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1 Introduction and overview

Maximally supersymmetric quantum field theories have been the subject of great interest in
recent times. Although both maximal Yang-Mills (which has a 16-component supercharge)
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and maximal supergravity (which has a 32-component supercharge) are not of direct exper-
imental relevance their special properties make them of considerable theoretical interest.
Much information has been obtained, in particular, concerning the perturbative expansions
of scattering amplitudes in these theories. Thus, four-dimensionalN = 4 Yang-Mills theory
has long been known to be free of ultraviolet divergences to all orders in perturbation theory
and is integrable in the planar limit (the large-Nc limit with SU(Nc) gauge group). It is of
interest to determine the behaviour of contributions to the amplitude that are sub-leading in
the large-Nc limit. Maximal supergravity, which is the low energy limit of M-theory, is non-
renormalisable and superficially possesses ultraviolet divergences. However, explicit calcu-
lations of the four-graviton amplitude in four-dimensional N = 8 supergravity demonstrate
that there are no ultraviolet divergences up to four loops [1–4]. It is a challenge to determine
the order in the perturbation expansion at which ultraviolet divergences first appear.

Although sophisticated techniques have been used to address these perturbative field
theory issues, such methods generally fail to use the full power of space-time supersymme-
try, which severely constrains the structure of the amplitudes. However, supersymmetry is
manifest in the world-line pure spinor formalism recently introduced in [5]. This is a field
theory formalism that is modelled on the pure spinor formalism introduced by Berkovits
in order to quantise the superstring in a manifestly supersymmetric manner [6, 7]. This
was used in [5] to demonstrate how supersymmetry restricts the topology of the pertur-
bative diagrams for four-particle amplitudes in maximally supersymmetric Yang-Mills and
supergravity in general space-time dimensions. It provides a very efficient procedure for
determining the degree of ultraviolet divergence order by order in perturbation theory, re-
producing the results up to four loops that were obtained by more standard means for the
Yang-Mills case in [1, 3, 4, 8–10] and the supergravity case in [1–4]. Since supersymmetry
is manifest at every stage, the results follow without encountering any subtle cancellations
between different diagrams.

Furthermore this pure spinor world-line formalism is able to pinpoint the diagrams at
higher loops that contribute to the leading ultraviolet divergence. Particularly intriguing
are the indications of a five-loop contribution to the ∂8R4 interaction, which is the first
explicit indication that this interaction is not protected by supersymmetry. This is in line
with many other arguments [11–23], which indicate that there should be a logarithmic di-
vergence of this form in N = 8 supergravity in D = 4 dimensions, which would there arise
at seven loops. However, since the coefficient of this divergence was not evaluated in [5] it
might possibly vanish, but this would require a cancellation that cannot be explained by
conventional effects of supersymmetry.

The world-line formalism was presented in [5] as a series of seemingly ad hoc rules
that were based on corresponding rules in the non-minimal pure spinor string world-sheet
formalism. The main purpose of this paper is to present the formalism in a more coherent
manner and demonstrate the consistency of the approach. Most notably, we will study the
BRST invariance of multi-loop amplitudes and in this manner we will determine the rules
in a much more precise manner. Among other things, this will determine the way in which
certain contact terms arise in higher-loop diagrams. The results of [5] will also be reviewed.
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1.1 Outline of paper

In order to motivate the structure of the pure spinor world-line formalism we will first, in
section 2, describe the world-line formalism for perturbative scalar field theory with cubic
vertices. This will generalise the discussion of [24] to also include the (b, c) ghost system.
The rules for constructing vertices and gluing them together with propagators, and the rôle
of the b ghost will provide guidance for the later construction of the pure spinor amplitudes.

In section 3 we consider maximally supersymmetric Yang-Mills and gravity, modelled
on the non-minimal formalism of the pure spinor string [7]. This is based on the dynamics
of the classical superspace coordinates (Xm, θα) and their conjugate momenta (Pm, pα) in a
fixed gauge. However, the standard (b, c) ghosts are absent and instead there are a number
of other bosonic spinor coordinates, λα and λ̄α and their conjugate momenta, wα and w̄α, as
well as fermionic spinor coordinates rα and their conjugate momenta sα. These additional
world-line fields satisfy ten-dimensional pure spinor constraints. Since the formulation of
the theory is based on the string, the theory uses the terminology of ten-dimensional super-
symmetry although the expressions may be evaluated in an arbitrary space-time dimension
reached by supersymmetric dimensional continuation. Although there are no (b, c) ghosts,
we will be able to construct a composite b ghost by mimicking the string construction
by Berkovits in [7]. We also construct the three-point vertices that describe how off-shell
states absorbs a physical state, which are basically the point particle versions of the string
vertices in [6].

The amplitude prescriptions of Yang-Mills and supergravity are introduced in section 4.
The Yang-Mills propagator involves an insertion of the composite b ghost and regulator.
The off-shell Yang-Mills vertex is constructed by imposing locality, which is compatible
with BRST invariance. The vertices are glued together with propagators to construct
amplitudes. The construction of the supergravity amplitude mimics that of the closed
string, doubling the world-line fields (apart from X and P ). For example, the propagator
involves two insertions of the b ghost (one for each sector of the theory).

In section 5 we consider the BRST properties of these amplitudes. Central to the
discussion are four-point amplitudes (constructed from three-point vertices) where states
can be off-shell. We obtain amplitudes that are compatible with BRST invariance if the
three channels of the four-point amplitude are included in all sub-diagrams.

Important features of the multi-loop amplitudes are encoded in the zero modes of the
world-line fields. In section 6 we will enlarge the discussion of [5] concerning the saturation
of fermionic zero modes and the need for a regulator to deal with large-λ divergencies. This
regulator is closely related to the one used in pure spinor string theory [7].

In section 7 we review the ultraviolet properties of the four-point amplitudes that were
presented in [5]. Furthermore, we enlarge the discussion and obtain the one- and two-loop
amplitude up to an overall constant using [25, 26] (see also [27–29]). For the one-loop
case, we also study N -point amplitudes and give an alternative proof of the “no-triangle
hypothesis” of supergravity [30–33]. A consequence of the theorem is that there are no
sub-diagrams with bubbles or triangles in supergravity (and Yang-Mills) at any loop. This
property is a manifest consequence of maximal supersymmetry. We also show that loop
amplitudes with fewer than four points vanish.
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In section 8, we summarise the main points and briefly consider the connection between
the first- and second-quantised pure spinor approaches to theories with maximal supersym-
metry. In the appendix the equations of motion of the different component fields are shown
to follow from the on-shell constraints and Bianchi identities for Yang-Mills in D = 10.

2 First-quantised scalar field theory

Before treating the pure spinor case, we will discuss scalar field theory in the first-quantised,
or world-line, approach with cubic vertices. We will obtain the amplitude prescription of
the theory by considering free propagation of particles and constructing the three-point
vertex. We will extend the discussion of [24] to include the (b, c) world-line ghosts. The
approach to computing loop amplitudes for the scalar theory may be modelled on bosonic
string theory. Although the ghost system in this case has rather trivial effects, it motivates
the later use of a b ghost when considering the pure spinor particle. The relationship be-
tween the structure of loop amplitudes in bosonic string theory and the pure spinor string,
through the N = 2 topological string [7], will be used in later sections to motivate a set of
rules for constructing loop amplitudes for the pure spinor particle.

The starting point is the reparameterisation invariant action for a massless scalar par-
ticle1

SB =
∫
dτ
Ẋ2

2e
, (2.1)

where Xm are the classical coordinate fields in D-dimensions, m = 1, . . . , D. The action is
invariant under reparameterisations of the world-line, τ → τ + σ (τ)

Ẋm → Ẋm (1 + ∂τσ (τ))

e → e (1 + ∂τσ (τ)) . (2.2)

where σ(τ) and ∂τσ(τ) are infinitesimal. The canonical momentum is defined in the usual
way

Pm =
δS

δẊm
=
Ẋm

e
. (2.3)

From the definition of the momenta one can determine the action in phase-space

SB =
∫
dτ
(
PẊ − e

2
P 2
)
. (2.4)

Using standard methods, one can obtain the contraction between two X’s in, for example,2

the gauge e = 1,

〈Xm(τ)Xn(τ ′)〉 = δmnG(τ, τ ′), (2.5)

1We will in this paper work in Euclidian signature, by analytically continue from Lorentzian signature.
2In this and forthcoming formulas, an overall normalisation will be ignored.
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and the equal time commutator

[Pm, Xn] = −δmn . (2.6)

The Green function, G(τ, τ ′) in (2.5), satisfies

∂2
τG(τ, τ ′) = −δ(τ − τ ′) + ρ, (2.7)

where the constant ρ arises on a compact “skeleton” diagram in order to cancel a zero
mode of the delta function.

We need to take care of the infinite dimensional gauge group generated by the repa-
rameterisation invariance. This can be achieved in a covariant way by introducing a set of
fermionic (b, c) ghosts. Consider therefore the partition function

Z[Jm] =
∫
DXDPDe

Vrep
e−SB+

R
dτ XmJm , (2.8)

where Vrep is the volume of the gauge group. The moduli dependence is incorporated in a
world-line einbein e. The integration over this field can be written as De = dTDσ, where
Dσ is the integration over the reparameterisation group and dT the integration over the
moduli. Fixing the gauge e = T and parameterising the line as 0 ≤ τ ≤ 1 one obtains

Z[Jm] =
∫
dT

∫
DX DP DbDc

(∫ 1

0
dτ b∂T (e)

)
e−SB−

R
dτ T bċ+

R
dτ XmJm

=
∫
dT

∫
DXDP DbDc

(∫ 1

0
dτ b

)
e−SB−

R
dτ T bċ+

R
dτ XmJm . (2.9)

Later expressions are simplified by making a reparameterisation of the line so that the
dependence on the modulus is incorporated in the integration limits

Z[Jm] =
∫
dT

∫
DXDP DbDc

(∫ T

0

dτ

T
b

)
e−SB−Sgh+

R
dτ XmJm , (2.10)

where Sgh ≡
∫
dτ bċ. From the action one can obtain the equal time commutator3

[b̂, ĉ] = 1, (2.11)

where b̂, ĉ are fermionic operators.4 The (b, c) ghosts can be thought of as the zero mode
components of the ghost system for the bosonic string. The vacuum is two-fold degenerate
and satisfies

c |↓〉 = |↑〉 c |↑〉 = 0

b |↑〉 = |↓〉 b |↓〉 = 0

〈↑ |↓〉 = 1. (2.12)

3[, ] denotes the graded commutator.
4In the following the hats will be suppressed when this cause no confusion.
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The theory is invariant under BRST transformations generated by a BRST charge propor-
tional to the Hamiltonian

Q = cH

=
1
2
cP 2. (2.13)

The states in the cohomology of (2.13) are

|km, ↓〉 = eikX |0, ↓〉 k2 = 0

|km, ↑〉 = eikX |0, ↑〉 k2 = 0 , (2.14)

where the second set of states is projected out using the physical state condition b |phys.〉 =
0. Observe that since we are in an Euclidian signature the eigenvalue of Pm is purely imag-
inary5

Pm |km, ↓〉 = −ikm |km, ↓〉 . (2.15)

The eigenstates above have been described in the Schrödinger picture, where operators and
eigenstates are time independent. The operators and eigenstates in Heisenberg picture are
related by a canonical transformation

|A; τ〉 = e−τH |A〉
A(τ) = e−τHAeτH . (2.16)

As the Hamiltonian for the ghost system is zero, the ghosts are locally constant and
only depend on the order in which the ghosts are inserted on the line. Therefore, integra-
tion over ghosts reduces to a straightforward Grassman integral. Furthermore, we will find
that although the ghost insertions have rather trivial consequences in the case of the scalar
particle they demonstrate the manner in which the number of b ghost insertions is related
to the number of integrated and unintegrated vertex operators. This will be of use later
in our discussion of the pure spinor particle. We need to determine the propagator which
map a state at proper time 0 to proper time T . The propagator can be obtained from
the partition function in (2.10) by evaluating the integrand of the modulus T between two
momentum eigenstates and setting Jm = 0

P (pf , bf , pi, bi;T ) =
〈
pf , bf

∣∣∣∣∫ T

0

dτ

T
b̂ eTĤ

∣∣∣∣ pi, bi〉
=
〈
pf , bf ;T

∣∣∣ b̂ ∣∣∣ pi, bi; 0
〉

= δ (bf − bi) δ (pf − pi) bi e−
T
2
p2i , (2.17)

where we have introduced the state |b〉 = |↓〉+ |↑〉 b and its dual 〈b| = b 〈↑|− 〈↓|. Note that
these states satisfy

b̂ |b〉 = |b〉 b
5The sign is chosen to match the theory in Lorentzian signature.
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Figure 1. The scalar vertex 〈VB ; τ | where the arrows on each line indicate the direction of increasing
proper time.

〈b| b̂ = −b 〈b|〈
b′
∣∣ b〉 = b′ − b = δ(b′ − b) . (2.18)

The operator sand-wedged between the the initial and final state in (2.17),

P (T ) = b̂, (2.19)

projects out the unphysical states in the propagator. This also demonstrates that each
propagator has a b insertion. This b ghost is connected with the existence of one modulus,
which is the length of the propagator.

The construction of multi-loop amplitudes to be considered later, will involve attaching
external vertex operators to propagators in skeleton (or vacuum) diagrams. Each external
vertex operator describes absorption of an external physical state carrying momentum k

(k2 = 0) by a state propagating in the skeleton. These operators can be obtained from
a three particle off-shell vertex 〈VB; τ | from which the physical three-point amplitude is
obtained by contracting with three physical states. Consider now the construction of
the three particle off-shell vertex. A natural condition to impose is locality so that the
interaction takes place at one point in space-time. This interaction point is integrated
leading to conservation of momentum at the vertex. One additional condition is that the
vertex should be BRST invariant. Thus, the BRST charge should be conserved at the vertex

3∑
j=1

〈VB; τ |Qj = 0 , (2.20)

where Qj is the BRST charge acting on the j’th leg. In the above equation we have used
the sign convention in figure 1, where arrows denote increasing proper time and the index
on the BRST charge labels the different legs of the vertex.

As with the physical states, these conditions are not sufficient to construct the vertex
and one has to impose additional conditions on the ghost coordinates,

〈VB; τ | cj = 0 , j = 1, 2, 3 , (2.21)

which constrain the vertex to be in the up-state on all legs. This implies that 〈VB; τ |Qj = 0
for each j separately.
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(a) (b)

Figure 2. (a) The function describing absorption of one physical state with momentum kr (k2
r = 0)

of the three-point vertex. (b) The propagator absorbing N physical particles evaluated between
two general states with momenta pi and pf .

The vertex operator describing a physical state of momentum kr (k2
r = 0) that is

attached to a propagator in a skeleton diagram is obtained by contracting one of the legs
of 〈VB; τ | by |kr, ↓; τ〉 (see figure 2(a)), giving

〈VB; τ | kr, ↓; τ〉 =
∫
|x, ↑; τ〉 dDx eikrx(τ) 〈x, ↑; τ |

=
∫
|x, c; τ〉 dDx c dc eikrx(τ) 〈x, c; τ | ,

= ĉeikrX(τ)

∫
|x, c; τ〉 dDx dc 〈x, c; τ | ,

= U0(kr, τ)I, (2.22)

where I is the identity operator. In this expression we have used

〈x, ↑; τ |kr, ↓; τ〉 = eikrx, (2.23)

and introduced the state |c〉 = |↑〉+ |↓〉 c and its dual 〈c| = c 〈↓| − 〈↑| satisfying

ĉ |c〉 = |c〉 c
〈c| ĉ = −c 〈c|〈
c′ | c〉 = δ(c′ − c) = c′ − c . (2.24)

The operator U0(kr, τ) in (2.22) is

U0 (kr, τ) = ĉeikrX(τ), (2.25)

which satisfies [Q,U0(kr, τ)] = 0.
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The integrated vertex operator can be obtained from U0(kr, τ) by attaching the oper-
ators P to the legs one and three in figure 2(a),∫ T

0
dτ P(T − τ)U0(kr, τ)P(τ) =

∫ T

0
dτ b c eikrX(τ) b

=
∫ T

0
dτ V0(kr, τ) b . (2.26)

We have now constructed the integrated vertex operator

V0(k, τ) = [b, U0(k, τ)]

= eikX(τ) . (2.27)

The integrated vertex also satisfies [Q,V0(k, τ)] = [H,U0(k, τ)].
This generalises to the situation in which several external states are absorbed by a

propagator in the skeleton. For example, N vertex operators attached to a line of length
T in a given order,

N∏
r=1

∫ τr−1

0
dτr Bj ({kr}, {τr};T ) =

N∏
r=1

∫ τr−1

0
dτr P(T − τ1)

N∏
r=1

U0(τr, kr)P(τr − τr+1)

=
N∏
r=1

∫ τr−1

0
dτr b

N∏
r=1

(
c eikX(τr)b

)
=

N∏
r=1

∫ τr−1

0
dτr

(
N∏
r=1

eikX(τr)

)
b

=
N∏
r=1

∫ τr−1

0
dτr

(
N∏
r=1

V0(τr, kr)

)
b , (2.28)

where τN+1 = 0 and τ0 = T . In the picture where one use the integrated form of the
vertices, one can integrate over the whole line, which describe all different distributions of
the external vertices.

In constructing loop diagrams it will be useful to define a basic bolding block, Bj , de-
scribing an internal line, labelled j, of length Tj to which N vertex operators are attached at
position τ1, . . . , τN . This is defined by the matrix element of the integrand of (2.28) between
two general states of momenta pi and pf with ghost content bi and bf (see figure 2(b)),

Bj (pf , bf , pi, bi, {kr}, {τr};Tj) = 〈pf , bf ;Tj |
N∏
r=1

V0(τr, kr)b |pi, bi; 0〉 . (2.29)

For the corresponding expression in the unintegrated picture, we will choose a different
parameterisation. The position of the r’th vertex operator is parameterised by

∑r
s=1 τs

and the length of the propagator between the two general momentum states is
∑N+1

s=1 τs.
Then the corresponding expression in the unintegrated picture is

Bj (pf , bf , pi, bj , {kr}, {τs}) =

〈
pf , bf ;

N+1∑
s=1

τs

∣∣∣∣∣b
N∏
r=1

{
U0

(
r∑
s=1

τs, kr

)
b

}∣∣∣∣∣ pi, bi; 0

〉
.(2.30)
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Using this parameterisation will make the integration over the moduli more transparent.
We will now give a general discussion of N -point amplitudes with L loops. The com-

putation can be split up into several steps. First one chooses a particular L-loop skeleton
diagram, denoted FL, and performs the functional integral with fixed moduli and fixed
positions of the external vertices on the lines of the skeleton

IFL ({kr}, Tj , τr) ≡

〈
N ′∏
r=1

V0 (kr, τr)
N∏

r=N ′+1

U0 (kr, τr)

〉
FL

≡
∫
DX DP DcDb

M∏
j=1

bj
N ′∏
r=1

V0 (kr, τr)
N∏

r=N ′+1

U0e
−SB−Sgf , (2.31)

where N ′ is the number of integrated vertex operators, N−N ′ is the number of unintegrated
vertex operators6 and M is the number of moduli. bj denotes the insertion of the b ghost
on line j in the skeleton. The result of the functional integral is a function, IFL , that is to
be integrated over the positions of the integrated vertices and the moduli. This gives the
amplitude corresponding to a particular skeleton

A
(FL)
0 (sij) ≡

∫
dT1 . . . dTM

∫
FL

N ′∏
j=1

dτr IFL ({kr}, Tj , τr) , (2.32)

where
∫
FL
dτr ≡

∑M
j=1

∫ Tj
0 dτr denotes the integral around the whole skeleton. Here sij are

the Mandelstam invariants, which can be constructed from the N external momenta. To
get the full amplitude with L loops one has to sum the different L-loop skeletons

A
(L)
0 (sij) ≡

∑
FL

A
(FL)
0 (sij) . (2.33)

The amplitude above is constructed using the picture where as many b ghosts as possible
has been contracted, the so-called integrated picture. One can do this in the unintegrated
picture as well. In the following we will evaluate the functional integral (2.31). Amplitudes
with more than one loop are constructed by gluing together 3L − 3 operators defined
in (2.29) with 2L− 2 internal vertices. The one-loop amplitude is special since the ends of
the propagator are glued together using an external unintegrated vertex operator.

