1be (%X (S1+ Say11) M1y — g [(S1 + Say11) MIJ])??J =0,
€1ab (3bX (S1 + Say11) Mrg — 0°[(S1 + Sav1) MIJDUJ =0,
€1V [bede (3a]X (S5 + Say11) M1y — 9y [(S3 + Sav11) MIJ])UJ =0

€1Vabed (3dX (S5 + Sami1) M1y — 0%[(Ss + Sami1) MIJ])??J =0 (3.33)

in order for the Bianchi identities and equations of motion for the transformed RR fields
to be satisfied.

Let us consider the NSNS 3-form equations. The Bianchi identity for the NSNS 3-form
field is invariant under the transformation, so we do not need to consider it. However, using

,10,



the Killing spinor equations and equations (3.33), the equation of motion for the NSNS
3-form, (3.5), reduces to

@R e <(353 — Sym11) 6568 — 53%’76(1) n1 M1

_ o~ (04+2X) _ fo2e+X)

S3Fabca€ry““y1nsMiy €1Y(as 0y (SaM1y)

1
+ 26_2(¢+X) (€rYabed (S3 + Say11)n7) (EKWCd (51 + S2m) 77L) MpyMkr

1

~ 18 e 2O (Ereer (S5 + Sam11) 0) (Ex7 ™ (S + Sa) )My My, = 0. (3.34)

The supergravity fields we are considering are generic, so, in particular from the term
proportional to the RR 2-form field, we must have that

S3€ryabeansMry = 0,

which implies that S3 = 0, for this is precisely the combination that enters in the transfor-
mation of the 4-form RR field strength. Furthermore, since S3 = 0, from

(S1+ Sa)ervansMry + (So + S3)éryapyiinsMry =0

we get that
Sa€rvapy11msMry o< Ervapn s My,

hence without loss of generality we can set So = 0.
Since Sy and S3 vanish, we must have that at least one of

€ravnsMry, €rYabed Y1117 M1y
are non-zero in order for the transformation to be non-trivial. Therefore, using equations
(S1+ Sa)eryansMry = 0, (S1 + Sa)€rVabeayr1ns Mry = 0,
from the set of equations (3.33) with Sy = S3 = 0, we deduce that
Sy =—5.

Without loss of generality we can let Sy = 1.
Furthermore, from the first term in equation (3.34), the spinors must satisfy

erinsMry = 0. (3.35)

The last two terms in equation (3.34) are quartic in spinors and they can be simplified
using Fierz identities.

The Fierz identity for commuting spinors A, x, ¢, ¢ in d—dimensions is

(S\Mx) (@ng) = 2~ [4/2] Z (S\MOINQD) (15(91)() ,

— 11 —



where M, N are arbitrary combination of gamma matrices and

{01} = {H’ Yas Z.'7/(zba ir}/abc, Yabeds - - - }

forms a basis for 2[4/2] x 2[d/2] matrices and

(O} = {I, 4, iy, iyobe, yabed |}

is the dual basis.
Using Fierz identities, equation (3.34) with

S =S =1, Sy=S55=0,
erviinsMpy =0

becomes

A€rY[ans O M1y — (16 (erviaying) (Exvne) — Ervasns) Exviinn)+ (Ervapyiang) (€xnz)

1 1
+, (€rYabedn.s) (EK’YCd’Yn??L) + 48 (€rYabedefy117.7) <€K70def77L>>MIJMKL = 0.

We can use equation (3.35) again to simplify the above equation to
4€1Y[ans Oy M1y — <16 (ervey11m5) (Exne) + (Ervayiing) (€xne)

1 1
+, (€1Yabedn.y) (gK’YCd'Yll??L) + 4 (€ErYabedefy117.7) (gK’YCderL>> MMy, = 0.
(3.36)

So far, having only the dilaton and Einstein equation to consider, we have the following
conditions on the Killing spinors and functions in the transformation of the fields:

51 = —54 = 1, ( )

S3 =59 = 0, ( )

0aX = €1vav11m5 M1, (3.39)
ermnsMry =0, (3.40)
€rvansMry; =0, (3.41)

ervpets (O X Mry — 0 M1y) =0, (3.42)
€1Yab"J (3bXM1J - 5bM1J> =0, (3.43)
€17V bede V111 <<9a}XM1J - (9a}M1J> =0, (3.44)
€IYabed Y111J <5dXM1J — (9dM1J) =0 ( )

and equation (3.36).
The Dilaton equation for the transformed fields is

R+40¢' —4(0¢)° - 112H2 =0,
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which using the dilaton equation for the original fields implies that
O0X =20,00°X + 0,X0°X. (3.46)
Using equation (3.39) and the Killing spinor equation from the variation of the gravitino,

OX = Vg (€ry*y11imsMry)

3 3 1 _ _
= _4e¢Fbc517bc77JMIJ + e Fyeacery™®yi1ns My y + €1y 1110 M.

48
However, since e; and ny, for all I = 1... n, satisfy the dilatino Killing spinor equa-
tion, (3.11),

1 3 2 1 4
5? (711 <’7a a¢ - 12Habc’7ab6711 - 86¢F( )abryabryll + 966¢F( Lbcd,yade))( 8) ng =0,
o

hence, using equation (3.16),

3 N 1 _ _
—46¢Fbc€ﬂbc77JM1J +, e Fyeacery "% yi1n s Mry = 2€17v111.70a¢ M7 ;.

8

Therefore,
OX = 267" 711170.0M1y + €17 v11170a M1 .

