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Introduction

This paper is devoted to studying gauge fields in the (anti)-de Sitter background within the

framework of the unfolded approach. The background (anti)-de Sitter space (A)dSd can

have any dimension d ≥ 4. The gauge fields under consideration are the fields of the most

general spin type, so-called mixed-symmetry fields [1–21], whose spin degrees of freedom

are described by tensors having the symmetry of arbitrary Young diagrams.

The gauge fields in Minkowski space are presented only by massless fields with arbitrary

spin. By contrast, for given mixed-symmetry field in (A)dSd there are different types of

gauge modes, each type appearing at certain critical value of the mass parameter [22–24],

so one may talk about different types of massless fields with the same spin. Only one

member of the family of massless fields with the same spin is unitary in AdSd [22–24]. In

addition there are partially-massless fields [16, 18, 25–34], which, due to higher derivative

gauge transformation law, have more degrees of freedom than massless fields but less than

massive ones and have no counterparts in Minkowski case.
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In this paper we study all types of gauge fields in (A)dSd, both unitary and nonunitary,

in order to better understand the peculiarity of the former within the framework of the

unfolded approach. The goal will be to construct the nonlinear theory with fields of mixed-

symmetry type in the spectrum, which is still lacking.

A new object, which can be referred to as generalized Yang-Mills field, shows up nat-

urally in the unfolded approach. Generalized Yang-Mills field (or generalized connection)

of the (anti)-de Sitter algebra is a degree-q differential form over (anti)-de Sitter space

with values in arbitrary representation of its symmetry algebra, which is so(d, 1) for de

Sitter and so(d− 1, 2) for anti-de Sitter. Since the space-time symmetry algebra is just an

orthogonal algebra, which can be realized as a Lie algebra of antisymmetric matrices, the

ordinary Yang-Mills field emerges when q = 1 and the representation is an irreducible one

on rank-two antisymmetric tensors. The ordinary Yang-Mills field of the (anti)-de Sitter

algebra is known [35, 36] to describe the (anti)-de Sitter gravity, i.e. the theory of massless

spin-two field.

The main statement of [19], extending the results of [37–39], is that each gauge field

in (A)dSd can be described by certain generalized Yang-Mills field (connection) of the

(anti)-de Sitter algebra.

The unfolded approach provides an effective framework for field theories. The unfolded

approach [40, 41] is a reformulation of differential equations in first order form by making

use of the de Rham differential and exterior product of differential forms. The underlying

algebraic structure is the Free Differential Algebra [42–45] whereto Lie algebras, their mod-

ules and Chevalley-Eilenberg cohomology belong. The main achievements of the unfolded

approach are the full classical nonlinear theory of totally-symmetric massless fields of spins

s = 0, 1, . . . ,∞ [46–48] and the coordinate-free description of black-holes [49, 50].

Every linearized unfolded system comes equipped with a nilpotent operator called

σ−, representing the algebraic part of the generalized covariant derivative acting on the

fields. The σ−-cohomology group H(σ−) contains all information about the dynamically

relevant independent quantities of a given unfolded system [14, 51–53]. Differential gauge

parameters, dynamical fields, gauge invariant equations of motion and Bianchi identities

are the representatives of H(σ−). The σ−-cohomology is a nice tool which allows to avoid

solving differential equations. This paper is written to present the results on the σ−-

cohomology for the unfolded equations describing arbitrary-spin massless and partially-

massless fields in (anti)-de Sitter space.

A typical linearized unfolded system consists of two parts coupled together via an

appropriate Chevalley-Eilenberg cocycle. The one containing the forms of degree higher

than zero is referred to as the gauge module and describes the gauge sector, another one

containing zero-degree forms is referred to as the Weyl module and describes the physical

degrees of freedom.

The generalized Yang-Mills fields provide the explicit construction for the gauge module

of every gauge field in (A)dSd. We compute H(σ−) for the gauge module, the result is pre-

sented in section 3.7. The same technique, developed in appendix B, can be applied to the

Weyl module, showing that the cohomology matching condition between the gauge module

and the Weyl module is fulfilled. Certain special cases were considered in [34, 38, 39, 52].
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That massless fields in Minkowski space are the systems with the first class constraints

and the massive fields both in Minkowski and (A)dSd are the systems with the second class

constraints is mirrored in certain dualities on H(σ−). The gauge fields in (A)dSd are the

systems with both the first and the second class constraints present. Therefore, the duality

on H(σ−) is found to be more complicated.

A generic element of the σ−-complex C(σ−) is a differential form with values in some

finite-dimensional tensor representation of the Lorentz algebra, the latter results from the

restriction of the irreducible module of the (anti)-de Sitter algebra, in which a generalized

Yang-Mills field takes values, to its Lorentz subalgebra. The Lorentz algebra commutes

with the action of σ−. Therefore, the representatives of H(σ−) are labelled by Young dia-

grams of the Lorentz algebra. They correspond to the fields, gauge parameters, etc. of the

minimal formulation in terms of metric-like fields, which turns out to be very complicated

in contrast to the formulation in terms of generalized Yang-Mills fields.

Quite surprisingly, the symmetry types of the representatives of H(σ−) turn out to be

given by what may be called ’the maximally symmetric part’ of the tensor product, i.e.

the corresponding Young diagrams tend to be as symmetric as it is possible, the rest of

diagrams that are less symmetric label acyclic subcomplexes of C(σ−). Making essential

use of Young diagrams allows us to present the results in a simple form.

The paper is organized as follows. We begin in section 1 by presenting the classification

of the gauge fields in (A)dSd, including all types of massless and partially-massless fields.

Essential facts of the unfolded approach are quickly summarized in section 2, where a

linear gauge theory with generalized Yang-Mills fields of the (anti)-de Sitter algebra is

defined. The σ− operator is discussed in section 3, where the results on the σ−-cohomology

are stated, the proof is in appendix B. The field-theoretical interpretation of the σ−-

cohomology is in section 4. In section 5 the example of a two-row massless field is given to

illustrate the general formalism. The conclusions are in section 6.

Preliminaries

Whereas only tensor representations are considered in the paper, we do not make any

distinction between irreducible finite-dimensional highest weight modules of sl(d) and so(d)

with highest weight (s1, . . . , sn, 0n+1, . . . , 0ν), ν = d− 1 for sl(d), ν = [d/2] for so(d), and

Young diagrams of shape Y(s1, . . . , sn). For simplicity, we ignore the Young diagrams of

height close to the maximal admissible height ν, so that it is assumed n < ν − 1, thus for

so(d) we will not consider (anti)-self dual representations.

A Young diagram X can be defined in several ways: (1) by specifying the lengths of

its rows X = Y(s1, . . . , sn) (row notation), n being the number of rows and si being the

length of the i-th row, si ≥ si+1; (2) by specifying the widths and heights of its subblocks

Y{(s1, p1), . . . , (sN , pN )} ≡ Y(

p1︷ ︸︸ ︷
s1, . . . , s1, . . . ,

pN︷ ︸︸ ︷
sN , . . . , sN ),

where si and pi are the width and the height of the i-th subblock, N is the number of

subblocks; (3) by specifying the heights of columns Y[h1, . . . , hn], hi being the height of

the i-th column, hi ≥ hi+1.
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Let f be some orthogonal algebra so(p, q), the orthogonal algebras of interest being

so(d − 1), so(d − 1, 1), so(d, 1) and so(d − 1, 2). A tensor CX of f or sl(d) is said to have

the symmetry of some Young diagram X if its indices realize the irreducible representa-

tion of the permutation group labelled by X, which for sl(d) guarantees the irreducibility

of the tensor.

If a tensor CX having the symmetry of X = Y(s1, . . . , sn) needs to be written explicitly,

it is always taken in the symmetric basis, meaning that j1 it has n groups of indices, the k-

th group containing sk indices; j2 it is manifestly symmetric with respect to permutations

of indices within any group; j3 it satisfies the Young condition

Ca(s1),...,b(sk),...,bc(si−1),...,u(sn) ≡ 0, 1 ≤ k < i ≤ n,

where a group of symmetric indices is denoted by one letter with the number of indices

indicated in brackets, e.g. a(s1) ≡ a1a2 . . . as1
, and the (normalized) sum over all per-

mutations of two or more (groups of) indices denoted by the same letter is implied, e.g.

b(sk), . . . , bc(si − 1) ≡ 1
(sk+1)!

∑
σ bσ(1) . . . bσ(sk), . . . , bσ(sk+1)c1 . . . csi−1.

A tensor of the orthogonal algebra is said to be an irreducible tensor having the sym-

metry of X iff in addition to having the symmetry of X it is completely traceless, i.e.

contraction of the invariant metric tensor with any two indices vanishes identically.

1 Gauge fields in (anti)-de Sitter space

According to [19], which is a generalization of numerous results [22–25, 27] concerned with

gauge fields in (A)dSd, any gauge field in (A)dSd is completely determined by a triple

(S, q, t), where S is a finite-dimensional irreducible representation of the (anti)-de Sitter

’Wigner little algebra’ so(d − 1), specified by some Young diagram S = Y(s1, . . . , sn); q

is an integer in the range 1,. . . ,n such that (sq − sq+1) > 0; t is an integer in the range

1,. . . ,(sq − sq+1), which is equal to the order of derivative in the gauge transformation law.

For a given triple (S, q, t) the irreducible module H (E0;S0 ≡ S) of the (anti)-de Sitter

algebra that is referred to as a massless (t = 1) or partially-massless (t > 1) field1 is defined

by the following exact sequence [19, 54]

0→ D (Eq;Sq) −→ . . . −→ D (E1;S1) −→ D (E0;S0) −→ H (E0;S0)→ 0, (1.1)

where for the anti-de Sitter case D (E′;S′) is a Verma module freely generated by the

positive grade operators of so(d−1, 2) from the vacuum |E′,S′〉 annihilated by the negative

grade generators of so(d − 1, 2), which is an irreducible representation of the maximal

compact subgroup so(2)⊕ so(d− 1) of so(d− 1, 2) defined by the lowest weights E′ and S′

of so(2) and so(d− 1), respectively.

1In the de Sitter case the construction of so(d, 1) modules is different because the corresponding repre-

sentations of so(d, 1) are not of the lowest weight type. Nevertheless, the notion of the lowest energy E0

can be introduced [27, 31]. As for field equations, the situation is more simple inasmuch as the change

λ2
−→ −λ2 makes the transition from AdSd to dSd.
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The lowest weights Ei and Si of so(2)⊕ so(d− 1) are defined as

Ei =

{
d + sq − t− q − 1, i = 0,

d + sq−i+1 − (q − i + 1)− 1, i = 1, . . . , q,
(1.2)

Si =





Y(s1, . . . , sn) ≡ S, i = 0,

Y(s1, s2, . . . , sq−1, sq − t, sq+1, . . . , sn), i = 1,

Y(s1, . . . , sq−i, sq−i+2 − 1, . . . , sq − 1, sq − t, sq+1, . . . , sn), i = 2, . . . , q − 1,

Y(s2 − 1, s3 − 1, . . . , sq − 1, sq − t, sq+1, . . . , sn), i = q.

(1.3)

Given E′ and S′ = Y(s′1, . . . , s
′
n), D (E′;S′) can be realized on the solutions of

(2 + m′2)Ca(s′1),...,u(s′n) = 0, (1.4)

DmCa(s′1),...,mc(s′i−1),...,u(s′n) = 0, i = 1, . . . , n, (1.5)

where Ca(s′
1
),...,u(s′n)(x) is an irreducible Lorentz tensor field having the symmetry of S′,

2 ≡ DmDm and the mass-like parameter m′2 is related to E′ and S′ as

m′2 = λ2
(
E′(E′ − d + 1)− s′1 − · · · − s′n

)
. (1.6)

Therefore, a field-theoretical model for H (E0;S0) is given by the irreducible Lorentz

field φS ≡ φa(s1),...,u(sn)(x) having the symmetry of S and satisfying equations (1.4)–

(1.5) with the mass-like parameter determined by E0 and S0 ≡ S. The exactness of

D (E1;S1) −→ D (E0;S0) −→ H (E0;S0) implies that at E0 and S0 equations (1.4)–(1.5)

become invariant under gauge transformations of the form

δφa(s1),...,u(sn) =

t︷ ︸︸ ︷
Dc . . . Dc ξa(s1),...,b(sq−1),c(sq−t),d(sq+1),...,u(sn) + · · · , (1.7)

where ’. . .’ stands for certain lower derivative terms and for the terms that project onto

the Young symmetry S. The gauge parameter ξS1 is an irreducible Lorentz tensor field

having the symmetry of S1 and satisfying equations analogous to (1.4)–(1.5). The rest of

D (Ei;Si) with i = 2, .., q corresponds to reducible gauge symmetries.

The exact sequence (1.1) can be extended to the right with D (E−1;S−1) −→

D (E−2;S−2) −→ . . ., implying that for a field φS0 with gauge transformations (1.7) one

can construct the generalized Weyl tensor CS−1 having the symmetry of S−1, [33]. CS−1 is

obtained by applying (sq − sq+1 − t + 1) derivatives to φS0 . By definition, the generalized

Weyl tensor CS−1 is the lowest order nontrivial on-mass-shell gauge invariant under ξS1-

transformations (1.7) tensor built from φS0 . That the Weyl tensor does exist, its symmetry

type and order of derivative follows from the analysis of H(σ−) and, of course, from the

structure of singular vectors in D (E′;S′).

Consequently, the space of gauge invariant differential expressions constructed from

φS0 is generated by (1.4)–(1.5) and by the generalized Weyl tensor.
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To illustrate, the Young diagrams S1 of the gauge parameter, S0 of the spin and S−1

of the generalized Weyl tensor have the form

S1 =

sn

. . .
sq+2

sq+1

sq − t
sq−1

. . .
s1

S0 =

sn

. . .
sq+2

sq+1

sq

sq−1

. . .
s1

S−1 =

sn

. . .
sq+2

sq − t + 1
sq

sq−1

. . .
s1

2 Unfolded approach

General definition. A set of differential equations is said to have the unfolded form [40,

41, 55] if it can be written as the zero curvature condition

RA ≡ dWA + FA(W ) = 0, (2.1)

where WA is a set of differential forms on some manifoldMd with values in vector spaces

labelled by A, so that indices A,B, . . . indicate the vector space rather than components in

a particular basis. |A| is the form-degree of WA, d is the exterior differential on Md and

FA(W ) is a degree-(|A|+ 1) function of W assumed to be expandable in terms of exterior

(wedge) products only2

FA(W ) =

∞∑

n=1

∑

|B1|+···+|Bn|=|A|+1

fA
B1...Bn

WB1 ∧ . . . ∧WBn , (2.2)

where fA
B1...Bn

are some x-independent elements of Hom(B1 ⊗ . . . ⊗ Bn,A). In order to

guarantee the formal consistency of (2.1) FA(W ) must satisfy the integrability condition

(referred to as either the generalized Jacobi identity or the Bianchi identity) obtained by

applying d to (2.1)

FB δFA

δWB
≡ 0. (2.3)

Any solution of (2.3) defines a free differential algebra (FDA) [42–45]. If the Jacobi iden-

tity (2.3) is satisfied regardless ofMd dimension, the free differential algebra is referred to

as universal [53, 56]. It is the universal algebras only that will be considered henceforth.

Equations (2.1) are invariant under the gauge transformations

δWA = dǫA − ǫB
δFA

δWB
, if |A| > 0, (2.4)

δWA = −ǫB
′ δFA

δWB′
, B′ : |B′| = 1, if |A| = 0, (2.5)

where ǫA is a degree-(|A| − 1) form taking values in the same space as WA.

2The wedge symbol ∧ will be systematically omitted henceforth.

– 6 –



J
H
E
P
0
1
(
2
0
1
0
)
1
0
6

Linearization. In what follows we consider the linearized unfolded systems. Let the base

manifold Md be a homogeneous space3 Md = G/H, with g and h being the Lie algebras

of G and H. Typically, h is the Lorentz algebra, so(d − 1, 1). The most general unfolded

equations linearized over Md have the form [53, 59, 60]

RI = dΩI + f I
JKΩJΩK = 0, (2.6)

RA = dWA + fA
BWB + ΩIfI

A
BWB + · · ·+ ΩI1 . . . ΩIkfI1...Ik

A
BWB = 0, (2.7)

where Ω is a one-form connection of g with ΩI being the components of Ω in some base, f I
JK

are the structure constants of g; fI1...Ik

A
B ≡ 0 unless |A|+1 = |B|+k. The set of fields con-

sists of two subsets: degree-one forms ΩI that are assumed to have the zeroth order and the

matter fields WA, which may have various degrees, are assumed to have the first order so

that the unfolded equations are linear in WA. ΩI can be recognized as the Cartan connec-

tion onMd, it describes the background geometry by virtue of the flatness condition (2.6).

The Jacobi identity (2.3) implies that fI1...Ik

A
B are closely related to the Lie algebra

g of the space-time symmetry group G. Namely, fI1...Ik

A
B is a Chevalley-Eilenberg k-

cocycle of g with coefficients in Hom(B,A) [53]. If k = 1 and A = B, fI
A
A is just a

representation of g in the vector space A. Coboundary cocycles can be removed from the

equations (2.7) by a nonsingular field redefinition, thus, fI1...Ik

A
B can be assumed to be

nontrivial representatives of Chevalley-Eilenberg cohomology groups.

Having fixed the background connection ΩI , it is useful to introduce [14, 59] the gen-

eralized4 covariant derivative D

D = fA
B + (δAB d + ΩIfI

A
B) + · · ·+ ΩI1 . . . ΩIkfI1...Ik

A
B, (2.8)

which acts on the whole space Wq of matter fields

Wq = {WB,W C , . . . ,WD}, q = max
A
|A| (2.9)

We defineWq±i to be the spaces of differential forms with values in the same vector spaces

as Wq but with the form degrees shifted by ±i. If for some B and i we have |B| − i < 0

the corresponding element of Wq−i becomes trivial.

