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1 Introduction

Recently a lot of efforts went into the computation of gravitational corrections to the beta
function of the running Yang-Mills coupling constant. Robinson and Wilczek [1, 2], in
an effective field theory setting, obtained a non-zero correction at the one-loop level. It
has the same negative sign as the familiar term already present in absence of gravity, and
so it would render even pure abelian theories asymptotically free. After Pietrykowski [3]
had realized that this result is gauge fixing dependent, Toms [4] reanalyzed the problem
using the Vilkovisky-DeWitt method. In a manifestly gauge invariant as well as gauge
fixing independent formulation of the effective action he finds that the quantum gravity
contributions to the running charge vanish.

All of these computations employ the dimensional regularization scheme. In [5], Ebert,
Plefka and Rodigast pointed out that its use might be problematic since it is insensitive to
quadratic divergences, and it is precisely such quadratic divergences that are responsible for
the non-zero result obtained in [1, 2]. Using a cutoff regularization instead they found that
all gravitational quadratic divergences cancel so that there is again no correction to the
beta function. Thereafter Tang and Wu [6] argued that the use of a cutoff regularization is
not permissible here since it does not respect gauge invariance. Performing a calculation in
a scheme which both retains quadratic divergences and preserves gauge invariance (“loop
regularization”) they obtained a non-zero gravitational correction to the one-loop beta
function. Furthermore, Toms [7] demonstrated that, with a cosmological constant included,
also dimensional regularization yields a non-vanishing gravitational correction, albeit of a
different type.



In the present paper we shall analyze the running of the gauge coupling constant in
the framework of the Asymptotic Safety approach to quantum gravity [8-56]. Contrary
to the calculations mentioned above it considers metric gravity not merely an effective
but rather a fundamental quantum field theory, with the continuum limit taken at a non-
trivial renormalization group (RG) fixed point [8-10]. Instead of perturbation theory,
the main tool will be the gravitational average action [11] and a suitably truncated form
of the associated functional RG equation (FRGE). Originally developed for matter field
theories [57—67] the effective average action turned out an ideal tool for investigating the
RG flow of Quantum Einstein Gravity (QEG) [11-49] and exploring its potential physics
implications [74-96].

The purpose of this paper is twofold: First, we develop a general framework for both
exact and approximate (“truncated”) investigations of the Yang-Mills-gravity system by
means of a gauge invariant running effective action. In particular we shall see that because
of the semi-direct product structure of the pertinent gauge group there arises a subtlety as
for the appropriate construction of the ghost action. Second, we use the resulting framework
in order to find the RG flow in a simple truncation of the space of actions which, however,
is general enough to allow for an approximate determination of the beta function of the
Yang-Mills coupling constant in presence of quantized gravity.

The remaining sections of this paper are organized as follows. In section 2 we describe
the general setup of the effective average action for a Yang-Mills field coupled to gravity,
the corresponding FRGE in particular. Then, in section 3, we discuss the problem of
background covariant ghost actions and explain its solution. The explicit computation of
the running gauge coupling is performed in section 4, and section 5 contains a summary
as well as a brief discussion of various immediate applications of our results.

2 The functional RG setup

Schematically the dynamics of the Yang-Mills-gravity system is governed by the
path integral

Z= / D DAG e~ Sl (2.1)

Here v,, and A, are the quantum metric and the quantum gauge field, respectively, and S
denotes the bare action. As usual, both of these fields are supposed to transform tensorially
with respect to diffeomorphisms, dp. In addition, A}, defines a connection with respect
to Yang-Mills gauge transformations, dyn. Denoting the vector field that generates the
diffeomorphism by v* and the parameter of the Yang-Mills transformation by A%, we have

(L, denotes the Lie derivative along v*):

5D(U)’7,uzx = Ev'ﬁw
op(v) A5 = LAY
SyM(A)AG = =9\ + fUN AL (2.4)



From now on we will assume the Yang-Mills gauge group to be SU(NN), so a runs from 1 to
N2 — 1, f%c are the associated structure constants. We demand S to be invariant under
both dp and dv.

Employing the background formalism, the dynamical fields are decomposed accord-
ing to

Y = Guv + hy and .AZ = AZ + az (2.5)

with fixed, but arbitrary background configurations g,, and flz and fluctuations h,, and
ajy, [97-102]. Assuming a translational invariant measure, the fluctuation fields will replace
the full quantum fields as the variables of integration in (2.1).

There are now two possibilities to realize the gauge transformations dp and dyy; at the
level of the background decomposition:

e The background gauge transformations 5]}% and 5$M are defined such that under dif-
feomorphisms all the fields transform tensorially, i. e.