The functional integral is expressed in terms of the Green function by an expression
of the standard form〈

N ′∏
r=1

V0 (kr, τr)
N∏

r=N ′+1

U0 (kr, τr)

〉
FL

= 〈1〉FL δ

(∑
r=0

kr

)
e−

P
r<s krksG(τr,τs), (2.34)

where 〈1〉FL denote the expectation value of the skeleton amplitude. Here N − N ′ is one
for the tree and one-loop and zero for all other cases.

6The tree diagrams are special since three-point vertices couple to one or two external states (or three

for the three-point amplitude). N −N ′ is one for the tree and one-loop and zero for all other cases.
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(a) (b) (c)

Figure 3. The figures describing the s-, t- and u-channel of the four-point function. Arrows indicate
increasing proper time and the numbers indicate the particle. Figure (a), (b) and (c) illustrate the
s-, t- and u-channels, respectively.

2.1 Scalar tree amplitudes

The simplest amplitude to consider is the three-point tree amplitude. This is the vertex
〈VB; τ | multiplied with three physical states. As the only non-trivial property of the vertex
is momentum conservation, the amplitude equals

A
(Tree)
0 ({kr}) = δ

( 3∑
r=1

kr

)
. (2.35)

Using the equivalent prescription in (2.22) one gets

A
(Tree)
0 ({kr}) =

∫
dDx dc c ei(

P3
r=1 kr)x, (2.36)

which clearly reduces to (2.35) and also gives some insight into the correspondence with
the string expression. A crucial difference from string theory is that here there is only a
single mode of c, where in string theory c has three zero modes (corresponding to the three
conformal killing vectors of the spherical world-sheet). A third prescription, which can be
used to obtain amplitudes with more external particles, is7

A
(Tree)
0 ({kr}) = lim

Ti→∞

∫
dDx dc 〈V0 (k1, T1)V0 (k2, T2)U0 (k3, T3)〉 . (2.37)

At the vertex, we have τ = 0. Observe that the vertices V0 (k2, T2) and V0 (k3, T3) should
be thought of as unintegrated vertex operators without a c ghost. Using that the world-line
Green function for tree diagrams has the form

GTree

(
τ, τ ′

)
= −1

2

∣∣τ − τ ′∣∣ , (2.38)

and (2.34), one obtains (2.36).
To construct the four-point tree amplitude, we use the third description of the on-shell

three-point amplitude. This can be thought of as a three-point amplitude in (2.37) to which
7The values of Ti are arbitrary, the choice here simplifies the generalisation to more external particles.
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(a) (b) (c)

Figure 4. (a) A one-particle irreducible skeleton. (b) A one-particle reducible skeleton that
consists of two sub-diagrams with loops. (c) A one-particle irreducible skeleton with a three-point
tree sub-diagram attached. Only (a) and (b) will be considered in this paper.

a second vertex has been added. The position of the second vertex (involving the fourth
particle) should be integrated over all the three legs of the three-point vertex (see figure 3)8

A
(Tree)
0 (s, t, u) = lim

Ti→∞

3∑
j=1

∫ Tj

0
dτ 〈U0 (k1, T1)V0 (k2, T2)V0 (k3, T3)V0 (k4, τ)〉 . (2.39)

At the first vertex, we have τ = 0. In the above equation we have defined the Mandelstam
invariants s = −k1 · k2, t = −k1 · k4 and u = −k1 · k3. These satisfy s + t + u = 0 as the
particles involved are massless. Using the Green function for the tree (2.38) and (2.34),
the matrix element (2.39) can be reduced straightforwardly to9

A
(Tree)
0 (s, t, u) =

∫ ∞
0

dτ

∫
dDx dc c ei(k1+k2+k3+k4)x

[
eτt + eτu + eτs

]
= −δ

(
4∑
r=1

kr

)
(1/s+ 1/t+ 1/u)

=
s2 + t2 + u2

2stu
δ

(
4∑
r=1

kr

)
. (2.40)

Note that in order for the τ integral to converge the three terms in the integrand have been
defined by separate analytic continuations to the regions s < 0, t < 0 and u < 0.

For tree amplitudes with more external particles, one can proceed iteratively. The
N -point amplitude is constructed by adding a vertex to a (N − 1)-point tree and summing
over all non-equivalent possible positions of the vertex. As we are not interested in tree am-
plitudes with more than four external particles, we will not construct explicit expressions
for these amplitudes.

2.2 Scalar loop amplitudes

Our discussion of scalar loop amplitudes will be restricted to diagrams which are either
one-particle irreducible (as in figure 4(a)) or, diagrams that consists of loop diagrams joined

8The choice of Ti here unify the construction of the s-, t- and u-channel.
9As usual, we are ignoring overall constants.
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Figure 5. The unique one-particle irreducible two-loop skeleton diagram. The amplitude is ob-
tained by attaching vertex operators to points on the lines, which are integrated around the diagram.
The circular arrows denote the different BI -cycles. The propagators in the skeleton are numbered
from 1 to 3 and the arrows on each line indicate the direction of increasing proper time along the line.

by a particle propagator (as in figure 4(b)). We will not consider diagrams in which a tree
diagram is attached to a loop (as in figure 4(c)).

The one-loop amplitude is special and will be discussed first. This amplitude can be
constructed straightforwardly from (2.29) involving N − 1 external physical particles. The
loop is obtained by periodically identifying 0 and T and gluing together the ends with an
unintegrated vertex operator coupled to the N ’th external particle,

A
(1)
0 (sij) =

∫ ∞
0

dT

∫ T

0

N−1∏
r=1

dτr

∫
dDp db

×〈p, b;T |
N−1∏
r=1

V0 (kr, τr) b U0 (kr, 0) |p, b; 0〉

=
∫ ∞

0
dT

∫ T

0

N−1∏
r=1

dτr

∫
dDp dDx dc db b c ei(

PN
r=1 kr)xe−

p2

2
T e−

P
r<s krksG(τr,τs)

= δ

(
N∑
r=1

kr

)∫ ∞
0

dT

TD/2

∫ T

0

N−1∏
r=1

dτr e
−

P
r<s krksG(τr,τs) . (2.41)

Here we have used the integrated form of the vertices. The Green function for the one-loop
amplitude satisfies

∂2
τG(τ, τ ′) = −δ(τ, τ ′) + 1/T, (2.42)

which has the solution

G(τ, τ ′) = −1
2

∣∣τ − τ ′∣∣+
(τ − τ ′)2

2T
. (2.43)

The Green function for the N -point amplitude with L > 1 loops was determined in [24]
by using an electric circuit analogue. This involves a basis of BI -cycles defined by the L
inequivalent internal counter-clockwise loops. An example at two loops is shown in figure 5.
Using the BI -cycles one can define the non-trivial one-forms of the skeleton,

ωI ≡ aI
idτi, (2.44)
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where

aI
i ≡


1 BI in the same direction as dτi
−1 BI in the opposite direction as dτi
0 else

. (2.45)

The period matrix of the skeleton is defined in terms of the one-forms ωI and the BI -cycles
by

ΩIJ ≡
∮
BI

ωJ . (2.46)

Observe that the period matrix is symmetric, ΩIJ = ΩJI , as can be seen from the relation∮
BI
ωJ =

∫
FL

(ωIωJ/dτ). One can compute the entries of the period matrix in a simple way
for any planar skeleton. The diagonal element, ΩII , are equal to the length of the BI -cycles
and the off-diagonal entries, ΩIJ , are equal to minus the length of the lines common to the
cycles BI and BJ . For non-planar skeletons, the computation of the non-diagonal pieces
is more complicated since two different BI -cycles can have the same direction on a line,
giving a plus sign. The determinant of the period matrix is important in the computation
of the skeleton amplitudes and is denoted by ∆ ≡ det ΩIJ . These expressions are closely
related to those that arise in discussing Riemann surfaces, which are central to computa-
tions of string theory amplitudes [34, 35]. In the point particle case the formalism can be
simplified since the integrand is constant on each line and the integral reduce to simple
matrix multiplication.

Consider now the L > 1 amplitudes. One here glue together the ends of the propaga-
tors in momentum space with the vertex 〈VB; τ |. This will introduce a delta function for
the momenta,∫

dDx 〈VB; τ |
(∣∣p1

f , b
i
f ; τ
〉 ∣∣p2

f , b
i
f ; τ
〉 ∣∣p3

f , b
i
f ; τ
〉)

=
∫
dDx ei(p

1
f+p2f+p3f)x

= δ
(
p1
f + p2

f + p3
f

)
, (2.47)

here determined when all propagators are in the final state. This we will call an internal
vertex.

The components in the construction are 3L − 3 propagators in (2.29), labelled j =
1, . . . , 3L−3, giving a total of N external particles. Furthermore, there are 2L−2 internal
vertices, labelled l = 1, . . . , 2L−2. The ends of the propagators can be glued together with
vertices in a variety of ways described by matrices {df}lj and {di}lj . The matrix {df}lj is
equal to one if the propagator j ends on the vertex l and is zero otherwise. In the same
way the matrix {di}lj is defined to be one if the propagator j begins on vertex l and zero
otherwise. Consider the picture where all the vertices are integrated. The amplitude with
L loops is obtained by integrating over all positions of the external vertices and over the
lengths of the 3L − 3 propagators and summing over all different choices of the matrices
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{df}lj and {di}lj . This results in an expression for the amplitude of the form

A
(L)
0 (sij) =

∑
{df}lj ,{di}lj

∫
dT1 . . . dT3L−3

∫
FL

N∏
r=1

dτr

∫ 3L−3∏
j=1

dDpjf d
Dpji db

j
f db

j
i

×
2L−2∏
l=1

δ
(
{df}ljp

j
f − {d

i}ljp
j
i

) 3L−3∏
j=1

Bj

(
pjf , b

j
f , p

j
i , b

j
i ;Tj

)
. (2.48)

Here we have suppressed the vertex dependence of Bj for simplicity. In this equation,∑
{df}lj ,{di}lj

denotes the sum over all non-equivalent matrices. This is equivalent to the
sum over all different skeletons with L loops. There is a total of 3L − 3 insertions of b
ghosts since the functions Bj are linear in b.

Let us now evaluate (2.48). The ghost part of the amplitude is trivially integrated out
since ∫

dbi dbf 〈bf | b |bi〉 =
∫
dbi dbf δ(bf − bi) bi =

∫
db b = 1. (2.49)

Explicitly performing the functional integral (2.48) using (2.29) and (2.34) gives

A
(L)
0 (sij) =

∑
FL

∫
dT1 . . . dT3L−3

∫
FL

N∏
r=1

dτr

×
∫ 3L−3∏

j=1

dDpjf d
Dpjid

Dx
2L−2∏
l=1

δ
(
{df}ljp

j
f − {d

i}ljp
j
i

)

×
3L−3∏
j=1

e−Tj
(pji)

2

2 δ
(
pjf − p

j
i

)
e−

P
r<s krksG(τr,τs)+i(

PN
r=1 kr)x. (2.50)

It is useful to change variables for the momentum integrals in order to make the loop mo-
menta explicit by defining pjf = `I (ωI/dτj) + p′jf and pji = `I (ωI/dτj) + p′ji . Observe that

there are 5L − 6 independent variables p′jf and p′ji . By construction, the delta functions

in (2.50) are independent of `I . Therefore, the surplus momenta variables p′ji and p′jf can
be integrated out giving

A
(L)
0 (sij) =

∑
FL

∫
dT1 . . . dT3L−3

∫
FL

N∏
r=1

dτr

∫
dDx

L∏
I=1

dD`I

×e−`IΩIJ `
J/2e−

P
r<s krksG(τr,τs)+i(

PN
r=1 kr)x

= δ

(
N∑
r=1

kr

)∑
FL

∫
dT1 . . . dT3L−3

∆D/2

∫
FL

N∏
r=1

dτre
−

P
r<s krksG(τr,τs), (2.51)

where ∆ is the determinant of the period matrix. One essential property of the amplitude
is the integration over zero modes, in the first line of (2.51) (the x and `I integrals). There
is one zero mode for each component of the coordinate field X, enforcing overall momentum
conservation. Such fields with one zero mode for each component are world-line scalars.

– 15 –



J
H
E
P
0
1
(
2
0
1
1
)
0
0
2

The coordinates `I in (2.51) are the L zero modes of the momentum, P conjugate to X,
which correspond to the loop momenta of the amplitude. Fields of this type, which have
L zero modes, are world-line vector fields. The vertex is constructed in such a manner
that world-line scalar fields have a common value at the vertex, and the components of a
world-line vector are conserved.

3 Pure spinor particle

An action for the pure spinor particle describing ten-dimensional N = 1 supersymmet-
ric Yang-Mills was introduced in [36]. This action was written down in the “minimal”-
formalism and can easily be generalised to the “non-minimal” form (introduced for the
string in [7]) by adding additional pure spinor fields to the action

SYM =
∫
dτ

(
ẊP + θ̇p+ λ̇w + w̄ ˙̄λ− sṙ − P 2

2

)
, (3.1)

written here in the gauge e = 1. The world-line fields in this action consist of the classical
superspace fields together with a set of pure spinor fields. The classical fields are the bosons,
Xm and Pm (where m = 1, . . . , 10) and the fermions θα and pα (where α = 1, . . . , 16). The
non-minimal pure spinor fields consists of the bosonic fields10 λα, wα, λ̄α and w̄α and the
fermionic field rα and sα. The coordinate fields are Xm, θα, λα, λ̄α and rα, and the corre-
sponding conjugated momentum fields are Pm, pα, wα, w̄α and sα. In the next section we
will find that the coordinate fields are world-line scalar fields and the conjugated momen-
tum fields are world-line vector fields.

The commutation relations between the various coordinates and their conjugate mo-
menta follow in the usual manner

[Pm, Xn] = −δmn ,
[
pα, θ

β
]

= −δαβ ,
[
wα, λ

β
]

= −δαβ[
w̄α, λ̄β

]
= −δαβ , [sα, rβ] = −δαβ , [dα, dβ] = −Pm (γm)αβ

[dα, Xm] = −1
2

(γmθ)α , [dα, Pm] = 0 ,
[
dα, θ

β
]

= −δαβ, (3.2)

where we have defined dα = pα + 1
2P

m (γmθ)α.
The world-line fields λα, λ̄α and rα are pure spinor fields satisfying the constraints

λγmλ = 0 , λ̄γmλ̄ = 0 , λ̄γmr = 0, (3.3)

which imply that λα, λ̄α and rα have eleven degrees of freedom. The pure spinor constraints
generates a gauge invariance of the action which acts non-trivially on the conjugated mo-
menta for the pure spinor fields

δwα = −εm1 (γmλ)α
δw̄α = −εm2

(
γmλ̄

)α − εm3 (γmr)
α

10When computing amplitudes, the non-minimal pure spinor field λ̄α should be interpreted as the complex

conjugate of the minimal pure spinor field λα [7].
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δsα = −εm3
(
γmλ̄

)α
, (3.4)

where εmi are infinitesimal vectors. One can make linear combinations of wα, w̄α and sα

that are gauge invariant. These gauge invariant combinations are

J = λw , J̄ = w̄λ̄− sr

Nmn =
1
2
wγmnλ , N̄mn =

1
2
w̄γmnλ̄−

1
2
sγmnr

S = sλ̄ , Smn =
1
2
sγmnλ̄ , (3.5)

where Nmn, N̄mn and Smn has ten linearly independent components. Writing all expres-
sions involving wα, w̄α and sα in terms of these combinations, one can strongly impose the
pure spinor constraints in computations.

Note that the Hamiltonian of the action in (3.1) is

H =
1
2
P 2 , (3.6)

so the solutions of the equations of motion of all fields other than X are locally constants.
This will be an important feature in the computation of the amplitudes in later sections.