In this special case, the nilpotency of D, D2 = 0, is equivalent to the generalized

Jacobi identity (2.3). Then, the gauge transformations for a matter field Wq, Wq ∈ Wq

read δWq = Dξq−1 with ξq−1 ∈ Wq−1. The gauge invariant field curvature Rq+1 = DWq

belongs to Wq+1, the rest of Wq±i corresponds either to reducible gauge symmetries or to

reducible Bianchi identities. Therefore, we have the unfolded complex C(W,D),

W0
D
−−→ W1

D
−−→ . . .

D
−−→Wq−1

D
−−→Wq

D
−−→ . . . . (2.10)

3The homogeneous spaces of interest are given by Minkowski space G = ISO(d− 1, 1), H = SO(d− 1, 1),

anti-de Sitter space G = SO(d−1, 2), H = SO(d−1, 1), de Sitter space G = SO(d, 1), H = SO(d−1, 1), and

by the space with G = SP (8) and H being the maximal parabolic subgroup of G, in which the symmetries

of 4d higher-spin fields gets realized geometrically [57, 58].
4If D consists only of the expression in brackets, it reduces to the ordinary covariant derivative.
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We can always split C(W,D) as

C(W,D) = C(Wcontr,D)⊕ C(Wgauge,D) E C(WWeyl,D), (2.11)

where Wcontr is a contractible part [33, 42], which can be consistently set to zero. The

equations DWcontr are of the form dW 1 + W 2 + · · · = 0 so that W 1 can be gauged away.

In what follows contractible parts will never appear. Wgauge is referred to as the gauge

module, it contains the forms of degree greater than zero, which are necessarily gauge

fields by virtue of (2.4). The zero degree forms constitute the Weyl module WWeyl,

which carries physical degrees of freedom since the field equations (2.1) can be treated

as a cocycle condition, having pure gauge solutions in the sector of k-forms with k > 0

by virtue of the Poincare lemma, hence, only zero degree forms parameterize a solution

to (2.1). The semidirect sum sign E is due to the Chevalley-Eilenberg cocycle that glues

the Weyl module to the gauge module.

Generalized Yang-Mills connections of the (anti)-de Sitter algebra. Below we

define a family of gauge modules which is natural to consider in (anti)-de Sitter space.

Let Ω be a flat connection of the (anti)-de Sitter algebra g, g = so(d, 1) (de Sitter)

and g = so(d− 1, 2) (anti-de Sitter). Given an arbitrary irreducible representation of the

(anti)-de Sitter algebra A we define the complex C(A,DΩ)

WA
0

DΩ−−→ . . .
DΩ−−→ WA

q−1

DΩ−−→ WA
q

DΩ−−→ WA
q+1

DΩ−−→ WA
q+2

DΩ−−→ . . . ,

where WA
i is a g-module of degree-i differential forms with values in A. The flatness

condition implies the nilpotency of DΩ, DΩ
2 = 0. When the dimension of (A)dSd is

reached, WA
i becomes trivial, i.e. WA

i = ∅ if i > d.

Given a distinguished degree q > 0, for the gauge field WA
q ∈ W

A
q one can easily

define [37–39] the field curvature RA
q+1 = DΩWA

q that is invariant under the gauge trans-

formations δWA
q = DΩξA

q−1 and satisfies the Bianchi identity DΩRA
q+1 ≡ 0. The lower

degree elements ξA
q−i of WA

q−i, i = 2, . . . , q of the complex C(A,DΩ) correspond to the

reducible gauge transformations δξA
q−i+1 = DΩξA

q−i. The higher degree elements WA
q+i,

i = 2, . . . correspond to the reducibility of Bianchi identities. Thus, C(A,DΩ) is a particu-

lar realization of C(Wgauge,D) with D = DΩ.

(A)dSd-background geometry. The connection Ω can be presented in components

by a one-form ΩA,B ≡ ΩA,B
µ dxµ antisymmetric in its fiber indices of g, ΩA,B = −ΩB,A,

A,B, . . . = 0, . . . , d, with the flatness condition having the form

dΩA,B + ΩA,
C ∧ ΩC,B = 0. (2.12)

To interpret the fields in terms of the Lorentz algebra the manifest local (anti)-de

Sitter symmetry must be lost. The local Lorentz algebra so(d− 1, 1) is identified with the

subalgebra of the local (anti)-de Sitter algebra that annihilates some vector field V A(x),

called compensator [36, 37], which is convenient to normalize as5 V BVB = ∓1. The

5Upper/lower sign corresponds to the de Sitter/anti-de Sitter case hereinafter.
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generalized vielbein field EA
µ dxµ

λEA = DΩV A = dV A + ΩA,
BV B (2.13)

is required to have the maximal rank, thus giving rise to a nonsingular vielbein field ha
µ.

EBVB = 0 by virtue of (2.13). The connection of the Lorentz algebra

ΩA,B
L = ΩA,B ∓ λ(V AEB − EAV B) (2.14)

allows to define the Lorentz covariant derivative D = d + ΩL. Both the compensator V A

and the generalized vielbein EA are Lorentz-covariantly constant

DV A = 0, DEA = 0. (2.15)

For the further convenience we introduce

ΩA,B = ΩA,B
L +∇A,B

− −∇A,B
+ , ∇A,B

− = ±λV AEB , ∇A,B
+ = ±λEAV B . (2.16)

One can always choose the ’standard gauge’ for the compensator field VA = δA
• , then

λEA = ΩA,
•, E•

µ = 0 and Ωa,b
L = Ωa,b, so that the vielbein field ha

µ and the Lorentz

spin-connection ̟a,b are defined as

λha = Ωa,
•, ̟a,b = Ωa,b. (2.17)

In terms of ha and ̟a,b the flatness condition (2.12) reads

dha + ̟a,
b ∧ hb = 0, (2.18)

d̟a,b + ̟a,
c ∧̟c,b ± λ2ha ∧ hb = 0. (2.19)

Having identified the Lorentz algebra together with the Lorentz covariant derivative

D, the complex C(A,DΩ) can be interpreted in terms of (generalized) connections of the

Lorentz algebra. Passing to connections of the Lorentz algebra, the manifest (anti)-de Sitter

symmetry gets lost. After converting the connections of the Lorentz algebra into fully world

or fully fiber (metric-like) tensors with the help of the background vielbein ha
µ, in terms

of metric-like fields the gauge theory acquires a very complicated form due to Young sym-

metrizers and because of a large number of component metric-like fields, most of which are

auxiliary or pure gauge. The σ−-technique allows us to find out which fields are dynamical

and hence to give an interpretation of C(A,DΩ) in terms of the metric-like fields of section 1.

Unfolding gauge fields in (anti)-de Sitter. We assume g is so(d, 1) or so(d − 1, 2),

the Cartan connection ΩI is presented by a one-form ΩA,B ≡ ΩA,B
µ dxµ with the flatness

condition (2.6) having the form (2.12). The unfolded equations for a gauge field (S, q, t) are

expected to have the following form, which is a special case of the unfolded complex (2.10),

DΩWA
q = f(E, . . . , E)(C0), (2.20)

D̃ΩC0 = 0, (2.21)
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where WA
q is a g-connection (4.1) associated with (S, q, t)-field, C0 is a certain infinite-

dimensional g-module, the Weyl module, whose restriction to the Lorentz algebra yields a

direct sum of an infinite number of irreducible Lorentz tensors. f(E, . . . , E) is a Chevalley-

Eilenberg cocycle gluing the gauge module to the Weyl module. D̃Ω is a g-covariant

derivative in the Weyl module. Note that only finitely many Lorentz modules constituting

the Weyl module are glued with the gauge module. These are given by the Weyl tensor

together with certain of its descendants.

The explicit constructions known up-to-date are given by a massless spin-s field [37,

40, 47, 48, 55]; partially-massless spin-s fields can be rewritten in the same way since a

simple change of variables gives all the coefficients of D̃Ω from those of DΩ, [39]; for the

series (S, qmin, 1), where qmin is the height of the shortest column of S, the free unfolded

equations were obtained in [33, 34]. However, it is still lacking for arbitrary-spin massless

and partially-massless gauge fields in (A)dSd. We expect it may be extracted analogously to

the series (S, qmin, 1) from the unfolded equations for massive arbitrary-spin field in (A)dSd

of [33, 34], which are obtained as the constrained radial reduction of unfolded equations

for massless fields in Minkowski space [14]. However, it is not obvious at the moment how

the equations can be cast into the form (2.20). The equations for the Weyl module (2.21)

were given in [33, 34] for arbitrary case together with the constraints that single out the

different cases, i.e. massive, massless or partially-massless.

3 The Sigma-minus operator

The unfolded form of any field-theoretical system has many advantages in that it is for-

mulated in terms of connections of the space-time symmetry algebra. As compared to the

minimal formulation in terms of metric-like fields the unfolded form requires more com-

ponent fields with many of them playing auxiliary role. Therefore, given some unfolded

equations whose field-theoretical interpretation is not clear or while unfolding some known

field system there comes the question of what fields are the true dynamical ones and what

gauge parameters are the true differential ones, etc.

A natural gauge sector of an unfolded complex in (anti)-de Sitter space is presented

by the complex C(A,DΩ) of gauge connections of the (anti)-de Sitter algebra. Actually,

every finite-dimensional irreducible gauge module is given by some WA
q . With the help of

the σ−-cohomology technique [14, 51–53] we classify all dynamically relevant independent

quantities in C(A,DΩ), which gives the full list of dynamical fields contained in WA
q ,

differential gauge parameters in ξA
q−1 and the gauge invariant equations that can be

imposed on WA
q in terms of RA

q+1.

The initial data for σ− are a flat connection Ω of the (anti)-de Sitter algebra g together

with an irreducible g-module A. The starting point is that, according to (2.16), the (anti)-

de Sitter covariant derivative DΩ splits as

DΩ = D +∇− −∇+, (3.1)

where (∇±) are nilpotent algebraic operators, (∇±)2 = 0. The operators ∇± preserve

Young symmetry properties.
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First, in 3.1 we introduce the operator σ− in abstract terms and give an overview of the

well-known facts on the interpretation of the σ−-cohomology [14, 51–53]. Then, to strictly

define σ− for the complex C(A,DΩ) of gauge connections we need some details about the

restriction of irreducible modules , which are in section 3.2. Before giving a formal definition

for σ− in 3.4, two simple examples are considered in 3.3. To present the result on σ−-

cohomology in a simple form, which is done in 3.7 with the proof being in appendix B, we de-

fine the highest weight part and the maximally symmetric part of tensor products in 3.5 and

introduce in 3.6 a special structure joining restriction of modules with maximally symmetric

part of tensor products. A number of useful examples on σ−-cohomology is given in 3.8.

3.1 Interpretation of cohomology

Suppose that the field content of some unfolded system of equation is given by a graded

collection of degree-q differential forms6 ωg
q, g = 0, 1, . . .. The corresponding gauge param-

eters are the forms of degree-(q − 1) with the values in the same spaces as ωg
q. If q > 1

there are reducible gauge symmetries with parameters ξg
q−i

, i = 2, . . . , q. Suppose also that

the gauge transformations, the field curvatures and the Bianchi identities have the form,

which is a special case of the unfolded complex (2.10),

δξg
1 = Dξk

0 + σ−

(
ξg+1
0

)
, (3.2)

. . . = . . . , (3.3)

δξg
q−1 = Dξg

q−2 + σ−

(
ξg+1
q−2

)
, (3.4)

δωg
q = Dξg

q−1 + σ−

(
ξg+1
q−1

)
, (3.5)

Rg
q+1 = Dωg

q + σ−

(
ωg+1

q

)
, (3.6)

0 = DRg
q+1 + σ−

(
Rg+1

q+1

)
, (3.7)

where σ− is an algebraic operator that decreases the grade by one and increases the form

degree by one. The only differential part is in the Lorentz covariant derivative D. The

formal consistency of the system requires (1) {D,σ−} = 0, which trivially holds in the

systems of interest since σ− is built of the background vielbein and Dha = 0 is equivalent

to (2.18); (2) σ− is a nilpotent operator, σ−
2 = 0.

Having a nilpotent operator suggests the cohomology problem. The σ−-cohomology

turns out to have a very clear field-theoretical meaning, classifying all dynamically rel-

evant independent quantities. Indeed, the degree-k, k = 1, . . . , q − 1, gauge parameters

ξg
k that are σ−-exact can be gauged away with the help of the reducible algebraic gauge

symmetry with ξg+1
k−1

. The leftover gauge symmetry 0 = δξg
k

= Dξg
k−1

+ σ−

(
ξg+1
k−1

)
just

expresses ξg+1
k−1 modulo σ−-closed part in terms of ξg

k−1. Therefore, the true differential

gauge parameters are σ−-closed and are not σ−-exact thus being representatives of the

σ−-cohomology groups H
k(σ−). Quite analogously, the dynamical fields, i.e. the fields

6The analysis is not affected if the form degree varies with the grade, ωg
qg

, as it occurs for massless fields

in Minkowski space [14].
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cohomology group interpretation

H
q−i, i = 1, . . . , q differential gauge parameters at the i-th level of reducibility

H
q dynamical fields

H
q+1 independent gauge invariant equations on dynamical fields

H
q+i+1, i = 1, . . . Bianchi identities at the i-th level

Table 1. Interpretation of the σ−-cohomology.

that cannot be gauged away by some algebraic gauge symmetry and are not expressed

in terms of derivatives of some other fields, are the representatives of H
q(σ−). The inde-

pendent gauge invariant differential expressions are the representatives of H
q+1(σ−). The

nontrivial (reducible) Bianchi identities are the representatives of H
q+j(σ−), j = 2, . . . .

We sum up the interpretation of H(σ−) in table 1. The maximal number of derivatives

connecting two elements of H
q′

g1
and H

q′+1
g2

is equal to7 (g2 − g1 + 1), meaning that if some

representatives of H
q′

g1
and H

q′+1
g2

correspond to a parameter and a dynamical field then the

gauge transformation law contains (g2− g1 +1) derivatives; if H
q′

g1
and H

q′+1
g2

correspond to

a dynamical field and a gauge invariant equation then the latter is up to (g2 − g1 + 1)-th

order in derivative, etc.

3.2 Restriction of irreducible modules

When formulated in terms of Young diagrams the restriction rules are the same8 both for

sl(d+1) and so(d+1). Let g and h denote either sl(d+1) and sl(d) or so(d+1) and so(d).

When restricted to the subalgebra h ⊂ g, irreducible finite-dimensional representations

of g decompose into a direct sum of irreducible representations of h. We denote this functor

as Resg
hX, where X is a Young diagram that determines an irreducible representation of g.

The result of applying Resg
h

to X = Y(s1, . . . , sn) reads [61]

Resg
hX =

⊕

k1,...,kN

X{k1,...,kN}, (3.8)

where the multiplicity of each irreducible module X{k1,...,kN} is one and

X{k1,...,kN} =

{
Y(k1, . . . , kn), k1 ∈ [s2, s1], . . . , kn−1 ∈ [sn, sn−1], kn ∈ [0, sn],

∅, otherwise.
(3.9)

So, the result of the restriction is given by various Young diagrams obtained by removing

an arbitrary number of cells from the right of rows of X provided that the length of each

shortened row is not less than the length the next row of X.

7In the (anti)-de Sitter case two covariant derivatives might appear in the form of a commutator, which

is an algebraic expression and not a second order differential operator. Fortunately, we are able to trace

the appearance of such commutator terms.
8It is worth stressing that at least one of the weights (s1, . . . , sν) of so(2ν + 1) or so(2ν) must be zero

in order to get rid of (anti)-selfdual representations both for the (anti)-de Sitter algebra and its Lorentz

subalgebra, which is implied.
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Resg
hX is endowed with a natural structure of a graded vector space if to each element

X{k1,...,kN} we assign the grade g = k1 + k2 + · · · + kN − s2 − · · · − sn, so that the grade

of the minimal rank element of Resg
h
X is 0 and the grade of the maximal rank element of

Resg
hX is s1.

It is convenient to define generally reducible h-modules Xg to be a direct sum of

irreducible h-modules X{k1,...,kN} having the same grade g (the same rank)

Xg =
⊕

k1+···+kn=g

X{k1,...,kN}, (3.10)

so that Resg
h
X =

⊕
g Xg.

Among X{k1,...,kN} there are elements Xm (those having first (m−1) rows k1, . . . , km−1

of maximal length with the rest of rows km, . . . , kn having minimal length) that can be

referred to as maximally symmetric

Xm =

{
Y(s1, . . . , ŝm, . . . , sn), m = 1, .., n,

Y(s1, . . . , sn), m > n,
(3.11)

i.e. as if the m-th weight is thrown away. The grade of maximally symmetric elements Xk

is given by

g(Xk) =

{
s1 − sk+1, 1 ≤ k ≤ n,

s1, k > n
(3.12)

3.3 Two simple examples

The simplest σ
−
-model for so(d + 1). Let A be a rank-s totally symmetric irre-

ducible module of the (anti)-de Sitter algebra. The action of DΩ on an element WA
q reads

DΩW
A(s)
q = DW

A(s)
q + sλV AEMW

A(s−1)M
q − sλEAVMW

A(s−1)M
q , (3.13)

where we adopt the signs as for the anti-de Sitter case. The result of the restriction of

W
A(s)
q to the Lorentz subalgebra is given by

W
A(s)
q ⇐⇒ ω

a(k)
q , k = 0, . . . , s, (3.14)

If we choose the standard gauge (2.17) for the compensator V A, the field ω
a(k)
q can be

identified with the traceless part of W
a(k)•(s−k)
q . Note that the contraction of two Lorentz

indices of W
a(k)•(s−k)
q with the metric ηab does not vanish

ηbbW
a(k−2)bb•(s−k)
q = W

a(k−2)•(s−k+2)
q . (3.15)

We refer to such expressions with a part of indices of the (anti)-de Sitter algebra restricted

to the Lorentz algebra and with the other indices pointing along V A as to ’raw’. In terms

of the raw fields W
a(k)•(s−k)
q (3.13) is rewritten as

DΩW
a(k)•(s−k)
q = DW

a(k)•(s−k)
q + (s− k)λhmW

a(k)m•(s−k−1)
q − kλhaW

a(k−1)•(s−k+1)
q ,

– 13 –



J
H
E
P
0
1
(
2
0
1
0
)
1
0
6

where use is made of Ea = ha, E• = 0, V a = 0, V • = 1. Next, we rewrite the raw

expressions in terms of the irreducible connections ω
a(k)
q

DΩω
a(k)
q = Dω

a(k)
q + λhmω

a(k)m
q + λfk

(
haω

a(k−1)
q −

(k − 1)

d + 2k − 4
ηaahmω

a(k−2)m
q

)

where the fields have been rescaled to get rid of some factors and

fk =
k(s − k − 1)(d + s + k − 2)

d + 2k − 2
.