So, from equation (3.46), the transformed dilaton equation is satisfied if
ey yung (ExvayunLMrsMrr — 0aMry) = 0. (3.47)

Finally, we have to find conditions on the spinors and functions in the transformation
in order for the Einstein equation to be satisfied for the transformed fields. Using equa-
tions (3.37), (3.38) and (3.46) and the Einstein equation for the original fields, Einstein’s
equation becomes

1 1
4 JabIX = 2Va Ve X + o <F(2)(ac€I’Yb)c?7J - gabF(Q)cdfl’YCdﬁJ> My

16

1 3 4)
- 6€¢ g F' )cdefEIWCderunJ) M,y

(4) cde_
(F (a €IVb)ede V11T — 39

1
Gab (€1Yedn.s) (Q{’Y“%L)) MipyMgr,

1
+ 5 ((Gﬂacm) (€xY L) — 16

1

+ 19 ((Gﬂacde’mm) (EK%, Cde’m??L) —

3

29 Gab(€1VedefY11M7) (EK’YCdef’Yu??L))MIJMKL =0.

(3.48)

Now, consider

_ 1 1 2 1 4
€r [W(aWn <V|b)_8Hb)cd70d711— 166¢F( )chCdVIb)%l + 192 e?F' )cdeﬂ“lef%)ﬂ ny = 0.

,13,



Adding this to the same expression, but with ¢; and 7; interchanged we get

1
€Y1 Ve + 1Y 11 Vyer + 86¢F(2)cd€1 <4W(ac5£l) + gab70d> nJ

1 @ -
— 966¢F cde fET (S’y(a

using equations (3.15) and (3.16). The above equation and the equation obtained by con-

Cdeél{) + gab’YCdef> yins =0,

tracting the two free indices in the above equation can be used to reduce equation (3.48) to

1 1
4gab|:|X — 2V, VX + 2V, (ermming) Miy — 4gabvc (€rY“ymg) My

1 1

+ ((EI%CUJ) (€xv ML) — 16

9 Gab (€1Yedns) <€K’YCd?7L>> MipyMgr,

1

+ <(€I’7acd671177J) (gK'Yb CderlnL) -

3 _ _
19 9ab(ETVedefy11M) (EK’VCdef'Yll??L»MIJMKL =0.

32
(3.49)

Using equation (3.39) to simplify the terms on the first line, Fierz identities and equa-
tions (3.40) and (3.41), it can be shown that equation (3.49) is

— 26171117 (O M1 + 2€x vy Y110 ML M )

1
+ 49ab€17671177J (0cMry + 2exveyuinL MMk g)

1 1
+ <4 (€rvanr) (Exns) + 5 (€rv,“v1ing) (Exvpey11nL) + 19 (Ema“lem) (EKVbedeNL,)
1 € € 1 = =..~C 1 = — .cd
+ 16gab(6177J)(6K77L)— 29ab(61%77L)(6K’Y 77J)_32gab(51'7cd'71177J) (EK’Y 71177L>
1
~ ogJab (€1Yedefn) <€K76def77L>>MIJMKL =0. (3.50)

This is a quartic condition on the spinors. Moreover, from equations (3.36), (3.42)—(3.45)
and equation (3.47) we also have that the spinors must satisfy

Aeryans (Oy My — Aex vy yunc ML Mg 5) — <(61’Yab71177J) (€xnL)

1
(€rVabedefy117.7) (EK’YCdefnL)> MryMgr, =0,

+1 (ErYabedns) <EK'YCd’71177L> +
2 48
(3.51)

1
eV (0 Mry + 2exygyinc ML Mrcy) + (2 <EI’7[abd77J> (€xYeJav11nL)

1 N 1/ N 1, N
+ . (€rvabey11ms) (ExnL) — <617[abd677J) (exvagaerine) + ., (€rvabeaviins) <€K'Yd77L>

6 4 3
+2(g exying) = L (e excytel MMy, =0, (3.52
3 [YabedY111L) | €KY N 36 (€rYabedefy11m7) (€67 1L r7Mgr =0, (3.52)

€E1Yab"J (5bM1J + 2€K7b71177LM1LMKJ) + ((Eﬂam) (€xy11nL) + 2 (€rvanL) (Exv11m7)

3

_ _ 1
4 (€rYabeny) (EK’YbC’YllUL) -

19 (€rYabedn.y) (EK’Yde’Yll??L)> MryMgr =0, (3.53)
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€1V [abea1171 (O M1y + 2€x v yiin ML My ) + <(€17[abc71177J) (€K Yae)r117L)

1 _ _ f 2 _ — I
. (ErYabedef.) (61(7 77L) + e (€rYabedefnL) (61(7 77J>
1

+2O

+ <€ﬂ[abcf77J) (EK%le}fnL) +
1

- <€1’Y[abcdfg%1m) (€xve1pg117L)

4 (ErYabedefg1117) <€K’Yfg’m77L>> MipyMgr, =0,

(3.54)

EIYabed Y117J <5dMIJ + QEK’Yd’Yn??LMILMKJ) + (3 (erv1aons) (ExvgnL)

1

_ _ _ _ 3 /. _
+ 6 (erviaonr) (exvens) + 5 (€rYabens) (€xnr) + 5 (EI’YW, d’mm) (exvagarinc)

3/ _ 1 _
4 <617[abde77J> (€xVeaens) — .o (ErVabedesy117) <€K7def71177L)> MMk =0,

12
(3.55)

ery*v1ing (OaMpy + 2k YayiinL ML Mk j) + ((gmam) (€xvanr) + 2 (€rv*nL) (Exvans)

1

~ 1 (€ﬂ“bc77J) (€K YabenlL) —

1

1o <€m“bc%1m) (EK’Vabc’VllnL)> MryMgkyr =0, (3.56)

respectively, where Fierz identities have been used to rewrite equations (3.42)—(3.45) and
equation (3.47).