The BRST charge for the action in (3.1) is given by

Q = λd+ w̄r , (3.7)

which is nilpotent using the pure spinor constraints. In the non-minimal formalism one
can construct a composite b ghost by mimicking the procedure in [7] of the pure spinor
superstring. The equation which the b ghost satisfies is

[Q, b] = H, (3.8)

as well as b2 = 0. The solution for the b ghost resembles the string theory expression and
is given by11

b =
Gαλ̄α(
λλ̄
) +

λ̄αrβH
[αβ](

λλ̄
)2 +

λ̄αrβrγK
[αβγ](

λλ̄
)3 +

λ̄αrβrγrδL
[αβγδ](

λλ̄
)4 , (3.9)

where [ ] denote anti-symmetrisation of the indices. Here the Gα, H [αβ],K [αβγ] and L[αβγδ]

are the zero modes of the expressions that arise for the pure spinor string in equation (3.16)
of [7],

Gα ≡ −1
2
Pm (γmd)α

H [αβ] ≡ − 1
384

γαβmnp [(dγmnpd)− 24NmnP p]

K [αβγ] ≡ 1
192

γ[αβ
mnp (γmd)γ]Nnp

11The condition b2 = 0 for the zero mode part of the string has been checked by Aisaka and Cederwall [37]

and the general case by Chandia [38].
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L[αβγδ] ≡ 1
12244

γ[αβ
mnpγ

m
qr
γδ]NnpN qr, (3.10)

which satisfy12

[Q,Gα] = λαH ,
[
Q,H [αβ]

]
= λ[αGβ] ,[

Q,K [αβγ]
]

= λ[αHβγ] ,
[
Q,L[αβγδ]

]
= λ[αKβγδ] , λ[αLβγδε] = 0. (3.11)

In the derivation above, the following gamma matrix identities has been used

1
2

(γm)βδ (γm)αγ = δβγ δ
δ
α +

1
4
δβαδ

δ
γ +

1
8

(γmn)βα(γmn)δγ

(γmnp)
αβ (γmn)γ

δ = 4
(

3δγ [α (γp)
β]δ + (γqp)γ

[α (γq)
β]δ
)
. (3.12)

For future reference, note that the b ghost involves P .
We will now construct the single-particle vertices of the theory (the three-point vertices

with one physical particle). This also follows by analogy with the case of the pure spinor
string [6]. The unintegrated and integrated vertices, denoted by UYM and VYM respectively,
are obtained from the properties

[Q,UYM] = 0

[Q,VYM] = [H,UYM] . (3.13)

One can construct these vertices in the minimal picture where the unintegrated vertices
only depend on Xm, θα and λα. The solution for the unintegrated vertex is

UYM (X, θ, λ) = λαAα (X, θ) , (3.14)

if the field Aα (X, θ) satisfies the linearised field equations of supersymmetric Yang-Mills
in ten dimensions. The field equations and θ-expansions are summarised in appendix A.
The integrated vertex operator is given (after use of the equations of motion) by

VYM (P,X, p, θ, w, λ) ≡ PmAm (X, θ)− dαWα (X, θ) +
1
2
NmnFmn (X, θ) , (3.15)

if the fields in (3.15) satisfy the linearised field equations. As we are mainly interested
in amplitudes with external gluons, it is enlightening to consider where the field strength,
Fmn, arises for the first time in the θ-expansion of the different superfields. For Aα it arises
as θ3 F , for Am it arises as θ2 F because Am ∼ DAα. For the superfield Wα it arises in θ F
as W ∼ D2Aα. Here Dα is the fermionic superderivative defined in (A.3) of appendix A.
An important observation is that there is a term in the integrated vertex operator, which
depends on the momentum. When such insertions arise in pairs they can produce contact
terms (vertices with more than three legs) in the amplitude. Since we are considering
on-shell amplitudes we will make a plane wave expansion of the fields and consider vertex
operators with fixed momentum, which will be denoted UYM (kr, τr) ≡ UYM

(
eikrX(τr), θ

)
and VYM (kr, τr) ≡ VYM

(
eikrX(τr), θ

)
.

12These properties can shown with the help of the software package GAMMA [39].
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The integrated and unintegrated vertex operators are related, up to BRST exact terms,
by the b ghost

[b, U0 (k, τ)] = V0 (k, τ) . (3.16)

However, the relation is not as simple as for the scalar particle, because the b ghost involves
the non-minimal pure spinor fields.

Standard gauge transformations of the fields, which act as δρAα = −Dαρ and δρAm =
−∂mρ, generalise to BRST transformations of the three-point vertices,

δρUYM = [Q, ρ] ,

δρVYM = [Q, [ρ, b]] + [H, ρ] . (3.17)

Note that it is possible for [φ, b] 6= 0 even if φ does not depend on the pure spinor fields
since the b ghost is a composite field. The above considerations apply to the abelian theory
but the generalisation to the non-abelian theory is straightforward by introducing colour
factors. This will be discussed in more detail in later sections.

The above vertices are constructed for the linearised theory. We may also need to
include non-linear effects, by considering how the vertex operators deform the BRST charge
and the Hamiltonian. The effect of the perturbation is to deform the free expressions of
the BRST charge and the Hamiltonian as

Q → Q− ε UYM(ε)

H → H − ε VYM(ε), (3.18)

where ε is a small parameter. The nilpotency condition of the BRST charge then implies

[Q,UYM(ε)] =
ε

2
[UYM(ε), UYM(ε)]. (3.19)

By using the form of the vertex operators, one obtain the equations of motion of N = 1
supersymmetric Yang-Mills in ten dimensions, see appendix A. The BRST invariance of
the Hamiltonian follow from the equations of motion and the properties of the b ghost.

All of the preceding can be generalised to describe maximally supersymmetric super-
gravity in ten dimensions. Mimicking the transition from the open string to the closed
string, this involves doubling all the fields in the action (3.1), apart from X and P , giving
the action

SSG =
∫
dτ

(
ẊP + θ̇d+ λ̇w + w̄ ˙̄λ− sṙ − d̂ ˙̂

θ + ŵ
˙̂
λ+

˙̄̂
λ ˆ̄w + ˙̂rŝ− P 2

2

)
. (3.20)

The new fields are the ones with a hat on them. The BRST charge for this theory is

Qtot = λd+ w̄r + d̂λ̂+ r̂ ˆ̄w , (3.21)

which decomposes into two separate pieces, Q and Q̂, corresponding to the unhatted and
hatted fields. There are various different ways to construct a b ghost, btot, for the model,
but the most natural way is to construct a b ghost which also decompose into a sum of two
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terms, btot = b + b̂, one involving the unhatted fields and one involving the hatted fields.
This construction also resembles that of the pure spinor string. The generalisation of (3.9)
implies that the ghost satisfy

[Qtot, btot] = [Q, b] + [Q̂, b̂] = H, [Qtot, b− b̂] = [Q, b]− [Q̂, b̂] = 0, (3.22)

the second condition corresponds to the level matching condition for the string. Observe
that the ghost for one of the sectors of the theory is half of the corresponding expression
for Yang-Mills, see (3.9).

The construction of the unintegrated and integrated vertices are a bit different in the
supergravity case since the BRST charge and b ghost decompose into two parts. As for the
string, we need to consider integrated and unintegrated vertex operators. These satisfy

[Q,USG] = [Q̂, USG] = 0 [Q,VSG] =
1
2

[H, K̂]

[Q̂, VSG] = −1
2

[H,K] [Q, K̂] = [Q̂,K] = 0

[Q̂, K̂] =
1
2

[H,USG] [Q̂,K] =
1
2

[H,USG]. (3.23)

From these conditions one can determine that the unintegrated vertex operator has the form

USG(X, θ, θ̂, λ, λ̂) = λαAα
β(X, θ, θ̂)λ̂β , (3.24)

if the fields satisfy the linearised field equations of type IIA supergravity13 [40, 41]. Sim-
ilarly, the integrated vertex operator is of the form14

VSG(P,X, p, θ, p̂, θ̂, w, λ, ŵ, λ̂) = PmGmnP
n + dαW

α
β d̂

β − dαÊαmPm − PmEmαd̂α +

+
1
2
NmnΩ̂mn;pP

p +
1
2
PmΩm;npN̂

np − 1
2
NmnĈmn;αd̂

α

−1
2
dαC

α
mnN̂

mn +
1
4
NmnSmn;pqN̂

pq , (3.25)

if the fields satisfy the linearised type IIA field equations. We will consider amplitudes
with external gravitons, so it is of interest to note the lowest components of the θ- and θ̂-
expansion of the superfields in which the Riemann tensor arises. In particular, the Riemann
tensor arises in the θ3 θ̂3R component of Aαβ and in the θ2 θ̂2R component of Gmn as G ∼
D D̂A. Furthermore, the bispinor Wα

β contains the curvature in the term θ θ̂R because
W ∼ D D̂G. The fields Êαm and Emα contains the curvature in the term θ θ̂2R and θ2 θ̂R,
respectively. Here D̂α is the fermionic superderivative for θ̂α defined in the same way as Dα.
An important observation is that there are momentum factors P in different parts of the ver-
tex operators. When they arise in pairs they can generate contact terms in the amplitude.

13One can also describe IIB supergravity by changing the hatted fields to have the same chirality as the

unhatted ones.
14The dependence of the classical superfields has been suppressed on the right-hand side for the economy

of space.
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We can also determine the “intermediate” fields in (3.23)

K̂(P,X, θ, p̂, θ̂, λ, ŵ, λ̂) = λα
(
AαmP

m − Eα;β d̂
β +

1
2

Ωα;mnN̂
mn

)
K(P,X, p, θ, θ̂, w, λ, λ̂) =

(
PmAm

β − dαEα;β +
1
2
NmnΩmn

β

)
λ̂β, (3.26)

where the fields involved satisfy the linearised field equations of type IIA supergravity. The
vertex operators and intermediate fields satisfy the relations

[b, USG] = K̂, [b̂, USG] = K,

[b, [b̂, USG]] = VSG,
1
2

(
[b, K̂]− [b̂, K]

)
= VSG, (3.27)

up to BRST exact terms because the b field involve non-minimal fields.
It is also essential to consider non-linear effects in the above fields. The vertices deform

the free theory

Qtot → Qtot −
ε

2

(
K(ε)− K̂(ε)

)
H → H − ε VSG(ε), (3.28)

where ε is infinitesimal. From the nilpotency condition of the BRST charge it follows that

[Qtot,K(ε)− K̂(ε)] =
ε

4
[K(ε)− K̂(ε),K(ε)− K̂(ε)]. (3.29)

Using the relation between K, K̂ and USG in (3.27) one obtains

[USG(ε), Qtot] =
ε

4
[USG(ε), [b− b̂, USG(ε)]], (3.30)

up to BRST exact terms. This is the equation, which the vertex operators satisfy if one
includes non-linear effects. Observe at this stage one cannot exclude the presence of higher-
point, fundamental, vertices. But as we will see in section 5, these are not present within
perturbation theory.

In the next section we will define the perturbation theory of the pure spinor particle
by extension of the construction of the scalar theory. This makes use of the connection
between the N = 2 topological string and the pure spinor string [7].

4 Amplitude prescription for the pure spinor particle

In this section we will discuss the multi-loop four-particle amplitude for the pure spinor
particle. A web of relations between different theories motivates the form of the amplitude.
First, the non-minimal pure spinor string is related to the N = 2 topological string [7].
The amplitudes of the latter are modelled on the bosonic string. Furthermore, as we have
shown in section 2, the amplitude prescription of the scalar particle is closely related to
the bosonic string.15 Therefore, we conjecture that the form of the amplitude of the pure

15In principle, it is the tachyonic part of the bosonic string.
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(a) (b)

Figure 6. (a) The three-point vertex with colour factor. (b) A two-loop amplitude

spinor particle is closely related to that of the scalar particle. The consistency will be
checked by an analysis of BRST invariance. In the Yang-Mills case, we conjecture a form
for the propagator, motivated by the bosonic particle. The internal vertex is constructed by
imposing locality, which is enough for the vertex to be BRST invariant. For supergravity,
the propagator and the internal vertex are determined by mimicking the relation between
the open string and the closed string. In the end, we will reproduce the expressions in [5]
but will learn much about the structure of the amplitudes, which will make the BRST
invariance more transparent.

We will consider the Yang-Mills and supergravity theories separately since there are
essential differences between them. These differences are important in discussing the BRST
invariance of the amplitude, which will be studied in section 5.

The amplitudes obtained are generalisations of those presented for the tree and one-
loop amplitude in [36, 42].

4.1 Yang-Mills

To simplify the expressions we will denote any coordinate fields by φ and any momentum
field by Φ. The propagator is the operator which takes a particle with momentum Φi;bi at
T = 0 to Φf ;bf at time Tj . Here bi and bf denote the colour factors of the different states.
By analogy with the expression for the scalar particle the obvious expression for the pure
spinor particle propagator is〈

Φf ;bf ;Tj |N (φ,Φ) b (φ,Φ)|Φi;bi ; 0
〉

(4.1)

where we have emphasised that the b ghost is not a fundamental field. Observe that we also
have inserted a regulator, N , to regularise possible singularities. We impose the condition
that the regulator is BRST exact and it has an expansion of the form

N (φ,Φ) = 1 + ε

∫ Tj

0
dτ [Q,χ(τ)] +O(ε2). (4.2)

Since there is an odd number of fermionic fields and one insertion of a b ghost, the operator
in (4.1) is bosonic.

Let us now discuss the colour factors of the amplitude. First, we can consider a partic-
ular ordering of the external particles. The complete amplitude is determined by summing
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over all permutations of the external particles. We will usually consider the ordering in
figure 6(b), where the amplitude is a function of s and t. Each vertex contains a factor of
the structure constant, fabc, where one of the indices has been raised by the Killing form
making it totally anti-symmetric. The convention we use is that the indices are placed in
clockwise order (see figure 6(a)). Each propagator has an insertion of the inverse of the
Killing form, which contracts the indices in the vertices. One example of a colour factor
is fa1b1b2f b3b4b5fa2b7b6fa3b9b8f b10b11b12fa4b14b13κb1b3κb4b6κb7b8κb9b10κb5b12κb11b13κb2b14 for the
amplitude in figure 6(b). This can be rewritten in terms of single- and double-trace con-
tributions

N2
c (Tr[ta1ta2ta3ta4 ] + Tr[ta1ta4ta3ta2 ])AP (s, t)

+NcTr[ta1ta2 ]Tr[ta3ta4 ]ANP(s, t) +O(N0
c ) , (4.3)

where we have expanded the expression for a large number of colours, Nc. The leading
term is the planar single-trace contribution, AP (s, t), which is proportional to NL

c . The
next to leading term is the double-trace contribution, ANP(s, t), which is proportional to
NL−1
c . In this section we will not be concerned about factoring out the colour, although

analysing the relative behaviour of planar and non-planar contributions will be important
later when we discuss the leading low energy behaviour of the single-trace and double-trace
contributions.16

We will now construct the bolding blocks for the amplitudes. Using the above, one can
obtain expressions for the propagator that absorbs N external particles. From section 2 we
know that there are two different approaches. In the unintegrated picture the propagator is

BU
j

(
φ,Φf ;bf ,Φi;bi , {kr}, {τs}

)
=

〈
Φf ;bf ;

N+1∑
s=1

τs

∣∣∣∣∣
N∏
r=1

(bU rYM)N b

∣∣∣∣∣Φi;bi ; 0

〉
. (4.4)

The index r of the vertex operator U rYM here denotes the momentum, position and colour.
In the integrated picture there is only a single b ghost insertion. This b commutes with

the integrated vertices and can therefore be located anywhere. We will make the choice
that the b ghost is inserted to the right of the vertex operators, so that

BI
j

(
φ,Φf ;bf ,Φi;bi , {kr}, {τr};T

)
=
〈
Φf,bf ;T

∣∣ N∏
r=1

V r
YMN b |Φi; 0〉 . (4.5)

By using the relation between integrated and unintegrated vertex operators one can
show that (4.4) and (4.5) are equivalent up to a BRST exact term.17 The BRST invariance
of the amplitude is easiest to see in the first picture, but it is easy to determine the low
energy properties of the amplitude using the second approach. Since BU

j ∼ BI
j , in the

following it will not be necessary to keep the superscript I or U .

16Although the large-Nc limit is not necessary, it will be used in section 7 as it gives an intuitive picture

of the difference between the single- and double-trace operators.
17Note that we have chosen the order τr−1 ≥ τr for the integrated propagator. If we were to integrate

over all orders it would be necessary to include a sum over all permutations in the unintegrated picture.

– 23 –



J
H
E
P
0
1
(
2
0
1
1
)
0
0
2

In the previous section we determined the single-particle vertices of the theory i.e.
the absorption of a single physical state from the propagator. These vertices were not
constructed from a general three-point vertex. We also need to consider the general three-
point vertices, which arise as internal vertices in loops. For the vertex, denoted by 〈VYM; τ |,
we only need to impose locality — momentum conservation follows from integration over the
interaction point. Furthermore, the colour factor of the vertex is f b1b2b3 , where the colour
indices are distributed in a clockwise direction, see figure 6(a). A consequence of imposing
locality at the vertex is that the coordinate fields are world-line scalars and the momentum
fields are world-line vectors as will be shown later in the section. We will in the construction
of the amplitudes be interested in the vertex contracted with three momentum states∫

dφ 〈VYM; τ |
(∣∣Φ1

b1 ; τ
〉 ∣∣Φ3

b3 ; τ
〉 〈

Φ3
b3 ; τ

∣∣) =
∫
dφ 〈VYM; τ |

(∣∣Φ1
b1 ; τ

〉 ∣∣Φ3
b3 ; τ

〉 ∣∣−Φ3
b3 ; τ

〉)
= δ

(
Φ1
b1 + Φ2

b2 − Φ3
b3

)
. (4.6)

Our sign convention assigns a plus sign to an incoming momentum and a minus sign to an
outgoing momentum. As the number of fermionic fields involved are odd,18 the delta func-
tion is fermionic and an odd function. This delta function also includes the colour factor
of the vertex. No other conditions need to be imposed on the vertex in order to conserve
the BRST charge (unlike the situation in the string calculation in [43] where additional
conditions were imposed to ensure that the vertex conserves supersymmetry). This follows
from the form of the BRST charge given in (3.7).

We will first consider loop amplitudes. We will here consider the same set of diagrams
as those described in section 2 and figure 4(a)-(c). We start with the special case of one
loop. The amplitude is constructed by again generalising the procedure for the scalar
particle in section 2. In the integrated picture one use the operator in (4.5)

A
(1)
YM(sij) =

∫ ∞
0

dT

∫ T

0

N−1∏
r=1

dτr

∫
dΦ κcd 〈Φc;T | N

N−1∏
r=1

V r
YM b UNYM |Φd; 0〉 . (4.7)

In the unintegrated picture one has to integrate over the length of the propagators con-
necting the unintegrated vertices as well as summing over all different permutations of the
first N − 1 external particles

A
(1)
YM(sij) =

∑
σ∈SN−1

∫ ∞
0

N∏
r=1

dτr

∫
dΦ κcd

〈
Φc;

N∑
s=1

τs

∣∣∣∣∣N
N∏
r=0

(
b U

σ(r)
YM

)∣∣∣∣∣Φd; 0

〉
. (4.8)

As described earlier, the two different prescriptions are equivalent if the amplitudes are
BRST invariant. We introduce both pictures as it is easier to prove BRST invariance in
the unintegrated picture (4.8), but the low energy properties are more transparent in the

18The fields rα and sα each have eleven degrees of freedom.
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latter picture (4.7). We note that the expression (4.7) is equal to the functional integral

A
(1)
YM(sij) =

∫ ∞
0

dT

∫ T

0

N−1∏
r=1

dτrKYM ({kr}, T, τr)

KYM ({kr}, T, τr) =
∫
DΦDφN b

N−1∏
r=1

V r
YM (kr, τr)UNYM(kN , 0) , (4.9)

where we have separated the integration of the moduli and position of the vertex operators
and the functional integration of the fields for fixed values of the moduli and position of
the vertices.

We will find in the next section, that the above prescription has to be generalised in
order to be consistent with BRST invariance. This generalisation can be expressed in one
of two ways — either by including higher-point external vertices or by the addition of trees
attached to the one-loop diagram.

For amplitudes with more than one loop, the N -point amplitude is constructed by
using 3L − 3 propagators with a total of N vertex operators and 2L − 2 internal vertex
operators. In the unintegrated picture the result is

A
(L)
YM(sij) =

∑
{df}lj ,{di}lj

∑
N

∫ ∞
0

3L−3+N∏
r=1

dτr

∫ 3L−3∏
j=1

dΦj
f dΦj

i

×
2L−2∏
l=1

δ
(
{df}ljΦ

j
f ;bf
− {di}ljΦ

j
i;bi

) 3L−3∏
j=1

Bj

(
φ,Φj

f ;bf
,Φj

i;bi

)
, (4.10)

where
∑
{df}lj ,{di}lj

denotes the sum over all different choices of {df}lj and {di}lj and
∑

N

denotes the sum over all different distributions and permutations of external vertices. This
equation will be the basis of the study of BRST invariance of the amplitude.

