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1 Introduction

In recent years, there has been a great amount of activity related to applying the AdS/CFT

correspondence [1–4] to scenarios that may have some relevance in the context of experi-

mental physics. While the first and most common example, the duality between a stack

of Nc D3 branes generating an AdS5 × S5 geometry in the decoupling limit and a thermal

N = 4 SU(Nc) super-Yang-Mills theory on its boundary may be of limited experimental

relevance, for example fields transforming in the fundamental representation of the SU(Nc)

have been studies by introducing a small number of Nf “probe” D7-branes into the back-

ground, covering all of the AdS directions [5–7]. Certainly this setup is still significantly

different from QCD, but this model and the T-dual D4-D6 setup have received great inter-

est [8–13], in particular the thermodynamics and phase structure [14, 15] and the “meson

spectrum” [16] — hoping that some results obtained from AdS/CFT may be sufficiently

generic, such that they also apply to QCD.

More recently there has also been great effort on applying the AdS/CFT correspon-

dence to condensed matter physics which may be more promising, since there is only one

QCD but there are on the one hand many different strongly coupled effective field theories

in condensed matter physics and on the other hand there exist a large number AdS string

vacua [17]. The vast majority of these efforts have been related to 2+1 dimensional field

theories. The first example was an AdS4 × S6 geometry obtained from an M2-brane setup

in [18] to study some transport properties. Since then, many interesting properties have

been studied such as Hall conductivity [19–25], superconductivity and superfluidity [26–40]
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or the Nernst effect (see, for example [41]), mostly in setups that are not based on string

theory and hence do not ensure that the systems are pathology-free. Another approach

to move towards experimentally relevant field theories has been the construction of du-

als of non-relativistic CFTs (see, for example [42–56]). A not yet satisfactorily addressed

question is what the implications of the Fermi-Dirac distribution is in AdS/CFT [57].

The most common example of how systems with conformal symmetry arise in con-

densed matter physics is the quantum critical phase. This phase arises in the context of

a phase transition at zero temperature, a so-called “quantum critical phase transition” at

a “quantum critical point”. At this point, the system displays scale-invariant behavior as

also in other phase transitions, but in contrast to phase transitions at finite temperature,

it extends into a whole region in the phase diagram that may be described by a conformal

field theory, the so-called quantum critical phase; shown in figure 1.

All of the above-mentioned applications of the AdS/CFT correspondence to condensed

matter physics have in common that they are described by 2+1 dimensional field theories.

In our 3+1 dimensional world however, all 2+1 dimensional systems are strictly speaking

defects. In some cases this fact may be less relevant and in other cases more relevant. Hence,

it is interesting to study the physics of a 2+1 dimensional defect in order to explore what

difference there is to purely 2+1 dimensional systems. Defect field theories are basically

field theories in which matter that is confined to some hypersurface interacts via a field

theory in the bulk. While there is some review literature in a soft condensed matter context

(for a review see [60]) there seems to be not much review literature related to the defects

and their aspects that we are interested in. Hence, a motivated guess may be that they

have many properties in common with surfaces, which have been studied extensively. To

illustrate their properties, we can look in figure 1 at a generic surface phase diagram of

some system described by a bulk coupling Jb and a surface coupling Js — for a review on

the subject see [61, 62]. There we see that over most of the parameter range the surface

and the bulk are in the same phase and display a simultaneous “ordinary” phase transition.

As we tune the surface coupling beyond a “special point”, which is some critical multiple

of the bulk coupling, the phase transitions on the surface and in the bulk separate into a

surface phase transition and an “extraordinary” phase transition in which there is a phase

transition only in the bulk. It is obvious from the ratio Js/Jb in this regime that the ordered

phase on the surface extends to higher temperatures than the ordered phase in the bulk.

However it is quite interesting that this splitting of phase transitions typically occurs as Js

becomes greater than Jb and hence there is no “mirror symmetric” version of this plot.

In this paper, we study the thermodynamics and phase diagram of the defect. This

means, we have to consider the contributions to the thermodynamic and statistical quan-

tities of the full (defect+bulk) field theory that are extrinsic in the area of the defect.

Certainly, we will miss contributions that are extrinsic in the volume of the SYM, but

these depend only on a “topological” parameter that is related to a difference in the level

of the gauge group Nc → δNc between both sides of the defect. As indicated in [63],

this parameter is also related to a “width” of the region around the defect. There it was

observed from the quasiparticle spectrum, and the length scales found in various regimes,

whereas here we will discuss it from a more direct point of view. It will also be relevant
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Figure 1. Left: A generic quantum critical phase transition and quantum critical phase. Right: A

generic surface phase diagram.

when we argue about the positivity of the entropy and the heat capacity. As in [64], the

other parameters are the net baryon number density ρ, an externally applied magnetic field

B and the “quark” mass Mq.

To study the thermodynamics, we obtain the free energy from the euclidean action,

from which we obtain the chemical potentials and response functions. We also demonstrate

how to obtain the second derivatives of the thermodynamic potential in closed form, i.e.

without having to use numerical derivatives; even in the case of finite Mq.

Using those quantities, we will map out the phase diagram and point out some impor-

tant differences arising from the choice of the “free” thermodynamic variables. We then

argue that the blackhole phase studied in [64] is indeed the thermodynamically preferred

one and study the physical properties of the different phases. We will then also find in some

region of phase space a first-order transition between two distinct regions of the blackhole

phase. It will turn out that this is in some sense a smooth continuation of the blackhole-

Minkowski embedding phase transition, that was extensively studied in 3+1 dimensional

systems and beyond [12–15, 65–67]. In contrast to the observations in those systems, it will

turn out that a finite density Minkowski embedding can be realized in our case also at finite

density, even though it is only metastable. Above the phase transition, the physics that we

find will be dominated by some simple scaling laws, but below, in the small-temperature

regime, we will find some surprising non-trivial effects.

The gravitational setup of the defect is a stack of Nf probe D5- or D7-branes inserted

into the background of a stack of Nc D3-branes and is well known from the literature [5, 68–

74]. As in [63, 64], the difference δNc in the level of the gauge group of the 3+1 SYM will

be introduced by an additional flux on the probe brane in the compact sphere, which also

stabilizes the D7 setup. Similarly, the finite magnetic field and net density are introduced

using the well-known duals of a magnetic field and an electric field, respectively, in the

world volume of the probe brane. The finite quark mass will be obtained by a deformation

of the embedding in the compact sphere in the same fashion in which it was done in the

duals for 3+1 dimensional QCD-like systems [12–15, 65, 66, 75].