SpW)® = L,®, ® € {gu, by, A5, al} (2.6)

With respect to Yang-Mills transformations, the background gauge field transforms
as a connection and the fluctuation transforms homogeneously:

(N AYL = =9\ + f“bc)\bfl;, Sn(N)af = fabcxba; (2.7)

e On the other hand, we can define true gauge transformations 58’ and 5$M by requiring
that these shall only affect the fluctuations, not the background fields:

68(”)?]#” = 0’ (v)hul/ = ‘C (g,uu + h,uz/) (28)
58(1))142 =0, 58(1))@2 Ly (A5 + aj) (2.9)
SM(NAL =0, Su(N)al = =0\ + fUN(AS + af) (2.10)

The crucial idea is to choose a gauge fixing term S& that breaks only the true gauge
invariance but retains background gauge invariance. It gives rise to an associated ghost
action Sgp, in the usual way. Introducing ghost fields C,, and CH for the diffeomorphisms
and X% and X¢ for the Yang-Mills transformations, respectively, we arrive at the following
path integral which depends parametrically on the background fields:

Z= / Dh,,, DalDC, DCHDEDE ¢ SlothAtal=55=Sa, (2.11)

In order to set up a functional RG equation, we follow the well-known construction of
the effective average action [57, 58, 66, 67] and add a higher derivative IR cutoff term AjS
that is quadratic in the fluctuations:

1 ravr— Vpo

8eS = o [ At g by RE (5" e
1 -1Q 14

by [ e g @R, Aol

V2 / d%z /g (C,S)RE[g A]@ (2.12)



with k = (327?@)75 and G denoting Newton’s constant (see below). Furthermore, adding
appropriate source terms enables us to easily compute expectation values of the quantum
fields. With the notation

Al = (A7), 7&3 = (a};) (2.13)
G = V) e = (hw) (2.14)
gt = (CH), Eu = (Cu) (2.15)
T = (2%, T = (%% (2.16)
the background decomposition (2.5) now reads
G = G+l and A% = A5 +af, (2.17)

The Legendre transformation of the now k-dependent functional In Z with respect to the
sources leads to the effective average action then [57, 58, 66, 67]:

Pk[BuV7 @Z, §H7 g}u Taa Ta; g;un AZ] = Pk[guV7 gulM AZa Aza §H7 gm Ta? Ta] (218)

Its scale dependence is governed by the functional renormalization group equation (FRGE)
1 (2) !

oy = ,STr| (TP +Re(8))  (0Ri(4))] (2.19)

where I’,(f) denotes the Hessian of I'y, with respect to all fluctuation and ghost expectation
values, A is some suitably chosen generalized Laplacian, and ¢ = In k is the “RG time”.

Since we deal with two gauge invariances, a remark concerning the notation is in order:

We write D = 0+ I" and V = 0 + A for the covariant derivatives that are constructed by

means of ', = Lgro (8,, Gou+0uGor — 0 gw,) and Af, respectively; the covariant derivative

containing both of these connections is denoted by D = 9 + A+ I'. By adding a bar, we
denote their analogues evaluated on the background configurations.

3 On the construction of background gauge invariant ghost actions

3.1 Motivation

Since we have to fix two gauge invariances by two gauge conditions, F,(huv; g, AZ) and
G“(a}}; G, A};) for the diffeomorphisms and the SU(N) transformations, respectively, the
associated Faddeev-Popov operator will in general consist of four components. (Here we
have already assumed that the diffeomorphism and the SU(NN) gauge condition only involve
the metric and the gauge field fluctuation separately.) The corresponding classical ghost
action will then be of the form
5 . 5 A d - -1 /77 —uv aFV
Senlh,a,C.C, %, %;g,A] = —/ d%z /g </{ Cug" Oy

OF _ 0G*®
Y 5G (D)h,e + g 2°
Oy ym(Z) oo +§ 8@2

05 (C)hpo+
(3.1)

,0Ge
6 (D)al,)

-1 /7 ~uv
Kk C,g"
+ ng Baz

55(Clal, +§ %



Since we are going to neglect renormalization effects in the ghost sector, the evolution
equation for I'y, will contain only the classical ghost action but with the quantum ghost
fields replaced by their vacuum expectation values, and the full classical fields g,,,, and AZ
identified with their background configurations g,,, and Aj,, respectively; stated differently,
in this class of approximations the fluctuations h,, and aj; can be set to zero in Sg even
before SSI) is computed.

Looking at the Y-£ part of the resulting ghost action we encounter a serious problem:
Employing G%(a; g, A) = ﬁ“az as gauge condition, it is given by

(Sgh [57 T;f], A])Tg = _/ ddx \/g [Taﬁy ab (gpapleg + (augp)ﬁg)] (32)

Here the covariant background derivative @u acts on the ordinary Lie derivative of an
SU(N) background connection; therefore, this part of the ghost action is not 5$M—invariant.
In order to resolve this issue, it is useful to look at it from a more abstract point of view.