In the unintegrated picture, the amplitude is

A
(L)
YM(sij) =

∑
{df}lj ,{di}lj

∫ ∞
0

dT1 . . . dT3L−3

∫
FL

N∏
r=1

dτr

∫ 3L−3∏
j=1

dΦj
f dΦj

i

×
2L−2∏
l=1

δ
(
{df}ljΦ

j
f ;bf
− {di}ljΦ

j
i;bi

) 3L−3∏
j=1

Bj

(
φ,Φj

f ;bf
,Φj

i;bi
, Tj

)
. (4.11)

To match this with the expression of the functional integral in [5], we observe that the sum
over all inequivalent {df}lj and {di}lj matrices is equal to the sum over all different skeleton
graphs. Therefore, the amplitude prescription in (4.11) is equal to the functional integral

A
(L)
YM(sij) =

∑
FL

A
(FL)
YM (sij)

A
(FL)
YM (sij) =

∫ ∞
0

dT1 . . . dT3L−3

∫
FL

N∏
r=1

dτrK
FL
YM ({kr}, Tj , τr)
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KFL
YM ({kr}, Tj , τr) =

∫
DΦDφN

3L−3∏
j=1

bj
N∏
r=1

V r
YM (kr, τr) , (4.12)

where bj denotes the b ghost insertion on line j and
∑

FL
denotes the sum over all possible

skeletons.
We will now show that each component of a coordinate field is a world-line scalar with

a single zero mode while each momentum field is a world-line vector and has L zero modes
on a skeleton with L loops. This is a generalisation of the discussion in section 2. Consider
the basic bolding block Bj in (4.5) add two identity operators in Bj∫ 〈

Φf,bf ;Tj
∣∣φj1;Tj

〉
dφj1

〈
φj1;Tj

∣∣∣ N∏
r=1

V r
YMN b

∣∣∣φj2; 0
〉
dφj2

〈
φj2; 0

∣∣∣Φi; 0
〉
. (4.13)

One can then integrate over a subset of the momenta fields. This subset can be separated
by a change of variables for the momenta fields Φj

f ;bf
= ΦI

bf
(ωI/dτj) + Φ′jf ;bf

and Φj
i;bi

=

ΦI
bi

(ωI/dτj)+Φ′ji;bi . There are L ΦI and 5L−6 Φ′jf and Φ′ji for each component. This change
of variables makes the delta functions independent of the fields ΦI . By first integrating
over 2L− 2 of the fields Φ′ using the delta functions, the 3L− 4 remaining integrals of Φ′

will give 3L− 4 delta functions involving each of the fields φj1 and φj2. As each propagator
involves a delta function of φj1 and φj2 (see (4.13)), one have in total 6L−7 delta functions.
Performing the integrals over the surplus φ’s give

KFL
YM ({kr}, Tj , τr) =

∫
dφ

L∏
I=1

dΦI
3L−3∏
j=1

Bj

(
φ,ΦI

bf

(
ωI
dτj

)
,ΦI

bi

(
ωI
dτj

))
. (4.14)

This shows that the coordinate fields are world-line scalars and the conjugate momenta
fields are world-line vectors. These properties are a consequence of imposing locality of the
interaction and integrating the interaction point over space-time and pure spinor space.
Note that the integration over the surplus fields can give contractions between different
fields. This will depend crucially on the skeleton considered. We will not consider these in
detailed, as we are mainly interested in the qualitative behaviour of the amplitudes.

We conclude the Yang-Mills discussion by obtaining expressions for three- and four-
point tree amplitudes. The three-point tree amplitude is

A
(Tree)
YM ({kr}) = lim

Ti→0

〈
Ua1

YM (k1, T1)Ua2
YM (k2, T2)Ua3

YM (k1, T3)
〉
, (4.15)

where the proper time of the vertex is τ = 0. The colour factor of the interaction is fa1a2a3 .
The four-point amplitude is defined using the three-point amplitude by introducing a

second vertex and integrating over its position (see figure 3(a)-(c))

A
(Tree)
YM (s, t, u)

= lim
Ti→∞

3∑
j=1

∫ Tj

0
dτ
〈
Ua1

YM (k1, T1)Ua2
YM (k2, T2)Ua3

YM (k3, T3)V a4
YM (k4, τ)

〉
. (4.16)
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As discussed at the beginning of this section, this amplitude can be separated into different
parts corresponding to different colour orderings. For the four-point tree amplitude this is
fairly simple as there are only single-trace terms. For example, the Tr [ta1ta2ta3ta4 ] factor
has only s- and t-channel contributions. Separating this factor from the amplitude gives

A
(Tree)
YM (s, t) = lim

Ti→∞

{∫ T1

0
dτ 〈UYM (k1, T1)UYM (k2, T2)UYM (k3, T3)VYM (k4, τ)〉

+
∫ T3

0
dτ 〈UYM (k1, T1)UYM (k2, T2)UYM (k3, T3)VYM (k4, τ)〉

}
. (4.17)

We have now defined the amplitudes for Yang-Mills. Before discussing BRST invariance,
we will consider the supergravity amplitude.

4.2 Supergravity

The definitions of the supergravity amplitudes follow from a series of steps similar to those
used in the Yang-Mills case. This mimics the transition from the open string to the closed
string by doubling the fields, with the exception X and P . Another difference is that
supergravity does not have colour. As we will see, these properties of the supergravity con-
struction are essential for the BRST consistency of the amplitude. In this case it is natural
to take the propagator between momenta Φi at proper time 0 and Φf at proper time Tj to be〈

Φf ;Tj
∣∣∣N N̂ b b̂

∣∣∣Φi; 0
〉
. (4.18)

The propagator is bosonic because there are two insertions of the b ghosts. One argument
of the doubling of the b ghosts is that one corresponds to btot = b+ b̂ and the other the level
matching condition, b − b̂. A more indirect argument is that one needs two b ghosts for
the amplitudes to be compatible with BRST invariance. We have also inserted a regulator
and assumed that it can be written as a product of two functions, where both are assumed
to be equal to the Yang-Mills regulator.19 Observe that the conjecture is also in line with
the KLT-relations [44], which relate amplitudes for the open string and the closed string.

The basic bolding block of the amplitudes is the propagator which absorbs N physical
particles evaluated between two general momentum states. From the discussion in section 2
we know that there are two different pictures,

BU
j (φ,Φf ,Φi, {kr}, {τs}) =

〈
Φf ;

N+1∑
s=1

τs

∣∣∣∣∣
N∏
r=1

(
b b̂ U rSG

)
N N̂ b b̂

∣∣∣∣∣Φi; 0

〉
(4.19)

BI
j (φ,Φf ,Φi, {kr}, {τr};Tj) = 〈Φf ;Tj |

N∏
r=1

V r
SGN N̂ b b̂ |Φi; 0〉 . (4.20)

As for Yang-Mills, one can show that (4.19) and (4.20) are equivalent up to a BRST exact
term.20 Since BI

j ∼ BU
j , in the following it will not be necessary to keep the superscript I

or U .
19One factor is a function of the unhatted fields and the other is a function of the hatted fields.
20Note that one has to restrict the positions of the vertices in the integrated picture (τr−1 ≥ τr) or include

permutations of the vertices in the unintegrated picture for the relation to be true.
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The three-point vertex in supergravity satisfies the same conditions as the vertex in
Yang-Mills. The important properties are that the interaction is local and conserves mo-
mentum. If the vertex is contracted with three general momentum states it reduce to a
delta function∫

dφ 〈VSG; τ |
(∣∣Φ1

f ; τ
〉 ∣∣Φ2

f ; τ
〉 〈

Φ3
i ; τ
∣∣) =

∫
dφ 〈VSG; τ |

(∣∣Φ1
f ; τ
〉 ∣∣Φ2

f ; τ
〉 ∣∣−Φ3

i ; τ
〉)

= δ
(
Φ1
f + Φ2

f − Φ3
i

)
. (4.21)

A difference between the Yang-Mills and the supergravity cases is that the delta function
is bosonic and therefore is an even function.

Gluing together the two ends of the operator in (4.19), which absorbs N − 1 physical
particles, with an unintegrated vertex operator involving the N ’th physical particle, one
obtains the expression for the one-loop amplitude in the unintegrated picture

A
(1)
SG (sij) =

∑
σ∈SN−1

∫ ∞
0

N∏
r=1

dτr

∫
dΦ

〈
Φ;

N∑
s=1

τs

∣∣∣∣∣
N∏
r=1

(
bb̂U

σ(r)
SG

)
bb̂UNSG

∣∣∣∣∣Φ; 0

〉
. (4.22)

In the integrated picture, the one-loop amplitude is

A
(1)
SG(sij) =

∫ ∞
0

dT

∫ T

0

N−1∏
r=1

dτr

∫
dΦ 〈Φ;T |

N−1∏
r=1

V r
SGN N̂ b b̂ UNSG |Φ; 0〉 , (4.23)

which is equal to the functional integral

A
(1)
SG(sij) =

∫ ∞
0

dT

∫ T

0

N−1∏
r=1

dτrKSG ({kr}, T, τr)

KSG ({kr}, T, τr) =
∫
DφDΦN N̂ b b̂

N−1∏
r=1

VSG (kr, τr)USG (kN , 0) . (4.24)

In the expression above we have separated the amplitude into two parts. One is the
functional integral with fixed length of the moduli and position of the vertices. The second
part is the integration over the moduli and position of the vertices.

The multi-loop amplitudes are determined in the same way as Yang-Mills. In the
unintegrated picture the amplitude is

A
(L)
SG (sij) =

∑
{df}lj ,{di}lj

∑
N

∫ ∞
0

3L−3+N∏
r=1

dτr

∫ 3L−3∏
j=1

dΦj
f dΦj

i

×
2L−2∏
l=1

δ
(
{df}ljΦ

j
f − {d

i}ljΦ
j
i

) 3L−3∏
j=1

Bj

(
φ,Φj

f ,Φ
j
i

)
. (4.25)

In the integrated picture, the amplitude is

A
(L)
SG (sij) =

∑
{df}lj ,{di}lj

∫ ∞
0

dT1 . . . dT3L−3

∫
FL

N∏
r=1

dτr

∫ 3L−3∏
j=1

dΦj
fdΦj

i

×
2L−2∏
l=1

δ
(
{df}ljΦ

j
f − {d

i}ljΦ
j
i

) 3L−3∏
j=1

Bj

(
φ,Φj

f ,Φ
j
i ;Tj

)
. (4.26)
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This expression of the amplitude is equal to [5],

A
(L)
SG =

∑
FL

A
(FL)
SG

A
(FL)
SG =

∫ ∞
0

dT1 . . . dT3L−3

∫
FL

L∏
r=1

dτrK
FL
SG ({kr}, Tj , τr)

KFL
SG ({kr}, Tj , τr) =

∫
DφDΦN N̂

3L−3∏
j=1

bj b̂j
N∏
r=1

VSG (kr, τr) , (4.27)

where bj b̂j denote the insertion of the term b b̂ on line j. By doing the same analysis as in
Yang-Mills, one can show that the field Φ has L zero modes for each component and φ has
one zero mode for each component on a skeleton with L loops.

As in the Yang-Mills case, we will find that the above prescription has to be gener-
alised to be consistent with BRST invariance. This generalisation can be expressed in one
of two ways — either by including higher-point external vertices or by the addition of trees
attached to the skeleton diagram.

The three- and four-point amplitude is defined in the same way as for the Yang-Mills
case. The three-point tree amplitude is

A
(Tree)
SG (kj) = lim

Ti→∞
〈USG (k1, T1)USG (k2, T2)USG (k3, T3)〉 , (4.28)

where the proper time of the vertex is τ = 0. The four-point tree diagram is

A
(Tree)
SG (s, t, u) = lim

Ti→∞

3∑
j=1

∫ Tj

0
dτ 〈USG (k1, T1)USG (k2, T2)USG (k3, T3)VSG (k4, τ)〉 ,

(4.29)

where the position of the fourth particle should be integrated over the whole three-point
diagram.

5 BRST invariance

In the previous section presented the propagator and the internal three-point vertex for
Yang-Mills and supergravity in terms of the pure spinor fields. This led to the three- and
four-point tree as well as loop amplitudes with any number of external states. In this
section we will make the first non-trivial test of these expressions. We will see that the
amplitudes need to be generalised to be consistent with BRST invariance. This can be
expressed in two equivalent ways. Either by including higher-point external vertices (as
in figure 7(a)) or by addition of trees attaching the skeleton (as in figure 7(b)). We will
choose the former as it makes the ultraviolet properties of the amplitude more transparent.
In addition to these higher-point contact interaction21 there are “effective” contact terms
generated by contractions of P factors that enters into the b ghost and vertex operators.

21A contact term is a vertex that has more than three points.
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Figure 7. (a) A three-loop skeleton with a four-point contact term attached. (b) A three-loop
skeleton with a tree attached.

The regulator is a BRST trivial term and will be suppressed in the analysis. The only
time it could have an effect is when vertices collide. As the regulator is assumed to have
the form N = 1+ε

∫ Ti
0 dτ [Q,χ(τ)]+O

(
ε2
)

and the function χ(τ) is a continuous function,
the regulator satisfies limTi→0N = 1. Therefore, the regulator will not contribute when
vertices collide.

In this section we will use the unintegrated picture and analyse the two theories sep-
arately as there are some important differences. We will first consider loop-amplitudes as
the BRST invariance of the trees follows from this.

5.1 Yang-Mills

Consider first the one-loop amplitude and make a BRST transformation of the N ’th vertex,

UNYM → UNYM + [Q, ρ], (5.1)

where ρ is an arbitrary function of the coordinate fields. The BRST charge can be com-
muted through the vertices and b ghosts to act on the bra and ket,

δρA
(1)
YM(sij) =

∑
σ∈SN−1

∫ ∞
0

N∏
r=1

dτr

∫
dΦκcdQ

〈
Φc;

N∑
s=1

τr

∣∣∣∣∣
N−1∏
r=1

(
bU

σ(r)
YM

)
bρ

∣∣∣∣∣Φd; 0

〉

−
∑

σ∈SN−1

∫ ∞
0

N∏
r=1

dτr

∫
dΦκcd

〈
Φc;

N∑
s=1

τr

∣∣∣∣∣
N−1∏
r=1

(
bU

σ(r)
YM

)
bρ

∣∣∣∣∣Φd; 0

〉
Q

+
∑

σ∈SN−1

∫ ∞
0

N∏
r=1

dτr

∫
dΦκcd Uσ(1)

〈
Φc;

N∑
s=2

τs

∣∣∣∣∣
N−1∏
r=2

(
bU

σ(r)
YM

)
bρ

∣∣∣∣∣Φd; 0

〉

−
∑

σ∈SN−1

∫ ∞
0

N−1∏
r=1

dτr

∫
dΦκcd

〈
Φc;

N−1∑
s=1

τs

∣∣∣∣∣
N−2∏
r=1

(
bU

σ(r)
YM

)
bU

σ(N−1)
YM ρ

∣∣∣∣∣Φd; 0

〉

−
∑

σ∈SN−1

N−1∑
s=2

∫ ∞
0

N∏
r=1 r 6=s

dτr

∫
dΦκcd

〈
Φc;

N∑
r=1r 6=s

τr

∣∣∣∣∣∣
s−2∏
r=1

(
bU

σ(r)
YM

)
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(a) (b) (c)

Figure 8. The three different diagrams describing interaction between four particles involving only
three-point vertices.

× b
(
U
σ(s−1)
YM U

σ(s)
YM

) N−1∏
r=s+1

(
bU

σ(r)
YM

)
bρ

∣∣∣∣∣Φd; 0

〉
, (5.2)

where we have used [Q, b] = H and the fact that an insertion of the Hamiltonian is equal to
a total derivative w.r.t. the length of the propagator. Integration over this modulus gives
an overall minus sign and a contact term. This contact term is expressed in the last line
of (5.2) as two vertex operators adjacent to each other without a b ghost inserted between
them.22 The two terms involving the BRST charge cancel and one can move the Uσ(1)

vertex in the third term to the right. Using the symmetric group one can show that the
amplitude is BRST invariant up to contact terms

δρAYM(sij) = −
∑

σ∈SN−1

∫ ∞
0

N−1∏
r=1

dτr

∫
dΦκcd

×

〈
Φc;

N−1∑
s=1

τr

∣∣∣∣∣
N−2∏
r=1

(
bU

σ(r)
YM

)
[Uσ(N−1)

YM , ρ]

∣∣∣∣∣Φd; 0

〉

−1
2

∑
σ∈SN−1

N−1∑
s=2

∫ ∞
0

N∏
r=1 r 6=s

dτr

∫
dΦκcd

〈
Φc;

N∑
r=1 s6=r

τr

∣∣∣∣∣∣
s−2∏
r=1

(
bU

σ(r)
YM

)

× b[Uσ(s−1)
YM , U

σ(s)
YM ]

N−1∏
r=s+1

(
bU

σ(r)
YM

)
bρ

∣∣∣∣∣Φd; 0

〉
. (5.3)

Soon we will see how these can be cancelled by addition of contact vertices. Before that
we will analyse the multi-loop amplitude.

A BRST transformation of one of the external vertices has the form [Q, ρ] = Qρ− ρQ.
One can move the BRST charge in the first of these terms to the left around the network
using the BRST invariance of the internal vertices and external states so that it cancels
the second term. This is a generalisation of the one-loop discussion. The only part in the
amplitude that has nonzero commutator with the BRST charge is the b ghost. This will
produce one insertion of the Hamiltonian, which can be written as a total derivative w.r.t.
to the moduli. Integrating over this modulus produces a contact term with four points.
Therefore, four-point amplitudes with off-shell states form an essential part of the analysis.