The (3+1)-dimensional system of the N = 2 gauge theory constructed with parallel
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D7- and D3-branes (see e.g. [8–15]) is a generically good reference to which to compare our

analysis. There, it was found that if a finite Mq is introduced, the scale Mfun ∼ Mq/
√
λ

plays a special role in this theory. At vanishing density, the picture is as follows: First,

the “mesons”, bound states of a fundamental and an anti-fundamental field, are deeply

bound with their spectrum of masses characterized by Mfun [16]. Next at a temperature

T ∼Mfun, the system undergoes a phase transition characterized by the dissociation of the

mesonic bound states [12–15]. In the presence of background magnetic fields, it was found

that the phase transition moves to larger Temperatures [76–78]. Some aspects of the (2+1)

dimensional conformal matter in the presence of a magnetic field have also been studied

in [79], which appeared on the arXiv during the closing stages of this work.

The outline of this paper is as follows: In section 2, we briefly review the construction of

the defect setup and the AdS/CFT dictionary for the background quantities and point out

several problems that arise in the D3-D7 setup — which motivate us not to pursue the mas-

sive D7 case. We then discuss the thermodynamics in section 3, starting with a discussion of

the thermodynamic potential and the thermodynamic variables in section 3.1, from which

we then obtain the response functions in section 3.2, which we discuss first in the massless

case in 3.3 and then in the massive case in 3.4. In the latter case, we first outline the phase

diagram in section 3.4.1 and then discuss the physics of the response functions in 3.4.2.

2 Gravitational setup

In this section, we briefly review the string theory setup of the defect that was outlined

in detail in [64]. We also point out some minor differences in the case of non-blackhole

embeddings.

2.1 D3 = (N=4 SYM) background

The well-known AdS5×S5 background from the decoupling limit of Nc D3 branes at finite

temperature T = r0
πL2 can be written as

ds2 =
r2

L2

(

−h(r)dt2 + d~x2
3

)

+
L2

r2

(

dr2

h(r)
+ r2dΩ2

5

)

, C
(4)

0123 = − r4

L4
(2.1)

and corresponds to an N = 4 SYM theory on the boundary with U(Nc) gauge group [1–4].

We work, as usual, in the limit Nc → ∞, Yang-Mills coupling g2
YM = 2πgs → 0 and t’Hoft

coupling λ = g2
YMNc → ∞, i.e. we are in the supergravity limit L4 = 4πgsNcl

4
s → ∞. Con-

sidering only T > 0 allows us to go to dimensionless coordinates u = r0
r , t̃ = r0t

L2 , ~̃x = ~x r0
L2 :

ds2 =
L2

u2

(

−(1 − u4)dt̃2 + d~̃x2
3 +

du2

1 − u4
+ u2dΩ2

5

)

. (2.2)

The fields in the SYM all transform in the adjoint representation of the SU(Nc), and

we follow the well-known probe brane approach of introducing Nf families of fields trans-

forming in the fundamental representation, in the “quenched approximation” Nf ≪ Nc.

Commonly, one inserts for example Nf D7 branes in the D3 background parallel to the
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D3’s [6, 7]. Generalizations to defect configurations have been considered in the litera-

ture [5, 68–70]. In the latter cases, the intersection overs only part of the flat directions,

creating the defect field theory, where the fundamental fields are only supported on a

subspace within the four-dimensional spacetime of the gauge theory. In the case of our

(2 + 1)-dimensional defect, this can be done with the following configuration,

0 1 2 3 4 5 6 7 8 9

t x y z r ψ

background : D3 × × × ×
probe : D5 × × × × × ×

D7 × × × × × × × × .

(2.3)

The D5-brane construction reduces the supersymmetry from N = 4 of the D3 back-

ground to N = 2 and the dual field theory is now the SYM gauge theory coupled to Nf

fundamental hypermultiplets, which are confined to a (2+1)-dimensional defect. In the D7

case, all supersymmetry is broken and the defect CFT contains only Nf flavors of fermions,

again in the fundamental representation [71, 72]. It turns out that the lack of supersym-

metry in the latter case will manifest itself with the appearance of instabilities. In [63], we

showed how this can be avoided, and we discussed in [64] how this instability becomes ap-

parent in the scaling dimension of the scalar field that corresponds to the deformation of the

S4 of the D7-worldvolume inside the S5 background. There, we also discussed some prob-

lems related to the reliability of the quenched approximation that we consider in this paper.

In this limit, Nf ≪ Nc, the D5-branes may be treated as probes in the supergravity

background, i.e., we may ignore the gravitational back-reaction of the branes. For the

D7-branes, however, this is only true locally and not in the asymptotic regime.

2.2 Introducing the defect

Considering only the U(1) subgroup of the U(Nf ), the action of the D5 brane in a D3

background is just the DBI action plus a Chern-Simons term

S = −T5Nf

∫

D5

√

−det(P [G] + 2πl2sF ) + T5Nf

∫

D5
C(4) ∧ 2πl2sF , (2.4)

where the factors of Nf arise from taking the trace over the flavor degrees of freedom.

Assuming translational (in the flat directions) and rotational (on the sphere) symmetry,

the induced metric of the embedding (2.3) can be written in the form

ds2 =
L2

u2

(

− (1 − u4)dt̃2 + d~̃x2
2 +

(

1 + (1 − u4)

(

zχ′(u)2 + u2 Ψ′(u)2

1 − Ψ(u)2

))

du2

1 − u4

+u2(1 − Ψ(u)2)dΩ2
2

)

, (2.5)

where we used the inverse radius u = r0
r and χ = z r0

L2 = πT z. Here and in the rest of the

paper, we also use the notation ·̃ to denote quantities that are made dimensionless with

appropriate factors of πT unless explicitly noted otherwise.
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Now, we wish to consider a few interesting background quantities. Firstly, we can turn

on a magnetic flux on the sphere, F = q
Nf
dΩ2, which corresponds to inducing an extra

number of colors, δNc = q ∈ Z, parametrized by the quasi-continuous f := πl2s
L2Nf

q = πq√
λNf

,

on one side of the defect and causes the probe brane to bend towards that side. Both from

the embedding geometry ∂uχ(u) = −f√
1+f2u4

, and from the resulting quasiparticle spectrum

in the field theory, it was argued in [63] that this flux also introduced a finite width, ∆z,

of the defect.

Using the AdS/CFT dictionary in [4] in analogy with the 3 + 1 dimensional system,

e.g. [19, 65, 66, 76–78], we find the gravity dual of the baryon density

ρ = − δS

δAbdy.
0

=

√
λNcT

2

4π
lim
u→0

∂uÃ0(u) (2.6)

and magnetic field B to be related to a non-trivial U(1) background on the brane:

F |u→0 = −E(u)dt ∧ dr +Bdx ∧ dy =: FE + FB. (2.7)

We can also define the (asymmetric) background metric

G = g + F . (2.8)

A finite quark mass Mq and dual condensate C can be associated with a non-trivial

embedding Ψ(u) by analogy with the 3+1 dimensional D3−D7 system [12–15, 65, 66, 75].

