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1 Brane world black holes and the AdS/CFT correspondence

The AdS/CFT conjecture relates the gravitational dynamics of a (d+ 1)-dimensional AdS

spacetime to a d-dimensional conformal field theory (CFT), and it was initially formulated

as a correspondence between type IIB supergravity on AdS5 × S5 and N = 4 U(N) super

Yang-Mills (SYM) theory, with coupling ĝ and ’t Hooft parameter λ = ĝ2N , related to the

supergravity parameters by1

ℓ = λ1/4ℓs ,
ℓ3

G5
=
N2

π
. (1.1)

In the above formulas ℓs is the string length, ℓ and G5 are the five-dimensional AdS

curvature length and Newton constant, respectively [1–3]. The correspondence relates the

supergravity partition function in AdS5 to the generating functional WCFT of connected

Green’s functions for the CFT on the boundary, and it has a very interesting connection

with the Randall-Sundrum (RS) model [4].

The RS model consists of two copies of a part of AdS5-like spacetime. The boundaries

of the copies are glued with a positive tension brane. The model is described by the

following action:

SRS = SEH + Sbrane + SM , (1.2)

where SEH is the five-dimensional Einstein-Hilbert action, Sbrane represents the action of

the brane with tension σ = 3/4πG5ℓ, and SM describes matter confined on the brane.

1This formula is different from the ordinary AdS/CFT dictionary, ℓ3/G5 = 2N2/π, since we focus on

models with two AdS bulk regions and hence the degrees of freedom of the CFT, N2, is doubled from

πℓ3/2G5 to πℓ3/G5.
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On the four-dimensional brane, asymptotically flat spacetime is realized by tuning the

brane tension relative to the negative bulk cosmological constant. The Standard Model is

localized on the brane, and the observed four-dimensional nature of gravity arises owing

to the presence of a localized graviton zero mode [5].

References [6, 7]2 provided an interpretation of the RS model in terms of the AdS/CFT

correspondence. The correspondence implies

SRS = − ℓ

16πG5

∫
d4x

√
gR+ 2WCFT + SM , (1.3)

indicating that the classical gravity in the RS model is dual to four-dimensional gravity

coupled to a cutoff CFT. From the above action, the effective four-dimensional Newton

constant is read as

G4 =
G5

ℓ
. (1.4)

In the linearized, weak gravity regime various results clearly support this conjecture [7, 11–

13]. On the other hand, although some evidence for the conjecture exists (e.g. [14]), things

become more complicated when trying to extend the correspondence to the non-linear

regime in general [15, 16], and to black holes in particular. In this paper we will be

concerned with the latter case.

Let us summarize the present understanding of black hole solutions in the RS model.

In this model no large, stable, static black hole solution localized on the brane has so far

been found, whereas small localized solutions have been constructed numerically [17] for

black holes with size smaller than the curvature scale ℓ.3

This situation can be interpreted in the light of the AdS/CFT correspondence, and in

refs. [14, 19] it has been conjectured that large stable black holes localized on the brane do

not exist in the RS model. The intuitive picture is as follows. Consider a four-dimensional

black hole with CFT. This black hole will evaporate into CFT modes. If the correspondence

is valid also in this situation, this evaporation process must be equivalent to a classical

five-dimensional dynamical phenomena. This may imply that there is no stationary black

hole solution in the five-dimensional RS model, and that the five-dimensional black hole

“evaporates” by a classical process. Note that existence of the numerical solutions of

ref. [17], describing small black holes, is not in contradiction with the above statement

since the correspondence is not expected to hold below the cutoff length scale of the CFT,

which is of order of the AdS curvature scale ℓ.

Black holes floating in the bulk are also expected to exist [14], although no solution of

this sort has been found. Such floating black holes also cannot be large for the following

reason. In the RS model, the gravitational force between the brane and a particle in the

bulk is repulsive. Writing the metric in Poincaré coordinates,

ds2 = dy2 + e−2y/ℓ
(
−dt̄2 + dx̄2

)
, (1.5)

one can see that the acceleration of a particle is a = −∂y log
√−gt̄t̄ = 1/ℓ and independent

of y. The only force that compensates such repulsive force is the self-gravity of the mirror

2There are some related works such as [8–10].
3It is fair to mention that the existence of such solutions is still controversial [18].
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image of the particle on the other side of the brane. From the above observation, we expect

that, as ℓ decreases, the equilibrium position of the floating black hole should move towards

the brane. However, the attractive force between the black holes is at most of O(1/rh),

with rh being the horizon size. If rh ≫ ℓ, such attractive force will not be sufficient to

cancel the repulsive force from the brane. Thus, large black holes will necessarily touch

the brane.

Although the difficulty in constructing large localized (or floating) black hole solutions

in the RS model synchronizes with the prediction from the AdS/CFT correspondence, it is

also true that larger black holes become more difficult to construct simply for a technical

reason because two different scales, the bulk curvature scale ℓ and the black hole size,

should be resolved simultaneously. Therefore it is difficult to prove the absence of solutions

numerically. Then, one of the authors proposed to study black holes in Karch-Randall

(KR) model [20], in which the brane tension is chosen to be less than the fine-tuned value

of the RS model [21]. Unperturbed background bulk geometry is AdS, which is conveniently

described by

ds2 = dy2 + ℓ2 cosh2 (y/ℓ) ds2AdS4
, (1.6)

where ds2AdS4
is the line element of four-dimensional AdS spacetime with unit curvature:

ds2AdS4
= −

(
1 + r̄2

)
dt̄2 +

(
1 + r̄2

)−1
dr̄2 + r̄2dΩ2

2. (1.7)

Contrary to the Poincare chart convenient for RS model, in this chart the warp factor is

not monotonic but has a minimum at y = 0. The position of the brane is specified by

y = yb, and yb is determined by the condition

σ = − 3

4πG5ℓ
tanh (yb/ℓ) . (1.8)

The RS limit is obtained by letting yb → −∞.