22For loop amplitudes, the upper limit vanishes for fixed nonzero values of the other moduli. For tree

amplitudes, the upper limit vanishes after an appropriate analytic continuation of the momenta.
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Pairs of three-point vertices can be glued together to form three distinct contributions
to the four-point amplitude (as shown in figure 8(a)-(c)), which we call the s-, t- and u-
channel, respectively. Including colour explicitly is essential in the analysis, so we separate
it from the kinematics. The contributions of the different channels to the amplitude are

s : κdef
a1a2dfa3a4e

∫ ∞
0

dτ
〈
U1

YMU
2
YM b U3

YMU
4
YM

〉
t : κdef

a4a1dfa2a3e

∫ ∞
0

dτ
〈
U4

YMU
1
YM b U2

YMU
3
YM

〉
u : κdef

a1a3dfa4a2e

∫ ∞
0

dτ
〈
U1

YMU
3
YM b U4

YMU
2
YM

〉
, (5.4)

where Ua in this equation is an unintegrated vertex operator which can be off-shell. This
operator only depends on the coordinate fields Xm, θα, λα, λ̄α and rα. Consider the case
when a BRST charge acts only on the b ghost insertion. As described above, one will then
get an insertion of the Hamiltonian between the two sets of vertices. This can be exchanged
by a total derivative w.r.t. the modulus for the propagator. Integrating over this modulus,
the two three-point vertices will collide and one has in each case a four-point vertex

s : −κdefa1a2dfa3a4e
〈
U1

YMU
2
YMU

3
YMU

4
YM

〉
t : −κdefa4a1dfa2a3e

〈
U4

YMU
1
YMU

2
YMU

3
YM

〉
u : −κdefa1a3dfa4a2e

〈
U1

YMU
3
YMU

4
YMU

2
YM

〉
. (5.5)

Observe that the operators in the above equation can be reordered to have the same kinetic
part. Summing the s-, t- and u-channels one will get

−
(
fa1a2dfa3a4

d − fa4a1dfa2a3
d + fa1a3dfa4a2

d

) 〈
U1

YMU
2
YMU

3
YMU

4
YM

〉
= 0 , (5.6)

where we have used the Jacobi identity. The consequences of this identity are important.
Consider first the case when one of the operators above describes a physical particle. This
shows that there is no contribution when an external three-point vertex collides with an
internal vertex as long as one has the s-, t- and u-channel contributions. Note that this also
applies when one of the colliding vertices is the one, which is BRST exact. The case when
all vertex operators are off-shell corresponds to collisions of two internal vertices. The above
analysis shows that this is cancelled in the sum of the s-, t- and u-channel contributions.

The conclusion is that the only case when there is a possibility for the amplitude to not
be BRST invariant is when two vertices producing external physical particles collide. This
violation of BRST invariance can be cancelled by the addition of an appropriate four-point
contact vertex that does not enter the tree amplitude. This vertex can be determined
by considering a four-point interaction with two on-shell states. This consists of the sum
of two contributions. One of these is formed by gluing together two three-point vertices
together with a propagator (figure 9(a)) while the second is obtained from the four-point
vertex under consideration, U12

YM (figure 9(b)),

∑
σ∈S2

∫ ∞
0

3∏
s=1

dτsBj

(
φ,Φj

f ;bjf
,Φj

i;bji
, {kσ(r)}, {τs}

)
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(a) (b)

Figure 9. The propagation of a particle absorbing two physical states through: (a) Two three
point vertices. (b) One four-point vertex.

+
∫ ∞

0

2∏
s=1

dτsB
2
j

(
φ,Φj

f ;bjf
,Φj

i;bji
, {k1, k2}, {τs}

)

=
∑
σ∈S2

∫ ∞
0

3∏
s=1

dτs

〈
Φj

f ;bjf
;T
∣∣∣∣ 2∏
r=1

(
bU

σ(r)
YM

)
b

∣∣∣∣Φj

i;bji
; 0
〉

+
∫ ∞

0

2∏
s=1

dτs

〈
Φj

f ;bjf
;T
∣∣∣∣ bU12

YMb

∣∣∣∣Φj

i;bji
; 0
〉
. (5.7)

Multiplying this equation by Qji from the right and rewriting it as Qjf on the left together
with terms where the BRST charge has commuted with vertex operators and b ghosts gives

∑
σ∈S2

∫ ∞
0

3∏
s=1

dτsBj

(
φ,Φj

f ;bjf
,Φj

i;bji
, {kσ(r)}, {τσ(r)};T

)
Qji

+
∫ ∞

0

2∏
s=1

dτsB
2
j

(
φ,Φj

f ;bjf
,Φj

i;bji
, {k1, k2}, τ ;T

)
Qji

=
∑
σ∈S2

∫ ∞
0

3∏
s=1

dτsQ
j
f Bj

(
φ,Φj

f ;bjf
,Φj

i;bji
, {kσ(r)}, {τσ(r)};T

)

+
∫ ∞

0

2∏
s=1

dτsQ
j
f B

2
j

(
φ,Φj

f ;bjf
,Φj

i;bji
, {k1, k2}, τ ;T

)
−
∑
σ∈S2

∫ ∞
0

dτ1 dτ3

〈
Φj

f ;bjf
;T
∣∣∣∣ b[Uσ(r)

YM , U
σ(2)
YM ]b

∣∣∣∣Φj

i;bji
; 0
〉

+
∫ ∞

0
dτ1 dτ2

〈
Φj

f ;bjf
;T
∣∣∣∣ b[U12

YM, Q]b
∣∣∣∣Φj

i;bji
; 0
〉

+ · · · , (5.8)

where the dots denote terms where the BRST charge commutes with the b ghosts adjacent
to the bra or the ket. From the derivation above one obtains the equation, which the
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four-point vertex satisfies

[Q,U12
YM] =

1
2
(
[U1

YM, U
2
YM] + [U2

YM, U
1
YM]

)
, (5.9)

which is similar to (3.19). As expected, the four-point vertex is connected to non-linear
effects. Let us go through the solution in some detail. We restrict to the case with
external bosons (the generalisation to fermions is straightforward). Consider a solution of
the equations of motion for Yang-Mills consisting of two plane waves. The solution for the
θ0-component of the superfield Am is

Am (k1, k2)|θ=0 = a1
me

ik1X + a2
me

ik2X . (5.10)

As the equations of motion in Yang-Mills are non-linear, there are terms mixing the two
plain waves. Consider the superfield Aα, which is involved in the unintegrated vertex op-
erator. The solution to the equations of motion for this field can be written as a sum of
three terms23

Aα (k1, k2) = A1;l
α (k1) +A2;l

α (k2) +A12;nl
α (k1, k2) . (5.11)

The first two terms satisfy the linearised equations of motion for Yang-Mills. The third
term includes the non-linear effects. Inserting this expression into the equation of motion
and contracting the two free spinor indices with pure spinor fields

λαλβ
(
DαAβ +

1
2

[Aα, Aβ]
)

= λαλβ
(
DαA

12;nl
β (k1, k2) +

1
2

[A1;l
α (k1) +A2;l

α (k2) , A1;l
α (k1) +A2;l

α (k2)]
)
,

= 0 (5.12)

where we have used the fact that the fields Ai;lα satisfy the linearised equations of motion
and that the non-linear term commutes with the other fields. Therefore, the non-linear
term satisfies

[Q,λαA12,nl
α (k1, k2)] =

1
2

(
[λαA1,l

α (k1) , λαA2,l
α (k2)] + [λαA2,l

α (k2) , λαA1,l
α (k1)]

)
. (5.13)

Apart from ε, this is the same equation as (3.19). Therefore, the four-point vertex has the
form

U12
YM ≡ λαA12,nl

α , (5.14)

where the colour factor of U12
YM is fa1a2cfdefκcf . The unintegrated contact vertex can be

defined as V 12
YM = [U12

YM, b] just as the three-point vertex (up to BRST trivial terms). It
follows that (c.f. (3.15)) that

V 12
YM(k1, k2, τ) = : PmAnlm : − : dαWα

nl : +
1
2
NmnFnlmn , (5.15)

23We have here suppressed the θ dependence of the superfields.
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where : : denotes normal ordering.
We have now shown that adding one four-point vertex can compensate the non-BRST

invariance of the amplitude with only external three-point vertices. However, the BRST
transformation of the amplitude with one four-point vertex will generate yet more BRST
non-invariant terms. Such terms are cancelled by adding additional contact terms. In the
end one will have amplitudes with three-, four- and higher-point external vertices.24 The
higher-point vertices will all satisfy equations of the form (5.9). To simplify the analysis, one
can introduce a parameter, ε, and consider a solution consisting of the N external particles,

Am (k1, . . . , kN )|θ=0 = ε

N∑
j=1

ajme
ikjX . (5.16)

The solution Aα of the Yang-Mills equations can be written as a linear combination

Aα (k1, . . . , kN ) = ε

N∑
j=1

Aj;lα +
N∑
l=2

εl
N∑

j1<...<jl=1

Aj1...jl;nlα . (5.17)

We now insert this solution into the equations of motion contracted with two pure spinor
fields,

λαλβ
(
DαAβ +

1
2

[Aα, Aβ]
)

= 0 , (5.18)

which gives an equation that can be separated into different powers of ε. The solution to
order ε2 is a generalisation of the simplest case that give U12

YM (5.14). The equation to
order ε3 describes the collision of a three- and a four-point vertex. This generalises to all
higher orders in ε.

The conclusion is that the Yang-Mills loop amplitudes can be made compatible with
BRST invariance by adding multi-point vertices. The form of the higher-point vertices is
completely determined by the form of the three-point vertices.

The BRST invariance of the tree amplitudes follows from the above analysis. The
three-point amplitude is trivially invariant and the invariance of the four-point amplitude
follows from (5.6) with four physical particles.

It is possible to describe the restoration of BRST invariance without introducing con-
tact interactions. This alternative description involves attaching trees to the skeleton as in
figure 7(b). Roughly speaking, the propagators in the tree are cancelled by momenta in the
tree vertices, leading to the contact term discussed above. This description corresponds to
the discussion in the context of string theory [45] and in the context of three-loop field the-
ory in [46], which manifestly incorporates the duality between colour and kinematics [47].

5.2 Supergravity

The discussion of BRST invariance in supergravity is analogous to the Yang-Mills case
with some important differences. Consider first the one-loop amplitude and make a BRST

24The analysis above can be generalised to cases involving one, or more, higher-point vertices in straight-

forward way.
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transformation of the N ’th vertex, UNSG → UNSG + [Qtot, ρ]. Commuting the BRST charge
through the vertices and b ghosts to act on the bra and the ket one obtains

δρA
(1)
SG (sij) =

∑
σ∈SN−1

∫ ∞
0

N∏
r=1

dτr

∫
dΦ Qtot

〈
Φ;

N∑
r=1

τr

∣∣∣∣∣
N−1∏
r=1

(
bb̂ U

σ(r)
SG

)
bb̂ ρ

∣∣∣∣∣Φ; 0

〉

+
∑

σ∈SN−1

∫ ∞
0

N∏
r=1

dτr

∫
dΦ

〈
Φ;

N∑
r=1

τr

∣∣∣∣∣
N−1∏
r=1

(
bb̂ U

σ(r)
SG

)
bb̂ ρ

∣∣∣∣∣Φ; 0

〉
Qtot

+
1
2

∑
σ∈SN−1

∫ ∞
0

N∏
r=2

dτr

∫
dΦ

×

〈
Φ;

N−1∑
r=1

τr

∣∣∣∣∣[Uσ(1)
SG , b− b̂]

N−1∏
r=2

(
bb̂ U

σ(r)
SG

)
bb̂ ρ

∣∣∣∣∣Φ; 0

〉

−1
2

N−1∑
s=2

∑
σ∈SN−1

∫ ∞
0

N∏
r=1 r 6=s

dτr

∫
dΦ

〈
Φ;

N∑
r=1 r 6=s

τr

∣∣∣∣∣∣
s−2∏
r=1

(
bb̂ U

σ(r)
SG

)

× bb̂
(
U
σ(s−1)
SG

(
b− b̂

)
U
σ(s)
SG

) N−1∏
r=s+1

bb̂ U
σ(r)
SG bb̂ ρ

∣∣∣∣∣Φ; 0

〉

−1
2

∑
σ∈SN−1

∫ ∞
0

N−1∏
r=1

dτr

∫
dΦ

×

〈
Φ;

N−1∑
r=1

τr

∣∣∣∣∣
N−2∏
r=1

(
bb̂ U

σ(r)
SG

)
bb̂ [Uσ(N−1)

SG , b− b̂] ρ

∣∣∣∣∣Φ; 0

〉
. (5.19)

The first two terms cancel. Using the symmetric group and the fact that the b ghosts
anti-commute, one obtains

A
(1)
SG (sij) = −1

4

N−1∑
s=2

∑
σ∈SN−1

∫ ∞
0

N∏
r=1 r 6=s

dτr

∫
dΦ

〈
Φ;

N∑
r=1 r 6=s

τr

∣∣∣∣∣∣
s−2∏
r=1

(
bb̂ U

σ(r)
SG

)

× bb̂
[
U
σ(s−1)
SG ,

[
b− b̂, Uσ(s)

SG

]] N−1∏
r=s+1

(
bb̂ U

σ(r)
SG

)
bb̂ ρ

∣∣∣∣∣Φ; 0

〉

−1
2

∑
σ∈SN−1

∫ ∞
0

N−1∏
r=1

dτr

∫
dΦ

×

〈
Φ;

N−1∑
r=1

τr

∣∣∣∣∣
N−2∏
r=1

(
bb̂ U

σ(r)
SG

)
bb̂
[[
U
σ(N−1)
SG , b− b̂

]
, ρ
]∣∣∣∣∣Φ; 0

〉
. (5.20)

Therefore, the amplitude is BRST invariant up to contact terms. Before we consider
the form of these contact terms, we will consider the BRST transformation of multi-loop
amplitudes where such terms also arise.

Analysing BRST invariance of the multi-loop amplitude follow the same steps as Yang-
Mills. Therefore, one needs to analyse four-point amplitudes where particles can be off-
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shell. Consider the three channels of the four-point function depicted in figure 3(a)-(c),

s : δ(Φ1
i + Φ2

i + Φ3
i )
〈
Φ1
f ;T1

∣∣ . . . ∣∣Φ1
i ; 0
〉 〈

Φ2
f ;T 2

∣∣ . . . ∣∣Φ2
i ; 0
〉 〈

Φ3
f ;T 3

∣∣ . . . U4
SG bb̂

∣∣Φ3
i ; 0
〉

t : δ(Φ1
i + Φ2

i + Φ3
i )
〈
Φ1
f ;T1

∣∣ . . . U4
SG bb̂

∣∣Φ1
i ; 0
〉 〈

Φ2
f ;T2

∣∣ . . . ∣∣Φ2
i ; 0
〉 〈

Φ3
f ;T3

∣∣ . . . ∣∣Φ3
i ; 0
〉

u : δ(Φ1
i + Φ2

i + Φ3
i )
〈
Φ1
f ;T1

∣∣ . . . ∣∣Φ1
i ; 0
〉 〈

Φ2
f ;T2

∣∣ . . . U4
SG bb̂

∣∣Φ2
i ; 0
〉 〈

Φ3
f ;T3

∣∣ . . . ∣∣Φ3
i ; 0
〉
.

(5.21)

Assume now that the BRST charge is first located at line 1 and move it to act on the bb̂
insertion between the two vertices. This will make the two vertices collide since [Qtot, bb̂] =
−1

2H
(
b− b̂

)
. Adding together the three channels one obtains

∑
s,t,u

δA =
1
2

([
U4

SG, b− b̂
]

+
[
U4

SG, b− b̂
]

+
[
U4

SG, b− b̂
])

δ(Φ1
i + Φ2

i + Φ3
i )

×
〈
Φ1
f ;T1

∣∣ . . . ∣∣Φ1
i ; 0
〉 〈

Φ2
f ;T2

∣∣ . . . ∣∣Φ2
i ; 0
〉 〈

Φ3
f ;T3

∣∣ . . . ∣∣Φ3
i ; 0
〉

= 0 . (5.22)

The vanishing comes about because the operator [Ua, b − b̂] is a world-line vector. If the
fourth particle is a physical state one concludes that one has no contribution when an
external vertex collides with an internal vertex as long as all channels of the four-point in-
teraction are included. The case when the fourth particle is off-shell describes the collision
of two internal vertices and it follows that the amplitude is BRST invariant as long as the
three channels are included.

The analysis above shows that the amplitude is BRST invariant up to terms when
external vertices collide. We again consider the four-point interaction with two on-shell
states and two off-shell states. This has contributions from the product of two vertex
operators (one for each on-shell state) joined by a propagator and from the new four-
particle vertex with two on-shell states, U12

SG,

∑
σ∈S2

∫ ∞
0

3∏
r=1

dτr Bj(φ,Φ
j
f ,Φ

j
i , {kσ(r)}, {τs}) +

∫ ∞
0

dτ1 dτ2B
2
j (φ,Φj

f ,Φ
j
i , {k1, k2}, {τs})

=
∑
σ∈S2

∫ ∞
0

3∏
r=1

dτr

〈
Φj
f ;

3∑
r=1

τr

∣∣∣∣∣
2∏
r=1

(
bb̂ U

σ(r)
SG

)
bb̂

∣∣∣∣∣Φj
i ; 0

〉

+
∫ ∞

0
dτ1 dτ2

〈
Φj
f ;

2∑
r=1

τr

∣∣∣∣∣ bb̂ U12
SG bb̂

∣∣∣∣∣Φj
i ; 0

〉
. (5.23)

Multiplying this expression with Qji from the right and commuting it through the
vertices and b ghost insertions one obtains the same term multiplied with Qjf from the left
and terms where Qtot are commuted with the b insertions,

∑
σ∈S2

∫ ∞
0

3∏
r=1

dτr Bj(φ,Φ
j
f ,Φ

j
i , {kσ(r)}, {τs})Q

j
i

+
∫ ∞

0
dτ1 dτ2B

2
j (φ,Φj

f ,Φ
j
i , {k1, k2}, {τs})Qji
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=
∑
σ∈S2

∫ ∞
0

3∏
r=1

dτrQ
j
f Bj(φ,Φ

j
f ,Φ

j
i , {kσ(r)}, {τs})

+
∫ ∞

0
dτ1 dτ2Q

j
f B

2
j (φ,Φj

f ,Φ
j
i , {k1, k2}, {τs})

−1
2

∑
σ∈S2

∫ ∞
0

dτ1 dτ3

〈
Φj
f ; τ1 + τ3

∣∣∣ bb̂ Uσ(1)
SG (b− b̂)Uσ(2)

SG bb̂
∣∣∣Φj

i ; 0
〉

+
∫ ∞

0
dτ1 dτ2

〈
Φj
f , τ1 + τ2

∣∣∣ bb̂ [U12
SG, Qtot] bb̂

∣∣∣Φj
i ; 0
〉

+ · · ·

=
∑
σ∈S2

∫ ∞
0

3∏
r=1

dτrQ
j
f Bj(φ,Φ

j
f ,Φ

j
i , {kσ(r)}, {τs})

+
∫ ∞

0
dτ1 dτ2Q

j
f B

2
j (φ,Φj

f ,Φ
j
i , {k1, k2}, {τs})

−1
4

∑
σ∈S2

∫ ∞
0

dτ1 dτ3

〈
Φj
f ; τ1 + τ3

∣∣∣ bb̂ [Uσ(1)
SG ,

[
(b− b̂), Uσ(2)

SG

]]
bb̂
∣∣∣Φj

i ; 0
〉

+
∫ ∞

0
dτ1 dτ2

〈
Φj
f , τ1 + τ2

∣∣∣ bb̂ [U12
SG, Qtot] bb̂

∣∣∣Φj
i ; 0
〉

+ · · · , (5.24)

where the dots denote terms when Qtot is commuted with the b ghosts adjacent to the
bra or the ket. From the expression above one obtains the equations, which the four-point
vertex satisfies

[U12
SG, Qtot] =

1
4

([
U1

SG,
[
(b− b̂), U2

SG

]]
+
[
U2

SG,
[
(b− b̂), U1

SG

]])
. (5.25)

The similarities to (3.30) show that the solution is connected to non-linear effects in su-
pergravity. The interesting superfield is Aαβ as it is involved in the unintegrated vertex
operator. Consider a superposition of two plane waves. As the theory is non-linear, there
are non-linear terms in the Aαβ superfield. The solution can be separated into the sum of
three terms as before,

Aα
β (k1, k2) = Aα

β;l (k1) +Aα
β;l (k2) +Aα

β;nl (k1, k2) , (5.26)

where the two first terms satisfy the linearised equations of motion. Inserting this
into (3.30) shows that the non-linear piece must satisfy

[λαAαβ;nl (k1, k2) λ̂β, Qtot] =
1
4

([
U1

SG,
[
(b− b̂), U2

SG

]]
+
[
U2

SG,
[
(b− b̂), U1

SG

]])
. (5.27)

We have now improved BRST invariance at lowest order by introducing a single four-point
contact vertex. As we saw in the Yang-Mills case, inserting this vertex leads to further
BRST violation, which is restored by the insertion of more four-point vertices as well as
higher-point vertices.