In terms of Lorentz connections, ∇− and ∇+ of (3.1) or the operators V AEM and EAVM

of (3.13) give rise to the two algebraic operators

σ−

(
ω

a(k+1)
q

)
= hmω

a(k)m
q , (3.16)

σ+

(
ω

a(k−1)
q

)
= fk

(
haω

a(k−1)
q −

(k − 1)

d + 2k − 4
ηaahmω

a(k−2)m
q

)
. (3.17)

It is straightforward to verify that σ−
2 = 0 due to hahb + hbha ≡ 0. For the same reason

σ+
2 = 0.

The simplest σ
−
-model for sl(d + 1). It is useful to consider fields with relaxed

trace constraints, for instance, the unfolded off-shell constraints for symmetric fields of

all spins in Minkowski space were found in [62] to have the form of zero curvature and

covariant constancy conditions with the fields not subjected to any trace constraints. For

this purpose, we take A to be an irreducible module of sl(d + 1). The analogue of the

Lorentz algebra is then sl(d).

Again, take A be a rank-s totally symmetric tensor representation. The result of the

restriction of W
A(s)
q to the sl(d)-subalgebra is given by the same number of component fields

W
A(s)
q ⇐⇒ ω

a(k)
q , k = 0, . . . , s. (3.18)

Since no trace constraints are imposed, the ’raw’ fields W
a(k)•(s−k)
q are directly identified

with the irreducible sl(d)-fields ω
a(k)
q

ω
a(k)
q = W

a(k)•(s−k)
q , k = 0, . . . , s. (3.19)

∇− and ∇+ give rise to

σ−

(
ω

a(k+1)
q

)
= hmω

a(k)m
q , (3.20)

σ+

(
ω

a(k+1)
q

)
= f̃kh

aω
a(k−1)
q , (3.21)

where f̃k = (s− k − 1)k. The nilpotency of σ± is obvious.
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3.4 Formal definition

Given some Lie algebra g, its representation A and a commutative subalgebra f ⊂ g,

there is a well-known definition9 of (co)homology of the Lie algebra f with coefficients in a

g-module A taken as an f-module.

∂ : A⊗ Λq(f) −→ A⊗ Λq−1(f),

∂(a⊗ u1 ∧ . . . ∧ uq) =

i=q∑

i=1

(−)i+1ui(a)⊗ u1 ∧ . . . ∧ ûi ∧ . . . ∧ uq, a ∈ A, ui ∈ f, (3.22)

where ui(a) is the action of ui ∈ f ⊂ g on a vector a ∈ A.

The above definition leads to the σ−-cohomology for the case of g = sl(d + 1), in which

f in some base is identified with the subalgebra of matrices having nonvanishing entries in

the first row except for the leftmost entry



0 u

∗ h


 , u ∈ f. (3.23)

Now we turn to orthogonal algebra, g = so(d + 1), the Lorentz subalgebra is h = so(d),

then f as a vector subspace is given by antisymmetric matrices that have zeros everywhere

except for the first row and the first column



0 u

−u h


 , u ∈ f, (3.24)

i.e., f is nothing but the translation generators. However, f is a subspace and not a sub-

algebra, so that we cannot use the classical definition. Nevertheless, we will show that in

some cases one still can associate with f certain nilpotent operator ∂, ∂2 = 0, acting on A

and hence build a complex.

Suppose we are given a Lie algebra g, its module A and a subalgebra g0 ⊂ g, which is to

be identified with the Lorentz subalgebra. There is a canonical decomposition g = g0⊕α gα

of g as a vector space into irreducible representations gα of the subalgebra g0. Restricting

to the subalgebra g0, the g-module A decomposes into g0-modules Ak

Resg
g0

A =
⊕

k

Ak. (3.25)

The subalgebra g0 acts diagonally, i.e. g0(Ak) ⊂ Ak. In contrast, the action of gα takes

Ak to some other Ai. The morphism ρα : gα⊗A −→ A defined as u⊗ a −→ u(a), u ∈ gα,

a ∈ A, is a homomorphism of two g0-modules.

The definition (3.22) rests on f being a subalgebra. This may not be the case now

for gα. Nevertheless we can construct certain commuting operators, which are beyond the

representation of g on A. To succeed we need the action of gα on A to be Z-graded.

9We are grateful to E.Feigin for many valuable discussions on Lie algebra cohomology and σ− and for

reference [63].
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For classical Lie algebras the notion of rank is well-defined, so let |Ak| denote the rank

of Ak. Let us define another decomposition A =
⊕

g Ag of the g-module A into generally

reducible g0-modules such that

Ag =
⊕

k:|Ak|=g

Ak (3.26)

is a direct sum over Ak having rank g.

The tensor product gα⊗A of the two g0-modules can be explicitly computed. In view

of general properties of tensor products gα ⊗ Ag decomposes into representations with

ranks confined in the range |g−|gα||, g+ |gα|. Therefore, the rank provides us with natural

Z-grading on A. Let the operators realizing the action of g on A be denoted as ϑg. Then,

there is a decomposition of ϑgα into the parts with definite grade

ϑgα =
⊕

i∈Z

ϑi
gα

, ϑi
gα

: Ag −→ Ag+i, (3.27)

ϑg0
has by definition zero grade part only, ϑg0

= ϑ0
g0

. Obviously, there is a certain n such

that ϑj
gα
≡ 0 if j < −n for any α and we assume that there is a certain gmin among gα

such that g−n
min 6= 0. If there are several gα such that g−n

α 6= 0 then gmin is a direct sum

over such gα. By definition of representation we have

[ϑx, ϑy] = ϑ[x,y], x, y ∈ g =⇒ [ϑ−n
x′ , ϑ−n

y′ ] = 0, x′, y′ ∈ gmin, (3.28)

i.e. ϑ−n
gmin

are commuting operators.

Consequently, given a Z-graded decomposition of action of some algebra on its rep-

resentation it is possible to single out commuting operators that belong to the lowest or

highest grade. Despite the fact that gmin does not form a subalgebra, the operators ϑ−n
gmin

do form a commutative subalgebra.

The complex C(A, ∂) is defined in a standard way:

∂ : A⊗ Λ(gmin), ∂ : Ag ⊗ Λq(gmin) −→ Ag−n ⊗ Λq−1(gmin), (3.29)

∂(a⊗ u1 ∧ . . . ∧ uq) =

i=q∑

i=1

(−)i+1ϑ−n
ui

(a)⊗ u1 ∧ . . . ∧ ûi ∧ . . . ∧ uq, a ∈ A, ui ∈ gmin.

(3.30)

We collect in table 2 some cases that are or may be of interest. Note that the signature

of so-algebras does not matter, in what follows we assume that appropriate real forms are

chosen. Item 1 is the case we investigate in the present paper, it concerns the gauge fields

in (anti)-de Sitter space. Item 2: the trace constraints on fields are fully relaxed so that we

have the correct pattern of gauge symmetries but there can be imposed no field equations.

The decomposition gα consists of a vector, covector and a scalar. In this case, vector (or

covector) representation itself forms a commutative subalgebra, so that H(A,σ−) coincides

with the ordinary Lie algebra cohomology, the answer can be found in [63]. Item 3: g can

be taken as the conformal algebra, this provides a natural framework for conformal fields,

which are studied in [64]. Note that in this case we again meet the ordinary Lie algebra
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g g0 gα description

1 so(d + 1) so(d) (A)dSd fields on-shell

2 sl(d + 1) sl(d) ⊕ ∗⊕ • (A)dSd fields off-shell

3 so(d + 2) so(d) 2 ⊕ • conformal fields on-shell

4 sl(d + 2) sl(d) 2 ⊕ 2 ∗⊕ 4• conformal fields off-shell

5 sl(d) so(d) trace decomposition

6 sl(d + 1) so(d) ⊕ 2 ⊕ • unconstrained (A)dSd fields

Table 2. Decomposition of certain algebras with respect to their subalgebras.

cohomology. Item 4: the same case of conformal fields but the description is off-shell. Item

5 corresponds to the trace decomposition of a tensor with fully relaxed trace constraints in

terms of traceless tensors. Item 6 may be related to the unconstrained approach of [4, 65–

68] for the case of gauge fields in (A)dSd.

We will study the complex C(A,σ−) dual to C(A, ∂) for g being the (anti)-de Sitter

algebra and g0 being its Lorentz subalgebra. The most significant fact for computing

σ−-cohomology is that on account of

[ϑw, ϑ−n
u ] = ϑ−n

[w,u], [w, u] ∈ gmin, w ∈ g0, u ∈ gmin (3.31)

the differential ∂ (or σ−) commutes with the action of g0 and hence g0 acts on the

(co)homology, so that it is convenient to label the representatives of (co)homology by

the weights of irreducible g0-modules or by Young diagrams in the case of interest.

σ
−
, specialization to (A)dSd. The σ−-complex C(A,σ−) is associated with the com-

plex C(A,DΩ). To build C(A,σ−) we need an irreducible g-module A and nondegenerate

DΩ, meaning that it yields EA with the maximal rank (or, in the standard gauge, ha),

so that very little is needed from C(A,DΩ). The representatives of σ−-cohomology are

irreducible Lorentz modules whose weights are to be found.

The (anti)-de Sitter algebra as a vector space g splits as g = h ⊕ p, where h is the

Lorentz algebra so(d − 1, 1) and p is a vector representation of h, namely, the translation

generators Pa constitute p. The splitting (2.16) Ω = ΩL +∇− − ∇+ of a g-connection Ω

implies that ∇− −∇+ corresponds to the operators ϑp from the previous subsection that

represent the action of the translation generators. So∇− and∇+ are the operators ϑ−1
p and

ϑ+1
p such that ϑp = ϑ−1

p +ϑ+1
p . Both ∇− and ∇+ are algebraic, and hence algebraic are the

induced operators σ− and σ+, we ignore the dependence on the space-time coordinates xµ.

We define the q-cochain Cq(A) =
⊕

g Cq
g(A) with

Cq
g(A) = Ag ⊗ Λq(p). (3.32)

Then, ∇± induce two nilpotent operators σ±

σ± : Cq
g (A) −→ Cq+1

g±1(A). (3.33)
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In tensorial terms, we decompose WA
q into connections of the Lorentz subalgebra and

convert all form indices to fiber ones with the help of the inverse background vielbein

haµ, haµhb
µ = ηab, so that the Lorentz algebra h starts acting on the former form indices

too. A ⊗ Λq(p) is an h-module with the action of h on Λq(p) induced from that on p.

Moreover, h commutes both with σ− and σ+, which allows us to decompose A ⊗ Λq(p)

into irreducible h-modules and parameterize the representative of the σ−-cohomology

groups by Young diagram of h.

An element of Cq
g(A) is a degree-q exterior form ωX

q with values in a generally reducible

h-module X belonging to Ag. As an h-module ωX
q can be decomposed into irreducible h-

modules, the decomposition is equivalent to taking h-tensor product

Cq
g (A) ∼ Ag ⊗h Y[q] =

r=q⊕

r=0

⊕

ir

Mg,q
r,ir

Xg,q
r,ir

, (3.34)

where the sum is over irreducible h-modules Xg,q
r,ir

, with Mg,q
r,ir

being the multiplicity of

Xg,q
r,ir

. By definition, all irreducible modules in Ag have the same rank, denote it |Ag|. The

additional summation index r distinguishes between traces of different orders, so that the

rank |Xg,q
r,ir
| of Xg,q

r,ir
is equal to |Ag|+ q− 2r. In tensorial terms, the trace order is half the

number of indices that must be contracted to get a tensor with the symmetry of Xg,q
r,ir

.

The operator σ− preserves two natural gradings - the total rank of the tensor it acts

on (the rank of the fiber tensor g plus the form degree q) and the trace order. In addition,

that σ
−

preserves the h-module structure means that it does not mix different h tensors

up. Granting this, C(A,σ−) decomposes into a direct sum

C(A,σ−) =
⊕

q+g

⊕

r

⊕

X

C(A,σ−;X, q + g, r) (3.35)

of complexes parameterized by an arbitrary Young diagram X from Ag ⊗ Y[q], the total

rank q + g and the trace order r. Restricted on C(A,σ−;X, q + g, r), σ− is given by a set

of linear maps R
M

g,q
r,ir ⊗X −→ R

M
g−1,q+1

r,ir ⊗X acting on the first factor.

Consequently, C(A,σ−) is well-defined for any g-module A. The background vielbein

EA and the compensator field V A provide a field-theoretical realization of C(A,σ−), at the

condition that the vielbein field EA has the maximal rank. We will see that C(A,σ−) has

rich cohomology as distinct from, for example, the de Rham complex.

It is worth stressing that the equation of motion, gauge transformations, Bianchi

identities, etc. contain both σ− and σ+, e.g. Dωg + σ−(ωg+1) + σ+(ωg−1) = 0. Hence,

we can chose either σ− or σ+ to be the operator σ− of section 3.1 used to interpret the

unfolded equations.

We might study the cohomology problem both for σ− and σ+, however, the choice of

σ−, acting from higher rank tensors of Ag+1 to lower rank tensors of Ag, is more natural

since equation Dωg +σ−(ωg+1)+σ+(ωg−1) = 0 expresses higher rank auxiliary fields ωg+1

in terms of derivatives of lower rank fields ωg if σ− has vanishing cohomology at grade

g, plus possibly lower derivative terms coming from σ+(ωg−1). Therefore, the chain of

auxiliary fields starts from dynamical fields having the lowest possible rank, these fields

will be recognized as the field potentials φS.
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The interpretation of unfolded equations in terms of the σ+-cohomology leads to dual

formulations, in which the dynamical fields are tensors of a rank higher than that of φS.

An example of such a dual formulation was studied in [69].

3.5 Distinguished parts of tensor products

The highest weight part. Let X = Y(sx
1 , . . . , s

x
n) and Y = Y(sy

1, . . . , s
y
n) be two Young

diagrams either of sl(d) or so(d). Despite the fact that to decompose the tensor product

X ⊗sl(d) Y into a direct sum of irreducible modules is a complicated problem, we can

be sure that at least one irreducible module is present in X ⊗ Y whose Young diagram

Z = Y(sx
1 + sy

1, . . . , s
x
n + sy

n) is obtained by row-by-row concatenation. This one is called

the highest-weight part, hwp(X,Y). The highest weight part of X ⊗ Y is given by a

single Young diagram. In the case of interest the second multiplier is a one-column Young

diagram. Let us denote the highest weight part of X⊗ Y[q] as

hwp(X, q) =





Y(sx
1 + 1, . . . , sx

q + 1, sx
q+1, . . . , s

x
n), q < n,

Y(sx
1 + 1, . . . , sx

n + 1, 1, . . . , 1︸ ︷︷ ︸
q−n

), q ≥ n. (3.36)

Remark on so(d)-tensor products. Roughly speaking, the difference between the

tensor products of sl(d) and so(d) is that in the latter case one is able to contract indices

with the help of the invariant tensor ηab of so(d), i.e. to take traces. Thus, the so(d)-tensor

product rule for X⊗so(d) Y consists of taking traces, which removes pairs of cells (one from

X and another from Y), and, then, adding the rest of the cells of Y to a set of diagrams

obtained from X at the first stage. The precise rules can be found in [70], which for the

cases of interest are given in appendix A.

In general the tensor product of two irreducible so(d)-modules decomposes into a

direct sum of irreducible modules whose multiplicities can be greater than one, because

the same diagram can be obtained generally by removing and, then, adding cells from/to

different places.

Given some element Z of X ⊗so(d) Y, the number of cells that were removed from X

(or Y) is called the trace order of Z.

The maximally symmetric part. For the case of sl(d) the highest weight part will also

be called the maximally symmetric part. However, for the case of so(d) the two definitions

are different.

For the case of so(d), given two irreducible so(d)-modules X and Y, the maximally

symmetric part of X ⊗ Y with the trace order r, msp(X,Y, r), is a sum of the form⊕
α hwp(Xr

α,Yr
α), where Xr

α and Yr
α are the diagrams obtained from X and Y by taking

all possible traces of order r, so that Xr
α and Yr

α each has r cells less than X and Y,

respectively. The index α runs over all inequivalent traces of order r.

As distinct from the sl(d)-case, the maximally symmetric part of the so(d)-tensor

product may contain many irreducible modules, however, each comes with multiplicity one.

In this paper the second multiplier is always a one column diagram, i.e. Y = Y[q].

Given an so(d)-Young diagram X = Y{(s1, p1), . . . , (sN , pN )} (the block notation for Young
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=
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6
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Figure 1. Taking the maximally symmetric part of so(d)-tensor product X ⊗ Y, X =

Y{(s1, p1), . . . , (sN , pN )}, Y = Y[q]. Since taking the trace must result in a Young diagram, differ-

ent traces correspond to different partitions of r = t1 + · · · + tN , such that ti ≤ pi. Then, ti cells

of Y are removed from the bottom-right of the i-th block of X. Finally, the rest of cells from Y[q],

i.e. q − r cells, is added to the first rows, which gives the highest weight part. If r = 0 then we get

the sl(d)-case, for which hwp(X, q) ≡ msp(X, q).

diagrams is more convenient) and two nonnegative integers q, r such that q ≥ r the maxi-

mally symmetric part of X ⊗so(d) Y[q] with the trace order r is denoted mspso(d)(X, q, r).