3.2 Ward operators and their algebra

To begin with, we consider an arbitrary functional F'[y,,, Al CH, CL, %% 339 of the dynam-
ical fields at hand. At this stage the splitting into fluctuations and background configura-
tions has not yet been performed. An infinitesimal gauge transformation of F', considered
a scalar functional of its arguments, consists of a diffeomorphism along v# and an SU(N)
transformation with parameters A\%. It can be implemented as

F[’)/ + dp (v)w + 5YM()\)% A+ dp (U)A + 5YM()\)./4, C+ 5])(2})6 + 5YM()\)C,
C+p(v)C + dym(A)C, E + 6p(v) + dym(A)E, £ 4 0p(v)E + dym(A)E]

o o T 3.3
=F[v,ACC,E %] —Wp(v)F[y,A,C,C, %5, %] — Wym(AN) Fy, A,C,C, %, X (3:3)
+ O(v?, v\, \?)
with the corresponding Ward operators generating diffeomorphisms,
_ d 0 a 0
WD(U) = d%z 5D(U)’Yuu(m) 57 (.%') + 5D(U)Au(x) §Aa (1’)
pv 1
0 - 0
+dp (v)C“(;g)(;Cﬂ(x) + 0p(v)Cp(x) 5C, (x) (3.4)
0 - 0
(02 (0) gl )+ 00 o))
and Yang-Mills gauge transformations:
— d 0 a 0
W) = = [ d% (S une) g "+ SOV e
pv 1
0 - 0
+ 5YM()\)C“(:C) 5(,’“(:6) + 5YM()\)C“(CC) sC (x) (3.5)
i
0 - 0
+EANE @) g + I @) g5 ))



In these integrals the measure factor \/ det(y,,) cancels against a similar one which would
render the functional derivatives tensorial. We define the set of all invariant functionals by

Finv = {F | Wp(0)F =0 AN Wym(MF =0V o, A%} (3.6)
Computing the algebra of these operators leads to

Wo(v1), Wb (v2)] = Wp([v1,v2]) (3.7)
Wym (A1), Wym(A2)] = Wym(fAiA2)
Wi (v), Wym(A)] = Wym (L)

where [v1, v5] denotes the Lie bracket and (fA;A2)® = f2°A\4\S . This algebra implies that
the total group of gauge transformations, G, has the structure of a semi-direct product
of the spacetime diffeomorphisms Diff and the local Yang-Mills transformations SU(N),_,
with the latter forming the invariant subalgebra: G = Diff x SU(N) Whereas the first
two relations (3.7), (3.8) represent the well-known composition laws of diffeomorphisms and

loc®

Yang-Mills gauge transformations, the third relation (3.9) lies at the heart of our problem:
diffeomorphisms and local gauge transformations do not commute. Instead, they close on
the Lie derivative of the gauge parameter. In particular, this implies that diffeomorphisms
do not map SU(N) tensors onto SU(N) tensors.

3.3 Modified diffeomorphisms

What is called for is an SU(N) covariantization of the ordinary Lie derivative. This is tanta-
mount to a different parametrization of G that makes the mixed commutator vanish. This

can be achieved by defining new diffeomorphisms which include a SU(N), . transformation
with parameter A* = Afv* [103]:
Wh(v) = Wp(v) + Wyn(A - v) (3.10)

Loosely speaking, this amounts to shifting a certain v-dependent part of SU(N),,. into the
diffeomorphism sector. The notion of an “invariant functional” remains unchanged:

Fiw = {F | Wb (0)F =0 A Wyn(A)F =0V v, A%} (3.11)

The algebra relations receive extra contributions now since the Ward operators act on the
field dependent parameters of the transformations as well. This leads to an algebra of the
desired form (with (vivg - F)* = vfo5 F,):

W (v1), Wp (v2)] = Wo([v1,v2]) = Wym(v1v2 - F) (3.12)
Wynm (A1), Wynm(A2)] = Wym(fAi1A2) (3.13)
Wo(v), Wyn(M)] = 0 (3.14)

If we now split the dynamical fields into fluctuations and background configurations,
we have to decide whether the field dependent transformation parameter in (3.10) should
contain the full or the background gauge field only. Since, as already mentioned, the metric



and gauge field fluctuations do not enter the final form of SSI) anyhow, we may safely opt

for the latter already at this point:

WEC(v) = WE ) + WG (A - v) (3.15)

According to the usual distinction between true and background gauge transforma-
tions, we now have to consider two classes of Ward operators as well. In the background
case, the algebraic relations simply carry over, so we have for the Ward operators generating

background gauge transformations:

WE (1), WE (12)] = WE ([, 0a]) — Wy (vrn - F) (3.16)
[W\]?l\i(i\ﬁ,W\]?M()Q)] = Wlu(fA ) (3.17)
IWE (v), Wy (\)] = 0 (3.18)

As for the true gauge transformations, the merely background field dependent param-
eter A» = A% of the compensating SU(N)
transformations. The algebra that generates these transformations can be easily computed

loe transformation is not subject to true gauge

therefore by taking advantage of the linearity of commutators. We obtain

WS (1), WS (02)] = WS ([v1, v2]) + Wiy (w105 - F) (3.19)
[W\C(;hi(/)\l)aWSM(Az)] = Wou(f M) (3.20)
VS (0), W (V)] = Wy (v - V) (3.21)

By writing W we distinguish these Ward operators from the modified one that was
defined with respect to the undecomposed fields; in addition, this notation shall remind us
of the fact that the gauge field entered their definition only via its background component A.