Let us consider a small black hole floating in the bulk of the KR model. Following the

same analogy as before, we can look at the acceleration of a small mass particle. In this

case a particle feels a potential

Ueff = log
(
cosh

y

ℓ

)
+ Usg , (1.9)

where Usg is the self-gravitational part caused by its own mirror image on the other side of

the brane. The profile of Ueff is illustrated in figure 1 and suggests that there will be two

small black hole solutions: an unstable one close to the UV brane, and a stable one near

y = 0, far from the UV brane. In the RS limit δσ → 0, the latter is infinitely far from the

brane and hence it does not exist. It is natural to imagine that the stable floating black

holes also touch the brane when the size becomes big enough.

According to the AdS/CFT correspondence, we may expect that a five-dimensional

black hole in the KR model will be dual to some object in the four-dimensional gravity

coupled to CFT with negative cosmological constant [21]. Naive expectation is that a

brane-localized black hole and a floating black hole in the KR model are, respectively, dual

to a four-dimensional black hole with back reaction of CFT halo and a star composed of
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Figure 1. Effective potential in the KR model.

CFT, which we refer to in this paper as a quantum black hole and a CFT star. If this

duality is really the case, we can examine black holes in the KR model by analyzing the

four-dimensional system.

On the four-dimensional brane in the KR model, asymptotically AdS spacetime is

realized. Under the restriction to static and spherically symmetric configurations, the

four-dimensional metric is in general written as

ds2 = −α(r)2dt2 + V (r)−1dr2 + r2dΩ2
2 . (1.10)

As we consider an equilibrium configuration with a black object in the bulk, the corre-

sponding CFT is also expected to be in thermal equilibrium at a finite temperature. The

local temperature of CFT in equilibrium red-shifts as

Tlocal(r) = T/α(r), (1.11)

where the global temperature of the system T is defined with respect to the time-like Killing

vector ∂/∂t.

Let us consider a quantum black hole in the above thermal AdS spacetime. For black

hole configurations in equilibrium the appropriate vacuum state will be the Hartle-Hawking

state. In the asymptotically flat case, back reaction due to CFT is too strong to keep the

asymptotic structure of the spacetime unchanged (the total mass diverges). In the asymp-

totically AdS case, a non-zero cosmological constant changes the situation dramatically.

Since the lapse function in AdS behaves as α ∼ r/L for large circumferential radius r,

where L is the four-dimensional AdS curvature scale, the temperature and hence the en-

ergy density of thermal CFT decrease rapidly for r ≫ L. This reduces the effects of the

back reaction. If the black hole size is large, the energy density due to CFT will stay

negligibly small at any radius. Whilst, if the size of the black hole is small, the back re-

action becomes important and a static black hole solution becomes non-trivial. Roughly

speaking, such a small black hole will be unstable against the CFT back reaction and will

‘evaporate’ into a CFT star of the same mass.
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The sequence of the CFT stars can be tagged by the central density, and the end-point

of the sequence corresponds to a star with singular central density and the lapse vanishing

at the center. Thus, this sequence of the CFT stars will naturally flow into the sequence of

quantum black holes, whose starting-point corresponds to a small black hole in the limit

of zero horizon radius.

We can interpret the sequence of four-dimensional quantum black holes and CFT stars

from a five-dimensional view point as follows. At the transition point of the sequence, the

lapse vanishes at the center of the system. This four-dimensional configuration corresponds

to a five-dimensional black hole floating in the bulk and just touching the brane, since the

lapse vanishes at the touching point for this five-dimensional configuration too. In this way,

we may speculate that the sequence of floating black holes corresponds to the sequence of

CFT stars, while the sequence of brane-localized black holes corresponds to the sequence

of quantum black holes.

In this paper, we will present our investigation concerning the four-dimensional asymp-

totically AdS quantum black holes and CFT stars with the aim of clarifying the phase

diagram structure of black objects in the KR model. We will give quantitative estimates

of the characteristic quantities of the model by explicitly constructing equilibrium config-

urations in the dual picture described by four-dimensional gravity with CFT correction.

In section 2, we will show that the effects of CFT can be properly approximated by a

radiation fluid. We analyze properties of CFT in Schwartzschild AdS spacetime and give

the conditions for the radiation fluid approximation to CFT to be applicable. We will

show that those four-dimensional objects in equilibrium state can be well approximated by

this approximation, as long as we restrict our interest to the range of parameters where

the correspondence is expected to be valid. In section 3, we will illustrate our method to

construct equilibrium configurations of four-dimensional self-gravitating CFT and study

its basic properties that can be derived analytically. The full numerical analysis will be

given in section 4. Based on the above results, we will finally discuss the implications for

the KR model via the AdS/CFT correspondence in section 5 and summarize the paper in

section 6.

For notation convenience, we set G4 to unity from section 2 to section 4.

2 CFT energy-momentum tensor and Radiation fluid approximation

In order to study the effects of the back reaction, explicit knowledge of the quantum

energy-momentum tensor of the CFT in the Hartle-Hawking vacuum state is necessary.