The process of taking msp is illustrated on figure 1. It is evident that different partitions

of r give rise to distinct elements of the msp. The sum over the traces of all orders is

denoted msp(X, q), msp(X, q) =
∑

r msp(X, q, r).

Thus, the maximally symmetric part for X⊗so(d) Y is obtained by taking all possible

traces and, then, adding the rest of the cells according to the hwp-rule. In terms of Young

diagrams, we see that hwpsl(d) ≡ mspsl(d) ≡ hwpso(d) and hwpso(d) ⊂ mspso(d).

3.6 Restriction and hwp, msp

Since the Lorentz modules that label the subcomplexes of C(A,σ−) come from the tensor

products of the restriction of A by one-column diagrams and the diagrams labelling the

σ−-cohomology tend to be as symmetric as possible, to write out the results we need to

combine the maximally symmetric part of a tensor product with the restriction functor.

sl(d + 1). Given an sl(d + 1)-irreducible module A = Y(s1, . . . , sn) let msprsl(d)(A, q)

be the element from Res
sl(d+1)
sl(d) A⊗ Y[q] of the form

msprsl(d)(A, q) = Y(s1 + 1, . . . ., sq + 1, ŝq+1, sq+2, . . . , sn), (3.37)

i.e., one cell is added to the right of each row in the range 1, . . . , q and the (q + 1)-th row

is thrown away. Therefore, one can rewrite the definition of mspr in terms of hwp or msp
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with the argument being the maximally symmetric component Aq+1, defined in (3.11),

msprsl(d)(A, q) ≡ mspsl(d)(Aq+1, q) ≡ mspsl(d)(Aq+1, Y[q]) ≡ hwpsl(d)(Aq+1, q). (3.38)

so(d + 1). Let A = Y(s1, . . . , sn) be a Young diagram of so(d + 1) and such that all

weights (s1, . . . , sn) are different. Then, msprso(d)(A, q, r) is defined as

msprso(d)(A, q, r) = mspso(d)(Aq−r+1, q, r) ≡ mspso(d)(Aq−r+1, Y[q], r), (3.39)

i.e. msprso(d)(A, q, r) is a sum over all diagrams that are obtained from the maximally sym-

metric component Aq−r+1 (see (3.11) for the definition) by taking all possible traces of order

r and, then, adding one cell to each of the first (q−r) rows. The weight sq−r+1 to be thrown

away is determined by the number of cells that remain to be added after taking the trace.

If among the weights (s1, . . . , sn) some are equal then the block notation is more

convenient, so we take A = Y{(s1, p1), . . . , (sN , pN )}. The process of taking mspr(A, q, r)

is illustrated on figure 2a. Similar to the case where all weights in A are different, one first

takes all possible traces and then adds the rest of the cells, i.e. (q − r), according to the

hwp rules. The difference is that certain diagrams must be deleted while taking the highest

weight part. Let some cell be called a filled vacancy if it has been removed (while taking

traces) and then restored (while adding the rest of the cells according to the hwp-rules).

Let k be the number of the block of A to which the (q − r + 1)-th weight belongs. Then,

the diagrams to be deleted are those diagrams for which there is at least one filled vacancy

at the k-th block.

The sum over the traces of all orders r = 0, 1, . . . , q such that sq−r+1 = sq+1 is denoted

mspr(A, q). The condition sq−r+1 = sq+1 implies that all elements of mspr(A, q) are from

Ag ⊗ Y[q] with g being equal to the grade of Aq+1. If all weights (s1, . . . , sn) are different

then mspr(A, q) = mspr(A, q, r = 0) contains a single element.

It is worth stressing that the weight of so(d + 1) is (s1, . . . , sn, 0n+1, . . . , 0ν), ν =

[(d + 1)/2], and if (q − r) > n these zero rows should be added to A.

Duality map. Now we define the duality map which takes any element of mspr(A, q, r)

to some other element of the complex C(A,σ−) that is defined by the same Young diagram.

Given an so(d + 1)-module A, let X be any irreducible so(d)-module that is an element

of mspr(A, q, r) for some q and r. By definition, X appears the same time as a trace

of order r in the decomposition of Cq
g,r(A) (3.32) into irreducible so(d)-modules, where

g = g(Aq−r+1). Let ǫ′ be defined for X according to figure 2a. Provided that g is not the

maximal possible value of the grade, the dual to X is an so(d)-module X̃ that is defined

by the same Young diagram X and is the element of Cq′

g+1,r′(A), where q′ = q + 2ǫ′ + 1,

r′ = r + ǫ′ + 1. See figure 2b for the illustration.

Cq
g,r(A) Cq′

g+1,r′(A)

∪ ∪

ω
Ag
q

π
←−−−− X −−−−−−−→ X̃

π̃
−−−−→ ω

Ag+1

q

∩

mspr(A, q, r)

(3.40)
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Figure 2. Illustration for A = Y{(s1, p1), . . . , (sN , pN )}.

(a) Taking mspr(A, q, r). That the weight sq−r+1 from the k-th block is thrown away implies that

the blocks 1, . . . , k − 1, k + 1, . . . , N remain unchanged and the k-th block becomes shorter by one

row. In tensor language, in order to project onto Aq−r+1 one needs to contract the compensator

V A with the indices corresponding to the cells marked by • and then apply Young symmetry and

trace projectors. Any trace is determined by a partition r = t1 + · · · + tN such that ti ≤ pi if

i = 1, . . . , k − 1, k + 1, . . . , N and tk ≤ pk − 1. In taking the trace ti cells are removed from the

bottom-right of the i-th block. The rest of cells, which are drawn hatched, is added to the first

rows. The additional condition for diagrams having equal rows implies that the cells being added

must not overlap with any of the tk cells that have been removed from the k-th block while taking

traces. Therefore, the gap ǫ′ is always nonnegative.

(b) Taking dual. The same diagram is obtained in another way. The diagram Ãq−r+1 is just

Aq−r+1 with one extra cell below the last row. Consider one special trace of order r′ = r + ǫ′ + 1

of a degree-q′ = q + 2ǫ′ + 1 form w
eAq−r+1

q′ . First, one takes the trace of Ãq−r+1 of order r + ǫ′ + 1:

r cells are removed in the same way as in (a), one cell is removed from the last row, ǫ′ cells are

removed from the k-th block in addition to the tk cells just removed. Second, the rest of the cells,

i.e. q − r + ǫ′ is added to the first rows. Finally, the same diagram as in (a) is obtained.

Indeed, the diagram X̃ = X belongs to Ãq−r+1 ⊗ Y[q′], where Ãq−r+1 ∈ Ag+1, namely

Ãq−r+1 = Y(s1, . . . , sq−r, ŝq−r+1, sq−r+2, . . . , sn, 1). (3.41)

The trace of order r+ǫ′+1 is to be taken as follows: the trace of order r is taken as for X, in

doing so extra ǫ′ cells are removed from the block to which the (q−r+1)-th weight belongs,

then the only cell in the last row of Ãq−r+1 is removed. The rest of q′− r′ = q− r + ǫ′ cells

is added according to the hwp-rules, which results in the same diagram X.

It is technically very difficult to define the duality map in terms of irreducible Lorentz

tensor because to do so we need to use the explicit form of Young and trace projectors in

order to embed an irreducible tensor with the symmetry of X into the Lorentz connection

ω
Ag
q with the help of certain projector π and into ω

Ag+1

q with the help of projector π̃.

Fortunately, to make contact between the formulation in terms of generalized Yang-Mills
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fields of the (anti)-de Sitter algebra and metric-like fields of section 1 the explicit form of

π and π̃ is not needed.

3.7 Sigma-minus cohomology, the result

Let us first state the main result on the σ−-cohomology for the case of sl(d+1), and then for

the case of interest so(d+1). The proof is left to the appendix B since it is rather technical.

Theorem 1. Let A = Y(s1, . . . , sn) be a Young diagram defining an irreducible sl(d + 1)-

module and C(A,σ−) be the associated σ−-complex. Then,

H
q(A,σ−) =

{
mspr(A, q), q = 0, . . . , d− 1,

∅, q ≥ d,
(3.42)

where the grade of a single element of H
q(A,σ−) is g(Aq+1).

For sl(d + 1) σ− has a plain algebraic meaning inasmuch as V0 can be identified with

the commutative subalgebra p of sl(d + 1) that is a covector representation of the sl(d)

subalgebra. Then, the definition of σ−coincides with the Lie cohomology of p with values

in the sl(d + 1)-module A, the solution can be found, for example, in [63].

Theorem 2. Let A = Y(s1, . . . , sn) be a Young diagram defining an irreducible so(d + 1)-

module (the signature is irrelevant and so(d + 1) can be viewed as the (anti)-de Sitter

algebra) and C(A,σ−) be the associated σ−-complex, then

H
q(A,σ−) = H

q(A,σ−)reg ⊕ H
q(A,σ−)irreg, (3.43)

where H
q(A,σ−)reg is the regular part of the cohomology

H
q(A,σ−)reg =

k=q∑

k=0

mspr(A, q, k), (3.44)

and the irregular part H(A,σ−)irreg is given by the elementwise dualization of the regular

part,

H(A,σ−)irreg = {ω̃ : ω ∈ H(A,σ−)reg} = H̃(A,σ−)reg, (3.45)

i.e. the representatives of H(A,σ−)irreg are obtained by applying the duality map to a

representative of each cohomology class of H
q(A,σ−)reg - different classes of H

q(A,σ−)reg

are mapped to different classes in H(A,σ−)irreg.

Note that the grade of ω̃ is greater by one than that of ω, with the form degree and

trace order depending on the number of equal weights in ω and on its degree and trace

order. Therefore, different representatives of H
q(A,σ−)reg having the same degree, grade

and trace order can give rise to classes of H(A,σ−)irreg with different degrees and trace

orders but necessarily having the same grade. It is worth noting also that the duality map

applied to a representative at the highest grade gives nothing.
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q\g 0 1 s− 1

0 s−1 ∅ ∅

1 s ⊕ s−2 ∅ ∅

2 ∅ s ⊕ s−2
s

3 ∅ s−1

s

⊕ s−1
s

Table 3. Sigm-cohomology for A = Y(s− 1, s− 1).

The latter theorem encompasses all the special cases addressed in the literature:

in [71] the precise field theoretical meaning was given to H(σ−), and the example of

C(Y(k →∞),σ−) was investigated in detail; H
q(σ−) at lower degrees q = 0, 1, 2 for the

complex C(Y(s− 1, s − 1),σ−) related to massless spin-s ≥ 2 field was found in [56],

previously the field-theoretical interpretation of this result was known as the Central

on-mass-shell theorem [72, 73]; for the purpose of constructing a Lagrangian the coho-

mology groups corresponding to the dynamical field and to the Weyl tensor for a field

(S, q, t = 1), where q is equal to the length of the shortest column in S, were found

in [38, 74, 75]; H
q(Y(s − 1, s− t),σ−), q = 0, 1 corresponding to a partially-massless spin-s

field (Y(s), q = 1, t) were important for [39]; in [33, 34] H
q(σ−) at lower degrees were found

for the following fields (Y(2, 1), 1, 1), (Y(3, 1), 1, 1) and (S, 1, 1) with S = Y(s1, s2, . . . , sn)

or S = Y(s1, s1, s2, . . . , sn) such that s1 − s2 ≥ 4.

Corollary 1. For A such that all of the weights si are different, the result turns to a very

simple form because of

mspr(A, q, r) = msp(Aq−r+1, q, r) (3.46)

and hence

H
q(A,σ−)reg =

k=q∑

k=0

msp(Aq−k+1, q, k). (3.47)

The duality map applied to any representative of a nontrivial cohomology class with some

q, g, r except for those at the maximal grade produces a representative of the cohomology

class with q + 1, g + 1, r + 1 labelled by the same Young diagram.

3.8 Examples

A = Y(s − 1, s − 1). The main theorem applied to A = Y(s− 1, s− 1) gives the list of

σ−-cohomologies at lower degrees, which is presented in table 3. Note that ǫ′ = 1 (see

figure 2 for the definition of ǫ′) for the only representative of H
q=0
g=0,r=0, hence the duality

map takes it to the class at degree q + 2ǫ′ + 1 = 3. Analogously, ǫ′ = 0 for both in H
q=1
g=0,

hence the duality map takes them to the class at degree two. There are no duals for those

at the maximal grade s− 1.
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q\g 0 1 s1 − s2 s1 − s2 + 1 s1

0 s2 ∅ ∅ ∅ ∅

1 s2−1 s2 s1+1 ∅ ∅

2 ∅ s2−1 s1 s1+1 s2+1
s1+1

3 ∅ ∅ ∅ s1

s2+1
s1+1

⊕ s2

s1+1

Table 4. Sigm-cohomology for A = Y(s1, s2).

Consider a gauge theory with the gauge field given by a one-form WA
1 , which, as is

well-known [37], describes a massless spin-s field, i.e. (Y(s), 1, 1). The interpretation of the

σ−-cohomology is as follows: H
0 corresponds to a traceless rank-(s− 1) gauge parameter,

ξa(s−1). The dynamical field H
1 is represented by two traceless tensors of ranks s and

s − 2, which can be combined into a doubly traceless Fronsdal field φa(s). The gauge

transformation law is of first order, δφa(s) = Daξa(s−1). In H
2 we see the second order

equations, which are in one-to-one correspondence with the dynamical fields, suggesting

the system admits a Lagrangian [37, 51]. The Weyl tensor Ca(s),b(s) is also present in

H
2, which is the order s derivative of fields. In H

3 there are Bianchi identities both for

Fronsdal equations, corresponding to the gauge symmetry with ξa(s−1) and for the Weyl

tensor, implying that it is constructed out of φa(s) rather than being an independent object.

A = Y(s1, s2). The σ−-cohomology at lower degrees is given in table 4. Consider a gauge

theory with gauge field WA
1 , which describes a partially-massless spin-(s1+1) field of depth

t = s1 − s2 + 1 [39]. Indeed, there is a gauge parameter ξa(s2) in H
0; the dynamical fields

are φa(s2−1), φa(s2) and the primary field φa(s1+1) with the highest rank. The appearance of

fields with lower ranks, which cannot be generally associated with the traces of a single field,

is because partially-massless fields lie between massless and massive. For a Lagrangian

description of a massive spin-(s1 + 1) field in addition to a traceless field φa(s1+1) one

needs supplementary traceless fields of ranks s1 − 1, s1 − 2, . . . 1, 0, which vanish on-

mass-shell [76, 77]. For partially-massless fields this chain becomes shorter because of

disappearance of fields with ranks s2−2,. . . ,0. However, not all of the supplementary fields

can now be excluded, these are the fields φa(s2−1) and φa(s2). The gauge transformation

law has schematically the form δφa(s1+1) = Da . . . Daξa(s2) + · · · . In H
2 we see the wave

equation for φa(s1+1), Weyl tensor and two more constraints on supplementary fields.

That there is no Bianchi identity in H
3 for the gauge symmetry with ξa(s2) is due to

the fact that σ− is an operator that is responsible for expressing fields of higher rank in

terms of derivatives of lower rank fields and hence cannot track out the Bianchi identities

of the form Db . . . DbGb(s1−s2+1)a(s2) + · · · ≡ 0, where Ga(s1+1) = �φa(s1+1) + · · · is the

equation on φa(s1+1). In this case Bianchi identities correspond to the reversed situation

when lower rank fields are expressed in terms of divergences of higher rank fields.
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q\g 0 1 s− 1

0 msp(X,0)=X ∅ ∅

.. . . . . . . . . . .

q − 1 msp(X,q-1) ∅ ∅

q msp(X,q) ∅ ∅

q + 1 ∅ msp(X,q) mspr(A,q+1)=A

q + 2 ∅ msp(X,q-1) mspr(A,q+2)

.. . . . . . . . . . .

2q+1 ∅ msp(X,0) mspr(A,2q+1)

2q+2 ∅ ∅ mspr(A,2q+2)

Table 5. Sigm-cohomology for A = Y{(s− 1, q + 1)}.

A is a (s − 1) × (q + 1) block diagram, A = Y{(s − 1, q + 1)}. Consider now a

gauge theory with the field WA
q , which describes a massless field with spin S = Y{(s, q)}.

According to [22, 24] it is only for these fields that the number of degrees of freedom

in Minkowski space is equal to that in (A)dSd. The fields with S = Y{(s, q)} are the

true massless fields in this sense. With X = Y{(s − 1, q)} = A1 = · · · = Aq+1 the σ−-

cohomology is given in table 5. The gauge parameter at the deepest level of reducibility

given by H
0 is just a traceless tensor with the symmetry of X. Note that mspr(A, r) =

msp(X, r) if r ≤ q. The gauge parameter in H
r, r = 1, . . . , q − 1 along with the primary

component

Y{(s, r), (s − 1, q − r)} = hwp(X, r) ⊂ msp(X, r) (3.48)

contain certain traces that are needed for the gauge symmetry to be realized off-shell. The

explicit expression for ξA
r reads

ξa(s),...,b(s),c(s−1),...,u(s−1) = ξa(s−1),...,b(s−1),c(s−1),...,u(s−1),•(s−1)|

r︷︸︸︷
a...b (3.49)

Similarly for the dynamical field in H
q

φa(s),...,u(s) = ξa(s−1),...,u(s−1),•(s−1)|

q︷︸︸︷
a...u (3.50)

We see that there is a one-to-one correspondence between the second order equations

in H
q+1 and the dynamical fields in H

q. There is also a generalized Weyl tensor in H
q+1,

which is an irreducible tensor of the Lorentz algebra with the symmetry A. By virtue of the

definition of mspr for diagrams with equal rows, mspr(A, q+1) contains only one irreducible

component, which has the symmetry of A itself. For higher degrees q + 2,. . . mspr(A)

contains also certain traces. It is easy to see the duality of the form H
q−k
g=0 ∼ H

q+k+1
g=1 , k =

0, . . . , q, implying that there is a one-to-one correspondence between equations of motion

and dynamical fields, gauge symmetries at the level-k and the order-k Bianchi identities.
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4 Interpretation of results: gauge fields vs. gauge connections

According to [19], a gauge field defined by a triple (S, q, t) can be described by the gauge

connection WA
q of the (anti)-de Sitter algebra g, where A

S =

sn

. . .
sq+1

sq

sq−1

. . .
s1

so(d− 1)

(S, q, t) ⇐⇒ (A, q), A =

sn

. . .
sq+1

sq − t
sq − 1

. . .
s1 − 1

g

(4.1)

or with the indices written explicitly

φa(s1),...,v(sn) ⇐⇒ W
A(s1−1),...,B(sq−1),C(sq−t),D(sq+1),...,F (sp)
µ1...µq dxµ1 ∧ . . . ∧ dxµq (4.2)

A field (S, q, t) can be described by the connection WA
q of g in the sense that there is the

inclusion of exact sequences, discussed in detail below,

. . . . . . . . . . . . . . .

g-module

D (E0;S0)
→֒

φS0

on-shell
→֒

φ̄S0

off-shell
→֒

eL0
q

frame-like
→֒ WA

q

↑ ↑ ↑ ↑ ↑

g-module

D (E1;S1)
→֒

ξS1

on-shell
→֒

ξ̄S1

off-shell
→֒

ξL1

q−1

frame-like
→֒ ξA

q−1

↑ ↑ ↑ ↑ ↑

. . . . . . . . . . . . . . . ,

which is exact in vertical arrows, with horizontal arrows denoting the inclusion maps. The

leftmost vertical arrows are the arrows from (1.1); the rightmost vertical arrows are realized

as the action of DΩ in the complex C(A,DΩ); the vertical arrows next to them are realized

as the DΩ in the complex C(A,DΩ) with A being treated as an so(d− 1, 1)-module.