This condensate has on the one hand an interpretation as a chemical potential for Mq and

on the other hand is considered in QCD contexts as the order parameter of chiral symmetry

breaking. Parametrizing the S5 as dΩ2
5 = dψ2 + cos2 ψ dΩ2

2 + sin2 ψ dΩ2
2 and putting the

D5 on the first S2, such that sinψ =: Ψ, the DBI-CS action becomes

S = 4πL2T5

∫

dσ4
(√

−detG
√

(1 − Ψ2)2 + f2 + fu4∂uz
)

(2.9)

= 4πL2T5

∫

dσ4

(√
−detG

√

1 + F 2
E

√

1 + F 2
B̃

√

(1 − Ψ2)2 + f2 + fu4∂uz

)

.

The background solution is then

B = const. (2.10)

∂uÃ0(u) =
ρ̃
√

1 + f2
√

1 − Ψ2(u) + u2h(u)Ψ′(u)2
√

1 − Ψ(u)2
√

1 +
(

f2 + (ρ̃2 + B̃2)(1 + f2)
)

u4 + (1 + B̃2u4)Ψ(u)2(Ψ(u)2 − 2)

∂uχ =
−f
√

1 − Ψ2(u) + u2h(u)Ψ′(u)2

πT
√

1−Ψ(u)2
√

1+
(

f2+(ρ̃2+B̃2)(1+f2)
)

u4+(1+B̃2u4)Ψ(u)2(Ψ(u)2−2)
,

where h(u) = 1−u4, ρ̃ := 4πρ√
λNcNf T 2

and B̃ = B
(πT )2

. Now, the width of the defect from the

brane picture, zmax := limu−>1 z(u), decreases with increasing density or magnetic field, in

agreement with the quasiparticle spectrum observed in [64].

– 6 –
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The equation of motion for Ψ(u) becomes

2(1 + B̃2u4)(1 − Ψ2)3+u2(1 − u4)
(

1 − (f2 + (ρ̃2 + B̃2)(1 + f2))u4+(1 + B̃2u4)Ψ2(Ψ2 − 2)
)

Ψ′2

u4(1−Ψ2)
√

(1−Ψ2)
(

1−Ψ2+(u2−u6)Ψ′2
)(

1+(f2+(ρ̃2+B̃2)(1+f2))u4+(1+B̃2u4)Ψ2(Ψ2−2)
)

= ∂u



Ψ′ 1 − u4

u2

√

1 + (f2 + (ρ̃2 + B̃2)(1 + f2))u4 + (1 + B̃2u4)Ψ2(Ψ2 − 2)

(1 − Ψ2)(1 − Ψ2 + (u2 − u6)Ψ′2)



 , (2.11)

which has no analytical solution, except for some limiting cases. For u → 0, it is easy to

see that the solution becomes

Ψ ∼ m̃ u + c̃ u2 , (2.12)

where m̃ and c̃ are dimensionless free parameters that are determined by the boundary

conditions at u = 1. Following arguments of the T-dual (3 + 1) dimensional D3-D7 [12–

15, 65, 66, 75], the quark mass Mq and condensate C are given by

Mq =
r0 m̃

23/2πl2s
=

√
λ
T

23/2
m̃ and C =

√
24π2 r20Nf l

2
sT5c̃ =

1

4π
T 2NfNcc̃ . (2.13)

In section 3.1, we discuss this more in detail and verify that C is indeed the dual chemical

potential to the mass.

In order to find the solution for the full geometry for a given mass however, we need

consider the equation near the horizon, where (2.11) reduces to first order,

Ψ′∣
∣

u→1
=

1

2

(1 + B̃2)Ψ0(1 − Ψ2
0)

2

(1 − Ψ2
0)

2 + f2 + ρ̃2 + B̃2
(

1 + (1 − Ψ2
0)

2
) , (2.14)

effectively relating m̃ and c̃. Hence, the only remaining boundary condition at the horizon

is Ψu→1 = Ψ0. We then have to find recursively Ψ0 for a given value of m̃.

So far, this embedding is the same as the the one discussed in [64]. Now, however, we

also want to consider non-blackhole embeddings. In this case, the probe brane does not

extend to the horizon u = 1, but closes off, i.e. Ψ → 1, at some finite value of u, umax,

above the horizon. The above discussion carries over, but now we are tuning umax instead

of Ψ0. Just as at the horizon, the equations of motion reduce to first order at this point,

and the boundary conditions at umax can be read off from the expansion

Ψ = 1 − umax − u

umax(1 + u4max)
+

(umax − u)2u2max(3 + 13u4max)

6(1 − u4max)(1 + u4max)
2

+ O(umax − u)3 . (2.15)

While in the case of the black hole embedding, the boundary condition at u = 1 and

the equations of motion ensure that Ψ ∈ [0, 1[ over the whole range of u, we now have to

discard unphysical embeddings in which Ψ < 0 at some values of u. These solutions appear

at large magnetic fields and are in practice related to having Ψ′|u→0 < 0, i.e. they would

correspond to a negative value of the mass parameter.

In the non-supersymmetric case, the magnetic flux on the compact S2 is replaced by

an instanton on the compact S4, and the coupling to the five-form flux comes now via the

Chern-Simons term
(2πl2s)

2

2
T7Nf

∫

D7
C(4) ∧ F ∧ F . (2.16)

– 7 –
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We also parametrize the S5 slightly differently as dΩ2
5 = dψ2 + cos2 ψ dΩ2

4, such that the

induced metric is

ds2 =
L2

u2

(

− (1 − u4)dt̃2 + d~̃x2
2 +

(

1 + (1 − u4)

(

z′(u)2 + u2 Ψ′(u)2

1 − Ψ(u)2

))

du2

1 − u4

+u2(1 − Ψ(u)2)dΩ2
4

)

. (2.17)

It turns out that a qualitative difference arises only in the massive case, as in that case the

five-form pulls back to the S4 factor of the brane as

(2πl2s)
2

2
T7Nf

∫

D7
F (5) ∧A ∧ F → 8T7Nf

π5l4s
L4

∫ 1

0
du

Ψ′
√

1 − Ψ2

∫

R(2,1)

A ∧ F . (2.18)

This was used in [73, 74] to obtain a Hall effect in a setup that would be considered from

the perspective of this paper unstable.