The only set of quadratic constraints on the spinors that we have found that solve
equations (3.50)—(3.56) is

€rvans =0, emiMpy =0, €eyayinsMr; =0
€ErVabeNaMry =0,  €rVabe11Ms M1y =0,  €rYedefnsMrs =0,
OaMpy = —2€xvay11ML M1 My .

We have shown that the type IIA supergravity equations admit a symmetry described
by the following transformations of the dilaton and RR field strengths

p—¢ =¢+X,
e¢F(221b — e¢/F/(22b = 6¢F(2Lb + €rvyan M,
’ 4 4 _
SFW S W = FY e abeaiing Mo, (3.57)

where the Killing spinors must satisfy

€rans =0, (3.58)

ernsMry =0, (3.59)

emsMr; =0,  €ryaynsMry; =0, (3.60)
€ErYabegMry =0, €rvabey11nsMry =0, €VedesniMry = 0, (3.61)
0uX = €rvay11ns My, (3.62)

OaM1y = —2€xvay11nL M1 M . (3.63)
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Equation (3.63) is equivalent to

da(M ™YY 15 = 2857071171, (3.64)

and equation (3.62) can be solved to find X up to a constant of integration:

n

1 -
X=, ; (log M), . (3.65)

The integrability conditions arising from equations (3.62) and (3.64) are trivial because
1 _ _
VeV X =, Hapcery*nsMiyy and Vi, Vy(M Y17 = Hapesvnr,

which vanish by equation (3.58).
In the transformations given by Berkovits and Maldacena the spinors e¢; and 7y are
identified. This is sufficient for

€msMry =0, €ryayinsMry =0,
€rVabeaMry =0,  €rvaber1inaMrs =0,  €rVedeynsMpy = 0.
When ¢; and 77 are identified, only the symmetric part of M7 ; contributes in the transfor-
mations of the fields, so without loss of generality we can let M;; be symmetric in I and J,
as a consequence of which the above equations are satisfied. If we identity e¢; and n; then

we recover the transformations of Berkovits and Maldacena, but with an extra condition
on the spinors, namely that

erymesMpy = 0.
When n = 1, we can explicitly show that the solution to
=0, eayn =0,
Yabe = 0, Yabe11M =0,  €Yedesn =0
is
€ X 1.

However, when n > 1, these conditions do not reduce to the transformation rules of
fermionic T-duality.

4 Type IIB supergravity symmetry

The type IIB supergravity action is

1 10 26 2 1
S = 02 /d x\/g {e R+ 4(09) 12H
Moy e b oper| o Ll cwgpac@ )
2 3! 2.5! 192 /g
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In type IIB supergravity the RR fields are the scalar C'(©) the 2-form C® and the 4-form
C™W. In terms of potentials B, C©,C®? and C®, the field strengths are defined to be

H=dB, FW=4c®, FO =qc® —HgcO,
FO —dc® — Lo g4 e adc®.
2 2

The 5-form field strength is constrained to be self-dual.
The Bianchi identities for the field strengths are

dH =0, (4.2)
dr® =, (4.3)
dF® — g A FY =0, (4.4)
dF®) — H A F® =, (4.5)

The equations of motion are

(wgw*H>_FmA*ﬂa_F®AF@:0, (4.6)
dx FO 4+ HA«F®) =0, (4.7)
dx F® 4+ HAFO =, (4.8)

The equation of motion for the 5-form field strength, F®), is equivalent to the Bianchi
identity for the 5-form, equation (4.5), as it is self-dual. Moreover, the Einstein equation
is

1 1 1
Rab = _49ab|:|(l5 + 29ab (agb)Q - 2vavb<l5 + 4 (HacdeCd -

Loog ) p) L L 26 (23) p3)ea 1 3)2 L 2 1(5)
+ 26 ¢F( )aF b+ 46 ¢ F ach bc - 12gabF( ) + 96e d)F acdef

1
H2
12 YGab >

5) cd
FO) el (4.9)
noting that F' (3 vanishes because the 5-form field is self-dual. Finally, the dilaton equa-
tion of motion is the same as the type IIA supergravity dilaton equation of motion, equa-
tion (3.9). Also, the twice-contracted Bianchi identity is again satisfied using the equations
of motion for the fields.

The Killing spinor equations from the variation of the gravitino and dilatino are

1 1 . , 1 3 1 .
Vae— 8 Habc')/bco'se_ 8 e¢<F( %;’Yb’)/a (202) e+ 3! F gcd7b0d700'16+ 951 F b)cdef’)/deef'Ya (102) 6> =0,
(4.10)
1 1
(W<@—42H@w“%3+&F“%ﬂu¥)+1f¢ﬂﬂmf“&>e:o, (4.11)

respectively.
We now consider the most general transformation of the RR field strengths and we
will also allow the dilaton to transform:

FY), — e F0) = W), 4 €7 SNy My,

3 r (3 3 _
e¢F( )abc - e¢ F,( azbc - e¢F( )abc + EIVach(Z)nJMIJa
5 ' (5 5 ~
P zzbcde — ¥ F'l czbcde = o¢F! Lbcde + €Yabede S Py My 5,

,17,



where M7y is an arbitrary function; the spinors €r,n; satisfy the gravitino and dilatino

Killing spinor equations;

§(12,3) — Z SS’Q’?’)U*“,
o

ot = (H,O‘l,iO'Q,O'g)M. The field ¢’ is some arbitrary field, which is identified with the
transformed dilaton upon considering the NSNS 3-form equation of motion with trans-
formed fields. We let

¢ =¢+ X,

where X is some arbitrary function.