In order to obtain an off-shell formulation for a (S, q, t) field one has to get rid of

differential constraints (1.5) on the dynamical field φS0 and gauge parameters ξSi , which

implies that the field content needs to be extended. The extended fields φ̄S0 and gauge

parameters ξ̄Si have the same symmetry type but are no longer irreducible Lorentz tensors,

satisfying certain trace constraints that are weaker than the full tracelessness. We refer to

such fields and gauge parameters with relaxed trace constraints as to extensions. The fields

φS0 , ξSi are the highest weight parts10 of the decomposition of φ̄S0 and ξ̄Si into irreducible

Lorentz tensors.

The problem with the vertical arrows from the second and third columns, which are

realized on irreducible metric-like fields and on their extensions, respectively, is in that the

explicit use of Young symmetrizers is needed. Let us now define the horizontal arrows that

denote the inclusion maps.

10see section 3.5 for the definition.
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D (Ei;Si) is realized on the solutions of (1.4)–(1.5) imposed on the irreducible tensor

field of the Lorentz algebra having the symmetry of Si, which for i = 0 and for i = 1, . . . , q

corresponds to imposing the equations of motion on the field φS0 and to imposing the gauge

fixing conditions on the gauge parameters ξSi , respectively.

The extended fields are embedded as a maximally symmetric parts10 into the con-

nections of the Lorentz algebra. The dynamical field φ̄S0 and the gauge parameters ξ̄Si ,

i = 1, . . . , q are embedded into the generalized frame field eL0
q and ξLi

q−i
, respectively. The

modules Li, i = 0, . . . , q are certain irreducible Lorentz-modules coming from the restriction

of A, namely, Li = Aq−i+1.

Written in terms of tensor fields φ̄S0 , ξ̄Si of the Lorentz algebra, all expressions,

for example, the gauge transformation law and the equations of motion, are extremely

complicated due to the presence of Young symmetrizers and trace projectors. In contrast,

when reformulated in terms of the connection WA
q of g, the theory of any gauge field

(S, q, t) has a very simple form.

The main result of [19] is that certain components of WA
q , ξA

q−1, . . . , ξA
0 were identified

with φS, ξS1 , . . . , ξSq and it was proved that the correct mass-like terms determined by

Ei and Si arise provided that certain equations in terms of RA
q+1 are imposed on WA

q and

certain gauge fixing conditions in terms of WA
q , ξA

q−1, . . . , ξA
1 are imposed on ξS1 , . . . , ξSq .

Joining together the interpretation of H(σ−) presented in section 3.1 and the theorem

on the structure of H(A,σ−) yields the following.

The highest grade representatives of H
q, given by11 mspr(A, q) with the grade

g = g(Aq+1), are to be interpreted as the primary dynamical fields. We see that

S0 = hwp(Aq+1, q) belongs to mspr(A, q) with the rest of elements of mspr(A, q) hav-

ing smaller rank. Thus, a representative of mspr(A, q) is given by a tensor field φ̄S0 having

the symmetry of S0, but φ̄S0 is not generally irreducible, containing certain traces. The

on-shell field φS0 is embedded into φ̄S0 as the highest weight part, φS0 = hwp(Aq+1, q).

Actually, it is easy to find among the fields ωX
q coming from the restriction of WA

q the one

that contains φ̄S0 . It is the generalized frame field eL0
q with L0 = Aq+1.

Likewise for the level-i gauge parameter ξSi . The extension ξ̄Si is the representative

of H
q−i at the highest grade, H

q−i = mspr(Aq−i+1, q − i). The on-shell gauge parameter

ξSi enters ξ̄Si as the highest weight part, ξSi = hwp(Aq−i+1, q − i).

The number of derivatives connecting the highest grade fields of H
q−i and H

q−i−1 is

equal to g(Aq−i+1)− g(Aq−i) + 1. Substituting the explicit form of A in terms of (S, q, t)

gives exactly the difference of the lowest energies Ei−1−Ei, which also counts the number

of derivatives for a field-theoretical realization.

Note that for massless unitary fields, i.e. those having t = 1 and q equal to the height

of the first block of S, H
q−i
g>0 = ∅, i = 0, . . . , q and thus the primary dynamical field φ̄S0

appears at the lowest grade, so do its gauge parameters at all levels. For nonunitary

massless fields and for partially-massless fields in addition to the primary dynamical field

φ̄S0 certain other dynamical fields having smaller rank can appear at lower grade.

11See section 3.6 for the definition.
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Note also that the highest rank representatives of some H
q′

g′ correspond to the on-shell

situation, in which all lower rank representatives of H
q′

g′ are zero by virtue of gauge fixing

conditions. So to make contact with the on-shell description in terms of metric-like fields,

presented in section 1, it is sufficient to interpret the highest rank representatives only.

As for the field equations the situation is more complicated. Since in a general case

of mixed-symmetry field, i.e. the one having S = Y(s1, s2, . . .) with s1 6= s2 > 0, all of

the first order constraints (1.5) cannot be achieved via imposing gauge conditions on a

single gauge parameter ξ̄S1 , the full system of equations of motion consists both of second

and first order equations. Thus we cannot expect the number of equations to be equal

to the number of component fields in φ̄S0 . The representatives of H
q+1
g with g equal to

the grade of the primary dynamical field, i.e. to g(Aq+1) correspond to certain first order

gauge invariant equations for φ̄S0 .

For t = 1 we see that the highest rank representatives of H
q+1
g have the symmetry of all

the gauge parameters12 for a massless spin-S field in Minkowski space, except for ξS1 . The

number of representatives of H
q+1
g with the highest rank equals the number of first order

constraints (1.5) minus one. One constraint of (1.5) can be imposed as a gauge condition

for ξS1 . In the Minkowski case the rest of the constraints (1.5) can be imposed with the

help of other gauge parameters, one parameter - one constraint.

For t > 1, i.e. for partially-massless fields, the gauge symmetry with ξS1 is so weak

that none of the constraints (1.5) can be imposed with the help of ξS1 . Thus, the

number of representatives of H
q+1
g with the highest rank equals the number of first order

constraints in (1.5).

Similar statements can be made about the correspondence of the the highest rank

representatives of H
q+i
g and level-i gauge parameters of a massless spin-S field in Minkowski

space. This correspondence is not accidental since the first order constraints (1.5) are the

same for gauge fields in Minkowski and (A)dSd, with Dm being the covariant derivative

in the space of interest. The difference is that for massless fields in Minkowski space

these results can be achieved via gauge fixing and for gauge fields in (A)dSd most of the

constraints (all for t > 1) are to be imposed as independent equations.

As for second order field equations that are the representatives of H
q+1
g+1, we see that

at least there is a representative in H
q+1
g+1 that has the symmetry of S0. It is for this

representative that the mass-like term was calculated in [19] and was shown to coincide

with the group-theoretical result (1.6). There is no one-to-one correspondence H
q
g ↔ H

q+1
g+1

between the second order equations and primary fields φ̄S0 since by virtue of Bianchi

identities a number of the second order equations corresponding to the traces of φ̄S0 can

be obtained as the derivative of certain first order constraints from H
q+1
g .

The only highest grade representative of H
q+1 is given by mspr(A, q + 1, 0) =

msp(Aq+2, q + 1) = hwp(Aq+2, q + 1), it has the symmetry S−1 of a Weyl tensor for a

field (S, q, t).

Let us consider certain higher degree cohomology groups for t = 1. The representatives

12Recall that a massless spin-S field in Minkowski space has a number of gauge symmetries with the

parameters whose Young diagrams are obtained by removing one cell from S in all possible ways.
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of H
q+2
g+1 correspond to the Bianchi identities. As is expected, there is a representative of

H
q+2
g+1 having the symmetry of ξS1 . Actually, there are also the representatives having the

symmetry of all gauge parameters of a massless spin-S field in Minkowski space. This

suggests the enhancement of the gauge symmetry in the flat limit λ2 → 0 [24].

Physical degrees of freedom. The σ−-cohomology can be used to directly count the

number of physical degrees of freedom, as it was demonstrated in the case of massless

fields in Minkowski space in [14]. However instructive it might be, there is no need to

count degrees of freedom explicitly. It is sufficient to look at H
q+1(A,σ−).

Firstly, suppose that not all of the equations in H
q+1(A,σ−) are imposed. It implies

that, in addition to the Weyl tensor and its descendants coupled to the gauge module,

some other components of the field curvature RA
q+1 are nonzero on-shell, these can be

parameterized by new fields, which are analogous to Weyl tensor. We can analyze the

Bianchi identities and solve them with some other fields, and so on. As a result, an

infinite-dimensional module grows at each place where some equation was not imposed,

which gives rise to new degrees of freedom, thus making the system reducible.

Contrariwise, if the equation RA
q+1 = [Weyl tensor] were describing more physical

degrees of freedom than the number of states in the corresponding irreducible representation

H (S;E0), there should be a possibility to further impose certain gauge invariant differential

equations that would make the system irreducible. This contradicts the statement that all

gauge invariant independent equations are classified through σ−-cohomology.

Consequently, once all components of the field curvature except for the Weyl tensor

and its descendants are set to zero, the system automatically describes the correct number

of physical degrees of freedom.

Remarks on the Weyl module. Recall that the generalized Weyl tensor is by definition

the lowest order gauge-invariant combination of derivatives of the dynamical field φS that

is allowed to be nonzero on-mass-shell. The Weyl tensor is a representative of H
q+1(A,σ−)

at the highest nontrivial grade.

It is difficult to write down explicit expressions for the Weyl module inasmuch as we

are faced with Young symmetrizers since the Weyl tensor and its descendants are tensors

of the Lorentz algebra. The problem is to adjust coefficients in front of σ− and σ+ acting

on the fields from the Weyl module. In somewhat different setup it was done in [33, 34].

The spectrum of fields of the Weyl module is in the results of [19, 33, 34, 38]. To deter-

mine this spectrum one can use the following heuristic consideration: given the symmetry

types S0 and S1 of a dynamical field and its gauge parameter, respectively, one marks the

extra cells of S0 as compared to S1. The marked cells correspond to derivatives in the gauge

transformation law. Then one adds cells to S1, emulating various derivatives of the dynami-

cal field, until one of the new cells is found in the same column with a marked cell. The latter

situation correspond to implicit antisymmetrization of two derivatives, which is identically

zero in Minkowski space or gives a tensor of a lower rank in (anti)-de Sitter space. There-

fore, a diagram with a new cell being in the same column with a marked cell corresponds
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S−1 =
sq

sq−1

s2

s1

sq−t+1
sq+2

sn

sq+1

sq − t

@
@

@I

Figure 3. The spectrum of the Weyl module is shown. The cells corresponding to derivatives are

marked. The descendants of the Weyl tensor are obtained by adding cells in the places outlined

by a dotted line. The arrow shows the place where two covariant derivatives, one from the gauge

transformations and another one from the expression of the Weyl tensor in terms of gauge potential

φS, happens to be in the same column.

to certain gauge invariant expression. The diagram with the smallest number of added

cells is the Weyl tensor, all the others are its descendants. See figure 3 for the illustration.

Note that a Weyl tensor alone does not determine (S, q, t), as it was the case for

massless fields in Minkowski space, but the Weyl module does, of course.

We see that the spectrum of the Weyl module looks almost as the one coming from a

restriction of a tensor of the (anti)-de Sitter algebra whose symmetry is given by a Young

diagram with the first row tending to infinity. Therefore, the method for calculating

the σ−-cohomology developed in appendix B can be applied to the Weyl module too.

Consequently, we can find a rather simple and complete answer for the structure of H(σ−)

of the Weyl module in terms of H(σ−) of the gauge module. Namely, there is a one-to-one

correspondence H
k
i (Weyl,σ−) ↔ H

q+k+1
g′+i (gauge,σ−), i = 0, 1, . . . where g′ is the grade of

the Weyl tensor in H
q+1(gauge,σ−), i.e. g′ = g(Aq+2), between the (reducible) Bianchi

identities for the Weyl tensor in the gauge module and those in the Weyl module. This

result confirms that the two modules are glued properly.

5 The simplest mixed-symmetry field

To illustrate we consider a massless unitary field of spin Y(s1, s2), i.e. S = Y(s1, s2) and

q = t = 1. The exact sequence (1.1) defining the irreducible representation H (E0; Y(s1, s2))

with E0 = d + s1 − 3 given by (1.2) reads

0 −→ D (E0 + 1; Y(s1 − 1, s2)) −→ D (E0; Y(s1, s2)) −→ H (E0; Y(s1, s2)) −→ 0.

On-shell metric-like formulation, [22, 23]. The field potential φa(s1),b(s2) is an irre-

ducible Lorentz tensor field having the symmetry of S and satisfies (1.4)–(1.5)

(2 + m2)φa(s1),b(s2) = 0, (5.1)

Dcφ
a(s1−1)c,b(s2) = Dcφ

a(s1),b(s2−1)c = 0 (5.2)

where the mass-like parameter is determined by (S, 1, 1) according to (1.6)

m2 = λ2 ((s1 − 2)(d + s1 − 3)− s1 − s2) (5.3)
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The equations are invariant under the gauge transformations δφa(s1),b(s2) = Daξa(s1−1),b(s2),

where the gauge parameter is an irreducible Lorentz tensor having the symmetry of S1 =

Y(s1 − 1, s2) and is subjected to (1.4)–(1.5) equations with

mξ
2 = λ2 ((s1 − 1)(d + s1 − 2)− s1 − s2 + 1) . (5.4)

Off-shell metric-like formulation. The extended field content is given by the field

potential φa(s1),b(s2) having the symmetry of S and satisfying

ηccφ
a(s1),b(s2−2)cc ≡ 0, ηccηddφ

a(s1−4)ccdd,b(s2) ≡ 0, (5.5)

and thus not being irreducible. The gauge parameter ξa(s1−1),b(s2) needs not be extended

in this rather simple case, thus being irreducible

ηccξ
a(s1−3)cc,b(s2)
1 ≡ ηccξ

a(s1−2)c,cb(s2−1)
1 ≡ ηccξ

a(s1−1),b(s2−2)cc
1 ≡ 0. (5.6)

The algebraic constraints (5.5) imposed on the field φa(s1),b(s2) implies that it consists of

three irreducible Lorentz tensors, two of them corresponding to nontrivial traces,

φa(s1),b(s2) ←→ s2

s1

⊕ s2

s1−2
⊕ s2−1

s1−1
. (5.7)

The gauge parameter is a single irreducible Lorentz tensor,

ξ
a(s1−1),b(s2)
1 ←→ s2

s1−1
. (5.8)

The gauge transformations have the same form

δφa(s1),b(s2) = Daξa(s1−1),b(s2). (5.9)

Despite the fact that the gauge parameter ξa(s1−1),b(s2) is no longer required to have van-

ishing divergences (1.5), one can verify that the algebraic constraints (5.5) and (5.6) are

consistent with (5.9).

The field equations consist of the two independent equations

DnDnφa(s1),b(s2) −DaDnφa(s1−1)n,b(s2) +
1

2
DaDaφ

a(s1−2)n ,b(s2)
n

+

+2λ2ηaaφ
a(s1−2)n ,b(s2)

n
+ 2λ2ηabφ

a(s1−1)n, b(s2−1)
n

+ m2φa(s1),b(s2) = 0, (5.10)

Daφ
a(s1−1)n,b(s2−1)

n
−Dnφa(s1),b(s2−1)n = 0, (5.11)

the one that reduces to the wave equation (5.1) after imposing certain gauge, and the

other that excludes low spin states with the spins Y(s1, s2 − i), i = 1, . . . , s2 inasmuch as

Dcφ
a(s1),b(s2−1)c = 0 cannot be imposed as a gauge fixing condition, and is, in fact, an

independent constraint, whose gauge-invariant implementation is given by (5.11).