The computation is, however, technically very complicated and, apart from ref. [22] where

the vacuum polarization has been obtained for a conformal scalar field, we are not aware

of other relevant results for Schwarzschild AdS black holes in the literature. Even had we

obtained the exact expression for the energy-momentum tensor, additional problems would

arise in solving the Einstein equations self-consistently. The energy momentum tensor of

CFT effectively contains higher derivatives of the metric functions, and those terms will

introduce spurious solutions and make the choice of boundary conditions quite non-trivial.

For this reason, as a first step, it seems natural to look for a simplified scheme to take into
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account the quantum back reaction approximately. In this paper we propose to use the

radiation fluid approximation, which makes it easy to study back reaction effects of CFT

on the spacetime structure. In this section we evaluate the CFT energy-momentum tensor

using Page’s approximation [23] on the Schwarzschild AdS black hole background [25], and

compare the results with those obtained by the radiation fluid approximation.

Before introducing Page’s approximation, it is instructive to discuss the relevant length

scales. Since the CFT is scale invariant, the only scales that characterize the system are

(i) geometrical length scales of the space-time, such as the distance from the BH horizon

radius r − r̄h or the curvature scale, and (ii) the scale related to the local temperature

of the system 1/Tlocal. For high enough temperatures, 1/Tlocal becomes the only relevant

length scale of the system, except for the vicinity of the horizon. In this case, from the

symmetry, the energy momentum tensor of CFT should follow a Stephan-Boltzmann law,

T µν =
π2

30
geffT

4
local(δ

µ
ν − 4δµ0δ

0
ν) , (2.1)

where geff represents the effective number of degrees of freedoms. Expression (2.1) claims

that a thermal CFT can be approximated by a radiation fluid when the red-shifted tem-

perature of the system is high enough.

The procedure is, however, not straightforward, since the radiation fluid approximation

breaks down near the horizon, due to the fact that the local temperature ∝ α−1 diverges

there. In order to remove this pathology, we need to consider the quantum contribution

to the energy momentum tensor, and will use Page’s approximation for this purpose. We

split the genuine energy density into two parts, ρ = ρr + ρq, where ρr corresponds to a

classical radiation fluid contribution and ρq to a quantum contribution that is defined by

the remainder of this section.

As an example, we consider a conformal scalar field on Schwarzschild AdS background.

In this case Page’s approximation is known to be equivalent to the fourth order WKB ap-

proximation [26]. In order to take into account all the degrees of freedom of SYM, conformal

spinor and vector contributions should be included. However, Page’s approximation pro-

duces unphysical divergences on the event horizon for these cases, and to include such

contributions rigorously, a more sophisticated numerical method is needed [26]. We do

not pursue this rather technically complicated issue here. For a conformal scalar field, the

classical part ρr described by a radiation fluid is given by

ρr =
r2

Kr̄4h
(1 + 3r̄2h/L

2)4 , (2.2)

while the quantum part ρq is computed by using Page’s approximation as

ρq = − 1

K

9∑

i=0

air
i−6 , (2.3)

with

K ≡ 7680π2 (r − r̄h)2
{
1 +

(
r2 + r̄hr + r̄2h

)
/L2

}2
.
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Figure 2. Relation between the horizon radius r̄h and critical radius rin. We have set c = 1/2 and

l/L = 10−8.

The coefficients ai are polynomials in χ ≡ r̄h/L of degree smaller than 9:

a0 = 33r̄4h
(
1 + χ2

)4
, a1 = −72r̄3h

(
1 + χ2

)3
,

a2 = 40r̄2h(1 + χ2)2 , a3 = −88r̄hχ
2
(
1 + χ2

)3
,

a4 = 104χ2
(
1 + χ2

)2
, a5 = 0 ,

a6 =
104

L2
χ2

(
1 + χ2

)
, a7 = − 32

L3
χ

(
1 + χ2

)
,

a8 =
16

L4
, a9 =

32

L5
χ

(
1 + χ2

)
.

Let us consider the quantum effects in the near horizon region first. We define an inner

critical radius rin as the radius at which the equality

|ρq| = cρr (2.4)

is first satisfied, with c being a constant of order O(1). For r < rin the quantum contribution

dominates the classical radiation part. The result is not so sensitive to the choice of c as

long as it is O(1). Figure 2 illustrates the relation between the horizon radius r̄h and the

inner critical radius rin: when r̄h is small compared with the four-dimensional curvature

scale L, rin/r̄h is approximately constant of O(1) (e.g. rin ∼ 3r̄h/2 for c = 1/2); when we

increase r̄h beyond L, rin/r̄h begins to increase and finally solutions of eq. (2.4) cease to

exist. No inner critical radius can be defined for larger r̄h.

Having fixed the critical radius as above, we can discuss the strength of the reaction

due to the CFT in the region r < rin by comparing the total energy of the CFT within the

critical radius Min with the black hole mass mh. When the size of the black hole is small,

Min is estimated as Min ∼ (π2/30)geffT
4
localr̄

3
h ∼ ℓ2/r̄h, where we have substituted

geff =
3

4
· 15N2 , (2.5)
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Figure 3. Ratio of the total energy of the CFT inside the critical radius and the black hole horizon

radius. We set ℓ2/L2 = 10−8.

which is the value for N = 4 U(N) SYM theory, and used the relation (1.1). The factor

3/4 in eq. (2.5) is the empirical factor that explains the discrepancy between results for

CFTs in strong and weak coupling cases [29]. Hence, we have

Min

mh
∼

(
ℓ

r̄h

)2

. (2.6)

It is easy to see that, as long as ℓ/r̄h is small, the above ratio is also small, and the

contribution to the total mass of CFT living inside the inner critical radius is negligible.