Note that the RR fields need not a priori transform with the same spinors and co-
efficients. However, as in section 3, if we let them transform with different spinors and
coefficients, then we will find from equation (4.4), for example, that the spinors and func-
tions have to be identified.

As in section 3, we let the NSNS fields g and H be invariant under the transformation.

It is important that the 5-form field strength remains self-dual after the transformation.
The Hodge dual of 6F®) is

1
*(EI’Yal...as S(B)UJM[JCL’CGI A.. ./\dxa5> €r ( eal___a5b1___b57b1“'b5> S(B)HJM[J(L’CGI A...ANdz®

5!

=€r (’yal,__%’yu) 5(3)77JM[Jd1'a1 A Adx®,
by identity (3.28). Hence if we let v111; = 1y then the transformed 5-form field strength
is self-dual. Recall that in type IIB supergravity all the Killing spinors have the same
chirality, hence vyi1e; = €;.

We will now find the constraints that the various functions and the Killing spinors
must satisfy so that the transformed fields satisfy the Bianchi identities and the equations
of motion. First, let us consider the Bianchi identities. Using the gravitino Killing spinor

equation, the Bianchi identity for the transformed RR 1-form field strength is
1 - 1 _ _
V[aFl(b)] = V[a (e XF( g)} +e (¢+X)€[’)/b]S(1)77JM[J>

= —e %9,X (Fb] + ef(bgl%]s(l)mMu) — e N9, ey SWns My,

etan (ot (), (597) (), ()

+ ;F D (07 01) o (15V0%) = (1p77%) g, (i025) )

+ 8.13!F(i)ze <(7[b76d67a])a6 (5(1)01) + <'Y[b7€de')’a]>6a <015(1)>>

L) cdef (1) 2 cdef - 24(1) 3
6511 cdera <<7[”7 g%})ag <ZS ’ ) - (7[” g%}) Ba <w 5 ) '
+ e e 4,0, S Wy My + e 0T X ey, SWn 0, My = 0.

Now, from the dilatino Killing spinor equation

1 , 1
érast (vcacqzs = o Heaey " 0” + P FU(i0®) + 12e¢F(3’cdncdeal) ny = 0.
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. Adding the above equation to
1 1
nJ'YbaS( < <o ) — H.qe ’)/CdeO'?’ + e¢>F(1) ( 2) + 126¢F(3)Cde,ycdeo_l> e =0,

. where S is the transpose of S, and using the first identity in the set of equations (3.16)
we can show that

€109 V) S Uiy = ef <418Hcde <(’Yba76de>aﬁ <S(1)03> + (’Yba’YCde)ﬁa <035(1))>

= 1 FY (070 (S1i0%) = () (i0*50))

— e () (590) + ()| (o5)) )

Therefore, using the above equation and performing some gamma matrix manipula-
tions, using equations (3.15) and (3.16), we can show that

V[aF/(lb)] = e*(¢+X)EI'y[b <8a} (S(l)M]J) - 8a}XS(1)M]J) ny—e 3[ XF(l])

1 — — cae C €
— 24 (¢+X)Hcdeq (vba de | ¥ 5l§léa> (S((]l)a?’ + S:gl)]l) nyMiy
1 _ _ c 1). 1 c 1 1
+ 40 XFWe, <’Yba (S(() Jig? — S )JI> — 4yl (S§ Jod — 5§ )01>> nsMry

1 M
4 e (3)[ €r <'Vb]6d <S(1) ’ +S( )w > 2765] <S(1) '+ 5(1)]1)> 7L
1 _ 5 cde 1), 1

24 e XF (ba)wdee ¥ d (S(() )102 — Sé )JI) nyMry.

This expression must vanish if the transformed RR 1-form field strength is to satisfy the
Bianchi identity. We are considering generic supergravity fields, so the expression vanishes

only if
8 X = &7 <S( Vo3 — sWg ) nsMiy, (4.12)
€1Vabede <5(1)03 + 585 )H> nsMry =0, (4.13)
e (5670 + S§UT) my My = 0, (4.14)
€1Yabe <S(() Vig? — 8§ )H) nsMr; =0, (4.15)
E1Vabe (5(1)03 + S(l)iUZ) nyMrpy =0, (4.16)
€ (S(l) Ly s ) nsMpy =0, (4.17)
€1b <3a} (S(l)Mu) - aa}XS(l)MU) ns = 0. (4.18)
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We can also show that

/(3) (1) _
V[GF bed) +F [aHde] -

=@+ X)g d(a} <S(2)M1J) — 0 X 5(2)M1J> n—e X XFG),

— - e e 2 2)
486 (¢+X)H€f961 <<’ybcda To + 36’y[bc 5552]) <S(() )03 + ng H)
+ 48p0c00%) (5814 (817 = 0 ) ot + () — 80 ) io® + sg)as))n 7Myy

1
+ 2€7XF([13€17bcd] (5§2)01 - S§2)03> nyMiy

T 3 e e 2 2
- 48 XF(e}g <<7bcda T9 + 367[bc 5553}) (S(() )Ul + S§ )H>
+ 48’)/[b5e(5f5g] <S§2)O'3 + S§2)i02>>?7JM[J