The higher n-point vertices are obtained in the same way. Expanding the θ0-component
of Gmn in terms of N plane waves,

Gmn|θ=0 = ε

N∑
j=1

hjmne
ikjX , (5.28)
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(a) (b)

Figure 10. (a) A four-point amplitude with a five-point contact term attached. (b) The alternative
solution with a tree attached where the propagator connecting the tree with the skeleton is marked
with x.

The solution of the equations of motion for Aαβ can be written as an expansion in terms of ε

Aα
β = ε

N∑
j=1

Aα
β;l (kj) +

N∑
m=2

εl
n∑

j1<...<jm=1

Aα
β;nl (kj1 , . . . , kjm) . (5.29)

Using (3.30), one finds that the term λαAα
β;nl (kj1 , . . . , kjm) λ̂β corresponds to the m + 2

vertex where the particles with momentum kj1 , . . . , kjm are involved.
As in the Yang-Mills case, an alternative description of these contact vertices can be

given in terms of attaching tress to the skeleton. This makes contact with observations in
the context of D = 11 supergravity [48, 49].

One advantage of the description of contact terms as trees attached to skeletons is
that it makes clear that n-point vertices with n > 4 do not contribute to the four-point
amplitude in either Yang-Mills or supergravity. For example, consider the four-loop
amplitude with one n = 5 contact term shown in figure 10(a). This can be expressed as
a tree attached to the skeleton as in figure 10(b). However the leg marked x is necessarily
on-shell and the diagram would give a mass renormalisation to the Yang-Mills state (or
supergravity state) which cannot happen because the two-point function vanishes on-shell
(as will be reiterated in section 7).

6 Properties of the amplitude

In the two previous sections we have defined the amplitude and shown that it is compatible
with BRST invariance by including multi-point external vertices.

In this section we will obtain some general properties of these multi-loop amplitudes
that follow from saturation of fermionic zero modes. These properties are deeply related to
supersymmetry and strongly constrain the pattern of allowed diagrams, their low energy
behaviour and their leading ultraviolet divergences. We will review and somewhat extend
the discussion given in [5], which is closely related to the discussion in [7] for the pure
spinor string.

In the following, we do not need to distinguish between Yang-Mills and supergravity
as the hatted fields work in the same way as the unhatted. Furthermore, we will use the
integrated picture.
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Before we consider the structure of the amplitudes, we derive the form of the regulator
needed for amplitudes with few enough loops. This is the so-called large-λ regulator [7].
The regulator needed to regulate amplitudes with many loops, the so-called “small-λ reg-
ulator” [50, 51] (see also [52] for an alternative regulator) will not be discussed in detail
although some properties of this regulator will be needed in the next section.

6.1 The regulator and integration over zero modes

The first step in obtaining the properties of the amplitude is to discuss the measure of
the zero modes. This is non-trivial as there are pure spinor fields and was determined
in [7, 53, 54]. Consider first the part of the measure involving world-line scalar fields
Xm, θα, λα, λ̄α and rα, which has the form

dφ = dDx d16θ d11λ d11λ̄ d11r . (6.1)

In this expression the dimension is generic, as we will dimensionally reduce the theory in
a way that preserves supersymmetry. This is done by reducing the superfields to lower
dimensions and choosing special kinematic configurations for the external particles. The
measure for the pure spinor fields in (6.1) is

d11λλαλβλγ = ερ1...ρ11κ1...κ5

(
T−1

)(αβγ)[κ1...κ5]
dλρ1 . . . dλρ11 ,

d11λ̄ λ̄αλ̄βλ̄γ = ερ1...ρ11κ1...κ5 T(αβγ)[κ1...κ5] dλ̄ρ1 . . . d̄λρ11 ,

d11r = ερ1...ρ11κ1...κ5

(
T−1

)(αβγ)[κ1...κ5]
λ̄αλ̄βλ̄γdr

ρ1 . . . drρ11 , (6.2)

where ( ) and [ ] denote symmetrisation and anti-symmetrisation of the indices, respectively.
The tensor T (αβγ)[κ1...κ5] is given by [6, 53]

ερ1...ρ11κ1...κ5T(αβγ)[κ1...κ5] = ερ1...ρ16γmρ12δγ
n
ρ13σγ

p
ρ14τ

×
(

(γmnp)ρ15ρ16

(
δδ(αδ

σ
βδ

τ
γ) −

1
40
γq(αβδ

δ
γ)γ

στ
q

))
. (6.3)

It follows from the equations above that one has to extract sixteen θ’s as well as eleven r’s
from the b ghost, vertices and the regulator. Furthermore, one also needs three additional
λ’s from the measure of the world-line vector fields, b ghost, vertices and regulator
compared to the number of λ̄’s.

The measure for the zero modes of the world-line vector fields is

dΦI = dD`I d16dI d10N I dJI d10N̄ I dJ̄I d10SI dSI , (6.4)

where we have used gauge invariant combinations as well as dα instead of pα. Furthermore,
`I is the loop momenta. In this expression the measure for the momenta for the pure
spinors is [7]

d10N I dJI λα1 . . . λα8 = Mα1...α8
m1n1...m10n10

dN I m1n1 . . . dN I m10n10dJI

d10N̄ I dJ̄I λ̄α1 . . . λ̄α8 =
(
M−1

)m1n1...m10n10

α1...α8
dN̄ I

m1n1
. . . dN̄ I

m10n10
dJ̄I

d10SI dSI = Mα1...α8
m1n1...m10n10

λ̄α1 . . . λ̄α8 dS
I
m1n1

. . . dSIm10n10
dSI , (6.5)
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where Mα1...α8
m1n1...m10n10

satisfies [7]

Mα1...α8
m1n1...m10n10

λ̄α1 . . . λ̄α8ψ
m1n1 . . . ψm10n10 =

(
λ̄γm1n1m2m3m4 λ̄

) (
λ̄γm5n5n2m6m7 λ̄

)
×
(
λ̄γm8n8n3n6m9 λ̄

) (
λ̄γm10n10n4n7n9 λ̄

)
×ψm1n1 . . . ψm10n10 , (6.6)

and ψmn is a fermionic, anti-symmetric, two-form. The measure for the world-line
vector fields behaves as

(
λ̄/(λλ̄)

)8L. To simplify the equations, we make a change of
variables for the non-minimal fields; N̄mn

I ≡ ΩIJN̄
J ;mn, J̄I ≡ ΩIJ J̄

J , SmnI ≡ ΩIJS
J ;mn

and SI ≡ ΩIJS
J ; which has a trivial Jacobian. From the measure one finds that one has

to extract 16L d zero modes and 11L s zero modes from the b ghost insertions, vertices
and the regulator.

Before we can consider the constraints on the amplitude one has to determine a reg-
ulator. One cannot set this equal to one, as this would give a 0/0 singularity, which is
apparent from the form of the vertices and b ghost. The numerator zero arise because
there are insufficiently many fermionic zero modes to saturate the integrals, while the de-
nominator zero arise at large values of λ,Nmn and J . One can write an expansion for the
regulator in (4.2) using

χ = q1θ
αλ̄α + q2 (NmnS

mn + JS) , (6.7)

where q1 and q2 are generic complex numbers. The regulator which follows this is

N = e
R
dτ [Q,χ]

= e−q1
R
dτ(λαλ̄α−θαrα)−q2

R
dτ(NmnN̄mn+JJ̄− 1

2
(dγmnλ)Smn−(λd)S) . (6.8)

For consistency, one has to assume that the real part of q1 and q2 is positive otherwise the
bosonic integrals do not converge.

Consider the regulator in (6.8) for a generic skeleton and assume that only zero modes
of the fields contribute. One can then calculate the product of the regulators on the different
propagators of the skeleton to get

Ntot =
max(3L−3,1)∏

j=1

N j

=
max(3L−3,1)∏

j=1

e−q1(λ
αλ̄α−θαrα)

R Tj
0 dτ

×e−q2(NI
mnN̄

mn
J +JI J̄J− 1

2(dIγmnλ)SmnJ −(λdI)SJ)(Ω−1)JK
R Tj
0 dτ (ωI/dτ) (ωK/dτ)

= e
−q1(λαλ̄α−θαrα)

R
FL

dτ

×e−q2(N
I
mnN̄

mn
J +JI J̄J− 1

2(dIγmnλ)SmnJ −(λdI)SJ)(Ω−1)JK
R
FL

dτ (ωI/dτ) (ωK/dτ)

= e−q1(λ
αλ̄α−θαrα)

Pmax(3L−3,1)
j=1 Tj−q2(NI

mnN̄
mn
I +JI J̄I− 1

2(dIγmnλ)SmnI −(λdI)SI) , (6.9)

where we have used
∫
FL
dτ (ωI/dτ) (ωK/dτ) = ΩIK . Redefining q1 to absorb the total

length of the skeleton one obtains

Ntot = e−q1(λ
αλ̄α−θαrα)−q2(NI

mnN̄
mn
I +JI J̄I− 1

2(dIγmnλ)SmnI −(λdI)SI) , (6.10)
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which is the regulator in [7]. As a remark, the regulator for the tree amplitudes is obtained
by setting the world-line vector fields to zero in (6.10).

We can now make a detailed analysis of the integration over zero modes. The analysis
is the same as the one for the string presented in [7]. This will constrain the allowed
skeletons and the position of the vertex operators attached to them.

First consider the integration over the world-line vector fields. A key observation is
that the vertices and b ghost are independent of N̄mn. Therefore, the factors of Nmn in the
vertices and b ghost cannot contribute by their zero modes. One can therefore integrate
over N I

mn, J
I , N̄mn

I and J̄I giving the schematic form

∫ L∏
I=1

d10LN I dLJI d10LN̄I d
LJ̄I Ntot ∼ q−11L

2

1(
λλ̄
)8L Ntot|Nmn=J=0 . (6.11)

Furthermore, the vertices and b ghosts are also independent of Smn and S. Performing the
integration over these fields, using the regulator (6.11), gives schematically

q−11L
2

∫ L∏
I=1

d11LSI
1(

λλ̄
)8L Ntot|Nmn=J=0 ∼ q−11L

2 q11L
2

λ̄8L(
λλ̄
)8Lλ11L

L∏
I=1

(
dI
)11 Ntot|ΦI=0

∼ λ3L
L∏
I=1

(
dI
)11 Ntot|ΦI=0 , (6.12)

where Ntot|ΦI=0 denotes the regulator for the tree. The result of the integration is inde-
pendent of q2, as expected because the regulator is BRST exact.

An important observation in (6.12) is that, after integrating over the zero modes of
the pure spinor momenta fields, one will have eleven insertions of d zero modes for each
loop in the skeleton. Therefore, the b ghost insertions and vertices has to contribute five d
zero modes for each loop in the diagram. This will constrain the skeletons, the positions
of the vertices and the ultraviolet behaviour of the amplitude.

Assume we have integrated over the zero modes of d, picking out possible com-
binations of the terms in the b ghost insertions as well as the vertices. Consider now
the integration over the world-line scalar fields. Whereas the b ghost depends on the
non-minimal fields the vertices do not. Consider the case when the b ghost contribution
is b3L−3 ∼ (λ̄/(λλ̄))3L−3(r/(λλ̄))n with n < 11.25 The integral over the pure spinor fields
and θ is of the form∫

d11r d11λ d11λ̄ d16θ

λ3L

(
λ̄(
λλ̄
))3L−3 (

r(
λλ̄
))n O (P,X, θ) Ntot|ΦI=0


∼
∫
d11r d11λ d11λ̄ d16θ

{
λ3

(
1

q1

(
λλ̄
))n DnO (P,X, θ) Ntot|ΦI=0

}

∼
∫
d11r d11λ d11λ̄ d16θ

{
λ3DnO (P,X, θ) Ntot|ΦI=0

}
, (6.13)

25The restriction to n < 11 is crucial in order to avoid small-λ singularities.
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where O (P,X, θ) denotes the combined part of the vertices and b ghosts insertions which
depends only on Pm, X

m and θα. Above we have rewritten rα as Dα/q1 acting on the
regulator using momentum conservation. Here Dα is the fermionic superderivative defined
in appendix A in (A.3). After partial integration, the operator Dα acts on the operator
O (P,X, θ). Furthermore, we have replaced 1/

(
q1

(
λλ̄
))

by 1 as this factor is independent
of q1 in the integral.

Using the measure in (6.2), it follows that the integration in (6.13) extracts a
specific component of λ3DnO (P,X, θ) involving three λ and five θ. This motivates the
introduction of the matrix element〈

λ3O (P,X, θ)
〉∣∣
θ5
≡
∫
d11r d11λ d11λ̄ d16θ λ3O (P,X, θ) Ntot|ΦI=0

∼ D5O (P,X, θ)
∣∣
θ=0

. (6.14)

For economy of notation we will suppress the notation |θ=0 in the following.
Up to now we have considered the Yang-Mills case. The generalisation to supergravity

is straightforward, involving a doubling of all the fields with the exception of X and P .
The regulator involving the hatted fields has the same form as (6.10). Integrating over
the zero modes of the momenta for the pure spinor fields, one obtains a symmetric factor

of λ3L
∏L
I=1

(
dI
)11

λ̂3L
∏L
I=1

(
d̂I
)11

. Integration over the zero modes of the world-line

scalar fields picks out a certain θ5θ̂5 component of the operator O(P,X, θ, θ̂). Therefore,
we define the matrix element〈

λ3λ̂3O(P,X, θ, θ̂)
〉∣∣∣
θ5θ̂5
≡
∫ (

d11r
)2 (

d11λ
)2 (

d11λ̄
)2 (

d16θ
)2
λ3 λ̂3

×O(P,X, θ, θ̂)
(
NtotN̂tot

)∣∣∣
ΦI=0

∼ D5D̂5O(P,X, θ, θ̂)
∣∣∣
θ=θ̂=0

, (6.15)

where
(
d11r

)2 = d11r d11r̂, and similarly for the other fields. As before, we will suppress
the notation |θ=θ̂=0 in the following.

6.2 Properties of the b insertions

The analysis of the consequences of the b ghost insertions is of importance for the prop-
erties of the amplitudes. We here assume for simplicity that the fields in the b ghost only
contributes through their zero modes. As described in [5], the b ghost consists of the prod-
uct of two world-line vector fields and world-line scalar fields and can be expanded using
the world-line one-forms

bj
∣∣
zero

= bIJ (ωI/dτj) (ωJ/dτj)

= bIJ
∂ΩIJ

∂Tj
, (6.16)

where we have used the definition of the period matrix. This demonstrates the manner
in which the insertion of b ghosts is connected to the period matrix. It follows that the
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product of 3L− 3 insertions of b for a specific skeleton has the form
3L−3∏
j=1

bj
∣∣
zero

= bI1J1 . . . bI3L−3J3L−3
∂ΩI1J1

∂T1
. . .

∂ΩI3L−3J3L−3

∂T3L−3
. (6.17)

In considering the ultraviolet behaviour of the amplitude it is important to see
whether (6.17) is nonzero if every factor of b contributes with the maximal number of
two d zero modes. The term in the b ghost which has two d’s is the second term in (3.9)
(see also (3.10)), which will be denoted by bIJH . Since

(
bIJH
)2 = 0, it is only possible for (6.17)

to be nonzero when b is replaced by bH if the period matrix has 3L − 3 nonzero linearly
independent components. This condition can be written as

3L−3∑
j=1

cj
∂ΩIJ

∂Tj
6= 0 , (6.18)

for any nonzero cj . If this condition does not hold it is not possible for all b ghosts
to contribute via the second term in (3.9), which leads to two possibilities. Either at
least one of the b ghosts contributes via the first term or at least one of the b ghosts
contributes with a nonzero mode. The discussion here again generalises to supergravity in
a straightforward manner.

7 Summary of structure of multi-loop amplitudes

This section will largely review the computations of four-point amplitudes presented in [5].
We will somewhat enlarge the discussion by including the determination of the four-point
one-loop and two-loop amplitudes up to an overall constant using the results in [25, 26].
We also consider the multi-point one-loop amplitudes and give an alternative proof of the
“no-triangle hypothesis” [30]. Furthermore, we also show that loop amplitudes with fewer
than four external physical particles vanish.

7.1 Preliminaries

We will focus on the ultraviolet behaviour of four-point amplitudes and not on the infrared
behaviour, which needs a more detailed investigation. More precisely, we will consider the
L-loop amplitude in sufficiently high dimensions for it to be ultraviolet divergent. This
divergence may be regulated with an ultraviolet momentum cutoff, Λ. The contributions
to the L-loop amplitude that come from a particular skeleton, FL, will diverge as a
positive power of Λ when D > D

(FL)
c , where D(FL)

c is the L-loop ‘critical dimension’ for
that skeleton. When D = D

(FL)
c the amplitude diverges as log Λ.

By simple dimensional counting it follows that the term with the leading ultraviolet
behaviour of the amplitude is associated with the lowest power of external momenta, kr,
in the low momentum limit, kr → 0. In taking this low momentum limit in a term with
an even number of momentum operator insertions arising from the vertices and the b

ghost insertions it is possible to set eikrx = 1 and make use of the contraction between the
momentum insertions〈

Pm (τ)Pn
(
τ ′
)〉
FL

= −δmn (ωI(τ)/dτ)
(
Ω−1

)IJ (
ωJ(τ ′)/dτ ′

)
, (7.1)
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which can be obtained from explicit computation of the loop momenta integrals. If there
is an odd number of momenta insertions, then one of these internal momenta has to be
replaced by a linear combination of the external momenta before taking kr → 0.

In previous sections we saw that the X and P part of the amplitude is described
by scalar field theory diagrams with cubic internal vertices, together with certain n-point
external vertices and numerator momenta insertions. In computing the low energy limit of
a term with 2q momentum insertions it is simple to see from dimensional counting that

〈Pm1 (τ1) . . . Pm2q (τ2q)〉FL ∼ ΛL(D−6)+6+2q+2m , (7.2)

and m denotes the number of external vertices attached to the skeleton (and D must be
large enough for the power of Λ to be non-negative).