The cases with ℓ > r̄h are beyond the range of applicability of the AdS/CFT correspondence

and are outside the parameter region of our interest. For illustration, figure 3 shows the

ratio Min/mh with respect to the horizon radius.

Let us move on to the quantum effect in the asymptotic region next. At a large

distance, the classical radiation part of the energy density ρr behaves as 1/r4, whilst the

quantum part ρq behaves as 1/r3, as is seen from eq. (2.3). Hence, the quantum part

dominates above an outer critical radius, rout, which is defined as before by eq. (2.4). By

comparing eqs. (2.2) and (2.3), we find rout ∼ L (L/r̄h)5 for small black holes with r̄h ≪ L.

This quantum part ρq in the outer region gives a non-negligible contribution for large r.

In fact, by taking ρq into account, the mass measured at r, M(r), will be modified as

follows. Eq. (2.3) suggests that the leading term of ρq behaves as ∼ −M(r)ℓ2/L2r3 when

we consider the back reaction of the CFT to the background geometry.4 Then, M(r) will

be modified as

M(r) ∼
∫ r

r′ 2ρqdr
′ ∼M(rout) ×

(
r

rout

)−ℓ2/L2

, (2.7)

where M(rout) is the mass in the region r < rout. Hence, the effect of ρq significantly alter

the total mass M from the value for the bare black hole at a very large distance. The

4Note that eq. (2.3), which gives ρq ∼ −mh/L2r3, is for one conformal scalar while we consider N2
∼ ℓ2

degrees of freedom here. Adding to that, the back reaction of the CFT to the background geometry will

change its behavior from −mhℓ2/L2r3 to −M(r)ℓ2/L2r3.

– 8 –
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above result can be interpreted as the mass screening effect due to the non-zero graviton

mass of O(ℓ/L2) [27, 28].5 To avoid ambiguity of M with respect to r, strictly speaking,

we need to truncate the model at a finite radius well outside the AdS curvature radius

but before this screening effect becomes significant. This prescription will be justified later

in section 5. As long as this truncated model is concerned, we can neglect the quantum

part of the energy density ρq also in the region r > rout. Once we neglect the quantum

part, this screening effect is also absent. Hence, in the actual computation discussed in

the succeeding sections, where we use the radiation fluid approximation, we do not have

to care about this truncation.

As the size of a black hole becomes large compared with L, the interval between rin
and rout shrinks and eventually disappears. Beyond that point, the classical radiation part

of the energy density ρr does not dominate the quantum part for any r. Hence, one may

think that the approximating the energy momentum tensor by a radiation fluid is not

a good approximation at all. However, in this case the temperature is so low that the

back reaction to the mass due to CFT is negligibly small, as long as we adopt the above

prescription of truncating the model at a finite radius before the screening effect becomes

significant. Hence, we conclude that in all cases that we are interested in the radiation

fluid approximation is expected to give a good approximation to the energy momentum

tensor of CFT except for the vicinity of the event horizon.

3 Boundary theory description of floating black holes

3.1 CFT stars

First, we re-examine spherically symmetric, equilibrium configuration of a radiation star

in asymptotically AdS spacetime, which was analyzed in ref. [30]. The only difference from

the literature is that the effective number of degrees of freedom geff is set to a large number

(45/4)N2 in connection to the AdS/CFT correspondence.

To deal with the above problem, it is convenient to write the metric (1.10) as

ds2 = −e2ψV dt2 + V −1dr2 + r2(dθ2 + sin2 θdφ2) , (3.1)

with

V = 1 +
r2

L2
− 2m(r)

r
. (3.2)

We re-parametrize the time coordinate t so as to satisfy

lim
r→∞

ψ(r) = 0 . (3.3)

In these coordinates the total mass of the system is given by

M ≡ lim
r→∞

m(r) ,

5 When the graviton has small non-zero mass mg, roughly speaking, the metric perturbation hµν

obeys [20]
`

r−2∂rr
4∂r − m2

gL2´

(hµν/r2) = 0 ,

which implies hµν ∝ r−1−(1/3)(mgL)2 and hence M ∝ r−(1/3)(mgL)2 . Hence, the leading correction due to

the graviton mass of O(ℓ/L2) [27, 28], reproduces the r-dependence presented in eq. (2.7).

– 9 –
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Pressure and energy density can be written as

ρ = 3Pr = 3Pθ =
π2

30
geffT

4
local =

3π3ℓ2

8
T 4e−4ψV −2 . (3.4)

The Einstein equations (with Λ = −3/L2) are

dm

dr
= 4πr2ρ , (3.5)

dψ

dr
=

16π

3
rV −1ρ , (3.6)

dρ

dr
= −4ρ(m+ 4πr3ρ/3 + r3/L2)

r2 + r4/L2 − 2rm
. (3.7)

The central density

ρc ≡ ρ(0), (3.8)

can be used to parametrize the solutions, and the boundary condition for m(r) is speci-

fied by

m(0) = 0 . (3.9)

Then, integrating eqs. (3.5) and (3.7) from r = 0 for given curvature scales ℓ and L, we

obtain a one-parameter family of non-singular equilibrium configurations labelled by ρc.

From the boundary condition (3.3) and the relation (3.4), we obtain the global temperature

T = lim
r→∞

(
8

3π3ℓ2
ρV 2

)1/4

. (3.10)

Finally, the solution of eq. (3.6) is obtained algebraically from eq. (3.4) as

ψ(r) =
1

4
ln

(
3π3ℓ2

8
T 4ρ−1V −2

)
, (3.11)

without solving eq. (3.6). Another global quantity of interest is the total entropy of the

system, S(L, ℓ, ρc). Once the functional dependence of M and T upon ρc is determined, S

can be obtained by integrating the first law of thermodynamics,

dS =
dM

T
(3.12)

for fixed ℓ and L, with S = 0 at ρc = 0.