Loxp(6) (esf (o@; @7 ef (¢ 3 _ g 1
—,° Fef[ < 6]<SO i -5 ) Vol (51 o° — 853 0))77JM1J,
/(5) 10 2n9)
V[aF bede f] + 3 F [abcHdef]

e N0 paep (00 (SO Mis) = 09X SO My )ny — e ¥ X,
1 _ _ h 3 3)
= e ) H ey <<7bcde P 907y O a]) <S(() 'o® + 5 H)

+ 2409300020735 (ST + (P = 587) o+ (88 — 517 io? + S§2>a3>>n My

I xo)- (3. 2 B

R L L (5602 = SE9T) Moy
I _x,.0) - hi (o) 1, o)

T nC F (ghiEI ('chdefag <So o+ 5] H)

(3) ;3 (3);
+ <9’7[bcdef a] ‘|‘ 60’}/[bcd(sg(sf a]) <S —|— S ))’I’]JM[J
1 3). 3 3 3
+ 4© XF(g%defael <57b} <S((] Jig? — Sé )]I) — 4%551 (S§ )3 — S§ )01)) niMry.

Both of the above expressions must vanish for the Bianchi identities for F'®®) and F'®),
respectively, to hold. So we have that

0aX = €174 <S(2)03 + S?Ez)iUQ) nyMiyy, (4.19)

€1abe <S(2) 3+ 591 > nsMry =0, (4.20)

e ST+ (817 = 8P ) ot + (88 = 5 ) io? + 800 mbigy =0, (421)
ETVabe <S(2)01 — 5(2)03> nyMrpy =0, (4.22)

€1Vabe <S( ol + 51 > nsMpy =0, (4.23)
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€% <552)i02 — 552)]1) nyMrpy =0, (4.24)

€1V [bed ((%] <S(2)MIJ> - aa}XS(Q)M[J>77J =0, (4.25)
and
0aX = €174 <S§3)03 — S§3)01) nyMry, (4.26)
€1 (533)03 + S§3)H) nsMyy =0, (4.27)
€1 Vabede <S(()3) o3+ S§3)H> nyMrpy =0, (4.28)
e (SOT+ (S = 5 o+ (88 = 517) io? + 500 pyhyy =0, (4.29)
€1 Vabe (53%2 - 553)]1) nyMpy =0, (4.30)
€1 (S((]?’)Jl + Sf‘)ﬂ) nsMyy =0, (4.31)
€E1Vabe (553)03 + Ség)iJQ) nyMjp; =0, (4.32)
€1 Vabe (s((f”w? - 553)]1) nyMpy =0, (4.33)
€1V [bede f <<9a} (5(3) MIJ) - 3a]XS(3)M1J) n =0, (4.34)

respectively.

The NSNS 3-form field strength does not change, so the Bianchi identity for the 3-form
field is the same as before.

Now, we assume that equations (4.12)—(4.34) hold and consider the equations of mo-
tion. As before, using the Killing spinor equations for €; and 77, the equation of motion
for the transformed RR 1-form field strength can be simplified to

vaF/(l) + 1Hach,(3)abc —
@6
e (O Ng 40 <5a (5(1)M1J) - 3aXS(1)M1J) nJ
1
i 66—(¢+X)Habc€mabc (S(()z)]lJr <S§2) _Sél)>01 I <S§2) _S§1))102+S§2)U3) 1y M =0.
So, we get the following conditions:
E]'yabc (S(()Q)]I + (S%Q) - Sél)) O’1 + <S§2) - S§1)> 1'0'2 + S§2)0'3) nJM]J = 0, (4.35)
g[")/a (3a <S(1)M]J) — 8GXS(1)M]J) ny = 0. (4.36)

Similarly, the equation of motion for the transformed 3-form field strength becomes

1
VA et GHT ey =
e_(¢+X)€I’Yabc (aa (5(2) MIJ) . 3@X5(2)M1J> nJ

1
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hence we need to impose
ertaede ST+ (817 = 5) ot + (85 = 8P ) io? 4+ 8067 My =0, (4.37)
€I Yabe (8a <S(2)M[J> — 8aXS(2)M]J) ny = 0. (4.38)

We also need to show that the transformed fields satisfy the equation of motion for
the NSNS 3-form:

ve <e_2¢/Habc) - F/(l)aFl(agb)c 6 (3)d6fF/(b5c)def -

2e 20t X Hope — e OH2X) My (F(l)GEI%bCS(Z)??J + F®), eyasWn,

abe
L (3)def- 3) Loy o def g
t g I € oede SN A (I g g €17 S0
—2(e+X) (EI'YQS(DWJ) (EK’Yach(Q)UL> MMkt

1 _ _ _
~ ¢ He+X) <61’Ydef5(2)77J) (EK’chdefS(3)?7L) MryMgr, =0, (4.39)
where the NSNS 3-form equation of motion with the original supergravity fields has been
used in the first equality.

Using the gravitino Killing spinor equation and the self-duality of the 5-form RR field
strength we can show that

FO .58 io?n, My = AV, (ervgms) S Mry — 2Hapeery®SSY o%ny Mry
1 3) d 2
- P 7 <,ch ef +,yd555{> $® oL, My,

1 2) .