The critical dimension is determined by the value of D that makes the power of Λ
in (7.2) vanish

D(FL)
c = 4 +

2 (L+m− q − 3)
L

. (7.3)

In particular, the condition for the expression to be ultraviolet finite in four dimensions is
q < L + m − 3, which limits the number of momentum insertions for a given value of L.
Restricting to the case of four-point amplitudes, this condition can be interpreted as a limit
on the number of derivatives acting on F 4 and R4 at any value of L. For N = 4 Yang-
Mills in four dimensions one does not need any derivatives for the theory to be ultraviolet
finite [55, 56] while for supergravity one needs 2L derivatives acting on R4 for L > 1 [57].

The amplitudes for Yang-Mills will be considered in the large-Nc limit, where one can
use the double line notation to indicate the colour contractions on propagating particles.
The group theory is described in terms of external vertices attached to boundaries of these
propagators, as if they were attached to the boundaries of open strips. For single-trace
operators, the four external particles are attached to a single boundary and the amplitude
behaves as NL

c on the number of colours. For double-trace operators, the four external
particles are attached in pairs to two different boundaries and the amplitude depends as
NL−1
c on the number of colours. Non-planar skeletons are suppressed by 1/N2

c compared
to the planar ones.

Before summarising the loop amplitude results, we give the results for tree amplitudes
with three and four external particles for Yang-Mills and supergravity

A
(Tree)
YM ({kr}) = fa1a2a3a1

m1
a2
m2
a3
m3
V m1m2m3 ,

A
(Tree)
SG ({kr}) = h1

m1n1
h2
m2n2

h3
m3n3

V m1m2m3V n1n2n3 ,

A
(Tree)
YM (s, t) =

TrF 4

st
,

A
(Tree)
SG (s, t, u) =

R4

stu
. (7.4)

where

V m1m2m3 = δm1m2 (km3
1 − km3

2 ) + δm2m3 (km1
2 − km1

3 ) + δm3m1 (km2
3 − km2

1 ) . (7.5)
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These expressions can be obtained using methods presented in section 2 and the results of
the pure spinor integrals for the string [26].

The guiding principle for extracting the leading low energy term is to first consider
the term which contributes the maximal number of d zero modes in the b ghost insertions
that the skeleton allows (using the first and second term in (3.9)), The external particles
in the four-point amplitude are attached to the skeleton through three- and four-point
vertices. For these vertices, one uses the term with the maximal number of d zero modes
in (3.15) and (3.25). In general, it is not necessary to use the maximal number of d zero
modes from the vertex insertions. For the Yang-Mills case, one uses the first term in (3.15)
for the surplus vertices. In supergravity, one uses the third and fourth terms in (3.25) in
pairs for the surplus vertices.

Before considering general amplitudes we note that vacuum amplitudes vanish. This
follows since there are five more zero modes of θ than r and the b ghost is independent of
θ, so one cannot get a non-zero result for the r and θ integrals at the same time. Thus,
zero-point amplitudes vanish.

7.2 One-loop amplitude

From the discussion in section 6, five d zero modes need to be obtained from the single b
ghost insertion and the integrated vertices. Since the b ghost can contribute two d’s, at least
three need to come from the integrated vertex operators. Therefore, amplitudes with fewer
than four external particles vanish since one vertex is unintegrated. For the four-point
amplitude there is a single insertion of r, which can be turned into one D. The discussion
generalises straightforwardly to the supergravity amplitude by the doubling procedure.
Since only one configuration of terms in the four vertices contributes the leading ultraviolet
dependence of the amplitudes in the Yang-Mills and supergravity cases are given by

A
(1)
YM(s, t) ∼

〈
λ2DW 3Aα

〉∣∣
θ5

ΛD−8 ∼ F 4 ΛD−8 ,

A
(1)
SG(s, t, u) ∼

〈
λ3λ̂3DD̂W 3A

〉∣∣∣
θ5θ̂5

ΛD−8 ∼ R4 ΛD−8 , (7.6)

where the matrix element are defined by (6.14) and (6.15).26 The results are the same
for both the single-trace, TrF 4, and double-trace operators, (TrF 2)2, in Yang-Mills. The
pure spinor and fermionic integrals were studied in detail in [26] in the context of the pure
spinor superstring, and using their results one obtains

A
(1)
YM(s, t)

∼ F 4

∫ ∞
0

dT

TD/2

∫
F ′1

4∏
r=2

dτr e
s(G(0,τ2)+G(τ3,τ4))+t(G(0,τ4)+G(τ2,τ3))+u(G(0,τ3)+G(τ2,τ4)) ,

A
(1)
SG(s, t, u)

∼ R4

∫ ∞
0

dT

TD/2

∫
F1

4∏
r=2

dτr e
s(G(0,τ2)+G(τ3,τ4))+t(G(0,τ4)+G(τ2,τ3))+u(G(0,τ3)+G(τ2,τ4)) , (7.7)

26We have here also integrated over X and P .
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where F ′1 is the integration region which respects the ordering of the external particles.
These amplitudes match with [1]. The corresponding one-loop pure spinor string cal-
culation has been carried out in great detail, including a determination of the overall
normalisation in [58].

We now briefly consider amplitudes with more than four points in order to demonstrate
an alternative proof of the “no-triangle hypothesis” of N = 8 supergravity, [31–33]. One
has to extract five d zero modes from the b ghost and the vertices, which can involve any
number of external particles, a priori. To get the contribution which involves the largest
number of insertions of P in the diagram one can consider the case in which the b ghost
contributes two d zero modes. In this case, the integrated vertices have to contribute three
additional d’s. The same also holds for the hatted fields. Therefore, one needs at least three
integrated vertices and one unintegrated. This contribution has no insertions of numerator
momenta and proves that there are no bubble or triangle functions.

7.3 Two-loop amplitude

There are two two-loop skeletons. One is the one-particle irreducible skeleton in figure 5
and the other is a diagram consisting of two one-loop diagrams connected by one
propagator. From the rules in section 6, one sees that the three b ghost insertions and the
vertex insertions have to contribute a total of five d zero modes for each loop. Therefore,
the one-particle reducible diagram vanishes unless at least six vertices are attached —
three for each loop. In the case of the one-particle irreducible diagram, the b ghosts can
contribute with at most six d zero modes and needs at least four integrated vertices to be
attached in order to provide the remaining d zero modes. Therefore, two-loop amplitudes
with less than four particles vanish.

We now consider now the four-point amplitude in more detail. The contribution of six
d zero modes from the three b ghosts enter through the term

3∏
j=1

b
IjJj
H

∂ΩIjJj

∂Tj
= b11

H

(
b11
H − 2b12

H + b22
H

)
b22
H

= −2 b11
H b12

H b22
H . (7.8)

The form of this expression constrains the vertices to be attached in pairs to the two
different loops. This shows that there are at most two vertices on each line, which coincides
with the distribution found in [8]. This generalises straightforwardly to the supergravity
case where the distribution of the external vertices coincides with [2]. Using the rules
presented in section 6, the low energy behaviour of the amplitudes is

A
(2)
YM(s, t) ∼

〈
λ3D3W 4

〉∣∣
θ5

Λ2D−14 ∼ ∂2F 4 Λ2D−14 ,

A
(2)
SG (s, t, u) ∼

〈
λ3λ̂3D3W 4

〉∣∣∣
θ5θ̂5

Λ2D−14 ∼ ∂4R4 Λ2D−14 . (7.9)

where F 4 denotes the single- and double-trace term depending on where the vertices are
attached.
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(a) (b)

Figure 11. The two three-loop one-particle irreducible skeletons. (a) The three-loop ladder skele-
ton. (b) The “Mercedes” skeleton.

In this case one can go further and evaluate the precise form for the amplitude, not
just its leading ultraviolet behaviour using the evaluation of the fermionic and pure spinor
integrals, given in the context of the pure spinor superstring in [25]. This leads to

A
(2)
YM (s, t) ∼ F 4

∫ ∞
0

dT1 dT2 dT3

∆D/2

∫
F ′2

4∏
r=1

dτr Y(s, t, u, τs)

×es(G(τ1,τ2)+G(τ3,τ4))+t(G(τ1,τ4)+G(τ2,τ3))+u(G(τ1,τ3)+G(τ2,τ4)) ,

A
(2)
SG (s, t, u) ∼ R4

∫ ∞
0

dT1 dT2 dT3

∆D/2

∫
F2

4∏
r=1

dτr Y(s, t, u, τs)2

×es(G(τ1,τ2)+G(τ3,τ4))+t(G(τ1,τ4)+G(τ2,τ3))+u(G(τ1,τ3)+G(τ2,τ4)) , (7.10)

where F ′2 is the integration region which respects the ordering of the external particles and

Y(s, t, u, τr) = [(u− t) ∆ (1, 2) ∆ (3, 4) + (s− t) ∆ (1, 3) ∆ (2, 4)

+ (s− u) ∆ (1, 4) ∆ (2, 3)] , (7.11)

where

∆(i, j) = εIJ
(
ωI
dτi

)(
ωJ
dτj

)
. (7.12)

The supergravity amplitude is of the same form as presented in [59]. Although we have not
attempted to determine the overall normalisation of these amplitudes, these coefficients
were determined in the case of the pure spinor string in string in [60] (whereas the overall
coefficient has not been evaluated directly in the RNS approach although it was fixed by
considering a degeneration limit of the amplitude [61]).

7.4 Three-loop amplitude

There are five three-loop skeletons, three of which are one-particle reducible. The results
in section 6 show that one needs to extract fifteen d zero modes, five for each loop, from
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the vertices and b ghosts. This means that at least six vertices must be attached to any
one-particle reducible skeleton in order to obtain a nonzero contribution, so once again
only the one-particle irreducible diagrams contribute to the four-point function.

In particular, twelve d zero modes can be obtained from the b-ghost insertions in
irreducible diagrams. Therefore, one has to attach at least three vertices to get a nonzero
result, so amplitudes with less than three points vanish. Furthermore, certain skeletons
do not support twelve d zero modes so they cannot contribute to three-point functions.
The twelve d zero modes arising from the b ghost insertions in the remaining ones are
accompanied by six r’s, which can be converted into six D’s. As a result, it follows that
the three-point amplitude involves at least six powers of external momenta and vanishes
after imposing the mass-shell condition and conservation of momentum.

The two one-particle irreducible skeletons are depicted in figure 11(a) and (b). The
first skeleton is the (three-loop) “ladder diagram” and the second the “Mercedes diagram”.
The period matrix for the ladder is

Ω(a)
IJ =

 T1 + T2 −T2 0
−T2 T2 + T3 + T5 + T6 −T3

0 −T3 T3 + T4

 , (7.13)

while for the Mercedes it is

Ω(b)
IJ =

 T1 + T4 + T5 −T5 −T4

−T5 T2 + T5 + T6 −T6

−T4 −T6 T3 + T4 + T6

 . (7.14)

The number of nonzero linearly independent components of the period matrix is five for
the ladder diagram and six for the Mercedes.

As the period matrix for the ladder has only five nonzero linearly independent compo-
nents, it does not support the maximal number of d zero mode insertions from the b ghost.
The maximal number of d zero modes it supports is three for loops 1 and 3 and five for loop
2. The generalisation to the supergravity amplitude is straightforward. The four vertices
must be attached in pairs to loops 1 and 3 and the low energy limit of the amplitude is [5]

A
(a)
YM (s, t) ∼ km

〈
λ3D5W 4

〉∣∣
θ5

Λ3D−20 ∼ ∂4F 4 Λ3D−20 ,

A
(a)
SG (s, t, u) ∼ k2

m

〈
λ3λ̂3D5D̂5W 4

〉∣∣∣
θ5θ̂5

Λ3D−20 ∼ ∂8R4 Λ3D−20 . (7.15)

Here F 4 contains both the single- and double-trace contribution.
Consider now the Mercedes skeleton. As the period matrix has six linearly independent

components, it supports the maximal number of d zero modes from the b ghosts

6∏
j=1

b
IjJj
H

∂ΩIjJj

∂Tj
= (−2)3 b11

H b22
H b33

H b13
H b12

H b23
H , (7.16)

giving four insertions of d zero modes for each loop as well as six insertions of r’s, which
convert into six D’s. Therefore, the diagram has support from three attached vertices (one
being a contact term).
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Figure 12. The three-loop diagram with one contact term that arises in maximal Yang-Mills
and supergravity. While its contribution makes no qualitative change to the leading behaviour
of the supergravity amplitude, in the Yang-Mills case its presence is responsible for the leading
behaviour, ∂2 TrF 4.

Consider first the case with four single-particle vertices, which was obtained in [5]

A
(b)
YM (s, t) ∼ km

〈
λ3D6AW 3

〉∣∣
θ5

Λ3D−20 ∼ ∂4F 4 Λ3D−20 ,

A
(b)
SG (s, t, u) ∼

〈
λ3λ̂3D6D̂6ÊEW 2

〉∣∣∣
θ5θ̂5

Λ3D−18 ∼ ∂6R4 Λ3D−18 , (7.17)

where F 4 denotes both the single- and double-trace contribution. The Mercedes diagram
also gets a contribution from three attached vertices where one of them is a contact term.
The double-trace part of the Yang-Mills amplitude does not get a contribution from such
contact vertices since this would require a single vertex attached to one boundary. This
vanishes because the generators of the algebra are traceless.27 The contribution to the
single-trace operator is nonzero and the amplitude is shown in figure 12. At low energies,
it is proportional to

A
(b)
YM (s, t) ∼

〈
λ3D6 Tr(WnlW 2)

〉∣∣∣
θ5

Λ3D−18 ∼ ∂2TrF 4 Λ3D−18 ,

A
(b)
SG (s, t, u) ∼

〈
λ3λ̂3D6D̂6WnlW 2

〉∣∣∣
θ5θ̂5

Λ3D−18 ∼ ∂6R4 Λ3D−18 . (7.18)

In (7.18) we have used the θ-expansion of the non-linear solution of Yang-Mills obtained
in the appendix A. Note that the single-trace and double-trace operators have different
ultraviolet behaviour. They behave different because the single-trace operators involve
contact terms. In supergravity, the contact terms contain two extra momentum factors
and do not change the low energy behaviour of the amplitude.

The ladder and Mercedes amplitudes match the explicit computations at three loops
in [3]. The difference between the single-trace and double-trace terms in the Yang-Mills
case (first noted in [9]) was partially explained using pure spinor open string theory in [45]
and the more complete argument using the pure spinor world-line formalism, reviewed here,
was presented in [5]). There are also arguments based on supersymmetry that suggest that
double-trace operators are more protected than single-trace [18].

27In the finite Nc case, the contact term is anti-symmetric in the colour indices but the trace is symmetric,

and therefore vanishes.
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(a) (b) (c)

(d) (e)

Figure 13. The five one-particle irreducible four-loop skeletons. Figure (a) does not contribute to
four-particle amplitudes.

7.5 Four-loop amplitude

There are seventeen different four-loop skeletons, of which five are one-particle irreducible.
From the discussion in section 6 it follows that it is necessary to extract twenty d zero
modes, five for each loop, from the b ghosts and vertices. The one-particle reducible
diagrams vanish unless at least five vertices are attached to the skeletons. So, as before,
the one-particle reducible skeletons do not contribute to the four-point function.

For the one-particle irreducible diagrams, the maximal number of d zero modes the
nine b ghosts can contribute with is eighteen. Therefore, the one-point amplitudes vanish
as one cannot saturate the d zero mode integrations. The term with the maximal number
of d zero modes also has a factor of nine r’s, which can be converted into nine D’s. For
the two-point amplitude, the nine D’s give at least seven insertions of external momenta,
which vanish by momentum conservation. The vanishing of the three-point amplitude
follows from the same arguments as three loops.

It is easy to see that the one-particle irreducible diagram in figure 13(a) vanishes unless
one attaches at least six vertices. The diagrams contributing to the four-point function are
the one-particle irreducible skeletons depicted in figure 13(b)–(e).

In order to analyse the four-point amplitude, we need to determine the period matrices
of the different skeletons. The period matrix for the ladder skeleton in figure 13(b) is

Ω(b)
IJ =


T1 + T7 −T7 0 0
−T7 T2 + T6 + T7 + T8 −T8 0

0 −T8 T3 + T5 + T8 + T9 −T9

0 0 −T9 T4 + T9

 , (7.19)
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which has seven nonzero linearly independent components. This is two less than the number
of moduli. The skeleton diagram in figure 13(c) has the period matrix

Ω(c)
IJ =


T1 + T6 + T7 −T6 −T7 0
−T6 T5 + T6 + T8 −T8 0
−T7 −T8 T2 + T4 + T7 + T8 + T9 −T9

0 0 −T9 T3 + T9

 , (7.20)

which has eight nonzero linearly independent components — one less than the number of
moduli. The period matrix for the diagram in figure 13(d) is

Ω(d)
IJ =


T1 + T5 + T6 −T6 −T5 0
−T6 T2 + T6 + T7 + T9 −T7 −T9

−T5 −T7 T4 + T5 + T7 + T8 −T8

0 −T9 −T8 T3 + T8 + T9

 , (7.21)

which has as many nonzero linearly independent components as the number of moduli.
The skeleton in figure 13(e) has the period matrix

Ω(e)
IJ =

 T1 + T5 + T8 + T9 −T8 − T9 T9 −T5 − T9

−T8 − T9 T2 + T6 + T8 + T9 −T6 − T9 T9

T9 −T6 − T9 T3 + T6 + T7 + T9 −T7 − T9

−T5 − T9 T9 −T7 − T9 T4 + T5 + T7 + T9

 , (7.22)

which also has as many nonzero linearly independent components as the number of moduli.
For the ladder, the structure of the period matrix in (7.19) shows that the b ghost can

contribute with at most sixteen factors of d zero modes, which is less than the maximum of
eighteen. There can be at most five d zero modes on loops 2 and 3 and three on loops 1 and
4. The b ghost also contribute with seven r’s, which are turned into seven D’s. Therefore,
the amplitude is only non-zero when four single-particle vertices are attached in pairs to
loops 1 and 4, and the low energy limit of the amplitude is

A
(b)
YM(s, t) ∼ k2

m

〈
λ3D7W 4

〉∣∣
θ5

Λ4D−26 ∼ ∂6F 4 Λ4D−26 ,

A
(b)
SG(s, t, u) ∼ k4

m

〈
λ3λ̂3D7D̂7W 4

〉∣∣∣
θ5θ̂5

Λ4D−26 ∼ ∂12R4 Λ4D−26 . (7.23)

The diagrams in figure 13(c) also only allow the insertion of sixteen d zero modes.
Naively one would expect seventeen but this cannot occur since the third loop is a
pentagon. As there are four missing d zero modes, the skeleton only contributes to the
amplitude with four single-particle vertices attached. The maximal number of d zero
modes the b ghost insertions can contribute is four on loops 1 and 2, five on loop 3 and
three on loop 4. Therefore, one has to attach two vertices on loop 4 and one each on loops
1 and 2. The terms in the product of nine b ghost insertions that contribute with sixteen d
zero modes also contain one factor of the external momentum flowing across the diagram
(i.e. in the s-, t- and u-channel) and one internal momentum factor. In the Yang-Mills
case, this internal momentum is equivalent to a linear combination of external momenta
after functional integration. In supergravity on the other hand, there are two internal
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Figure 14. The planar four-loop diagram with two contact terms that contributes to ∂2 TrF 4.