Notice that, writing the equations in terms of the rescaled variables associated with

“˜”, defined by

r = Lr̃ , ρ = L−2ρ̃ , m = Lm̃, (3.13)

– 10 –
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L-dependence is eliminated from the Einstein equations and also from the form of the

metric function (3.2). Accordingly, the rescaled thermodynamic quantities defined by

M(L, ℓ, ρc) = LM̃(L2ρc) , (3.14)

T (L, ℓ, ρc) = ℓ−1/2L−1/2T̃ (L2ρc) , (3.15)

S(L, ℓ, ρc) = ℓ1/2L3/2S̃(L2ρc) , (3.16)

absorb the ℓ-dependence present in eq. (3.4), too. Owing to the above scaling relations, we

can set L = ℓ = 1 without loss of generality.

Details of the numerics for the CFT star configurations will be reported in the suc-

ceeding section along with the black hole ones. Here we wish to close this subsection with

some analytic estimates of the thermodynamic quantities of our interest. As discussed in

ref. [30], when the radiation has negligible self-gravity, the metric will be approximated by

the pure AdS spacetime. The condition for the self-gravity to be negligible can be stated as

m(r)/r ≪ 1, (3.17)

for all r. This condition is satisfied when the central density of the radiation is much smaller

than that corresponds to the four-dimensional AdS curvature scale, (π2/30)geffT
4 ≪

L−2. The temperature corresponding to the critical central density at which the equal-

ity (π2/30)geffT
4 = L−2 is satisfied will then be approximately given by

T ∼ ℓ−1/2L−1/2. (3.18)

Below this temperature, the spacetime is practically AdS, which will work as a box of the

volume of O(L3) for the radiation. Then, the total energy of the system can be estimated

easily as

M ∼ ℓ2L3T 4. (3.19)

Similarly, the total entropy of the system is approximated by

S ∼ ℓ2L3T 3. (3.20)

Substituting T ∼ ℓ−1/2L−1/2, one can estimate the total mass and the total entropy at the

critical point where the back reaction to the geometry becomes important as

M/L ∼ 1 , (3.21)

ℓ−1/2L−3/2S ∼ 1 , (3.22)

which is found to be consistent with the scaling relations (3.14), (3.15) and (3.16). A

precise evaluation of all the thermodynamical quantities will be given later by explicit

numerical computations.
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3.2 AdS Black holes with CFT back reaction

Next, we discuss configurations with a black hole horizon. As we discussed in section 2, fluid

approximation breaks down near the horizon. There is a critical radius rin, and for r < rin
we cannot neglect the quantum correction to the energy momentum tensor. However, the

role of quantum correction is simply to regularize the divergent energy density obtained in

the fluid approximation, and hence it is possible to approximate solutions in this region

by a vacuum solution of the Einstein equations, i.e. Schwarzschild AdS solutions. In the

following, we will use the critical radius rin as the junction radius at which the Schwarzschild

AdS solution for r < rin is connected to the solution that includes the CFT back reaction

for r > rin. As before, we assume that the spacetime is static and spherically symmetric.

Thus, eqs. (3.4), (3.5), (3.6) and (3.7) are the same as before. Only the inner boundary

conditions are different. From the continuity of the metric functions at r = rin, we obtain

the boundary conditions,

m(rin) = mh , (3.23)

eψ(rin)dt = dt̂, (3.24)

where mh is the mass parameter of the central Schwarzschild AdS metric that describes

the region r < rin, and t̂ is the time coordinate in the inner region r < rin. We require

that the temperature of the inner black hole solution is equal to that of the outer thermal

radiation fluid. Then, we obtain

T = eψ(rin)T̂ , (3.25)

T̂ =
L2 + 3r̄2h
4πL2r̄h

. (3.26)

Here T̂ is the temperature defined with respect to the timelike Killing vector ∂/∂t̂. The

factor eψ(rin) in eq. (3.25) takes care of the difference between the time coordinates for

r ≤ rin and for r ≥ rin. With the above boundary conditions, Einstein’s equations can

be solved numerically and the thermodynamical quantities evaluated for various values of

the horizon radius r̄h. Here the scaling relations that hold in the star case are not fully

compatible with the boundary condition (3.25) with (3.26), which requires T to scale like

T = T̃ /L. Therefore we cannot completely absorb dependences on both L and ℓ by the

rescaling, and the dimensionless ratio ℓ/L remains as a relevant parameter in the black

hole case. For a fixed value of ℓ/L, we therefore compute the functional dependence of

M and T upon r̄h numerically. Then, S is also obtained by integrating the first law of

thermodynamics (3.12).

In the preceding subsection we observed that there is a critical point where the back

reaction to the geometry becomes important in the star case. The same is true for the

black hole case. When the size of the central black hole is small, the temperature is

high. Therefore the total mass is dominated by the radiation. As we increases the size

of the black hole, radiation temperature drops. When the temperature drops down below

O(ℓ−1/2L−1/2), the effect of the radiation energy density becomes negligible in the same way

– 12 –
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as in the star case. When the size of the black hole is larger than that at the above critical

point, the geometry does not significantly deviate from the Schwarzschild AdS spacetime.