It is a straightforward exercise to verify that it turns out that in the massless case, the

embedding and the solutions for background fields take precisely the same form as the ones

in the supersymmetric case, under an appropriate re-definition of the flux parameter f7 ≡
Q√

1+2|Q|
in terms of the instanton number λNfQ

6π2 = q7 = 1
8π2

∮

S4 TrF ∧F ∈ Z. Furthermore,

even the value of the action, which reads now
∮

S4 d
4Ω = 8π2

3

(

NfL
4(1 − Ψ2) + 6π2ℓ4s |q7|

)

, is

identical, modulo an overall factor.

A problem related to the stability of the D3-D7 solutions was pointed out in [64]. The

“smooth” instanton solution discussed in [80, 81] that preserves the rotational symmetries

of the S4, and hence also the symmetries of our field theory, limits
Nf (N2

f−1)

6 ≥ q7. As

discussed in [63], the scalar mode of the supersymmetric setup is always stable, but the

non-supersymmetric setup requires f2
7 > 49/32 for its mass to be above the BF [82, 83]

bound. This stabilization becomes inconsistent, however, in the light of backreaction, as

the D7 brane cause an asymptotic deficit angle of Nf/12, and we would require Nf ≫ 1

for a finite value of f7. Hence, we do not follow the path of the massive D3-D7 embeddings

that are distinct from the D3-D5 case. Just for curiosity, this instability is reflected in the

asymptotic solution for Ψ, which becomes in the non-supersymmetric case Ψ(u) ∼ uα±

with α± = 3
2 ±

√

4Q2−7−12Q
2+4Q — raising interesting questions about the nature of the dual

“mass” operator. Here, we see that satisfying the BF bound for Ψ precisely corresponds

to real values of α±, i.e. to a non-oscillatory solution, and the unstable solution would be

non-physical. In [73, 74], it is, however, given some interpretation in the context of the

quantum Hall effect.

3 Thermodynamics of the defect

Now, we are ready to compute the contribution of the defect to the extrinsic thermodynamic

quantities that are localized on and around the defect, defined uniquely such that we assume

the bulk contribution to be translationally invariant anywhere else than at the defect, where

it is at most discontinuous, and the defect contribution to vanish far away from the defect.

– 8 –
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This allows us to study the phase diagram of the matter, the level of stability of the different

phases, and their physical properties.

Naturally, we will implicitly consider the density of these quantities per unit area of

the defect in terms of the boundary metric, which removes the divergence from the infinite

volume factor of the integral. We will miss however any contribution to possible changes

to the asymptotic characteristics of the 3+1 SYM. Since the asymptotics however should

only depend on the topological properties of the defect, i.e. the flux parameter f and not

the local properties of the embedding, this is still sufficient to map out the phase diagram

and discuss its properties.

As pointed out in section 2.2, our discussion of the massive embeddings is limited to

the D5 case.

3.1 Free energy and thermodynamic variables

As a starting point, we can straightforwardly compute the free energy via the standard

procedure from the Euclidean action, Ie, [14, 15] using

F = TIe , Ie =

∫ umax

umin

Le + Ibdy , (3.1)

where the boundary terms

Ibdy. = −1

3

√
γ +

1

2
Ψ2 (3.2)

are dictated to us by consistency [84]. The other boundary terms of [84] do not contribute

in our case because of isotropy in the flat directions and rotational symmetry on the

sphere. Since the determinant of the boundary metric, γ, vanishes on the horizon, only the

asymptotic boundary contributes. In the case of non-blackhole (Minkowski) embeddings

there is only one (i.e. the asymptotic) boundary, provided the action is consistent at umin

and the point at umin is included, as will be discussed below.

In the next step, one can construct other thermodynamic quantities, such as the en-

tropy, S = − ∂F
∂T

∣

∣

V
, the energy E = −F + TS or the heat capacity cV = ∂E

∂T

∣

∣

V
. Since the

defect is in thermal equilibrium with the bulk, and also the extrinsic curvature of the hori-

zon in the brane geometry is the same as in the bulk theory, the choice for the temperature

is obviously the bulk temperature T = r0
πL2 . There is a slight ambiguity as to what one

considers to be the thermodynamic volume V . One could either consider the defect as an

isolated thermodynamic system, embedded in the SYM heat bath, or as part of an overall

system. In the former case the volume is either the 2-dimensional volume
∫

dx dy with the

effective width of the defect considered to be an “internal” degree of freedom or alternatively

the 3-dimensional volume
∫

dx dy dz over a finite width ∆z, e.g. ∆z =
∫

z′(u) du, with z′(u)
given in (2.10). In the latter case, however, one considers a large volume of 3d SYM plus the

defect, and the quantities that we are studying are just the contributions that are extrinsic

in the two dimensions of the defect, and independent of the extension of the volume in the

z-direction — in the limit of placing the boundary of the volume far away from the defect.

To make this more explicit, we can look at the variation of the euclidean action, which gives

δIe =
∂Le

∂Ψ′ δΨ +
∂Le

∂A′
t

δAt +
∂Le

∂χ′ δχ , (3.3)
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or in terms of field theory quantities

δF = 2CδMq + ρδµ + Ffδzmax . (3.4)

In principle we might expect a term ∝ mδm that would be divergent. This term however

cancels because of the renormalization. Also the variation of the magnetic field does not

contribute because of its tensor structure. Ff is just defined as the change of the 3+1 free

energy density FSYM due to varying Nc → Nc + q, in dimensionful units:

Ff = q
δFSYM

δNc
= −qπ

2

4
NcNfT

4 = −π
4
fNcNf

√
λT 4. (3.5)

If f ∼ O(1), then term is suppressed by a factor λ−1/2 compared to FSYM. Noting the

fact that the SYM background is isotropic such that the pressure equals the free energy,

FSYM = PSYM, we could interpret Ffδ∆z as a work term for the case of the isolated defect.

This demonstrates nicely that this case is inconsistent, since want to consider the defect

system “on-shell” and study thermodynamic processes obviously with a fixed gauge group,

i.e. at constant f . This implies that we cannot use zmax as an independent thermodynamic

variable. Hence, we need to do a change of variables in the thermodynamic potentials,

corresponding to a Legendre transformation of the action. Since we also want to consider

processes at fixed baryon density on the defect, rather than at fixed chemical potential, as

in [65, 66], we do Legendre transformations in χ and At:

L̃e = Le + ρA′
t − fχ′ or Ĩe = Ie + ρAt − fχ . (3.6)

Now, the variation of the free energy is

δF = 2CδMq + µδρ + zmaxδFf , (3.7)

which implies F = F (Mq, ρ, f, T ). Obviously we consider f fixed, even though it is not

inconceivable to have processes in condensed matter physics that change the effective gauge

group.