To conclude, it can be shown that (5.10), (5.11) together with the gauge transforma-

tions (5.9) imply the correct number of physical degrees of freedom, which corresponds to

H (E0; Y(s1, s2)).
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Unfolded formulation, (A)dSd-covariant. According to the statement of [38],

the gauge module for a gauge field (Y(s1, s2), 1, 1) is given by a single connection of

the (anti)-de Sitter algebra W
A(s1−1),B(s1−1),C(s2)
1 that takes values in the irreducible

representation with the symmetry of A = Y(s1 − 1, s1 − 1, s2). The gauge transformations

and the field curvature read

δW
A(s1−1),B(s1−1),C(s2)
1 = DΩξ

A(s1−1),B(s1−1),C(s2)
0 , (5.12)

R
A(s1−1),B(s1−1),C(s2)
2 = DΩW

A(s1−1),B(s1−1),C(s2)
1 . (5.13)

The field curvature is manifestly gauge invariant δR
A(s1−1),B(s1−1),C(s2)
2 = 0.

The correct field equations are imposed by setting all components of the field cur-

vature to zero except for the Weyl tensor and its descendants. The Weyl tensor is an

irreducible Lorentz tensor Ca(s1),b(s1) having the symmetry of Y(s1, s1). Among its descen-

dants Ca(s1+i),b(s1),c(j), i = 0, 1, 2, . . ., j = 0, . . . , s2 those with i = 0 couple with the gauge

module. The set Ca(s1),b(s1),c(j), j = 0, . . . , s2 can be embedded into the irreducible tensor

C
A(s1),B(s1),C(s2)
0 of the (anti)-de Sitter algebra subjected to

VM

(
C

A(s1),B(s1−1)M,C(s2)
0 −

s2

s1 − s2 + 1
C

A(s1),B(s1−1)C,C(s2−1)M
0

)
≡ 0, (5.14)

which removes the components of the Res(Y(s1, s1, s2)) having the symmetry of

Y(s1, s1 − i, j) with i = 1, . . . , s1 − s2. Therefore, the field equations have the form

R
A(s1−1),B(s1−1),C(s2)
2 = EMENC

A(s1−1)M,B(s1−1)N,C(s2)
0 , (5.15)

and we do not consider the constraints on C
A(s1),B(s1),C(s2)
0 following from the Bianchi

identity DΩR
A(s1−1),B(s1−1),C(s2)
2 ≡ 0.

σ
−
-map. In the table 6 we draw the diagrams corresponding to the elements of H

q
g(A,σ−)

for low q, which are relevant for the field φa(s1),b(s2).

Unfolded formulation, Lorentz-covariant. The Lorentz-covariant frame-like formu-

lation is constructed by reducing the representation of the (anti)-de Sitter algebra g down

to the representations of the Lorentz algebra

Resg

so(d−1,1)

(

s2

s1 − 1
s1 − 1

)
=

j=s1−s2−1⊕

j=0

i=s2⊕

i=0 i
s2 + j

s1 − 1
, (5.16)

hence, the gauge field WA
1 decomposes into the following set of so(d− 1, 1)-connections

W
A(s1−1),B(s1−1),C(s2)
1 ←→ ω

a(s1−1),b(s1−i),c(j)
1 , i ∈ [1, s1 − s2], j ∈ [0, s2]. (5.17)

The gauge parameter and the field curvature decompose in a similar way.

The physical field φa(s1),b(s2), which is a representative of H
q=1
g=0(σ−), is embedded into

the generalized frame field

e
a(s1−1),b(s2)
1 = W

a(s1−1),b(s2)•(s1−s2−1),•(s2)
1 (5.18)
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q\g 0 1 s1−s2−1 s1−s2 s1−1

0 s2

s1−1
∅ ∅ ∅

1 s2

s1 ⊕ s2

s1−2

⊕ s2−1
s1−1 ∅ ∅ ∅

2 s2−1
s1 ⊕ s2−1

s1−2
s2

s1 ⊕ s2

s1−2 s1 ∅ ∅

3 ∅ s2−1
s1 ⊕ s2−1

s1−2

⊕ s2

s1−1 s1−1
s1 s1

s1+1
s1

s1

4 ∅ s2−1
s1−1

s1−1
s1−1

s1−1
s1 s2+1

s1

s1

⊕
s2

s1

s1

⊕
s2+1
s1−1

s1

Table 6. Sigm-cohomology for A = Y(s1 − 1, s1 − 1, s2).

as the msp, which is given by

φa(s1),b(s2) = ea(s1−1),b(s2)|a, ea(s1−1),b(s2)|c = ea(s1−1),b(s2)
µ hµc. (5.19)

The decomposition of ea(s1−1),b(s2)|c into irreducible so(d− 1, 1)-tensors reads

s2

s1−1 ⊗ =

[
s2

s1 ⊕ s2

s1−2 ⊕ s2−1
s1−1

]
⊕

[
s2

s1−1
⊕ s2+1

s1

]
. (5.20)

The terms in the first brackets correspond to H
q=1
g=0(σ−), the field components in the second

brackets are σ−-exact inasmuch as they can be gauged away by the gauge parameters that

have the same symmetry type.

The gauge parameter ξa(s1−1),b(s2), which is a representative of H
q=0
g=0(σ−), is defined as

ξa(s1−1),b(s2) = ξ
a(s1−1),b(s2)
0 = ξ

a(s1−1),b(s2)•(s1−s2−1),•(s2)
0 . (5.21)

From frame-like to metric-like, field equations. Having identified the representa-

tives of H
q=1
g (σ−) and H

q=0
g (σ−) corresponding to the dynamical field φa(s1),b(s2) and to

the gauge parameter ξa(s1−1),b(s2), let us now turn to H
q=2
g (σ−) whose representatives give

the field equations.

The ’raw’ field curvature at the lowest grade, i.e. the field curvature for the generalized

frame field e
a(s1−1),b(s2)
1 , and the two ’raw’ field curvatures at grade-one for the auxiliary

fields ω
a(s1−1),b(s2+1)
1 and ω

a(s1−1),b(s2),c
1 read

Ra(s1−1),b(s2)|aa = Daea(s1−1),b(s2)|a + (s1 − s2 − 1)ωa(s1−1),b(s2)a|a + s2ω
a(s1−1),b(s2),a|a

(5.22)

Ra(s1−1),b(s2+1)|aa = Daωa(s1−1),b(s2+1)|a + (s1 − s2 − 2)W a(s1−1),b(s2+1)•(s1−s2−3)a,•(s2)|a+

+ s2W
a(s1−1),b(s2+1)•(s1−s2−2),•(s2−1)a|a − ηaaW a(s1−2)•,b(s2+1)•(s1−s2−2),•(s2)|a+

− ηbaea(s1−1),b(s2)|a (5.23)
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Ra(s1−1),b(s2);c|aa = Daωa(s1−1),b(s2),c|a + (s1 − s2 − 1)W a(s1−1),b(s2)•(s1−s2−2)a,c•(s2−1)|a+

+ (s2 − 1)W a(s1−1),b(s2)•(s1−s2−1),c•(s2−2)a|a − ηaaW a(s1−2)•,b(s2)•(s1−s2−1),c•(s2−1)|a+

− ηbaW a(s1−1),b(s2−1)•(s1−s2),c•(s2−1)|a − ηcaea(s1−1),b(s2)|a, (5.24)

where we have substituted (5.18) and

ωa(s1−1),b(s2+1)|m = W a(s1−1),b(s2+1)•(s1−s2−2),•(s2)|m, (5.25)

ωa(s1−1),b(s2);c|m = W a(s1−1),b(s2)•(s1−s2−1),c•(s2−1)|m. (5.26)

The ’raw’ field ωa(s1−1),b(s2);c|m have partial Young symmetry properties,

(s2 + 1)ωa(s1−1),b(s2);b|m = −(s1 − s2 − 1)ωa(s1−1),b(s2+1)|m. (5.27)

When expressed in terms of φa(s1),b(s2), the representative of H
q=2
g=0

R
a(s1−1),b(s2−2)m|a

m
= Dae

a(s1−1),b(s2−1)n|
n
−Dnea(s1−1),b(s2−1)n|a (5.28)

give the same expression as (5.11). The simplest way to take the representative of H
q=2
g=1

and derive (5.10) is to compute

(s1 − s2 − t)R
a(s1−1),b(s2)•(s1−s2−t−1)n,•(s2)|a

n
+ s2R

a(s1−1),b(s2)•(s1−s2−t),•(s2−1)n|a
n

= 0,

where the terms with the derivative of ωa(s1−1),b(s2+1)|m and ωa(s1−1),b(s2),c|m can be ex-

pressed from

Ra(s1−1),b(s2)•(s1−s2−1),•(s2)|an = Daea(s1−1),b(s2)|n −Dnea(s1−1),b(s2)|a+

− (s1 − s2 − 1)ωa(s1−1),b(s2)n|a − s2ω
a(s1−1),b(s2);n|a = 0, (5.29)

that is obtained from (5.22) by symmetrizing one index a with a(s1 − 1).

Consequently, formulated in terms of a single connection WA
q (5.12), (5.13), (5.15)

the theory has a very simple form and the representatives of the σ−-cohomology give all

relevant quantities. Technical complications arise when passing to a metric-like formulation,

in which the origin of the trace constraints (5.5)–(5.6) is not self-evident and the field

equations are more involved.

6 Conclusions

In this paper we have presented the results on the σ−-cohomology for the algebraic complex

C(A,σ−) associated with the differential complex C(A,DΩ) of gauge connections generated

by an arbitrary irreducible finite-dimensional representation A of the (anti)-de Sitter alge-

bra. The complex C(A,σ−) arises if we would like to reinterpret the fields of the (anti)-de

Sitter algebra in terms of the Lorentz one.

As distinct from the rich complex C(A,σ−), by virtue of the Poincare lemma C(A,DΩ)

is locally exact in degrees greater than zero and provides no interesting information.
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The results on the σ−-cohomology are important for constructing Lagrangians

inasmuch as the Lagrangian equations must set to zero the representatives of H(σ−)

that are associated with the equations of motion, as it is established by direct method,

for example, for massless symmetric spin-s fields in (anti)-de Sitter space in [51, 78], for

massless arbitrary-spin fields in Minkowski space in [12] and for massless two-column

fields in (anti)-de Sitter space in [7].

Restriction to the σ−-cohomology in the sector of fields and gauge parameters yields

the minimal formulation for a given gauge field, so that all algebraic gauges are imposed and

all auxiliary fields are expressed in terms of dynamical ones. The differential form structure

is lost in H(σ−) in that the representatives of H(σ−) are certain Lorentz tensors, which may

be embedded into the forms of the degree dictated by H(σ−), however, the constraints in-

volving both the form and the fiber indices arise (these are formulated in terms of the back-

ground frame and its inverse). Therefore, the minimal formulation operates with a collec-

tion of metric-like fields, which may look strange, e.g. having complicated trace constrains.

That the σ−-cohomology of the gauge module in the sector of the Weyl tensor together

with its Bianchi identities is perfectly glued to the σ−-cohomology of the Weyl module

suggests that the spectrum of fields of the Weyl module is correct. Thus, the next problem

is to find the higher-spin algebras [79, 80] for mixed-symmetry fields and construct the

corresponding nonlinear equations, which are believed to exist [81–84] and are likely to be

constructed within the unfolded approach.
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A Tensor products

Let X and Y be two irreducible representations of some Lie algebra g, then we can take

the tensor product of X⊗g Y and decompose it into the direct sum

X⊗g Y =
⊕

Z

CZ
X,YZ (A.1)

over irreducible modules Z with multiplicities given by the Littlewood-Richardson coeffi-

cients CZ
X,Y. For the reader’s convenience we present below the tensor product rules for g

being sl(d) or so(d) and for Y being a one column Young diagram.

sl(d)-tensor product. Let X = Y{(si, pi)} and Y = Y[q] be irreducible representations

of sl(d), then the decomposition of the tensor product X⊗ Y[q] is of the form

X⊗sl(d) Y[q] =
⊕

α1+···+αN+1=q

X{αj}, (A.2)
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where the multiplicity of each irreducible representation X{αj} is 1 and the sum is over all

Young diagrams X{αj}

X{α1,...,αN+1}=

αN+1

sN

pN

αN

s2

p2

α2

s1

p1

α1

: αi≤pi, for i=1, . . . , N, (A.3)

with α1 + · · · + αN+1 = q. The diagrams of total height greater than d correspond to

identically zero tensors and must be discarded. The first column must be removed from

the diagrams of height d, so that the resulted diagram has height (d− 1) at most.

Since Y[q] corresponds to a representation on antisymmetric tensors, two cells of Y[q]

must not appear in the same row in X, which determines the shape of X{αj}.

so(d)-tensor product. To decompose the tensor product X ⊗so(d) Y[q] of two so(d)

representations X = Y{(si, pi)} and Y = Y[q] is a more complicated problem because

of ability to take traces with the help of the invariant tensor ηab. The decomposition of

X⊗so(d) Y[q] has the form

X⊗so(d) Y[q] =
⊕

{αj ,βi}

N{αj ,βi}Y
{αj ,βi}, (A.4)

where the sum is over all Young diagrams Y{αj ,βi}

Y{αj ,βi}=

αN+1

βN

αN

ǫNpN
sN

β2

α2

ǫ2p2 s2

β1

α1

ǫ1p1 s1

: αi+βi≤pi, for i=1, . . . , N, (A.5)
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provided there is a nonnegative integer ρ such that

q =

i=N∑

i=1

(αi + βi) + αN+1 + 2ρ, (A.6)

The multiplicity N{αj ,βi} of Y{αj ,βi} is given by the number of integer partitions

N{αj ,βi} = P(ǫ1, . . . , ǫN |ρ), ǫi = pi − αi − βi, (A.7)

of ρ into the sum of N integers k1 + · · ·+ kN = ρ such that 0 ≤ ki ≤ ǫi. The trace order r

for Y{αj ,βi} is

r =

i=N∑

i=1

βi + ρ. (A.8)

The meaning of the above is as follows. Before adding the cells of Y[q] to X, one can

take traces, i.e. to remove pairs of cells, one from Y and another one from X. Since Y

corresponds to antisymmetric tensor representations, two cells cannot be removed from the

same row of X. Therefore, each trace of order r corresponds to some integer partition of

r into the sum t1 + · · · + tN provided that ti ≤ pi. A subcolumn of height ti is removed

from the bottom-right of the i-th block. Then, the rest of the cells from Y, i.e. (q − r),

can be added to what X has turned into after taking traces. Recall that the i-th block

consists now of two subblocks Y{si, pi − ti} and Y{si − 1, ti}. There are two types of

places to which cells can now be added: αi cells are added to the top-right of the subblock

Y{si, pi − ti}; (ti − βi) cells are added to the top-right of the subblock Y{si − 1, ti}. The

latter leads to the possibility to get the same diagrams in many different ways, i.e. results

in the multiplicity greater than one. Different partitions of ρ into
∑

i(ti−βi) provided the

trace order r =
∑

i ti and all βi are fixed results in identical Young diagrams. So ρ is the

number of cells that were first removed and then restored.

When the height of some diagram Y{αj ,βi} is greater than [d/2], the antisymmetric

invariant tensor ǫa1...ad
has to be used to transform it to a diagram with height less than

[d/2] or to impose (anti)selfduality conditions when the height is [d/2] for d even. We

implicitly assume that the rules described above are applicable to all tensors products

considered in the paper.

B σ−-cohomology

The case of sl(d + 1)

Below we compute the σ−-cohomology for sl(d + 1) and so(d + 1), starting with the case

of sl(d + 1). As it has been already mentioned, the σ−-cohomology in the case of sl(d + 1)

is closely related to the ordinary Lie algebra cohomology. This is not so in the case of

so(d + 1), for which a different method should be developed. We first apply the new

method to the case of sl(d+1), so that one can check the results. The method is to embed

C(A,σ−) into the tensor product of much more simple complexes associated to one-row
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Young diagrams, A = Y(s), then the cohomology of C(A,σ−) with A of general shape can

be obtained with the help of certain projectors, whose kernels we are able to find.

Set g = sl(d + 1) and h = sl(d). Let V be a fundamental (vector) representation

of g. For any nonzero (compensator) vector13 v ∈ V , we have the decomposition V =

V0⊕V1, where V1 is a one-dimensional subspace spanned by the vector v and V0 is a vector

representation of h. We define a complex

σ− : Tm(V )⊗ Λq(V0) −→ Tm(V )⊗ Λq+1(V0), (B.1)

where Tm(V ) is the m-th tensor power of V , Λq(V0) is the q-th exterior power of V0 and

σ− is a nilpotent operator

σ− :(X1 ⊗ . . .⊗Xm)⊗ z1 ∧ . . . ∧ zq −→

−→
i=m∑

i=1

(X1 ⊗ . . . ⊗̂Xi−1 ⊗ v ⊗Xi+1 ⊗ . . .⊗Xm)⊗ ρv(Xi) ∧ z1 ∧ . . . ∧ zq, (B.2)

where X1, . . . ,Xm ∈ V , z1, . . . , zq ∈ V0 and ρv(X) is a projector onto V0, i.e. ρv(v) = 0,

ρv(x) = x for x ∈ V0.

In order to single out from Tm(V ) an irreducible g-module A with rank m = rank(A),

the Young symmetrizer πA is needed. A Young symmetrizer is a weighted sum over all

permutations of m = rank(A) factors

πA[X1 ⊗ . . .⊗Xm] =
∑

{σ}

f(σ)Xσ1
⊗ . . .⊗Xσm , (B.3)

where the weight function f(σ) is determined by A, e.g. for A = Y(m) f(σ) = (m!)−1.

It is not hard to see that the Young symmetrizer πA commutes with the action of σ−.

Therefore, given any irreducible g-module A the nilpotent operator

σ− : A⊗ Λq(V0) −→ A⊗ Λq+1(V0), (B.4)

is well-defined, so is the corresponding complex on A⊗Λ(V0), which we denote C(A,σ−).

The definition just given is intermediate in a sense that it does not deal with explicit

indices as in section 3.3, but seems to depend on the choice of the compensator as

compared to the invariant definition of section 3.4.

On account of the embedding A →֒ Tm(V ) with m = rank(A), any element of h-

module X from Resg
hA can be written as a sum over elements of the form

πA(

m−k︷ ︸︸ ︷
v ⊗ . . .⊗ v⊗πX(x1 ⊗ . . .⊗ xk)), (B.5)

where x1, . . . , xk ∈ V0 and X ∈ Resg
h
A.