Thus the actual theory space on which we can define an RG flow consists of the
functionals F[h,a,&,6,Y,Y;g,A] = Flg,g,A, A,&,&, 7, Y] in

Flow = {F |WBW)F =0 A WY (MF =0V v, A"} (3.22)

Finally, we return to our starting point and compute the Y-¢ part of the ghost action,

now with the original true diffeomorphism 58’ replaced by its modified counterpart, % :
(50629 A e = = [ % v [TD"(35€)e) oo
_ / ata g (1D (€00, 4L + (0,6)A)
— (0,(Abge) + frt A Ager) ) |

_ / a'a g [ 1DVl

(3.23)

This action is obviously invariant under SU(N), . and background diffeomorphisms (/5\]% for

loc
background tensorial ghost expectation values.



4 The running gauge coupling

In this section we explicitly evaluate the FRGE on a truncated theory space which is
general enough to allow for an approximate determination of the beta function for the scale
dependent Yang-Mills coupling gyy(k). Our truncation is given by the following ansatz:

+Sgh[g_g7A_A7§7E7T7T;97A] (41)

Here

Tl = 262 (h) [ % Vg (~Rlg) + 27(0) (4.2
is a k-dependent form of the Einstein-Hilbert action. The corresponding dimensionful
running parameters are the cosmological constant A(k) and Newton’s constant G(k) =
G/Zy (k) where G is a fixed reference value. Furthermore,

Zp (k) v
WA = (5 [dle vagg FLE, (4.3
YM
is the standard second-order Yang-Mills action, with a k-dependent prefactor Zp(k)
though. Hence the (dimensionful, except in d=4) running gauge coupling is gym(k) =
JymZ F(kz)_l/ 2 with some constant gyy. Finally,

Zp (k)

F%f[g —-g,A—A;5,A] = /ddx NG <ZN(]€) g"F,F, + GaG“> (4.4)
2ap 200y M

implements the gauge fixing conditions for the diffeomorphisms, F,, and the SU(IV) gauge

transformations, G*. Asin [11] and [58] we factored out the wave function renormalizations

Zn and Zp from the gauge fixing parameters ap and oy, respectively. In principle the

latter are still k-dependent but we shall neglect their running here. In fact, later on we

set ap = ayy = 1. Our choice for the gauge conditions complies with the requirements

discussed in the previous section:
_ _ 1 _ _
Fu(h;g) = V2k <5fngD7 - go‘ﬁDM> has (4.5)
G%a; g, A) = 9~ 9" Dya, (4.6)
The resulting ghost action reads, with aj; # 0 and hy,, # 0 still,
Sgh[ha a7§757T7T;g7A] = (47)
- [ @ g (V2. (9757 Dr (9D + 900 Dy) ~ 978" Dagins D) €
FT G DB € + €008 + (9,67 )ay + [ AgPag) + T (379D, ¥, ) T")

It can be checked that S,y of eq. (4.7) is invariant under background gauge transfor-

mations: W\]?MSgh =0= Wg Sgn. While this is true even for non-vanishing fluctuations h
and a, in the present calculation we shall need Sy, only for h =0 = a.



At this point a remark concerning the expected reliability of this truncation ansatz
might be in order. As for its gravitational part, all generalizations of the Einstein-Hilbert
truncation explored during the past decade did not change the qualitative picture it gives
rise to, at least close to the non-Gaussian fixed point. In the Yang-Mills sector we re-
tained only the first monomial of a systematic derivative expansion. From the analysis
in [58] without gravity we know that this truncation is not only sufficient to reproduce
one-loop perturbation theory exactly, but even approximates the two-loop result for the
beta-function with a small error of a few percent. Therefore we may expect that this trun-
cation, too, is perfectly sufficient as long as k is sufficiently large (well above dynamically
generated “confinement” scales, say).