6 ¢F( b)cdef ’ydef;Sé )ZUQHJM]J, (440)

and using the dilatino Killing spinor equation and equations (4.20)—(4.22) we get that
FO%e g, (5(()2)]1 + 820 + S?(,Q)Jg) nsMry = —200e179 Sy io*ns M
1
+ 12Hdefgl <’ybc 6’)’d(5b5f) Sé )ZO' nyMiyy

1
* 126¢F(3636f€1 <7bcdef - 6Wd5§5£) S\io?n, My = 0. (4.41)

Substituting the above equations into equation (4.39), and using equations (4.19), (4.21)
and (4.37), the NSNS 3-form equation of motion becomes

— 4V[b(€1% )S§2)M[J+26[b¢€['yc]Sé2)i0'2nJM[J_ Hgcrér (vbc ef+187d5b5f) 53 io’ns My

12
1
4 KJa 3ef6[ (7 def+27d666f)8’§ io? UJMIJ_GG gl b)cdefe vdef (SSQ)H+S§2)0'1+S§2)0'3)T]JMIJ
1
- (gmas ) (éK%bc UL)MIJMKL* 6 (EIVdefS(Q)UJ) (gK%cdefS(g)ﬁL)MuMKL = 0.
(4.42)

The supergravity fields are generic so the terms proportional to each supergravity field in

the above expression must vanish. In particular, if we consider the expression proportional
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to the RR 5-form field strength, then as this expression is exactly the expression that enters
in the transformation of the RR 3-form field strength

S =5 =g =,
and without loss of generality we can set
SP =1,
Similarly, by using the Killing spinor equations to substitute in for

F(?’)bcé[’y“S(l)nJ and F(?’CgeféfybcdefS@)nJ

in equation (4.39), instead of F(lgéfy“ch@)nJ, we can show that
SM =gl and SO =l
Letting
S =86 =5 and S =io?,
conditions (4.12)—(4.38) become

O X = Ervac®nsMiy, (4.43)
€ransMry =0, (4.44)

erypo s (0gMry — g X M) =0, (4.45)
€rVpedio”ns (0qMry — 0g X Mry) =0, (4.46)
eV pedero My (O Mry — 0 X Mpy) =0, (4.47)
€17 oy (0aMry — 8, X Myy) = 0, (4.48)
EVabeio®ny (0" Myy — 0" X Mpy) = 0. (4.49)

The NSNS 3-form field strength equation of motion, equation (4.42), becomes

AV, (ervgns) Mry + (erv*o'ns) (ExVaveio®nr) MryMgr
1

t g (517d6f1'02?7J> (€xbedero'nL) MryMgp, =0,

and using equation (4.44) this reduces to

1

6 <€17defi0277J) (€K%cdef01?7L)>M1JMKL =0.

(4.50)

derpnaoy M1J+<(€17“0177J) (EK%ch'UZUL) +

Fierz identities can be used to simplify the terms that are quartic in spinors. Just as
the tensor product of a combination of gamma matrices, M and NN, can be expanded in

the basis {Or} = {L, Ya, 1Vab, 1Yabes Yabeds - - - }s

M%GN =27 2AN ™ (MO'N)* 07 4,
I
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we can expand the tensor product of 2x2 matrices, ¥ and Z, in the basis o* = (I, 0!, 02, 0%),
YupZcp =271 Z (B0HE) 4p ot
w

where uppercase Latin letters are SO(2) vector indices. Hence, for type IIB theory spinors,
the Fierz identity is

(AMEy) (VNEZgp) = 64ZA MO'N) (So"Z) pip (Or0*) x

Using the Fierz identity multiple times, we can show that

1
(erv*o'ns) (Exvapeio™nr) + 6 (ery™"io?n;) (ExVar...asbc0 ML) =

1
—16(ervpo®nL) (Exvans ) Her io®ns) (ExYaveo ' L)+ 6 (ery™ o' ny) (€xYay...asbeionL) -

So from equation (4.50), the NSNS 3-form equation of motion is satisfied if

Aerypny (0gMry + 4exyqo®n My ML) + (€r7%i0°ns) (€xYabeo ' L) M1y ML

1 .
+ (ery™ o' ns) (ExVay..aspcio’nr) MrsMgy = 0. (4.51)
The dilaton equation, (3.9), for the transformed fields simply reduces to

OX — 20,09°X — (0X)? = 0. (4.52)

Using 0,X = €rv,0°1n7M77, and the Killing spinor equations, the above equation reduces
to

ey o®ny (0aMry — €kva0 nL My My L) = 0,

which using Fierz identities becomes

e o’ny (0aMiy + 2€xya0 L My Mg 5) + ((Eﬂam) (€x"nL) + 2 (€rvanL) (€Y )

1

— (Evabens) (ExyPnr) — Ervabeong) (Exy™o’ny) | MigMyr = 0. (4.53)
12

1

12 (

This must hold in order for the dilaton equation to be satisfied for the transformed fields.
Now, let us consider the Einstein equation. We can use the gravitino Killing spinor

equation and the constraint from the dilaton equation of motion, equation (4.52), to show
that the Einstein equation reduces to

1
— g Ve (€17 0®nMpy — 0°X) — 2€17(40°150p M1

2V (o (Er9)0°ns M1y — Oy X)) 4

1 1 .
+ 49ab51760377J5cM1J+ 96 <48 (erva0'ng) (Exwo'nr) + 24 <61’ya io 77J> (€xVbeaio™nr)

— 29ab (€1Yedeio®ns) (€K76de77m'02) + (gm CderlUJ) (EK%cdefdlnL)>M1JMKL = 0.
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The first two terms vanish because of equation (4.43), and we can use Fierz identities to

rewrite the terms that are quartic in spinors. Upon doing so, Einstein’s equation becomes