momenta insertions, which can contract with each other, producing a contact term in the
low energy limit. The resulting low-energy amplitude has the form [5],

A
(c)
YM(s, t) ∼ k2

m

〈
λ3D7W 4

〉∣∣
θ5

Λ4D−26 ∼ ∂6F 4 Λ4D−26 ,

A
(c)
SG(s, t, u) ∼ k2

m

〈
λ3λ̂3D7D̂7W 4

〉∣∣∣
θ5θ̂5

Λ4D−24 ∼ ∂10R4 Λ4D−24 . (7.24)

The number of nonzero linearly independent components of the period matrix for the
skeleton depicted in figure 13(d) is nine, so each of the b ghost insertions can contribute
with the maximal number of two d zero modes,

9∏
j=1

b
IjJj
H

∂ΩIjJj

∂Tj
= (−2)5 b11

H b22
H b44

H b33
H b13

H b12
H b23

H b34
H b24

H . (7.25)

This shows that the b ghosts contribute with four d zero mode insertions on loops 1 and
4 and five on loops 2 and 3. These insertions lead to nine r’s which can be converted
into nine D’s. As the b ghost insertions contribute all the d zero modes apart from two,
the amplitude support two attached vertices. The leading low energy contribution for
the single-trace amplitude arises from two contact terms, both producing two external
particles. As discussed earlier, contact terms do not contribute to the double-trace term,
so the leading contribution arises from four single-particle vertices. In the supergravity
case, the contact terms do not change the behaviour in the low energy limit. The leading
low energy contribution (obtained in [5]) is

A
(d)
YM(s, t) ∼

〈
λ3D9A2W 2

〉∣∣
θ5

Λ4D−24 ∼ ∂4(TrF 2)2 Λ4D−24 ,

A
(d)
YM(s, t) ∼

〈
λ3D9 Tr

(
Wnl

)2
〉∣∣∣∣

θ5
Λ4D−22 ∼ ∂2 TrF 4 Λ4D−22 ,

A
(d)
SG(s, t, u) ∼

〈
λ3λ̂3D9D̂9E2Ê2

〉∣∣∣
θ5θ̂5

Λ4D−22 ∼ ∂8R4 Λ4D−22 . (7.26)

The four-loop amplitude with two contact terms is shown in figure 14.
Now consider the non-planar diagram in figure 13(e). In Yang-Mills the contribution

is suppressed by 1/N2
c and therefore vanishes in the large-Nc limit. For supergravity, there

is no planar limit and the non-planar skeleton contributes at the same order as the planar
skeletons. One interesting observation for non-planar diagrams is that simple application
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of the no-bubble and no-triangle rule of sub-diagrams does not work. The reason is that
at least one line in the diagram in any basis is involved in more than two loops. In the
basis in figure 13(e), it is line 9, which is involved in all four loops. A naive application
of the “no-triangle hypothesis” shows that one would not need to attach any vertices to
figure 13(e), which is not correct.

As the number of nonzero linearly independent components of the period matrix for
this skeleton is the same as the number of moduli, the b ghost can contribute with the
maximal number of d zero modes

9∏
j=1

b
IjJj
H

∂ΩIjJj

∂Tj
= (2)5 b11

H b22
H b33

H b44
H b14

H b23
H b34

H b12
H

(
b13
H + b24

H

)
. (7.27)

This shows that the insertions of the b ghosts can contribute in two different ways. Either
they contributes five d zero modes to loops 1 and 3 and four d zero modes to loops 2 and 4,
or the contributions are the other way round. As both are equivalent, up to a relabeling of
the loops in the diagram, we consider the former case. The leading ultraviolet behaviour
was obtained in [5] where it was shown to be (7.26). It is also worth stressing that in
the Yang-Mills case the contribution of the non-planar skeleton is suppressed by 1/N2

c

compared to the planar contributions.
The four-loop results match the known explicit results obtained in [4], and [9, 10]. It

is notable that in the pure spinor framework the low energy behaviour is obtained by a
mode-counting argument that does not require cancellations between different diagrams,
in contrast to calculations that do not make supersymmetry manifest [4].

It is worth stressing that according to a variety of arguments [11–16, 19–23, 53, 62–65]
the operators R4, ∂4R4 and ∂6R4 are fractional BPS operators, or “F-terms” that can be
written as integrals over a fraction of the full superspace and are protected from getting
higher-loop contributions. They should therefore be protected from obtaining contributions
beyond one loop, two loops and three loops, respectively.

However, the interaction ∂8R4, which is the leading ultraviolet contribution at four
loops, is a D-term that can be written as an integral over the whole superspace. Such
terms are not protected from having perturbative corrections from all loops. In other
words, it should come as no surprise if the leading order contribution to the five-loop
amplitude is ∂8R4 as was stressed in a corollary of [17].

7.6 Five-loop amplitude

As expected, at five loops there is a radical change in the pattern of the four-point
amplitudes [5]. A naive computation of the maximal number of d zero modes which the
b ghosts can contribute with is twenty-four. The problem with this naive computation
is that this term involves twelve insertions of r. As there are only eleven zero modes of
r, one of the r’s has to contribute by a nonzero mode. The nonzero mode of r has to
contract with one s, but there are no factors of s in the amplitude if the regulator, N ,
is ignored, so the amplitude apparently vanishes. However, since this contribution also
has more than eleven inverse powers of (λλ̄) the integral over λ and λ̄ diverges. In other
words, there is a new 0/0 ambiguity, this time at small values of λ and λ̄.
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(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

(13) (14) (15) (16)

Figure 15. The sixteen one-particle irreducible skeletons with five loops.

The regularisation of r can be understood from the form of the large-λ regulator
in (6.8). If the r contributing with a non-zero mode is contracted with an s in the regulator,
it produces a factor of λλ̄ d, thereby reducing the power of r/(λλ̄) from twelve to eleven.
This resolves the problem with too many r’s but it is important to stress that the regulator
does not regularise the resulting logarithmic divergence in the λ and λ̄ integrals. To do
this one needs the full structure of the regulator [50, 51] (for an alternative regulator,
see [52]), which still has the property that each r/(λλ̄) is traded for a further factor of d.
Therefore, the conclusion is that the regularised insertions of b ghosts can contribute all
the twenty-five d’s and eleven r’s needed to saturate the integral.

The only five-loop skeletons which are non-zero when the b-mode insertions contribute
the maximum number of d zero modes are those numbered (15) and (16) in figure 15 (which
is reproduced from [5]). As the b ghosts contribute the necessary number of d zero modes,
the first term in each of the four integrated vertices (see (3.15) and (3.25)) can contribute.
For the single-trace contribution, the leading term in the ultraviolet arises when there are
two contact terms, each producing two external particles. As we have seen, the double-
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trace part does not get contributions from contact terms and the leading order contribution
arises from four single-particle vertices. In supergravity, the presence of contact terms does
not alter the ultraviolet behaviour. The leading term at low energies obtained in [5] is

A
(15)&(16)
YM (s, t) ∼

〈
λ3D11A4

〉∣∣
θ5

Λ5D−28 ∼ ∂4(TrF 2)2 Λ5D−28 ,

A
(15)&(16)
YM (s, t) ∼

〈
λ3D11Tr

(
Anl
)2
〉∣∣∣∣

θ5
Λ5D−26 ∼ ∂2TrF 4 Λ5D−26 ,

A
(15)&(16)
SG (s, t, u) ∼

〈
λ3λ̂3D11D̂11G4

〉∣∣∣
θ5θ̂5

Λ5D−24 ∼ ∂8R4 Λ5D−24 . (7.28)

These have the same form as the four-loop terms. This also highlights the difference
between the ultraviolet properties of Yang-Mills and supergravity. Yang-Mills is logarith-
mically ultraviolet divergent in 26/5 dimensions whereas supergravity has a logarithmic
ultraviolet divergence in 24/5 dimensions.

As discussed in [5], the two skeletons which contribute to ∂8R4 (numbers (15) and
(16) in figure 15) lead to amplitudes with a very simple structure. In the low energy limit
the integration over the positions of the external vertices gives a contribution to the ∂8R4

term that is proportional to the vacuum amplitude of the scalar particle theory. As there
are two diagrams, there is a possibility that the two contributions cancel.

We now consider amplitudes with fewer than four points. At five loops there are
skeletons that, a priori, do not need attached vertices to give non-vanishing contributions.
Such zero point amplitudes were shown to vanish in the preliminary part of this section.
The one-point amplitude vanishes because of momentum conservation and the fact that
there are insertions of momenta. The two-point amplitude vanishes by the same arguments
as at four loops, since there are at least seven insertions of momenta in the amplitude. For
three external particles there are at least eight powers of momenta in the amplitude so
it vanishes after using momentum conservation and the mass-shell condition. This can be
generalised for amplitudes with more loops, which shows that all amplitudes with fewer
than four points vanish.

7.7 Beyond five loops

We will now review the argument in [5] that ∂2TrF 4, ∂4
(
TrF 2

)2 and ∂8R4 has contri-
butions from all loops. We will not consider the skeletons that contribute to these terms
but we will assume that there are skeletons with no bubble or triangle sub-diagrams has
such contributions. For simplicity we assume that the relevant piece of the b ghost is the
second term in (3.9).

The b ghost contribution for a L-loop skeleton arising from the second term in (3.9) is
proportional to r3L−3d6L−6. Regulating the surplus r’s gives r11d9L−20. Only 5L d’s are
needed and the surplus fields can contract pairwise to give r11d5LP 2L−10. Therefore, the
first terms of each vertex (see (3.15) and (3.25)) can contribute. The leading contribution
for the single-trace amplitude arises from two contact terms. The double-trace part does
not get contributions from multi-point vertices and its leading behaviour arises by attaching
four single-particle vertices. In the supergravity amplitude the presence of contact terms
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does not change the behaviour of the amplitude in the ultraviolet. The results is

A
(L)
FL

(s, t) ∼
〈
λ3D11A4

〉∣∣
θ5

ΛL(D−4)−8 ∼ ∂4(TrF 2)2 ΛL(D−4)−8 , (7.29)

A
(L)
FL

(s, t) ∼
〈
λ3D11Tr

(
Anl
)2
〉∣∣∣∣

θ5θ̂5
ΛL(D−4)−6 ∼ ∂2TrF 4 ΛL(D−4)−6 , (7.30)

A
(L)
FL

(s, t, u) ∼
〈
λ3λ̂3D11D̂11G4

〉∣∣∣
θ5θ̂5

ΛL(D−2)−14 ∼ ∂8R4 ΛL(D−2)−14 . (7.31)

Observe that the ultraviolet behaviour of the Yang-Mills and supergravity cases are
different. For example, (7.30) shows that D = 4, N = 4 Yang-Mills is ultraviolet finite to
all orders in four dimensions. However, from (7.31) we see that D = 4, N = 8 supergravity
receives ultraviolet divergences at more than six loops, with the first such divergence being
a logarithmic divergence at seven loops.

8 Summary and discussion

In this paper we have given details of, and justification for, the pure spinor world-line for-
malism presented in [5]. This provides a framework for constructing multi-loop amplitudes
in supersymmetric Yang-Mills theory and supergravity that is manifestly supersymmetric.
The focus of this paper has been on the BRST consistency of the loop amplitudes.

The L-loop amplitude naturally decomposes into a sum of contributions arising from
distinct skeleton diagrams, which are L-loop vacuum diagrams of scalar field theory
with cubic vertices and so have 3L − 3 internal propagators with lengths (or moduli) Tj
(j = 1, . . . 3L − 3). The amplitude for each skeleton is given by the expectation value of
the product of vertices describing the scattering particles, which are attached to the lines
of the skeleton and integrated over all positions around the diagram. In the first instance
each vertex operator was modelled on the zero mode content of the string vertex operator,
which describes the emission of a single on-shell gauge particle in Yang-Mills or a graviton
in supergravity.

A key feature that ensures BRST invariance is the BRST covariance of four-particle
sub-diagrams formed by trees with four off-shell legs. We found that this is guaranteed if all
such sub-diagrams include all three channels (i.e. the s, t and u channel pole contributions).
Although this is the case for sub-diagrams containing purely internal vertices it is not the
case for sub-diagrams that contain two external vertices. One way to remedy this is to mod-
ify the rules to allow for external tree diagrams to be attached to the skeleton. For example,
a pair of external particles may couple each other via a three-particle vertex where the third
leg is off-shell and is attached to the loop (see figure (7)). We saw that this is equivalent to
introducing a contact interaction vertex that couples the two external states directly to a leg
of the skeleton. BRST invariance uniquely determined the form of these contact vertices in
a manner that is consistent with the nonlinear classical equations of motion. Further higher-
point contact terms are needed to ensure the higher-loop BRST invariance of amplitudes
with arbitrary numbers of external legs, but such contact terms do not contribute to the
four-point function for L < 3 (but for general n-point function they contribute for L ≥ 1).
However, they play an important rôle in determining the leading ultraviolet divergences in
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Yang-Mills amplitudes for L ≥ 3. They also contribute for L ≥ 3 in the supergravity case
although their presence does not affect the leading ultraviolet properties of the loop.

Interestingly, the proof of BRST invariance makes use of the colour factors and
the kinematic factors in a related manner in the Yang-Mills and supergravity cases,
respectively. This is reminiscent of the conjectured duality between colour and kinematics
in [47] (further elaborated in [46, 66]).

For completeness, we also revisited and reviewed the analysis of the four-point
amplitudes considered in [5]. We somewhat extended that discussion to demonstrate
the vanishing of amplitudes with fewer than four on-shell particles and derive explicit
expressions for the one- and two-loop amplitude with four external particles. For the
one-loop case, we also gave an alternative proof of the “no-triangle hypothesis” of
supergravity. One important result of the analysis of four-point amplitudes in [5] is that
the ∂8R4 term is not protected from receiving perturbative corrections from all loops.
Indeed, specific five-loop skeletons are identified as giving rise to this interaction. This is
in line with several arguments [11–23] and indicates that there is a logarithmic divergence
of the form ∂8R4 at seven loops in four dimensions.

There are several avenues of interest to explore. For example, it would be interesting
to derive the results presented here and in [5], which were derived from a first quantised
approach, from a second quantised field theory lagrangian formulation. The rules for
Yang-Mills can indeed be obtained from the second-quantised action in [36]. This has the
form SYM ∼

∫ (
1
2ΦQΦ + 1

3Φ3
)

where the integration is over all superspace as well as pure

spinor space. From this one obtains a generating function ZYM[J ] ∼ e
1
3

R
( δ
δJ )3

e
1
2

R
J Nb
P2 J ,

where N is a regulator for the b ghost. This partition function formally gives rise to
the same diagrammatic rules and properties obtained for Yang-Mills in the first-quantised
approach. It is more difficult to obtain a second-quantised version of supergravity in the
pure spinor formalism but the results of this paper suggest that the supergravity partition

function has the form ZSG[J ] ∼ e
1
3

R
( δ
δJ )3

e
1
2

R
J NN̂bb̂

P2 J . This should make contact with the
recent progress in formulating a second-quantised formulation of pure spinor field theory for
eleven-dimensional supergravity [48, 49] where an action involving only cubic interactions
has been obtained. This could clarify the origin and rôle of the composite b ghost [37, 67].
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A Maximally supersymmetric Yang-Mills

In this appendix we will summarise the field equations and theta expansions which follow
from the on-shell constraint Fαβ = 0 of supersymmetric Yang-Mills in ten dimensions.
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First we define the covariant derivatives

∇m = ∂m +Am (A.1)

∇α = Dα +Aα (A.2)

Dα = ∂α +
1
2

(γmθ)α ∂m , (A.3)

and the field strengths

Fαβ = [∇α,∇β]− (γm)αβ∇m (A.4)

Fαm = [∇α,∇m] (A.5)

Fmn = [∇m,∇n] . (A.6)

Observe that the fermionic super-derivatives satisfy

[Dα, Dβ] = (γm)αβ ∂m . (A.7)

Furthermore, the field strength, Fmn is related to the potential by

Fmn = ∇mAn −∇nAm (A.8)

Important equations follow from the on-shell constraint Fαβ = 0 and the various Jacobi
identities. Combining Fαβ = 0 with (A.4) gives

∇αAβ +∇βAα = (γm)αβ Am . (A.9)

The Jacobi identity involving three fermionic covariant derivatives, ∇α, gives Fαm ≡
(γmW )α. From (A.5) it follows that (γmW )α satisfies the equation

(γmW )α = ∇αAm −∇mAα . (A.10)

The Jacobi identity involving two ∇m and one ∇α gives the equation

DαFmn + [Aα, Fmn] = (γm (∂nW + [An,W ]))α − (γn (∂mW + [Am,W ]))α . (A.11)

The Jacobi identity involving one ∇m and two ∇α’s results in the equation

(γn)αβ Fnm = (γm)αγ (DβW
γ + [Aβ,W γ ])

+ (γm)βγ (DαW
γ + [Aα,W γ ]) . (A.12)

From (A.12) one can extract equations for Wα. Multiplying (A.12) by (γm)αβ gives

(DαW
α + [Aα,Wα]) = 0 . (A.13)

Multiplying (A.12) by (γm)βσ gives

(γmn)α
σFmn = 10 (DβW

σ + [Aβ,W σ])

+ (γm)βσ (γm)βγ (DαW
γ + [Aα,W γ ]) . (A.14)
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Multiplying (A.14) by (γp)σκ (γp)
αρ and using various gamma matrix identities and (A.13)

gives

− 6(γmn)κ
ρFmn = 12 (DκW

ρ + [Aκ,W ρ])

+6 (γm)αρ (γm)σρ (DαW
σ + [Aα,W σ]) . (A.15)

Using (A.14) and (A.15) to cancel out the term involving (γm)βσ(γm)βγ gives the equation(
DαW

β + [Aα,W β]
)

=
1
4

(γmn)α
βFmn . (A.16)

One can use the equations following from the on-shell constraint and the Jacobi iden-
tities to find the θ-expansions of the various superfields. Thus, from (A.8), (A.9), (A.10)
and (A.16) it follows that

Aα =
1
2

(γmθ)α am +
1
3

(γmθ)α (θγmw)− 1
32

(γpθ)α (θγmnpθ) fmn + · · ·

Am = am + (θγmw)− 1
8

(θγmnpθ) fnp + · · ·

Wα = wα +
1
4

(θγmn)α fmn + · · ·

Fmn = fmn − (θγm (∂nw + [an, w])) + (θγn (∂mw + [am, w])) + · · · , (A.17)

where we have used the gauge freedom in the above expansion to set the θ-independent
piece of Aα to be zero. The field fmn is defined by fmn = ∂man − ∂man + [am, an].
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