As we further increase the size of the black hole, there appears another type of critical

point, which does not exist in the star case. At this critical point, the stability of the

system as a micro-canonical ensemble changes. In this regime the total mass of the system

can be approximated by the sum of the mass the black hole and that due to the CFT,

M ∼ r̄h +
π2

30
geffL

3r̄−4
h , (3.27)

where we used a rough estimate for the temperature, T ∼ 1/r̄h, which is valid for r̄h . L.

The total mass takes a minimum at r̄h ∼ (ℓ2L3)1/5. This means that there are several

solutions with the same total mass, but with different temperature or entropy. Amongst

these solutions, the one with the larger entropy is micro-canonically stable. Since the total

entropy is approximately given by

S ∼ r̄2h +
π2

30
geffL

3r̄−3
h , (3.28)

the sequence of the solutions is micro-canonically stable for r̄h & (ℓ2L3)1/5. The thermo-

dynamic quantities at this point of the minimum mass can be estimated as

M/L ∼ (ℓ/L)2/5 ,

ℓ1/2L1/2T ∼ (ℓ/L)1/10 ,

ℓ−1/2L−3/2S ∼ (ℓ/L)3/10 .

Strictly speaking, we should consider a slightly different type of ensemble to discuss the

stability of the KR models. We discuss this issue later in section 5.

4 Numerical results

In this section we will present the numerical results. We begin with showing plots for the

thermodynamic quantities: total mass M (figure 4), temperature T (figure 5) and entropy

S (figure 6). The results for the CFT star and for the black holes are shown next to each

other, illustrating the smooth transition from one to the other.

The two sequences are connected in the limit of infinite central density for the star

configuration sequence, and in the limit of vanishing horizon radius for the black hole

sequence. A CFT star with large central density ‘becomes’ a small mass black hole at the

connection point. The transition occurs at

M/L = 0.36 ,

ℓ1/2L1/2T = 0.21 ,

ℓ−1/2L−3/2S = 2.0 .

These critical values do not depend on the ratio ℓ/L.
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(a) CFT star

-3

-2

-1

0

1

2

3

10-3 10-2 10-1 100 101

Lo
g 1

0 
( 

M
 / 

L 
)

rh / L

l / L = 10-3

l / L = 10-4

l / L = 10-5

(b) Black hole + CFT

Figure 4. Total mass of CFT stars (left panel) and quantum black holes (right panel) with respect

to the central density of the star and black hole horizon radius, respectively. In the right panel we

set the parameter ℓ/L = 10−3, 10−4 and 10−5. The transition between the two sequences occurs at

M/L = 0.36.

As estimated in the preceding section, the minimum of the total mass for the quantum

BH occurs at r̄h ∼ (l2L3)1/5, which is consistent with the analytic estimate.

Figure 7 shows the relation between M and T . The dotted line refers to the star

sequence, while the solid line to the quantum black hole sequence. In order to clarify the

back reaction effects, two additional reference curves are also shown in the same figure. The

dashed line refers to the purely Schwarzschild AdS black hole case, and the dotted-dashed

line refers to the sum of the black hole mass and the energy due to the CFT without taking

into account the back reaction to the geometry. Figure 7, once again, shows the smooth

transition between the sequences of CFT stars and quantum black holes. The solid line

starts to deviate from dotted-dashed line at r̄h ∼
√
ℓL, where the back reaction effects

begin to work. As is expected, the solid line deviates from pure Schwarzschild AdS case

(dashed line) when the energy of CFT becomes relevant at M ∼ (ℓ2L3)1/5, corresponding

to r̄h ∼ (ℓ2L3)1/5.
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Figure 5. Plots for the temperature in the same way as in figure 4. The transition between the

two sequences occurs at ℓ1/2L1/2T = 0.21.

In addition to the thermodynamic functions, we are interested in how the CFT back

reaction alters the spacetime geometry. Figures 8 and 9 show the behavior of the metric

functions m(r) and ψ(r) for CFT stars and quantum black holes. We calculated them

for various central densities 10−4 ≤ ρcL
2 ≤ 102 in the star case and for various black

hole masses 10−4 ≤ mh/L ≤ 1 in the black hole case for l/L = 10−5. The results of the

numerical computation are shown only for r ≥ rin for the black hole sequence.

It is easy to see that the metric functions are almost the same for the star sequence in

the large central density limit and for the black hole sequence in the small size limit. Let

us focus on, for example, the curves for ρcL
2 = 102 in the left panel and mh/L = 10−4 in

the right panel. First, for a small radius (r/L . 10−2 for ρcL
2 = 102 and mh/L = 10−4),

there is a constant density core described by

ψ(r) ∼ const , (4.1)

and
m(r)

L
∼ const ×

( r
L

)3
. (4.2)
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Figure 6. Plots for the temperature in the same way as in figure 4. The transition between the

two sequences occurs at ℓ−1/2L−3/2S = 2.0.

Here the constants are determined by the central density or the black hole mass. This

region is followed by the intermediate region (10−2 . r/L . 1). The behavior in this

region is approximately obtained by solving eqs. (3.5) and (3.7) for r/L ≪ 1, assuming

power law solutions for m and ρ. With the aid of eqs. (3.4), (3.5) and (3.6), we obtain

m(r)

L
∼ 3

14

( r
L

)
, (4.3)

and

ψ(r) ∼ 1

2
ln

( r
L

)
. (4.4)

For stars with large central density and for black holes with small mass, ψ(r) takes a

large negative value for a small r, which means a large red shift factor. The growth of red

shift factor compensates the usual growth of black hole temperature in the small black hole

limit, and explains the convergence of global temperature of the system. We also mention

that in the black hole case the back reaction effects are small for r̄h & (ℓ2L3)1/5. In this
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Figure 7. Relation between M and T for CFT stars (dotted line) and quantum black holes (solid

line). For the black hole system, we set ℓ/L = 10−4. To understand the back reaction effect more

clearly we add temperature-energy relation for Schwarzschild AdS space with (dotted-dashed line)

and without (dashed line) the contribution of the radiation fluids. The right panel shows the closeup

around the transition point.
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Figure 8. The metric function ψ(r) for CFT stars (left panel) and for quantum black holes (right

panel) for various central densities and black hole masses, respectively. We set ℓ/L = 10−5.

case m(r) takes an almost constant (not small) value all over the spacetime (dotted lines

in the right panel of figure 9).