1
—2617Y(a0 €7 (Op) Mry+ 28 )0 e, My M 5) + 49ab51’76036J (0cMpj+2egvc0 e, ML My )

1 . _ .
* o6 (384 (€rvanL) (Exyons) + 48 (€rvaio®ns) (exyio™nL)

+24 <€1’Ya6d0177J) (€K’chd0177L) + <€1’Ya6defi<72m> (EK’chdefiUQUL)

— 489ap (€r7en7) (EKYNL) = 29ab (E1Vedeo ) <6K70d60177L)>M1JMKL =0. (4.54)

So, the transformed fields satisfy the type IIB supergravity equations if equations (4.43)—

(4.49), (4.51), (4.53) and (4.54) are satisfied. Using Fierz identities, equations (4.45)—(4.49)
are equivalent to

1 .
Era0 € (Oy Mpy + €0’ e ML Mg ) — <4 (€rvabens) (Exv“io*nL)

1, . _ _ ) _ 1/ _
+ (ervavcio®ns) (Exv°ne) + (Ervapeio™nr) (Exyns) — 4 <€I’Y[a6d0377J> (exVejeac' nL)
1 . _

~ (ErVabedeio®ny) (eK'YCde??L)>MIJMKL =0, (4.55)

_ . _ 3/ _
EVabcio’es (OgMry + 2exygo e, ML Mycs) — <4 (le[abealm> (€K Vedienr)

1, B ) 1, _ 1, _

+, (erVabeo®ns) (GK'Yd]ZUQUL)+4 (erYVabede ns) (ExnL)+ ) (€1Yabedeo 1) (€KY17)
1 ] B 1 _

+, (EI'Y[abcefZUZWJ) (exvaero’nL) + 18 (€rYabedefqn) <€K'Yefg‘7177L)>MIJMKL =0,

(4.56)
_ _ 5, _
EI’Y[abcdeglﬁJ (0 My + QEK'Yf}USGLMILMKJ) - <3 (GI’Y[ach?’??J) (EK’Ydef]alnL)
5/ aa N 1 o
+, (eﬂ[abcd io m) (ExVenigne) = |y (ErVabedergns) (€x7%io” 1)
1/ h _ 1, . _
+, (eﬂ[abcdeg Jlm> (Exvpgno°ne) + o (Eabedesgio™ns) (Exy*ne)
1 . _
+ g (€1Vabede fgio 1) (EK’YQWJ)) MpjMgr, =0, (4.57)

1
ervioles (0uMyy + 2€xva0 L M My ) — 19 (€rYabeony) (EK’Yach3?7L) MrsMkr =0,

(4.58)
Erabcio®ey (0°Myy + 2~ o e, M, Mg j) + (2 (ervians) (Exvo'ne)

1 1
+ 4 (€ranr) (€K’Yb10177J) 9 <€I'Y[a6d77J> (EK’Yb}chlnL) + 9 (EI’Yabc03?7J) (EK’YCZ'UQ??L)
1

o 12 (Elryabcdeioj'r/]) (gK'YCdeUgnL))MIJMKL =0, (459)
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respectively.
A solution to equations (4.51), (4.53)—(4.59) is

érvans =0, éryaio’nMpy =0,
EVabesMry =0,  €yapeo'nsMry =0,
EVabe0 NI M1y =0,  EYabedeio ns Mry =0,
OaMyy = —2€KVa0 nL ML M ;.

Therefore, the type IIB supergravity symmetry is described by the following transfor-

mations of the RR fields and dilaton

¢— ¢ =9¢+X,
/P, — equl(lg = e?F) +evaotns My,
3 / 3 3 _ .
o/ F' Lb — ¥ F'l ibc = ?F! )abc + GI’YabCZUZWJMIJ,

e¢F(5)

abede e¢/F,(5)

_ (5) ~ 1
abede e¢F abede + €1Yabede O 77JMIJ,

where

Yil€r = €1, Yunr =i,
€rvans =0,
ervaio®n My =0,  €Yapens My =0,  €Yapeo nsMry =0,
EMVabeo M1y =0,  €Yabedeio®n s Mry =0,
9uX = €rvao’ns My,
OaMpy = —2eKVa0 nL ML Mg ;.

Equation (4.66) is equivalent to

Ou(M ™)1y = 2857001,

and up to a constant of integration

n

1
X =, (logM™),.

I=1

(4.68)

The integrability conditions for equations (4.65) and (4.66) are satisfied by equa-

tion (4.62).

If e; = nr then the equations in the lines labelled by (4.63) and (4.64) are satisfied, and
the transformations are precisely the transformations found by Berkovits and Maldacena,

equations (2.5) and (2.6) in section 2. Furthermore, when n = 1 these equations can be

explicitly solved to show that € o . When n > 1 this is no longer true, and the conditions

can be satisfied without identifying e; and ;.

Note that, since in our transformations it is not necessary to identify e; and ny, we

can solve
€rvans =0

for real spinors.
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5 Comments

In both type IIA and type 1IB supergravity we have found a larger class of transformations
that include the transformations of Berkovits and Maldacena [9]. In both cases, when
n = 1, these transformations are precisely the transformations found by Berkovits and
Maldacena. However, for n > 1

€] X 11

is sufficient but no longer necessary for the conditions given by equations (3.60), (3.61)
and (4.63), (4.64) in the analysis for type IIA and type IIB supergravity, respectively, to
be satisfied. Indeed, in both cases, we have found spinors e; # 717, where [ = 1,2, for which
My is antisymmetric in its I, J indices and the above-mentioned conditions hold.