When we insert the truncation ansatz (4.1) into the exact FRGE (2.19) the supertrace
decomposes into a “bosonic” and a ghost contribution:

—17(2 h(~>—1a(2)
T, = L v ORk (2, TP ] o ORE (24! Sy 43
(2 —17a(2 2 h — 2 ’
20 I+ Ri(2TY) S+ RE (23'5,1))

Here f‘k = I’EH + FEM + F%f is the bosonic part of the action and lv“ff) is its Hessian. The
coarse graining operators in (4.8) have the structure

Ri(z) = Zek2 RO (z/k%)  RE(2) = Z2K2 RO (2/k?) (4.9)

where R(O)(y) is a “shape function” continuously interpolating between R(®(0) = 1 and
lim R (y) = 0. The constants Zj and Z,%h are matrices in field space. They will be
Yy—00

)

adjusted in such a way that if in I‘,(f a certain mode has the inverse propagator (,p® it

becomes (i, (p2 + kQR(O)) when we add Ry, to I’,(f). As we shall see, this requirement is met
if Z;, and Z,%h have the following block structure in (h,a, &, &, T, T)-space:

1224 . ZN(]C)I{Q apb _ ZF(k)

(G40 + 558 = 7 Gpo) | (Bh)aa ) gangy
v (4.10)

h
((3), ], =2t [(#),]" ="

Note that Z;fh is actually k-independent.

In setting up eq. (4.8) we followed ref. [58] and opted for the complete Hessian operator
I’l(f) to play the role of A.! More precisely, we set A = Zlglf’l?) and A = ZghlSéi)
in the (h,a)- and the ghost-sectors, respectively. The multiplication by the inverse Z
matrices brings A closer to an ordinary (covariant) Laplacian; symbolically, if Fl(f) =
—(p0? 4 -+, Zp = (i, we employ A = —9? + - -+ rather than A = —(,0% + - --.

The most complicated ingredient needed in order to evaluate the traces in the FRGE

(2)

is the Hessian of the bosonic action I’ »»1.e. the matrix of its second functional derivatives

po 2

with respect to the dynamical fields (h,a), or equivalently (g, A), at fixed backgrounds

'Recently this kind of cutoff has been referred to as “spectrally adjusted” [65, 68-70, 104] or as of “type
1117 [28, 29].



(g, A). This Hessian is most transparently displayed by means of the associated quadratic
form I‘%uad which appears in the expansion

Uhlg+ h, A+ a,g, A = T[g, A, g, A] + O(h,a) + T{"*h,a; g, A + O({h,a}®)  (4.11)

Explicitly, quad is the sum of the following terms which reflect the block structure of f’,(f)

n (h, a)-space:
d _ 2 d ~7 3 ~po ) §

Zr  yweoxe Lpa g >h"< (4.12)

1 _
_ pox§
+<1 aD>L nCDPDU—i_QZN,iz n¢ 4" MY po

A L _ _
<F2uad>aa 9 o / d'e Vgag ( — 096597 D, Dy + 257 fF, + 0GRyt

Iym
1 _
+ (1 - > 5“bg5f’DpD,7> a (4.13)
ayM
<FQuad) _ Zp 4%z \/7 h 150 NG ZHp + §7 asP g + §Pg%g" ) Fe D, | a*
k Ea_zg%M RS 2 fg g fg g fg 9 poTH

(4.14)
Fquad) _ <Fquad) 4.15
< k ah ha ( :

The above quadratic functionals contain the kernels
1
KX =, (5;%55 + 6508 — 99 4) (4.16)
1 _
U=, (305 + 50X = 9anc ) (R—20) + g\ Ryc — YR~ RS (47)
o 1 o~ 1 —XpP=£0 = 0~
LPE = <49X59 Gnc — 555¢9X£ = 05 G + 555495”> (4.18)
, 11 . p o
NHVPOXE "=y (29X£9n4 _ 53;5?) T
+2 <5g‘5§g”x g°° — 6 5LgC G + 265609 g"”) (4.19)

Using these formulae it can be checked that the Z-factors (4.10) are correctly chosen.
Since we are not going to extract any “extra” background field dependence [48] we may
set G = g and AZ = AZ after having found the Hessian.

The truncation contains three running couplings, gym(k), G(k) and A(k). Their beta
functions can be found from the FRGE (4.8) by “projecting out” the corresponding invari-
ants in the derivative expansion of the traces and equating them to the corresponding field
monomials on the Lh.s. of the flow equation. The resulting system of differential equa-
tions becomes autonomous if we employ the dimensionless counterparts of gyn, G and
\ respectively:

kd72

32nZ N (k)2 B kd_QG(k)’ Ak) = k_zj‘(k) (4.20)

gom(k) = k42 (R g, (k) =

,10,



In terms of these variables the three coupled RG equations have the structure

g3 = Pym = (d — 44 1) g3y
Og=P0F;=(d—2+nn)g (4.21)
A = B

Here we introduced the anomalous dimensions related to the Yang-Mills and the gravita-
tional field, respectively:

np=—0InZp, NNy = —0InZy (4.22)

In this paper we are only interested in the gravitationally corrected Yang-Mills beta
function Byy. Therefore it is sufficient to extract the Fiy—term from the derivative expan-
sion of the traces. For identifying this monomial and reading off its prefactor we may insert
any metric. We shall employ the most convenient choice, g, = g = 9. Furthermore,
we set ap = ayy = 1 from now on. The remaining calculation is in principle straightfor-
ward, but rather lengthy. One has to expand the traces up to terms with two fields AZ(CE)
and two derivatives acting on them. Because of the built-in background gauge invariance
those terms should combine to Fy, F'**”. As a check we verified that this indeed happens.