5 AdS/CFT interpretation

In this section we will discuss the implications of our calculations for black hole solutions

in the KR model based on the AdS/CFT correspondence [6, 7, 14]. When we discuss

the AdS/CFT correspondence in the KR model, our asymptotically AdS brane does not

throughly surround the five-dimensional bulk space. Therefore, in addition to the CFT

considered so far (CFT1), we need to include the contributions from another CFT residing
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Figure 9. Plot for the metric function m(r) in the same way as in figure 8.

on the boundary that limits the other side of the bulk (CFT2) [24]. As long as thermal

equilibrium state is concerned, we have to relate the temperature of CFT2 to that of CFT1.

For convenience, we introduce a second brane at a finite but large distance from the first

brane. We calculate first the entropy of CFT2 on this second brane and then send the

brane separation to infinity. The line element of four-dimensional metric induced on the

second brane is approximated by the pure AdS metric:

ds2 = −f(r2)dt
2
2 + f(r2)

−1dr22 + r22dΩ
2 , (5.1)

where t2 and r2, respectively, are time and radial coordinates on the second brane, f(r2) ≡
1 + r22/L

2
2, and L2 is the AdS curvature length on the second brane. The infinitesimal

proper time interval for a static observer in these coordinates is f(r2)
1/2dt2. On the other

hand, this brane can be embedded in the five-dimensional bulk, which behaves as (1.6)

in the asymptotic region. In the coordinates of eq. (1.6) the second brane is located at

y = y2 approximately. The proper time interval in these coordinates is described by

ℓ cosh(y2/ℓ) (1 + r̄2)1/2dt̄. Thus, the ratio between these two time coordinates is

dt2/dt̄ = dr2/dr̄ = ℓ cosh(y2/ℓ) = L2 . (5.2)

As for the first brane, a parallel discussion applies as long as a large radius limit is con-

cerned. The induced metric on the first brane is also asymptotically AdS, and the location

of the brane is also specified by a y-constant surface there. Thus, we find dt2/dt = L2/L.

Therefore, when thermal equilibrium is realized in the five-dimensional picture, the relation

between the temperatures of CFT1 and CFT2 is given by

TL = T2L2 . (5.3)

By using the radiation fluid approximation, the entropy of CFT2 can be estimated as

SCFT2 =

∫ ∞

0
4πr2

√
grr s dr =

π5

2G4
T 3L3l2, (5.4)
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where s = (4/3)(π2/30)geff (T2/α)3 is the radiation fluid entropy density with geff given in

eq. (2.5). Since the entropy estimated in eq. (5.4) is independent of the position of the

second brane where the CFT2 lives, we send the second brane to the bulk boundary by

taking the limit y2 → ∞.

Now, let us consider brane-localized black holes which should correspond to four-

dimensional asymptotically AdS quantum black holes. The AdS/CFT correspondence

indicates that the micro-canonical stability in the four-dimensional CFT picture should

correspond to the dynamical stability in the five-dimensional picture. (Notice that there

is no reservoir of energy in the present system.) Hence, the previous discussion should be

slightly modified by taking into account the contribution from CFT2. Estimating the mass

for the CFT2 taking into account a redshift factor, the total mass of the system will be

given by

Mtot = MCFT1

(
r̄h, ℓ, L

)
+

3π5

8G4
T 4

(
r̄h, ℓ, L

)
L3ℓ2,

(5.5)

where the first term represents what we evaluated numerically in the preceding section

and the second term is the contribution from CFT2. A micro-canonical stable-unstable

transition takes place at r̄h = 0.38 · (ℓ2L3)1/5, where Mtot above is minimized. Therefore

the brane-localized black holes are expected to be stable (unstable) when the circumfer-

ential radius of the brane cross-section of the horizon is larger (smaller) than the above

critical value.

We can also discuss the possible shape of the corresponding five-dimensional solution.

In the KR model, there is a black string solution, and its brane induced geometry is exactly

Schwarzschild AdS. Although this solution does not satisfy the boundary condition that

the metric should get close to the five-dimensional pure AdS at y → ∞, we expect that,

when the induced geometry of a brane-localized black hole is close to Schwarzschild AdS,

the bulk geometry is also close to a black string solution. As we showed in the preceding

section, this is the case when the four-dimensional horizon radius is larger than (ℓ2L3)1/5.

In this case the metric function m(r) is almost constant and ψ(r) ∼ 0 for any r. (see

figures 8 and 9). The AdS/CFT correspondence suggests that large black holes should

look like black strings in the five-dimensional picture, but there is small deviation from

the Schwarzschild AdS. We expect that this small deviation is due to the truncation of the

horizon of the “black string” at a finite distance far from the brane, having a cap there.

Roughly speaking, the cap will be formed near the throat corresponding to y = 0. In

contrast, when r̄h . (ℓ2L3)1/5, the behavior of m(r) and ψ(r) is clearly different from the

Schwarzschild AdS case. This indicates that the five-dimensional bulk black hole dual to

a four-dimensional unstable black hole is not like a black string.