As it has been already mentioned, A⊗Λ(V0) can be considered as an h-module, with the

action of h on Λ(V0) induced from that on V0. Due to hv = 0, σ−commutes with the action

of h and, hence, both the elements of the complex and the representatives of σ−-cohomology

can be considered as h-modules so that one can deal with irreducible h-modules only.

13To be strict, a vector from the dual space is also needed, we skip obvious details since we can talk about

tensors of so(d + 1) modulo traces rather than of sl(d + 1)-tensors.
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De Rham complex. Consider the de Rham complex R on the polynomials in d com-

muting variables ya with the action of the de Rham differential ∂ defined by

∂(ω(ya|θb)) = θc ∂

∂yc
ω(ya|θb), (B.6)

where Grassmann variables θa are the analogs of dxa. Rewritten in components, the action

of ∂ on the component of degree k and q in ya and θb, respectively, reads

∂(ωa(k)|µ[q]) = kωa(k−1)µ|µ[q], (B.7)

where the antisymmetrization over the form indices µ is implied. As is well known, the

cohomology of the de Rham complex is concentrated in the constant polynomials in ya

and θb, i.e.

q\g 0 > 0

0 • ∅

> 0 ∅ ∅

(B.8)

Decomposing ωa(k)|µ[q] into irreducible h-modules, we have

ωa(k)|µ[q] ∼

k

q ⊕

k

q . (B.9)

Evidently, the second, the less antisymmetric component of (B.9) is exact inasmuch as the

component with the same symmetry type is in ωa(k+1)|µ[q−1], the two components forming a

so-called contractible pair. Therefore, the total space of R is decomposed into a direct sum

of contractible pairs plus constants ω| that represent the only nontrivial cohomology class.

De Rham complex Rs with constraints or C(Y(s), σ
−
). Consider now the de Rham

complex Rs on polynomials in ya having degree not greater than s. Obviously, it can be

realized as the space of degree s polynomials in d + 1 variables ya and y•, ∂ is defined by

the same formula. Therefore, Rs is the simplest example of the σ−-complex C(A,σ−) with

A = Y(s), and ωa(k)|µ[q] is identified with the projection W a(k)•(s−k)|µ[q] of a single form

W A(s)|µ[q] valued in sl(d + 1)-module Y(s), c.f. (3.20).

It is easy to find the cohomology of Rs: since it is the restriction of the de Rham

complex, in addition to the de Rham cohomology we will have new cohomology classes

with representatives coming from those contractible pairs at grade-s that get broken over

restriction - these former exact forms represent now nontrivial cohomology classes since

the s + 1 grade becomes trivial. Thus,

q\g 0 s

0 O0 = • ∅

1 ∅ B1 = s+1

2 ∅ B2 = s+1

(B.10)

where the notation O0, Bq was introduced to label the cohomology classes.
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Rs1,s2 complex. Of use for us will be also the complex Rs1,s2, s2 > 0, obtained fromRs1

by restricting further polynomials in ya to have degree not less than s2, or more formally

0 −→ Rs2 −→ Rs1,s2 −→ Rs1 −→ 0. (B.11)

The need for Rs1,s2 is due to Young symmetrizers, which confine the rows of Young dia-

grams coming from Resg
hA to be between two integers, the smallest of which being generally

greater than zero.

Again, the cohomology of Rs1,s2 is easy to find - it is sufficient to find contractible

pairs in Rs1 at grade s2 that get broken, yielding new cohomology

q\g s2 s1

0 A0 = s2 ∅

1 A1 = s2 B1 = s1+1

2 A2 =
s2

B2 = s1+1

(B.12)

It is worth mentioning that the representatives at higher degrees are obtained by adding

cells to the bottom-left of A0 and B1.

R(A, ∂) complex. Given any diagram A = Y(s1, . . . , sn) we define the complexR(A, ∂)

as a tensor product of Rsi ,

R(A, ∂) = Rs1 ⊗Rs2 ⊗ . . . ⊗Rsn−1 ⊗Rsn , (B.13)

with the action of the total differential ∂ defined through the action of ∂ on each multiplier

ωi
qi
∈ Rsi as

∂
(
ω1

q1
⊗ ω2

q2
⊗ . . . ⊗ ωn

qn

)
=∂(ω1

q1
)⊗ ω2

q2
⊗ . . .⊗ ωn

qn

+ (−)q1ω1
q1
⊗ ∂(ω2

q2
)⊗ . . .⊗ ωn

qn
+ · · · (B.14)

A simple fact from the spectral sequences theory tells us that the cohomology H
q(A, ∂)

of R(A, ∂) is just the tensor product of cohomology groups at each factor. However,

the complex R(A, ∂) is still far from C(A,σ−) inasmuch as (1) no Young conditions are

imposed; (2) each of the factors possesses its own copy Λ(V0), i.e. the elements of the

complex are differential multi-forms14 rather than just forms. The complex in question

C(A,σ−) can be extracted from R(A, ∂) by applying two projectors πA and πΛ, where πΛ

singles out the most antisymmetric part of a multiform with no effect on coefficients, i.e.

πΛ : Λq1 ⊗ . . .⊗ Λqn −→ Λq1+q2+···+qn . (B.15)

It is not hard to see that the projectors πA and πΛ commute both with ∂ and with each

other, the latter is evident since πA affects only the coefficients of multi-forms while πΛ

14Multi-form is an element of the direct product of several copies of the exterior algebra. With application

to higher-spin theories multi-forms were studied in [4, 9, 85, 86].
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affects only multi-forms. However, in getting the cohomology H(A,σ−) of C(A,σ−) by

applying πA and πΛ to the cohomology H(A, ∂) of R(A, ∂) we may meet two obstructions:

(1) certain cohomology classes can fall into the kernel of πα, α = A,Λ; (2) there can be

contractible pairs E = ∂(F ) such that F does not belong to ker(πα) but E ∈ ker(πα) and

thus F becomes a representative of a nontrivial cohomology class for C(A,σ−). It turns

out that it is rather simple to find the kernel of πα and we can also track the appearance

of new cohomology through (2).

The properties of πA. To begin with, let us note that given a Young diagram, say X,

and an irreducible tensor with the symmetry of X, say CX, written in symmetric basis, it

is not necessary for the number of indices of some sort over which the total symmetrization

in CX is performed to equal the length of the corresponding row in X. We refer to the

irreducible h-tensors with the number of indices of each sort being equal to the length of the

corresponding row as to the tensors with canonical arrangement of indices and noncanonical

otherwise. For instance, given X = Y(k,m) then Ca(k),b(m) is a canonical arrangement and

Ca(k−i)b(i),b(m) with i > 0 is not. Also note that an h-tensor obtained by contracting a

number of compensators with an irreducible g-tensor is not generally irreducible. For the

example of a g-tensor with the symmetry of A = Y(s1, s2) we have

W a(k)•(s1−k),b(m)•(s2−k) =

k+j≤s1∑

j=0

αk,m
j θ(s1 − k − j)Ca(k)b(j),b(m−j), (B.16)

where θ(k ≥ 0) = 1, θ(k < 0) = 0 and it is natural to set αk,m
j=0 = 1, so that

πX

(
W a(k)•(s1−k),b(m)•(s2−m)

)
= Ca(k),b(m) (B.17)

for some X = Y(k,m) provided that X ∈ Resg
hA. Extraction from (B.16) of irreducible

components with the symmetry different from X we may call noncanonical projection.

Symmetrization of all ’a’-indices with one index ’b’ in (B.17) does not yield zero except for

the term with αk,m
j=0, rather it gives a recurrent equation for αk,m

j . The solution is αk,m
j =

(−)j (s1−k)!(k−m+j)!
(s1−k−j)!(k−m+2j)! , which does not degenerate in the range of definition. Since each irre-

ducible module in Resg
h
A appears once, there is no confusion with noncanonical projections.

Let Ca(k),b(m) be an irreducible tensor with the symmetry of X = Y(k,m). It can

be embedded into the elements ωa(k+i)|b(m−i) of Rs1,s2 in a canonical way if i = 0 and

noncanonically if i > 0. Since each element of Resg
hA comes with multiplicity one,15 the

projector πA maps all components having the symmetry of X to the same element of

Resg
hA, possibly modulo an overall factor, if X ∈ Resg

hA and to zero otherwise. Therefore,

it is sufficient to deal with irreducible tensors with canonical arrangements of indices.

The kernel of πA is easy to find: if for some canonical F we have ∂(F ) 6= 0 and

∂(F ) ∈ ker(πA), then it implies that in ∂(F ) the number of indices of some sort is less than

the length of the corresponding row in A, i.e. ∂(F ) does not belong to Resg
hA. This being

said, new cohomology appears when passing from Rs1,...,sn to C(A,σ−) = πAπΛ [Rs1,...,sn ],

the new cohomologies are given by those new in Rsi,si+1 as compared to Rsi .

15This is true for the cases considered in the paper with (g, h) being (sl(d+1), sl(d)) or (so(d+1), so(d)).
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Tensor product cohomology. Consider the projection πAπΛ [H(A, ∂)] of the cohomol-

ogy H(A, ∂), which is given by taking the tensor product H(Rs1,s2) ⊗ H(Rs2,s3) ⊗ . . . and

applying then πAπΛ. Consider the tensor product ω = ω1 ⊗ . . . ⊗ ωn−1 ⊗ ωn of the rep-

resentatives ωi of nontrivial cohomology classes of Rsi,si+1. It turns out that if at least

one of the representatives ω1, . . . , ωn−1 corresponds to a cohomology class that is charac-

terized by a Young diagram with more than one row then πAπΛ [ω] is a representative of

the trivial cohomology class in C(A,σ−). Recalling the notation of (B.10) and (B.12), we

can put it differently by saying that left multipliers of the form Aq>0⊗ and Bq>1⊗ yield

trivial cohomology in C(A,σ−). Indeed, let us write down all four options for the tensor

product of cohomology where the first multiplier is represented by a Young diagram with

more than one row (two for simplicity)

Aq>0 ⊗A ∼ s2 ⊗ s3
πAπΛ−−−−→ s2

s3
,

Aq≥0 ⊗ B ∼ s2 ⊗ s2
πAπΛ−−−−→ ∅,

Bq>1 ⊗A ∼ s1 ⊗ s3
πAπΛ−−−−→ s1

s3
,

Bq>1 ⊗ B ∼ s1 ⊗ s2
πAπΛ−−−−→ s1

s2
∼ 0,

where checked cells correspond to the form indices in tensor language, e.g.
s2

correspond to a representative of the form Ca(s2),µ, which is closed inasmuch as tensors with

less than s2 indices ’a’ belong to the kernel of πA. So, Aq≥0⊗B is mapped to zero since the

first row in a Young diagram cannot be shorter than the second one; Bq>1⊗B is also mapped

to zero because two form indices of different sorts appear in the same group of symmetric

indices, which gives zero after applying πΛ; both Aq>0 ⊗A and Bq>1 ⊗ B are mapped to

exact forms in C(A,σ−) inasmuch as one form index in the second group of indices can

now result from applying πAπΛ∂ to Ca(s2),b(s3+1) and Ca(s1)µ,b(s2+1), respectively - roughly

speaking on account of definite Young symmetry and the fact that forms of different sorts

become identical via πΛ, certain arrangements of indices in a tensor can now be obtained

through πAπΛ∂, which is impossible in R(A, ∂). Note that the disappearance of classes

represented by a tensor product of Young diagrams with more than one row concerns left

multipliers in the tensor product and has no effect on the last multiplier Rsn in Rs1,...,sn ,

which is always the rightmost one.

The properties of πΛ. Since a component with some definite Young symmetry can

enter more than one element of Rs1,s2 even for q = 0, one can adjust coefficients if front of

them to get a closed form after applying πΛ, e.g.

ω =

i=n∑

i=0

(−)i

(n− i)!i!
Ca(n−i)b(i), πΛ [∂(ω)] = 0, (B.18)
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where it has been taken into account that the action ∂ on some multi-form B
a(k)|b(m)
q1,q2

reads as

∂
(
B

a(k)|b(m)
µ[q1]|ν[q2]

)
= kB

a(k−1)µ|b(m)
µ[q1]|ν[q2]

+ mB
a(k)|b(m−1)ν
µ[q1]|ν[q2]

, (B.19)

where indices µ and ν correspond to two different sorts of forms. The projector πΛ roughly

speaking replaces all form indices of different sorts with indices of just one sort, say µ, with

further antisymmetrization. It is important that ∂ consists of the two parts in this example,

with one decreasing the number of a’s and another one decreasing the number of b’s. There-

fore, having some B
a(k)|b(m)
q1,q2 possessing only one h-irreducible component and trying two

solve the closeness condition we can meet two situations: (1) πΛ

[
∂
(
B

a(k)|b(m)
q1,q2

)]
6= 0 and to

compensate we can introduce B
a(k−1)|b(m+1)
q1,q2 and B

a(k+1)|b(m−1)
q1,q2 — (B.18) is an example of

this type. However, the process runs out with B
a(0)|b(m+k)
q1,q2 and B

a(k+m)|b(0)
q1,q2 . Taking into ac-

count the properties of πA and the range of tensor ranks ofRs1,s2 we see that k+m = s2, i.e.

the tensor has the lowest possible grade and hence must be totally symmetric, B
a(k)|b(m)
q1,q2 ≡

B
a(k)b(m)
q1,q2 thus representing no new cohomology class; (2) πΛ

[
∂
(
B

a(k)|b(m)
q1,q2

)]
= 0 implies

that B
a(k)|b(m)
q1,q2 is of the form (with canonical arrangement of indices)

B
a(k)|b(m)
q1,q2 ∼

k
m

∂
−−−−→

k − 1
m ⊕

k
m− 1 ,

where checked cells correspond to form indices of different sorts such that ∂ gives zero only

after applying πΛ, e.g. ∂
(
Ca(k)ν,b(m)µ

)
6= 0 and πΛ

[
∂
(
Ca(k)ν,b(m)µ

)]
= 0. However, all

these candidates for new cohomology either are exact analogously to the case of Aq>0⊗A

and Bq>1 ⊗ B, or are equivalent to the old classes of the form A⊗A, B ⊗A or B ⊗ B.

To sum up, nontrivial cohomology classes are generated by various tensor products of

the most symmetric representatives of H(Rsi,si+1), i < n, and H(Rsn). Since any row in a

Young diagram cannot be longer than the previous one, products of the form A ⊗ B are

forbidden. Consequently,

H
q(A,σ−) =





πAπΛ




q︷ ︸︸ ︷
B1 ⊗ . . .⊗ B1⊗

n−1−q︷ ︸︸ ︷
A0 ⊗ . . .⊗A0⊗O0


 , q < n

πAπΛ




n−1︷ ︸︸ ︷
B1 ⊗ . . .⊗ B1⊗Bq−n+1


 , q ≥ n,

(B.20)

which coincides both with the well-known result of Lie algebra cohomology theory, see

e.g. [63], and with the first theorem in section 3.7. It is easy to remove the brackets - the

diagram of h is obtained by concatenation of diagrams of each multiplier.

The case of so(d + 1)

In the case of so(d + 1), g = so(d + 1) and h = so(d), we follow along the same path,

representing C(A,σ−) as a projection of a tensor product of complexes associated with
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one-row so(d + 1)-diagrams. It allows us to easly find candidates for cohomology since the

projectors πA, πΛ and one new projector πcr either do not lead to new cohomology (πΛ,

πcr) or it is simple to track the appearance of new cohomology (πA), neither is it difficult

to find their kernels. At the final step we compute the Euler characteristic to find the

dimension of ker(πAπΛπcr).

Harmonic de Rham complex. Consider the de Rham complex hR on harmonic poly-

nomial in d variables ya, i.e. ∂2

∂yc∂yc
ω(ya|θb) ≡ 0. The action of the differential ∂ is given by

the same formula (B.6), or in components by (B.7). The harmonicity condition in terms

of components ωa(k)|µ[q] is equivalent to the vanishing trace condition for indices a. The

cohomology of the harmonic de Rham complex is well-known, for example in the framework

of the unfolded approach it was found in [52],

q\g 0 1 > 1

0 • ∅ ∅

1 ∅ • ∅

> 1 ∅ ∅ ∅

(B.21)

There is one new cohomology class as compared to the de Rham complex R, which is due

to the tracelessness condition.

Harmonic de Rham complex with constraints. Analogously, we define hRs to be

the harmonic de Rham complex on polynomials with degree not greater than s. As it

was the case for sl(d + 1), the complex hRs turns out to be the simplest example of the

σ−-complex C(Y(s),σ−). The component ωa(k)|µ[q] is identified with the traceless part of

the projection W a(k)•(s−k)|µ[q] of a single form W A(s)|µ[q] valued in so(d + 1)-module Y(s),

c.f. (3.16). The cohomology of hRs is given by that of hR plus some new cohomology classes

because of breaking certain contractible pairs at grade s due to the degree constraint

q\g 0 1 s

0 O0 = • ∅ ∅

1 ∅ O1 = • B1 = s+1

2 ∅ ∅ B2 = s+1 , C2 = s

3 ∅ ∅ B3 =
s+1

, C3 =
s

(B.22)

Note that the representatives having the symmetry of one-row Young diagrams occur at

degree up to two.

hRs1,s2 complex. We also need the complex hRs1,s2 that is Rs1 on polynomials whose

degree is not less than s2, or more formally

0 −→ hRs2 −→ hRs1,s2 −→ hRs1 −→ 0. (B.23)
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The cohomology of hRs1,s2 reads as

q\g s2 s1

0 A0 = s2 ∅

1 A1 = s2 , D1 = s2−1 B1 = s1+1

2 A2 =
s2

, D2 = s2−1 B2 = s1+1 , C2 = s1

(B.24)

hR(A, ∂) complex. Given a Young diagram A = Y(s1, . . . , sn) the complex hR(A, ∂) is

hR(A, ∂) = hRs1 ⊗ hRs2 ⊗ . . .⊗ hRsn−1 ⊗ hRsn , (B.25)

where the total differential ∂ is defined as in the sl(d + 1)-case. With regard to hR(A, ∂),

its cohomology is just the tensor product of multipliers’ cohomology.