In the case of Minkowski embeddings, the significance of the Legendre transformation

can be seen nicely from the brane tension in the z direction at the endpoint of the brane

umax that can be straightforwardly computed from

τz = gzz
δL(D5)

δgzz
= gzzz

′2 δL(D5)

δgrr
, (3.8)

where g is here the D3 background metric. This can be shown upon substitution of (2.10)

and the boundary condition Ψ ∼ 1− (umax −u) 1
umax(1+u4

max)
to match precisely the tension

of qNf D3 branes.

In particular, we can look at the source term that corresponds to attaching an appro-

priate stack of D3 branes in the flat directions at the endpoint of the probe branes and

balances this tension to allow for a consistent static embedding,

Lsource(u) = −f z(u)δ(umax − u) . (3.9)
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After integration in the radial direction, this term gives precisely the same contribution to

the action as the term − fχ′ that we added for the Legendre transform. An interesting

comment to add is that in this Minkowski embedding, the radial tension τr vanishes at

the endpoint, and is entirely generated by the 5-form flux acting on the brane. Thus,

it is actually possible in this defect setup to construct an at least metastable Minkowski

embedding at finite baryon density within string theory — in contrast to the setups of

fundamental matter in (3+1) dimensions in [65, 66].

3.2 Dual potentials and response functions

As some physical quantities of relevance, we will obtain the entropy S = − ∂F
∂T

∣

∣

V
, the

total energy E = F + TS, heat capacity cV = ∂E
∂T

∣

∣

V
= − ∂2F

∂T 2

∣

∣

∣

V
, baryon number chemical

potential µ = ∂F
∂ρ

∣

∣

∣

T,V
and magnetization M = ∂F

∂B

∣

∣

T,V
.

The latter two quantities are straightforward, since we only need to keep in mind the

temperature scaling and normalization, such that

µ =
∂F

∂ρ
=

4π√
λNcNfT 2

∂F

∂ρ̃
=: 4πT µ̃ and (3.10)

M =
∂F

∂B
=

1

(πT )2
∂F

∂B̃
=:

√
λNcNfT

π2
M̃ . (3.11)

In principle, there would also be a contribution from the variation of the embedding Ψ(u)

via a term δIe
δΨ ∂ρ,BΨ, however, it turns out that it does not contribute for the following

reason: Since we did a Legendre transform in (A′
t, ρ) and (χ′, f), the variation δ

δΨ at

constant f , B and ρ is on-shell, i.e. only a boundary term contributes:

δIe
δΨ

δΨ =

[(

∂Le

∂Ψ′ +
∂Ibdy

∂Ψ

)

δΨ

]

bdy.

. (3.12)

In principle, this term depends on m̃ and c̃. Keeping m̃ fixed, c̃ will generically depend on

B and ρ and hence δΨ =
(

∂ρ̃,B̃ c̃
)

u2δ(ρ̃, B̃). However, it turns out that in an expansion

around u = 0 and ignoring overall factors, we have ∂Le
∂Ψ′ +

∂Ibdy

∂Ψ ∼ c̃
u + m̃2, such that any

such term will not contribute in the limit u → 0. For black hole embeddings, there is

obviously also the second boundary at the horizon, but this contribution vanishes since the

boundary metric vanishes, γ → 0, as u → 1. In the case of Minkowski embeddings, there

exists only one boundary (the asymptotic one), as we learned above that the Legendre-

transformed action is consistent at the endpoint umax and corresponds to including this

point in the integral. To demonstrate that there is indeed no contribution from the re-

gion at umax, we can use the expansion (2.15) of Ψ near umax. This relates any change

umax → umax + δumax to some δΨ. If we then were to exclude the point at umax and

evaluate the integral only up to some uǫ = umax − ǫ, the contribution from any on-shell

variation of the scalar Ψ, − ∂Le
∂Ψ′

∣

∣

u=uǫ
δΨ(uǫ) cancels the corresponding extra contribution

to the integral, Le(uǫ)
δΨ(uǫ)
Ψ′(uǫ)

as we take ǫ→ 0.

Computing the entropy requires a few more steps. In order to compute the temperature

derivative, we proceed by computing the integral (3.1) in terms of the dimensionless versions
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of the coordinates and fields. We then consider only the indirect temperature dependence

of the terms in the integral and an overall explicit temperature factor which we find by

dimensional analysis to be T 3. Keeping ρ, B, Mq and f fixed, the temperature dependencies

that we will need are given by ∂ρ̃
∂T

∣

∣

∣

ρ
= 2 ρ̃

T , ∂B̃
∂T

∣

∣

∣

B
= 2 B̃

T and ∂m̃
∂T

∣

∣

Mq
= − m̃

T . The variation

of the action with respect to ρ̃ and B̃ are straightforward and defined in (3.10) and (3.11),

and the variation with respect to Ψ gives on-shell

δΨ
δ Ie
δΨ

=
∂Le

∂Ψ′ δΨ +

∫

EΨδΨ +
∂Ibdy

∂Ψ
δΨ = − 22/3

√
λT

c

umin
δΨ|umin (3.13)

where EΨ is the equation of motion for Ψ. Hence, in the limit umin → 0, only the linear

term in δΨ contributes and we do not have to worry about the non-trivial temperature de-

pendence of the condensate. Finally, we have to worry about the temperature dependence

of the boundary of the integral. The boundary at the horizon is fixed in terms of the dimen-

sionless coordinate at u = 1, so there is no contribution from the horizon. For the asymp-

totic boundary, we can compute, in dimensionless variables and ignoring overall factors:

∂Ie
∂umin

∣

∣

∣

∣

u=umin

= Le + ∂uminIbdy. = −1

6
+

1

2

(

ρ̃2 + B̃2 + f2 + c2 − m̃4

4

)

+O(umin) (3.14)

Since we take the limit umin → 0, any temperature dependence at fixed maximum dimen-

sionful radius rmax is proportional to ∂Tumin = umin
T and hence, there is no contribution from

this boundary either. Putting all the non-vanishing contributions together, we arrive with

S = −3F

T
− 2

T

(

∂F

∂ρ̃
ρ̃+

∂F

∂B̃
B̃

)

+
δIe
δΨ

Ψbdy. or (3.15)

T S = −3F − 2µρ − 2M B + Mq C . (3.16)

Finally, we can compute the total energy, E = F + TS and the heat capacity

cV =
∂E

∂T

∣

∣

∣

∣

V

= −T ∂2F

∂T 2

∣

∣

∣

∣

V

. (3.17)

The second temperature derivative is computed in the same way as the first derivative for

the entropy. The most straightforward way is to take the temperature derivative of the

entropy. Keeping in mind that the total temperature derivative of the implicitly present

equations of motion EΨ vanishes, the remaining terms are:

d2 F

dT 2
=

(

∂T +
2ρ̃

T
∂ρ̃ +

2B̃

T
∂B̃ +

dΨ

d T

δ

δΨ

)(

∂T +
2ρ

T
∂ρ +

2B̃

T
∂B̃

)