We can also estimate the expected size of the black hole in the five-dimensional picture

since the entropy is related to the five-dimensional area of black hole horizon A5 by

S =
A5

4G5
. (5.6)

– 19 –



J
H
E
P
0
1
(
2
0
1
0
)
0
9
9

We may define the corresponding five-dimensional horizon radius by

rh ≡
(

A5

2 · 2π2

)1/3

, (5.7)

where the factor 2 represents the presence of two floating black holes (one for each side of

the bulk interrupted by the brane). The total entropy and hence the size of bulk floating

black holes are almost constant in the course of the transition (see figure 6). For example,

the horizon radius of the five-dimensional black hole, rh, at the stability changing point is

estimated as

rh = 0.7 · (ℓ3L2)1/5, (5.8)

from ℓ−4/5L−6/5G4Stot = 3.4 at r̄h = 0.38 · (l2L3)1/5, where

Stot = SCFT1

(
r̄h, ℓ, L

)
+

π5

2G4
T 3

(
r̄h, ℓ, L

)
L3ℓ2.

(5.9)

Again, the first term represents what we evaluated numerically in the preceding section

and the second term is the contribution from CFT2.

Let us now move on to the transition between the sequences of floating black holes

and brane-localized black holes. Corresponding to this transition, in the four-dimensional

picture, we have confirmed that there is a transition between CFT stars and quantum black

holes. According to the results of our calculation, the transition occurs at

ℓ1/2L1/2T = 0.21,

ℓ−1/2L−3/2G4Stot = 2.0 + 1.4 = 3.4. (5.10)

Here, 2.0 comes from CFT1 and 1.4 from CFT2. These critical values are independent of

the ratio ℓ/L. From the entropy, the horizon radius of the five-dimensional black hole just

touching the brane is estimated as

rh = 0.7 · (lL)1/2. (5.11)

As we can see from figures 8 and 9, the geometry of a star configuration in the large

central density limit is very similar to that of a small black hole. This indicates that the

five-dimensional geometry is also similar between the bulk floating black holes just before

touching the brane and the brane-localized black holes just after touching. The expected

phase diagram of black hole solutions in the KR model is illustrated in figure 10.6

Before closing this section, we would like to mention the screening effect. As we

have seen, if we use the Page’s approximation instead of our more crude radiation fluid

6Chamblin and Karch [31] suggested that five-dimensional counter part of the four-dimensional Hawking-

Page transition to be a transition between thermal AdS phase and AdS black string phase. Such a transition

may happen if the system belongs to a canonical ensemble for fixed temperature, while it is impossible if

the system is in a micro-canonical ensemble for fixed energy since generation of a bulk black string requires

infinite energy. In this paper, we consider phase transition in a micro-canonical ensemble. The confinement

phase whose presence is suggested in refs. [25, 32] is the state corresponding to this black string phase.
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Figure 10. Phase diagram of BH solutions in the KR model.

approximation, the mass varies logarithmically in r at infinity. In five-dimensional picture

this phenomena can be understood as the leakage of gravitons from the brane on the CFT1

side because massless gravitons in the four-dimensional sense, which mediate the mass

information to the infinity, are localized on the CFT2 side. Then, at a large distance the

leaked energy should be observed as the energy on the CFT2 side. In the four-dimensional

CFT language this transmutation of energy from CFT1 to CFT2 can be correctly described

only when the interaction between CFT1 and CFT2 is treated appropriately. However, in

the fluid approximation we treated CFT1 and CFT2 as completely independent components

except for tuning the temperature. In such a treatment the energy transfer from CFT1 to

CFT2 is not taken into account. Therefore, when we identify the mass, we do not have to

worry about the screening effect in this approximation.

6 Summary

We analyzed asymptotically AdS configurations with and without event horizon in ther-

mal equilibrium including the quantum back reaction due to CFT by using radiation fluid

approximation with the aim to clarify the phase diagram structure of black objects in the

KR model. We referred to the configurations with and without a horizon as CFT stars

and quantum black holes, respectively. We have confirmed that the radiation fluid approx-

imation is good when typical length scales like the horizon radius r̄h of the black hole are

all larger than the bulk curvature scale ℓ, in which the AdS/CFT correspondence is ex-

pected to be valid. We calculated the metric and the thermodynamic quantities and found

that: (i) the sequence of solutions of CFT stars is smoothly connected to the sequence

of quantum black holes in the limit of infinite central density, (ii) the thermodynamically

stable-unstable transition in the sequence of quantum black holes occurs when the horizon

radius r̄h is about (ℓ2L3)1/5, (iii) because of the back reaction effects, the temperature of the

system converges to ≈ 0.21 ·(ℓL)−1/2 in the limit r̄h → 0, (iv) for r̄h & (ℓ2L3)1/5, back reac-

tion effects are negligible and the space-time is approximately given by Schwarzschild AdS.
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We also discussed the implications of our calculations for black hole solutions in the

KR model based on the AdS/CFT correspondence. We claimed that (i) there are stabil-

ity changing points along the sequence of brane-localized black hole solutions. The first

transition corresponding to the minimum total mass of the system occurs when the five-

dimensional horizon radius is ≈ 0.7 · (ℓ3L2)1/5; (ii) the sequence of bulk floating black

holes leads to the sequence of brane-localized black holes and this transition between these

two sequences occurs when the black hole temperature is ≈ 0.21 · (ℓL)−1/2 and the five-

dimensional black hole horizon radius is ≈ 0.7 · (lL)1/2.
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