Let us now discuss the result. Here we specialize for d = 4 spacetime dimensions; for
general d the reader is referred to the appendix. We present three different formulae for
nr; they differ with respect to the degree of “RG improvement” they take into account.

To start with, we “switch off” all RG improvements. This means that we discard all

)

in the argument of Ry. In this way the evaluation of the FRGE amounts to a one-loop

terms in 9; R on the r.h.s. of the flow equation where 9; hits either a Z.-factor or the F;f

calculation, with a non-standard regulator though. We find

6 11

e =—_g®1(0)—,, ,Noty (4.23)
so that 6 1
Orgyn = - 9 9vm @1(0) — 42 Ngyy (4.24)

Here ®1(0) is one of the integrals which were encountered in the pure gravity calcula-
tion [11] already:

by = L[ g 1 BOE) — 2RO (2)
Pnlw) = I'(n) /0 d [z + RO)(2) + w]p (n>0) (4.25)
f(w) = (1 +w) (n=0)

The second contribution on the r.h.s. of (4.24) is the familiar “asymptotic freedom” term
due to the self-interaction of the gauge bosons, while the first one, due to the virtual
gravitons, is new.

Several comments are in order here.

(1) The gravitational correction is manifestly cutoff scheme dependent, i.e. it depends,
via ®1(0), on the shape function R(*). However, for any admissable choice of R(®) the

— 11 —



constant ®1(0) is positive. As a result, the gravity term has a qualitatively similar
impact on gyy (k) as the gauge boson loops, namely to drive gyy(k) smaller at larger
k. It tends to speed up the approach of asymptotic freedom.

For the exponential cutoff R()(y) = y/(e¥ — 1), for instance, one finds ®1(0) = 72 /6,
while the “optimized” one [71-73], RO (y) = (1 — y)O(1 — ), yields ®1(0) = 1.

The gravitational correction, in perturbative language, originates from a quadratic
divergence or, in FRGE language, a quadratic running with k. For this reason its
scheme dependence is by no means surprising or alarming. Rather, it is the usual
situation which is always encountered when the effective average action is applied
to matter theories with a quadratic running of parameters, masses, say. However,
one should note that the couplings in I'y as such are not observable or “physical”
quantities. The latter must be R(®-independent. This independence comes about
by a compensation of the scheme dependence among different running couplings.
(In truncations this compensation might not be perfect.) In general there will be
compensations between effective propagators and vertices, for instance. Analogous
remarks apply to the gauge fixing dependence.

The beta function for g%M depends on all three couplings, 9\2(1\/[7 g and A. In the
approximation of (4.24) it happens to be independent of A, but it does depend on
g(k) = k*G(k), the dimensionless Newton constant. Hence the differential equation
for gym cannot be solved in isolation. In principle the full system (4.21) should
be considered, and this would include the backreaction of the matter fields on the
running of the gravitational parameters g and A\. We shall not study this backreaction
in the present paper. Instead, let us assume that the complete RG trajectory k +—
(gym(k), g(k), \(k)) admits a classical regime [91] in which Newton’s constant does
not run appreciably so that we may approximate

G(k) ~ Gy = const, g(k) = Gok? (4.26)

This approximation, implicitly, has been made in all perturbative studies [1-7].
With (4.26), for an abelian field (N = 0), say,

6
atg%(M = . ‘I’%(O) Go K 9\2(1\/1 (4-27)

Incidentally this beta function has the same general structure as the result by Robin-
son and Wilczek [1]; it is proportional to Gy g%M and depends explicitly on the energy
scale k. Its k?-dependence indicates that the underlying quantum effect is related to
a quadratic divergence.

Eq. (4.27) is easily solved: g3,(k) = g3((0) - exp (—wym(k/mp1)?). Here wyn =
301(0)/7 and mp, = G, /2 is the (ordinary, constant) Planck mass. To first order in
the k/mpj-expansion we get

g3 (k) = g3 (0) [1 = wyaa(k/mp1)? + O(k* /mip,)] (4.28)
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We note that to leading order Newton’s constant itself [11] has an analogous scale
dependence, including the sign of the correction: G(k) = Go [1 — w(k/mp)* +---].