In the transformations of fermionic T-duality, the spinors were complexified in order
to find non-trivial solutions to

€17a€5 = 0.

Note that, in the transformations that we have constructed n; does not necessarily have to
be identified with ¢; when n > 1. Therefore,

E1YaMNJ = 0

can be solved for real spinors, keeping the transformation real.

Furthermore, when the two set of Killing spinors €; and 77 are identified the supersym-
metry of the transformed supergravity solution is the same as the original solution. In fact,
the Killing spinors in the new background can be written explicitly in terms of the Killing
spinors of the original background [9], equation (2.8). This must be true because fermionic
T-duality is a duality of string theory, so the transformation must preserve supersymmetry.
However, for our transformation it is not clear whether supersymmetry is preserved. If this
is case, then the transformation could be a useful tool for generating backgrounds with
lower supersymmetry.

In general, however, the conditions given in equations (3.58)-(3.61) and (4.62)—(4.64)
are difficult to solve explicitly. If this symmetry, and indeed fermionic T-duality, is to be
a more practical solution-generating mechanism then a new technique must be found to
solve these constraints.

The original motivation for fermionic T-duality was to understand the dual super-
conformal invariance found in maximally supersymmetric Yang-Mills theory. Similarly,
it is hoped that there will an understanding of the dual superconformal symmetry of
ABJM [23, 24] using fermionic T-duality in type ITA theory. The string theory dual to
ABJM [25] theory is type ITA string theory on AdS; x CP?, and there has been work on
trying to understand the self-duality of the AdSy x CP? background under a combination
of T-duality and fermionic T-duality [13, 26, 27]. In [27], fermionic T-duality transforma-
tions on the partially k-gauge fixed Green-Schwarz action is considered and found to be
singular. However, the partially x-gauge fixed action for the AdS; x CP3 sigma model is
not well-defined for all string configurations. It is not clear in [27] whether the singularity

arises for this reason or not. The transformation rules for the type IIA supergravity fields
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derived in this paper can be used to perform the transformation from the target space
point of view. Indeed this has recently been done by Bakhmatov [28]. The results of this
paper are consistent with the singularity found in [27]. In [28] the transformation is done
solely in supergravity, and hence the work suggests that the singularity found in [27] does
not have its source in the sigma model. It is an intriguing problem to find out the origin
of this singularity at the supergravity level.

Finally, in the transformation rules for type ITA supergravity besides the conditions
which have analogues in the type IIB supergravity transformations we also found that

erviinsMpy =0

must hold. This condition may be physically interpreted as maintaining a zero Romans
mass [29], for the Romans mass can be thought of as a constant 0-form field strength [30].
This suggests that the fermionic symmetry that we have constructed for type IIA super-
gravity can be extended to massive type IIA supergravity. We will report on this problem
in a future paper.

Another problem that we would like to address in the future is the complexity of
the fermionic T-duality transformations, for in string theory the transformations cannot
be made real. Understanding the physical interpretation of the complexity may reveal
important, hitherto unknown, aspects of string theory.
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A Conventions

Below we summarise the conventions used in this work.
The metric signature is (— + -+ - +).
The permutation symbol is totally antisymmetric and its sign is defined by

€01..9 = 1

For a p—form A and g—form B

(dA)al...ap+1 = (p + 1)a[a1 Aag...ap+1},

(p+9)!
(ANB)g, apbr.by = g Alay...apBby..by)
1

_ bi...bp
(*A)al...ad,p = p'Eal...ad,p Abl...bp-

The chirality matrix is
Y11= -9
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B Gamma matrix identity

Let {74} be a matrix representation of the 10-dimensional Clifford algebra. Since ¢, ¢, =

—€cy...c10V115

by...b1o—
€a1...ambi...b1o_m V117 Lo 10mm
1
_ Cc1...C10 b1...b1o—
= €aq...ambi...b10—m <10'6 Yer...c10 | Y m
1 10—m : ]
_ c1...c10 2 : k b1...010—m—k P10—m—k+1 b10—m
- 10'60,1---a'mbl---blO—rn6 clO(lO*m)fy[cl...Cl(),k 5610_]‘7"’1 .5010} ?
’ k=0

using identity (3.15). Now, contracting the Kronecker delta functions with €10 the
expression becomes

1 10—m
k €1 C10—kb10—1m—kt1---b10— b1..b10—m—k
10|5a1...amb1...b10,m E : €10(10—m)€ b CI0 =R R0 " Yey...cro—k
’ k=0
10—m ck ( ) : |
10(10—m c1 c Cl0— bi...b10—m—
_ _ _ 171 Cm, m—+1 10—k 10—-m—k
_ o (0 = Ryl agmat o Y
k=0
10—m Ck ( )
10(10—m b1...b10,m,k
N A A
10] (10 k/’)'kj"yal---ambl---blo—m—k ’
k=0
but

b1..br1o—m—k __
Vay...ambi...bio_m_ =0,

unless £ = 10 — m. Therefore,

1
b1..b1o—m __ 10—m
€ay...ambi...big—m V117 - = 10'010(10,m)m!(10 - m)!’)/al...am

_ _(_1)(107m)2+é(107m)(10—m+1)(10 _ m)!’)’al...am-
Hence,

(_1)%(107m)(107m+1)

_ bi...b10—m
Yai...am — — (10 . m)' €ay...ambi..big—m i
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