F − d

d T

Mq C

T
(3.18)

=

(

∂T +
2ρ̃

T
∂ρ̃ +

2B̃

T
∂B̃

)2

F − 3
Mq C

T 2
+

(

2ρ̃

T
∂ρ̃ +

2B̃

T
∂B̃

)

(∫

EΨ
dΨ

d T

)

− d

d T

Mq C

T
,

where the derivatives are considered to act on anything towards their right. Here, we find

that we cannot avoid computing the temperature dependence of the embedding Ψ and the

condensate. This can be done in closed form, without resorting to numerical derivatives. To
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do so, we expand the temperature derivative of the equations of motion for Ψ to first order

in temperature, obviously keeping the appropriate dimensionful quantities fixed. The term

linear in temperature then gives us an inhomogeneous linear second order equation for d Ψ
d T

B̃
δ EΨ

δ B̃
+ ρ̃

δ EΨ

δ ρ̃
=

T

2

(

δ EΨ

δΨ

dΨ

d T
+
δ EΨ

δΨ′
dΨ′

d T
+
δ EΨ

δΨ′′
dΨ′′

d T

)

(3.19)

and a boundary on the horizon condition fixing
(

d Ψ
d T

)−1
∂u

(

d Ψ
d T

)

- both of which are not

very illuminating and we do not explicitly write them out here. Finally, we choose the

boundary condition

∂u

[

dΨ

d T

]

umin

= − Ψ′∣
∣

umin
(3.20)

at the asymptotic boundary to account for the temperature derivative of the dimensionless

mass parameter — giving the problem numerically slightly non-trivial mixed boundary

conditions. Alternatively, the heat capacity can also be written in a more systematic way,

cv = −T
(

∂T + 2
B

T

d

dB
+ 2

ρ

T

d

d ρ
− Mq

T

d

dMq

)2

F (3.21)

= −4B2χB

T
− 4

ρ2

ǫ T
− 8ρB

m

T
+
M

T

(

4B
d

dB
+ 4ρ

d

d ρ
− Mq

d

dMq

)

C − 6
F

T
,

where we identified the magnetic susceptibility, density of states, and mean magnetic mo-

ment:

χB = d M
d B

∣

∣

T,V,ρ
=

1

(πT )4

∫ (

∂2
B̃
Le + ∂B̃EΨ

dΨ

dB̃

)

(3.22)

ǫ−1 = d µ
d ρ

∣

∣

∣

T,V,B
=

16π2

λN2
cN

2
fT

4

∫ (

∂2
ρ̃Le + ∂ρ̃EΨ

dΨ

dρ̃

)

(3.23)

m = d M
d ρ

∣

∣

∣

T,V,B
=

4√
λNcNfT 4

∫ (

∂B̃∂ρ̃Le + ∂ρ̃EΨ
dΨ

dB̃

)

. (3.24)

The derivatives of the scalar dΨ
dB̃

and dΨ
dρ̃ can be computed in an equivalent fashion as the

derivative dΨ
d T described above.

3.3 Massless case

In the massless case, the free energy can be integrated straightforwardly analytically and

becomes

F = −4πT5r
3
0

∫ 1

0
du









u4 − 3

3u4
√

1 − u4
+

√

1 +
(

f2 + ρ̃2 + B̃2
)

u4

u4









= −
√
λT 3NcNf

1

3

(
√

1 + f2 + ρ̃2 + B̃2 (3.25)

+ 2
(

−
(

f2 + ρ̃2 + B̃2
))3/4

F
(

sinh−1
(

−
(

f2 + ρ̃2 + B̃2
))1/4 ∣

∣

∣
− 1

))

,
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Figure 2. The free energy density of the defect as a function of

√

f2 + B̃2 + ρ̃2 (denoted for

simplicity as “f”.

where the first term in the integral cancels the divergence of the second term at u→ 0; we

substituted field theory quantities in the dimensionful factor in the second line and F(·|·)
is the incomplete elliptic integral of the first kind. For convenience, we give the asymptotic

expansion F
(

sinh−1 (−X)1/4
∣

∣− 1
)

= iK(2) − (−X)−1/4 + O(X)−5/4 and the expansion

at small values F
(

sinh−1 (−X)1/4
∣

∣− 1
)

= (−X)1/4
(

1 − X
10

)

+ O(−X)9/4, where K(.) is

the complete elliptic integral of the first kind and K(2) ∼ 1.854eiπ/4. These asymptotic

approximations are indicated in figure 2. We also note again the effect of the electric-

magnetic duality, which relates quantities under the interchange of density and magnetic

field. Now this emerges in the form that the free energy depends only on the variable f2 +

ρ̃2+B̃2. The representation of this symmetry in the various response functions then follows

straightforwardly. For example the chemical potential is then related to the magnetization

as µ̃(ρ̃, B̃, f) = M̃(B̃, ρ̃, f), and in the following we will show only either of them.

Now, we can simply verify the relations (3.10) and (3.11):

µ̃ = ρ̃

F
(

sinh−1
(

−
(

f2 + ρ̃2 + B̃2
))1/4 ∣

∣

∣− 1

)

(

−
(

f2 + ρ̃2 + B̃2
))1/4

=
√
λT 3NcNf

∫ 1

0
duA′

t (3.26)

zmax =
∂F

∂Ff

∣

∣

∣

∣

T

=
4

πNcNf

√
λT 4

∂F

∂f
(3.27)

=
1

πT
f

F
(

sinh−1
(

−
(

f2 + ρ̃2 + B̃2
))1/4 ∣

∣

∣− 1

)

(

−
(

f2 + ρ̃2 + B̃2
))1/4

= πT

∫ 1

0
d uχ′ .

This is shown in figure 3, and we note that the dominant dependence of µ on ρ or M

on B, with an apparent saturation behavior as the scaling power changes from 1 to 1/2.

The dependence on the subleading quantities is a small suppression, which goes slightly

against classical intuition. Further more, we can straightforwardly give the contribution of
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Figure 3. The baryon number chemical potential as a function of ρ̃ and

√

B̃2 + f2. Note that, due

to electromagnetic duality, this is the same as the magnetization as a function of B̃ and
√

ρ̃2 + f2,

upon an appropriate scaling with a dimensionful constant.