(4) In order to illustrate how the above result fits into the asymptotic safety picture of
Quantum Einstein Gravity [8, 22-24, 55, 56] we consider a free Maxwell field again. It
is known that, in the Einstein-Hilbert truncation, the RG flow of the average action
possesses a non-Gaussian fixed point for the two gravitational couplings, (g*, \*),
both in pure gravity [11, 13, 18] and in presence of a free Maxwell field [25-27].
At this fixed point the dimensionless Newton constant equals a positive constant,
g(k) = g*, while the dimensionful one runs to zero quadratically: G(k) = g*/k? — 0
for k — oo. In this regime,

6 .
hg¥m = - 21(0) g* g (4.29)

The solution to this equation reads
_ 6 .
(k) o k™ONM Oy = 9" 21(0) (4.30)

At the fixed point the gauge coupling approaches zero according to a power law with a
critical exponent Oy, a positive number of order unity.?2 Thus the total system has a
non-trivial fixed point of the form (g%, = 0,¢* > 0, \* > 0). Obviously the approach
of gym = 0 is much faster than without gravity where gyam(k) o< 1/1In(k). Note that
gyM is a relevant parameter, it grows when k is lowered, hence it contributes one
unit to the dimensionality of the fixed point’s UV critical manifold.

Next we present the results for np with the RG improvements included. In a first step
we retain only the terms which arise when 0y hits the Zj-factors in Ri. Those terms are
proportional to nr and 7y, respectively. As now np appears also on the r.h.s. of the RG
equation we obtain an implicit equation for it. Its solution reads
. —7?93@%@1) - ziizéVg%M— in;vkg (431)

I- T g<I>1(0) o 247r2Ng\2{'M Ton Ag
In this approximation 7y depends not only on Newton’s but also on the cosmological
constant. Eq. (4.31) resums terms of arbitrary order both in gyy and g; it generalizes a
known result [58] for pure Yang-Mills theory. If we go on and include also the terms coming

from the scale derivative of I’,(f) in the argument of Ry we are led to

—5 9] — I Ngdy + Lavg (301 — 20— 202 8)) — LgA2\ + 5B}

1_7?;9 <§%_é%> _2457r2N9\2(M_7%)‘9_7%)‘29&)(1)

nr = (4.32)

20ne cannot easily extract the precise numerical value of ©yy from existing calculations since the
determination of ¢g* in the Einstein-Maxwell system in ref. [25-27] employs a cutoff different from the
present one.
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The eqs. (4.31) and (4.32) contain the following integrals involving R(®):

N | o0 - RO)(2)

oL (w) = I'(n) /0 dz 2"t 2+ RO() + ulp (n>0)

®f(w) = (1+w)™” (n=0)

| 00 . RO)V(2) (4.33)
Pn(w) = I'(n) /0 dz 2" [z 4+ RO)(2) + w]P (n>0)

z (0)7

B = ) (n=0)

The threshold functions (ﬂ’z(w) appeared already in the Einstein-Hilbert truncation of pure
gravity [11]. In eq. (4.32) we abbreviated ®% = ®%(0) and ®%, = ®%(0), respectively. What
is new in (4.32) is the occurrence of the complete beta function of the cosmological constant,

(2)

Bx. It originates from the differentiation of the A-term contained in r,”.

5 Discussion and conclusion

In the recent literature on the gravitational corrections to the Yang-Mills beta function [1-
7] there has been a certain amount of confusion as some of the computations do get a
non-zero result while others don’t. However, we believe that different calculations have
no reason to yield the same result unless they agree on virtually all details of the regu-
larization and renormalization procedure. The quantum effects of interest are related to
quadratic divergences (or a k?-running), and so we should not expect the same high degree
of universality as in the case of the familiar gauge boson contribution which is related to a
logarithmic divergence.

In the present paper we computed the beta function for gy (k), defined as a coeffi-
cient in the derivative expansion of the effective average action. This approach has two
features which are essential here: First, it retains all quadratic divergences (as opposed
to dimensional regularization, say), and second, by the background field technique, the
regularization (the cutoff Rj) preserves gauge invariance.® In this setting, we do get a
non-zero gravitational correction. This correction is scheme and gauge fixing dependent
but, as we explained, this is by no means unexpected but rather the usual situation. When
observable quantities are computed from 'y, the scheme and gauge fixing dependences will
cancel among the different running couplings involved.

Among the perturbative calculations only the one by Tang and Wu [6] is directly
comparable to ours. They employ a regulator which retains quadratic divergences and
treats them in a gauge invariant manner. It is gratifying to see that they, too, get a
non-zero gravitational correction which has the same structure as ours when we omit the
RG improvements.

As a first application of our results we mention that, by a standard argument, knowl-

edge about the k-dependence of wave function normalization constants such as Zp (k) can

3 As in all traditional applications of the average action, I'y is not gauge fixing independent, though, i.e.
we do not use the Vilkovisky-DeWitt method.
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be used in order to deduce information about the related fully dressed propagator implied
by I' = I'p—g. In the case at hand the running inverse propagator of the gauge field, on

a flat background, has the form Zp(k)p? o gyi (k)p?.