Projectors πA and πΛ. Concerning πA and πΛ, the following statements are still true:

(1) it is sufficient to consider only irreducible h-tensors with canonical arrangements of

indices; (2) the Young symmetry conditions via πA induce the appearance of the new

cohomology out of hRsi at grade si+1 such that the whole cohomology is equivalent to that

of hRsi,si+1; (3) multiplying from the left by a cohomology represented by a Young diagram

with more than one row makes the corresponding tensor product cohomology class trivial,

so that Aq>0 ⊗ . . ., Dq>1 ⊗ . . ., Bq>1 ⊗ . . ., Cq>2 ⊗ . . . result in trivial cohomology after

imposing the projectors; (4) the products of the form A ⊗ B, D ⊗ B, A ⊗ C and D ⊗ C

are mapped to zero by πA if s1 > s2, if s1 = s2, then from the above-listed only A⊗ C is

allowed. In general, the presence of equal rows in A complicates the answer greatly.

Projector πcr. We need one more projector πcr that removes cross-traces since each

ω(ya
i |θ

b
i ) of hRsi is harmonic, however, ω(ya

i , ya
j |θ

b
i , θ

b
j) of hRsi ⊗ hRsj is not harmonic

in ya
i yb

j if i 6= j, ∂2

∂yc
i ∂ycj

ω(ya
i , ya

j |θ
b
i , θ

b
j) 6= 0. In terms of components it implies that the

cross-traces - the traces contracting indices from different groups - do not vanish, e.g.

Ca(k)|b(m) = C
a(k)|b(m)
0 +

(
ηabC

a(k−1)|b(m−1)
1 + · · ·

)
+
(
ηabηab . . .

)
+ · · · . (B.26)

To arrive at C(A,σ−), cross-traces must be factored out, this is what πcr does. The

action (B.19) of ∂ consists of replacing one index from each group with the form index,

hence ∂ cannot increase the cross-trace order. Therefore, if some ω is not a cross-trace

itself then ∂(ω) also is not. Hence it is impossible to have ∂ω 6= 0 and πcr [∂ω] = 0 if ω

does not belong to ker(πcr). Consequently, πcr does not give rise to new cohomology.

Result if si 6= si+1. If all weights in A are different the answer is very simple: the

representatives of cohomology classes are of two types. Recalling the notation of (B.22)

and (B.24), the ones of the first type have the form

H
q
r,g(A,σ−) = πtot




q−r︷ ︸︸ ︷
B1(C2)⊗ . . . ⊗ B1(C2)⊗A0(D1) . . . ⊗A0(D1)⊗O0


 , q − r < n

(B.27)
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where B1(C2) implies that either B1 or C2 can appear, analogously for A0(D1) and πtot =

πAπΛπcr. The degree q, grade g and trace order r are

q = #B1 + 2#C2 + #D1, g = s1 − sq−r+1, r = #C2 + #D1 (B.28)

If q − r ≥ n then

H
q
r,g=s1

(A,σ−) = πtot




n︷ ︸︸ ︷
B1(C2)⊗ . . .⊗ B1(C2)⊗ Bq′(Cq′+1)


 , (B.29)

where q′ = q − r − n + 1. The representatives of the second type have the form

H
q+1
r+1,g+1(A,σ−) = πtot




q−r︷ ︸︸ ︷
B1(C2)⊗ . . .⊗ B1(C2)⊗A0(D1) . . . ⊗A0(D1)⊗O1


 , (B.30)

where O0 is replaced with O1, which shifts by one the degree, grade and trace order. The

representative (B.30) is obtained from (B.27) by the duality map.

All above-stated can be reformulated in terms of mspr(A, q, r) as in the second

theorem of section 3.7.

Some weights in A are equal. In the case where some rows in A are equal the block

notation is more convenient, so let A = Y{(s1, p1), . . . , (sN , pN )}. At first sight we have a

degeneracy so that the multiplicity of some diagram in H
q
g,r can differ from 0 and 1. Indeed,

if si = si+1 for some i then A0 equals C2 as diagrams and hence if there is more than one

group of equal rows in A then different partitions q = q1 + q2 + · · · corresponding to

. . .⊗ . . . ⊗A0 ⊗ . . .⊗A0 ⊗

q1︷ ︸︸ ︷
C2 ⊗ . . .⊗ C2

︸ ︷︷ ︸
pi

⊗ . . .

. . . ⊗ . . .⊗A0 ⊗ . . .⊗A0 ⊗

q2︷ ︸︸ ︷
C2 ⊗ . . .⊗ C2

︸ ︷︷ ︸
pj

. . . . . . ., (B.31)

result in representatives of different cohomology classes with identical Young diagrams. It

seems to be not enough to specify q, g, r and a Young diagram in order to distinguish

between different cohomology classes. This will be proved not to be the case.

Because of the decomposition (3.35) for C(A,σ−), the cohomology of hR(A, ∂)

plus those new induced by Young conditions tells us not only which subcomplexes

C(A,σ−;X, q + g, r),

0 −→ V0
σ−

−−−→ . . .
σ−

−−−→ Vq−1
σ−

−−−→ Vq
σ−

−−−→ Vq+1
σ−

−−−→ . . . (B.32)

can have nonvanishing cohomology but also determines the degree q, grade g and by

definition the trace order r, where cohomology can be nontrivial. We see that for each

C(A,σ−;X, q + g, r) that may have nontrivial cohomology there is a unique place in terms
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of q and g where it can happen. Due to the degeneracy, the multiplicity of X in H
q
g,r can be

greater than one. Making use of the fact that Euler characteristic of C(A,σ−;X, q + g, r)

can be computed either as χ =
∑

q(−)qdim(Hq) or χ′ =
∑

q(−)qdim(Vq), we can determine

the multiplicity since all but one summands in χ are equal to zero - in this case the Euler

characteristic determines the dimension of cohomology of H(A,σ−;X, q+g, r) modulo sign

factor, of course. It presents no difficulty to compute χ′, we just count the multiplicity of X

appearing as the trace of order r in Ag⊗Y[q] for different q and g while keeping q+g fixed.

so(d)-tensor product of restricted representations. Let us address the question of

which Young diagrams can appear in the tensor product A{k1,...,kN}⊗Y[q] with A{k1,...,kN} ∈

Res
so(d+1)
so(d) A and Y[q] being a one-column diagram of height q. It is useful to define ∆i =

si − si+1. Applying tensor product rules, given in appendix A, one gets

A{k1,...,kN} ⊗so(n) Y[q]=
⊕

{αj ,βi,γi}

N
{αj ,βi}

{k1,...,kN}A
{αj ,βi,γi}

{k1,...,kN}, (B.33)

A
{αj ,βi,γi}

{k1,...,kN}=

αN+1

γN

βN

αN

ǫNpN−1 sN

γ2

β2

α2

ǫ2
p2−1 s2

γ1

β1

α1

ǫ1p1−1 s1

:
αi+βi≤pi−1, for i=1 . . . N,

γi ∈ [−1, 0, . . . ,∆i + 1]

(B.34)

The explicit formula for the multiplicity N
{αj ,βi}

{k1,...,kN} can be written in terms of integer

partitions. Important is the very ’geometry’ of A
{αj ,βi,γi}

{k1,...,kN}, e.g. γi ∈ [−1,∆i + 1] if i < N

and γi ∈ [0,∆i + 1] if i = N , γi = ∆i + 1 implies αi = pi − 1, etc.

We choose some X = A
{αj ,βi,γi}

{k1,...,kN} and do not fix any A{k1,...,kN}, counting contributions

of all from Ag that lead to X in the tensor product.

The multiplicity N
{αj ,βi}

{k1,...,kN} can be greater than one inasmuch as there are in general

many ways to remove cells (take traces) and then add them back in order to get the same

diagram X. The source of cells is Y[q], of course. Let us refer to a cell in X, that can

be obtained by removing a number of cells, including this one, and then adding the same

number of cells back as to a vacancy. More than one cell may be needed because it can be

that to remove some cell, according to the tensor product rules, one has first to remove a
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number of adjacent cells. At least two cells are required to fill a vacancy, one to take trace

and one to restore the original cell. The vacancies correspond to ǫi and to the rightmost cell

in γi provided γi ∈ [0,∆i]. Note that there is only one way to get the cells corresponding

to αi and γk = ∆k + 1 (or βi and γk = −1), these cells have to be added (or removed), not

to mention the cells in the ’interior’ of X that are not affected by the tensor product rules.

It is convenient to single the constant parts Q, R and G out of q, r and g that do not vary

when passing from one A{k1,...,kN} to another,

q = Q + q′, Q =
N+1∑

j=1

αj +
N∑

i=1

βi + N−1 + N∆+1, q′ = Nγ>k + Nγ<k + 2ρ,

g = G + g′, G =

i=N∑

i=1

(γi + δγi,−1 − δγi,∆i+1) , g′ = Nγ<k −Nγ>k

r = R + r′, R =

N∑

i=1

βi + N−1, r′ = Nγ>k + ρ

N−1 = #{i : γi = −1}, N∆+1 = #{i : γi = ∆i + 1},

Nγ<k = #{i : γi < ki γi 6= −1,∆i + 1}, Nγ>k = #{i : γi > ki, γi 6= −1,∆i + 1},

and ρ, Nγ<k, Nγ>k are the parts that depend on a particular A{k1,...,kN}. For example,

Nγ<k is equal to the number of those ki in A{k1,...,kN} that are greater than γi. Note that

by virtue of the tensor product rules γi = ki, ki ± 1. It is ρ that governs the multiplicity,

ρ is equal to the number of vacancies to be filled. Therefore, the multiplicity of X in

A{k1,...,kN} ⊗ Y[q] is given by the number of partitions of ρ among the vacancies given by

ǫi and those γi that equal ki (modulo certain subtleties to be considered below).

Euler characteristic. Let us proceed to the computation of the Euler characteristic. It

makes no difference to compute it only for X of special form dictated by hR(A, ∂) or in

the general case, so we do it for arbitrary X. Firstly, we construct for X the generating

function F (z, t) such that the coefficient of zg′tq
′

is equal to the number of ways to get X

in A{k1,...,kN} ⊗ Y[Q + q′] with
∑

i ki = G + g′. Thus, z counts the excess over the base

level G, and t counts the number q′ of cells needed to get X.

It is important for the computations to be simple that the whole diagram X can be

cut into pieces such that the generating function can be first constructed for each of the

pieces and then the total F (z, t) is just the product of generating functions over the pieces.

In the table 1 below we collect all different types of such pieces together with generating

functions, where fǫ(t) = (1− t2ǫ+2)/(1− t2). It is easy to see that the generating function

for the Euler characteristics of C(A,σ−;X, q + g, r) is just F (−t, t), where the degree of

t is equal to 2r′ and the coefficient of t2r′ up to a sign equals the Euler characteristic of

C(A,σ−;X, q + g,R+ r′). Note that F (−t, t) can be a polynomial rather than a monomial

because the same diagram X can appear in the tensor product at different values of r.

At the table 1 below, we collected all possible types of pieces, into which the diagram

X is decomposed. Looking at the table, we see that X such that at least one of γi does not
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take an extremal value {−1, 0,∆i,∆i + 1} results in vanishing Euler characteristic, which

exactly correspond to the fact the cohomology of hRsi,si−1 is concentrated in the lowest

and highest grade. Surprising is that χ = 0 if the subsequence γi−1 = 0, γi = ∆i occurs in

X and hence the piece no. 2 can occur only once in X.

Given X, depending on whether the piece no. 2 is present or not, the function F (−t, t)

can have one of the two forms

I : F (−t, t) =
∏

i:γi=∆i

t2(ǫi+1), (B.35)

II : F (−t, t) =
∏

i:γi=∆i

t2(ǫi+1)(1− t2ǫ′+2), (B.36)

where ǫ′ is the ǫi that correspond to the piece no. 2 from the table.

I. In the first case we have all γi taking one of the maximal values {∆i,∆i +1}, i.e. g = s1.

The diagram X consists of blocks of the form

BCj ∼ πY{sj ,pj}πΛπcr




αj︷ ︸︸ ︷
B1 ⊗ . . .⊗ B1⊗

ǫj+1︷ ︸︸ ︷
C2 ⊗ . . . ⊗ C2

︸ ︷︷ ︸
pj


 . (B.37)

That r′ =
∑

i(ǫi + 1) takes the maximal value implies that no A0 can occur, only C2 can.

The first case correspond to q − r > n and to the maximal grade so that none of the

representatives has a dual pair.

II. In the second case F (−t, t) consists of two monomials, each corresponding to a coho-

mology class with the same X but with different r′, the difference is ǫ′ + 1. The second

class is obtained via the duality map. Here we refer to figure 3 illustrating both classes.

The representatives are given by diagrams of the form

πtot

[
BC1 ⊗ . . . ⊗BCk−1 ⊗ BADk ⊗ADk+1 ⊗ . . . ⊗AD0

N

]
, (B.38)

where

BADk ∼ πY{sk,pk}πΛπcr




αk︷ ︸︸ ︷
B1 ⊗ . . .⊗ B1⊗

ǫk︷ ︸︸ ︷
A0 ⊗ . . .⊗A0⊗

βk︷ ︸︸ ︷
D1 ⊗ . . .⊗D1⊗A0

︸ ︷︷ ︸
pk


 ,

ADj ∼ πY{sj ,pj}πΛπcr




ǫj︷ ︸︸ ︷
A0 ⊗ . . . ⊗A0⊗

βj︷ ︸︸ ︷
D1 ⊗ . . .⊗D1⊗A0

︸ ︷︷ ︸
pj


 , (B.39)

and the last block AD0
N ends with O0 instead of A0. The integer k corresponds to the block

that has the form of the piece no. 2, i.e. ǫk = ǫ′. Thus, all γj in the range j = 1, . . . , k − 1

take one of the maximal values {∆j ,∆j + 1}, the rest of γi with i = k, . . . ,N take one of

the minimal values {−1, 0}.

The representative of the second cohomology class, which is dual to the first, has the

form

πtot

[
BC1 ⊗ . . .⊗ BCk−1 ⊗BCDk ⊗ADk+1 ⊗ . . .⊗AD1

N

]
, (B.40)
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illustration F (z, t) F (−t, t) description

1

γN = 0

1 + zt 1− t2

The last block. There are two ways

to get γN = 0: (1) take a diagram

with kN = 0 and do nothing; (2)

take a diagram with kN = 1 (z),

and then take a trace (t)

2

βi

ǫi

αi

fǫi
(t) fǫi

(t)

A group of ǫi ’isolated’ vacancies.

One can remove k cells and then

add them back with any k ∈ [0, ǫi],

which yields 1 + t2 + · · ·+ t2ǫi

3 βi > 0

γi−1 = 0

ǫi

fǫi+1(t) + ztfǫi
(t) 1

A group of ǫi vacancies that are

not ’isolated’, being linked to

γi = 0. If ki = 0 then ǫi effec-

tively increases to ǫi+1; if ki = 1,

i.e. g′ = +1, then this one extra

cell must be removed

4 γi = ∆i

ǫi

αi

fǫi+1(t)+z−1tfǫi
(t) t2(ǫi+1)

A group of ǫi vacancies is linked to

γi = ∆i. If ki = ∆i we have fǫi+1;

in the second case of ki = ∆i − 1,

i.e. g′ = −1, one extra cell must be

added

5 γi = ∆i

ǫi

γi−1 = 0

fǫi+2(t)+ t2fǫi
(t)+

fǫi+1(t)(z+z−1)t

0

This case include parts of the pre-

vious two cases; if ki−1 = 0 and

ki = ∆i then the ’effective’ ǫi is

equal to ǫi + 2

6

αi+1

0<γi<∆i

1 + t2 + t(z + z−1) 0

In this cases γi does not take ex-

treme values. If ki = γi then we

can either do nothing or remove

one cell and then add it back; if

ki = γi ± 1 then one cell must be

added (removed)

Table 7. Independent pieces constituting the diagram A
{αj ,βi,γi}

{k1,...,kN}, together with generating func-

tions and Euler characteristics
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BCDk ∼ πY{sk,pk}πΛπcr




αk︷ ︸︸ ︷
B1 ⊗ . . .⊗ B1⊗

ǫk︷ ︸︸ ︷
C2 ⊗ . . . ⊗ C2⊗

βk︷ ︸︸ ︷
D1 ⊗ . . . ⊗D1

︸ ︷︷ ︸
pk


 , (B.41)

and the last block AD1
N ends with O1 instead of A0. The degree q, grade g and trace order

r are shifted by 2ǫ′ + 1, 1 and ǫ′ + 1, respectively.

In conclusion, let us note that despite the possibility of great degeneracy mentioned

at the beginning, the projectors somehow remove degeneracy so that the multiplicity of

any X in H
q
g,r is either zero or one. To be strict, only the shape of (B.38) and (B.40)

is relevant, the same diagram can be obtained in many different ways generally (we can

replace some C2 with A0 in blocks 1, . . . , k, and then make the same number of inverse

replacements in blocks k + 1, . . . , N). What has been proved is that the multiplicity of

X determined by (B.38) and (B.40) is equal to one. Nevertheless, it can be shown that

the suggested representatives (B.38) and (B.40) are indeed not exact. It is not hard to see

that the answer just obtained coincides with that in terms of mspr(A, q, r) given in the

second theorem of section 3.7.

References

[1] T. Curtright, Generalized gauge fields, Phys. Lett. B 165 (1985) 304 [SPIRES].

[2] J.M.F. Labastida, Massless particles in arbitrary representations of the Lorentz group,

Nucl. Phys. B 322 (1989) 185 [SPIRES].

[3] Y.M. Zinoviev, On massive mixed symmetry tensor fields in Minkowski space and (A)dS,

hep-th/0211233 [SPIRES].

[4] X. Bekaert and N. Boulanger, Tensor gauge fields in arbitrary representations of GL(D,R):
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