Figure 4. The contribution of the defect to the entropy as a function of

√

ρ̃2 + B̃2 and f .

the defect to the entropy, which is

S =
√
λT 2NcNf









√

1+f2+ρ̃2+B̃2 + 2f2

F
(

sinh−1
(

−
(

f2+ρ̃2+B̃2
))1/4 ∣

∣

∣− 1

)

(

−
(

f2 + ρ̃2 + B̃2
))1/4









(3.28)

and is shown in figure 4. Now, we can notice that for large values of f , this expression turns

negative. Since the thermodynamic quantities that we derive here are only contributions

to the overall quantities of the system “defect+background”, and the defect is certainly

strongly coupled to the background and hence always in thermal equilibrium, this is not

troublesome, as we can demonstrate:

First, we assume that the defect effectively extends roughly homogeneously over a region

up to zmax in the normal direction. This is suggested by (2.10), (3.26) and at large f also

by the quasiparticle spectrum found in [63, 64]. Then, we consider the entropy density
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Figure 5. The contribution of the defect to the specific heat as a function of

√

ρ̃2 + B̃2 and f .

over this region of (3 + 1)-volume,

S∆z

zmax
= 2

√
λπT 3NcNf









(

−
(

f2 + ρ̃2 + B̃2
))1/4

√

1 + f2 + ρ̃2 + B̃2

fF
(

sinh−1
(

−
(

f2 + ρ̃2 + B̃2
))1/4 ∣

∣

∣
− 1

) − 2f









, (3.29)

where we look in particular at the density of the negative term, −2π
√
λT 3NcNff . In our

limit of large Nc and Nc ≫ f2, this term is precisely (minus) the contribution q δSSYM
δNc

. This

can be interpreted simply in the way that the extra degrees of freedom due to changing

Nc → Nc + δNc become fully available only after the brane falls into the horizon, and the

positive term in the entropy of the defect describes the extra degrees of freedom contributed

by the defect inside that region. Furthermore, there is no region in which the total entropy

of the combined system is negative.

At large densities or magnetic fields, or low temperatures, the contribution to the

entropy is just 4πρ or
√

λNcNf B

4π2 respectively - indicating that the number of degrees of

freedom is independent of the temperature, and proportional to the number of quarks or

magnetic states.

We can also straightforwardly compute the heat capacity:

cV = 2
√
λT 2NcNf





1
√

1 + f2 + ρ̃2 + B̃2

(

1 + 2f2 − f4

f2 + ρ̃2 + B̃2

)

−
f2F

(

sinh−1
(

−
(

f2 + ρ̃2 + B̃2
))1/4 ∣

∣

∣
− 1

)

(

−
(

f2 + ρ̃2 + B̃2
))1/4

(

3 − f2

f2 + ρ̃2 + B̃2

)









,(3.30)

which we show in figure 5.

Again, we notice that the heat capacity is negative for large f , but as in the case

with the entropy, this does not signify an instability, as the contribution is much smaller

than the heat capacity of the background SYM in the appropriate region around the de-

fect. Also here, the negative contribution to the heat capacity simply indicates that the
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Figure 6. The magnetic susceptibility of the defect as a function of B̃ and
√

ρ̃2 + f2. This is the

same as the density of states as a function of ρ̃ and

√

B̃2 + f2.

additional degrees of freedom only turn on gradually over some region ∼ zmax away from

the defect. At small f , the heat capacity is just cV = 2
√
λTNcNf

1√
1+ρ̃2+B̃2

+ O(f2).

This is somewhat counter-intuitive, as one normally expects an increasing heat capacity

with increasing density but as the system is strongly coupled, we can only speculate about

explanations for this behavior. We have to keep in mind that ρ̃ is only the net density and

there is always a finite density of quarks and gluons.

Finally, we can, for example, look at magnetic the susceptibility,

χB =

√
λNcNf

2π2T







B̃2

(

f2 + ρ̃2 + B̃2
)

√

1 + f2 + ρ̃2 + B̃2

(3.31)

+

(

2 − B̃2

ρ̃2 + B̃2 + f2

) F
(

sinh−1
(

−
(

f2 + ρ̃2 + B̃2
))1/4 ∣

∣

∣− 1

)

(

−
(

f2 + ρ̃2 + B̃2
))1/4









.

This expression is always less than χ
(0)
B =

√
λNcNfπ

2T 3 — the susceptibility of the defect

without any of the parameters turned on as shown in figure 6 - and behaves asymptoti-

cally as χ
(0)
B

(−1)1/4K(2)√
f

, χ
(0)
B

(−1)1/4K(2)√
ρ̃

or χ
(0)
B

(−1)1/4K(2)

2
√

B̃
, respectively. Hence, the defect is

diamagnetic. Again, we can blame this on the strong coupling, which may increase the

spin-spin interactions. Similarly, strong coupling may have the effect of suppressing the

energy density of the plasma as we increase the quark density.

3.4 Massive case

3.4.1 Phases

Now, let us look at the phase diagram in figure 7. Looking at the different kinds of

embeddings, we find that in the case of vanishing ρ and f , there are three phases: the stable

phases of the blackhole embedding at small masses Mq < M
(BH)
max (or large temperatures),

denoted as “B” and the Minkowski embedding at large masses Mq > M
(flat)
min (M). In
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The light gray (upper) surface is the mesonic, i.e.

Minkowski, phase and the darker (lower) surface

the blackhole phase. The gray line is the projec-

tion of the minimum mass of the Minkowski phase

M
(flat)
min . The black line is the minimum mass of

the blackhole phase and the dark gray line the

local maximum M
(BH)
max , if it exists, or the slow-

est rate of change of the mass with respect to the

embedding. There is some numerical noise visible

in the plots that can be ignored, but we chose not

to suppress artificially.

Figure 7. Value of the condensate as a function of the dimensionless mass, m̃ and magnetic field,

B̃ at fixed temperature. Top left: Vanishing density and vanishing compact flux f . The light and

dark gray lines identify the transition between B and C and M, respectively. Top right: Density

ρ̃ = 0.5. The dark gray line is now the transition between B and C, or B and B1 and the black

line between C and B1. The light gray line is the transition between M and M1. Bottom left:

f = 0.25. More details are explained in the bottom right.

principle, there exists also an unstable phase with M
(BH)
max > Mq > M

(flat)
min (C), but in

practice, this phase is not realized and there will just be a first order phase transition from