At high momenta, if there is no
other relevant physical cutoff scale but the momentum itself, the dressed propagator D(p)
obtains by setting k = |p|, whence D(p)~' o gy2;(|p|)p?. For the example of eq. (4.28), for
instance, this leads us to expect that the photon propagator gets modified by a p*-term

when p approaches the Planck scale:
D(p)~! = p* +wymp'/mpy + 0" /miy) (5.1)
Likewise the fixed point running of (4.30) implies the following behavior for p? — oco:
D(p) oc 1/p*HO/2) (5.2)

As Oy is positive the gauge field propagator falls off faster than 1/p?, thanks to the
quantum gravity corrections. In fact, the same argument when applied to the graviton
propagator leads to a 1/p*-behavior for p?> — oo [13]. The asymptotic propagator (5.2)
suggests that the quantum gravity corrections improve the finiteness properties of the
matter field theory, and this precisely fits into the picture of asymptotic safety. It is also
interesting to note that (5.2) leads to a modified static electromagnetic potential Ag(r) of
a classical point charge.* The 3-dimensional Fourier transform of (5.2) yields the potential
Ag(r) o< 7@~ 1 which, if ©yyy is large enough, could even be regular at 7 = 0. This makes
it obvious that the gravity induced running of the gauge coupling is closely related to the
old problem of divergent self energies.

A Appendix

In this appendix we display the equation for nr in d spacetime dimensions. With all RG
improvements included, it assumes the form:

(4m)%?np = —327g [Axg_l,o(—%) + Bd™xa_ o(=2)d)
-1
+CN ™ (xa0(=20) = x2,0(0))

d

—d —d

+D {d /2X3+172(_2)‘d) - Xg+172(0) T 9 (d /2Xg,1(_2)‘d) - Xg,l(o)) }]
26 —d

—Q%MN < 3 > ngz,o(o)

+16mNg | AXa_; o(—2)) + Bd_d/QXg_LO(—Q)\d)

+O (20 R0(=20) = @072 (Ra41,0(=2)) = X5410(0)))
d—d/2 ~ d—d/2+1 ~ 1
-D d— 1X;l+1,2(_2)\d) + 9 Xg,1(_2)‘d) Ty 1Xg+1,2(0)

4Treating the source dynamically, also form factor effects need to be included [105].

,15,



#1679 | C (=20 % 4(0) + (2072 (R 41,0(=2X) = Xa41,(0)) )

d d/2+1 . d d
—D - d—1 X§+1,2(_2)‘d) - 2X3,1(O) + d— 1X§+1,2(0)
24 —d\ .
+77Fg\2(MN ( 6 >X3270(O)
~16m(nr — ) | AT go(-2) + B (-200)

+0EN ™ (Ras10(=20) = Xa11,(0))

(d-2)

= = —d
+D 9 {xg+1,1(0) - Xg+1,1(_2)\d)d /2}]

+32mg(2X + By ) | AXa_

2

Lo(=2)) + Bd*d/”l)?gil’(](—%d)

O (207 R 0(=20) = 2072 (Ra41,6(=20) = Xa41(0)))

d=4/? . 1 - d =
—2Dd J 1X(21+1’2(—2)\d) — g 1N+ 12(0) + 2al X4 1(=2Xd) ¢ (A1)
Eq. (A.1) contains the following functions of d:
(d+2)(d? — 9d + 12) _(d=4)(d-6)
A= B=
4d 2(d —2)
(A.2)
4(3d? — — 4)2
O (3d* — 10d + 4) Do A(d — 4)
d(d—2) d(d—2)?(d—1)

Furthermore we introduced the following new threshold functions:

1 [ee] _ n—1 (0) _ (0)/
o (0,0) = / & (z—w)" * RY(2) — zR"Y'(2)
’ I'(n—m) /, (z+v)m z+ RO)(2)
1 * (z—w)" 1 RO(z)
Xnm 1, 0) = P(n— )/w y (z—i—v) z+ RO)(2) (n>m20) (A3)
9] n 1 R ( )
n,m d
X (w,v) = w : Z—i—v 2+ RO)(2)
When used in eq. (A.1) with one argument only, the second argument of the x functions,
v, is set to v = —gﬁ implicitly, for clarity purposes.

For n € N and m = 0 the y integrals are independent of v and can be expanded in w
into a finite sum of ® integrals,

_w)k
xolw) =3 el 0) (A4

k=0

and analogously for ¥ and y. For d = 4 only y integrals that are expandable in this
way occur.
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For m > 0 a non-integrable singularity might occur in the integration interval (depend-
ing on the signs of w and v). In this case the definition of the y integrals is meant merely
as an abbreviation, in the following sense. The integrands of the y integrals embraced
by curly brackets in (A.1) should be summed first and only then be integrated over the
intersection of their integration intervals. This removes the apparent singularity and we
are left with a sum of finite integrals.

Eq. (A.1) can be reduced to the corresponding 1-loop result by omitting from its r.h.s.
all terms containing 1, ny, or any x integral. The latter arise from the differentiation of
Iv’l(f) in the arguments of Ry.
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