B to M. At finite f or ρ, the mass diverges at umax = 0 or Ψ0 = 1, so we find two additional

phases, each one for the blackhole (B1) and Minkowski (M1) embeddings. We interpret

this B1 embedding as a continuous deformation of the Minkowski phase with free quarks,

but also a high density of mesons. In many situations, the phase transition between those

phases will disappear, as we will see below. Using the condensate as an order parameter to

identify different phases, we show the various phases in figures 7–9. In order to demonstrate

the phase transitions, and the disappearance of the blackhole phase M and the transition

phase C in the presence of strong magnetic fields, we plot the results at fixed temperature

with varying M , rather than fixed mass and varying T . Obviously, in a thermodynamic

processM/(πT ) = 0 cannot be attained. In figure 7, we find that the critical mass decreases

approximately linearly with the increasing magnetic field and there is a critical magnetic

field, above which the blackhole phase B disappears. This indicates that the magnetic

field catalyzes meson formation. This behavior is similar to what was observed in 3+1

dimensional systems in [76–78]. Rigorously speaking, however, there exists at all magnetic
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Figure 8. Value of the condensate as a function of the dimensionless mass and density, at fixed

temperature. Left: B̃ = 0, right B̃ = 4.

fields a continuation of the B phase at (exactly) zero mass and we will see in the next section

that we can always attain both the Minkowski and blackhole phases at fixed magnetic field

and mass and varying temperature. Also, we find how the phase C, that is suppressed and

even disappears at finite density or f re-appears at large magnetic fields. The first order

phase transition from B to B1 turns into a smooth crossover as C disappears, and one

might wonder what happens at the particular point, where C disappears.

The condensate is large in the blackhole phase B1 and in the Minkowski phases and

grows approximately proportional to the magnetic field — indicating chiral symmetry

breaking. As indicated above, these phases have a very similar behavior. The reader is

reminded however that at finite density and vanishing f , the Minkowski embedding is not

physical within string theory. It is interesting though that turning on f reverses the lin-

ear mass dependence of the condensate when interpreted as the conjugate potential of the

mass — meaning that if we increase the mass or lower the temperature, the free energy

will “saturate”. In the blackhole phase B in which the mesons are dissociated and we have

only free quarks, the condensate approximately vanishes and becomes independent of mass

and magnetic field.

In figures 8 and 9, we see first of all that the phase diagram at finite density and

vanishing magnetic field is identical to the one at finite f under identifying ρ̃ ↔ f . This

can be seen explicitly also from the equation of motion (2.11) of the scalar, which is identical

under the exchange ρ̃ ↔ f at B̃ = 0. This is however only accidental and disappears as

soon as we look e.g. at the value of the action or the free energy and the response functions.

Turning on a magnetic field breaks this symmetry even though there is some overall

similarity. It has the expected effect of lowering the critical masses, increasing phase space

volume of the phases C and B and shifting the overall condensate - breaking also the

symmetry of the M phase. Interestingly, this persists even at relatively large densities. To

understand this behavior we recall that there is always a finite total baryon density, and

the polarizing an localizing effect of the magnetic field is not affected by changing the ratio
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Figure 9. Condensate as a function of the dimensionless mass and f , at fixed temperature. Left:

B̃ = 0, right B̃ = 4.

of quarks and anti-quarks.

3.4.2 Stability and chemical potentials

In order to determine which phases are thermodynamically preferred, we can look at the

entropy. Before studying the data, we should notice that there is a trade-off between

numerical accuracy and noisiness. This arises because a significant contribution to the

entropy comes from the UV regime, i.e. from small values of u. On the other hand, the

solution for Ψ becomes unstable and noisy in this regime, so we usually choose a cutoff

umin of the order of 10−5, which causes usually no significant errors in the result — except

for the case of the entropy. Even if we try to extrapolate at small u, the cancellation of the

boundary term in (3.15) will not be accurate, so we need to push the minimum value for u

as far as possible and we will notice some noise. Eventually, the qualitative result will not

be affected in either case, and we can further check whether some apparent “effect” is due

to numerical errors or not by tuning umin.

We now use quantities that are made dimensionless using the mass as we consider

the system at fixed mass. For example, we have T̄ = 1
m̃ and B̄ = B̃

m̃2 . We chose this

combination, because these are parameters that naturally arise in the computations. Notice

however, that m̃ contains a factor of
√
λ, i.e. T̄ =

√
λ T

23/2Mq
and B̄ = B̃

m̃2 = λ B
8π2M2

q
.

In the results for the entropy in figure 10, let us first look at a few technical issues. In

the plot on the top right, at f = 1/2, we notice that there is some numerical error which

causes the entropy of the lower branch of the Minkowski embedding to remain finite at

vanishing temperature. In the figure on the bottom-left, we “cut out” the region of small

temperatures and densities, as it was dominated by noise because the configuration in this

region requires embeddings with Ψ0 ∼ 1, which are numerically problematic. Also, in the

plot in the bottom right, the hint of the entropy of the phases crossing around T̄ ∼ 0.25

can be shown to be due to numerical errors.

Looking at the results, we see that in all cases, the blackhole embedding is preferred.
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Figure 10. The dimensionless entropy S̄ = S

8M2
q NcNf

as a function of T̄ =
√
λ T

23/2Mq
and B̄ =

λ B

8π2M2
q

for f = 0 = ρ̄ (top left) and f = 1/2, ρ̄ = 0 (top right) or as a function of T̄ and ρ̄ (bottom

left) or f (bottom right).

In the case of having only the magnetic field non-vanishing, we actually notice the cusp-like

behavior at the point where the blackhole and Minkowski phases meet that was already

observed for (3+1) dimensional systems in [14, 15]. We also notice again in the bottom

right, which shows the plot “from behind”, that f causes a negative entropy contribution,

as discussed in the context of figure 4. The fact that the difference in entropy between the

Minkowski and black hole phases vanishes as T → 0 in the case of having the internal flux

f turned on, but that it doesn’t vanish for the embeddings at finite density indicates that

the latter are “more unstable”. This reflects precisely the observation that Minkowski em-

beddings at finite density cannot be supported in string theory — in contrast to Minkowski

embeddings at finite flux f . From another point of view, the vanishing entropy at T → 0 is

what we expect generically and the finite entropy implies some “degenerate ground state”.

Furthermore, we can see how the phase diagram changes if we consider a fixed quark

mass, rather than a fixed temperature. m̃ → 0 gets mapped to T̄ → ∞ and is hence

not accessible anymore, and in fact finite values of B̃ also get mapped to B̄ → ∞ in that

limit. Hence, at all finite values of B̄, there are both blackhole and Minkowski embeddings

and the critical temperature T̄c of the phase transition is some monotonously increasing

function of B̄. Since there is no indication of a transition between the phases B and B1

in the plots in figure 10, let us see why. In our new variables a trajectory of fixed B̄ and
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Figure 11. Left: “Zoom” to the region of the phase transition between the different blackhole

phase embeddings B1 (low temperatures) and B (high temperatures) at small values of the density

and fixed magnetic field B̄ = 2. Right: the phase transition at large magnetic fields and fixed

density ρ̄ = 0.5

.

Figure 12. The magnetization M̄ as a function of the temperature-mass ratio T̄ and the magnetic

field B̄ at ρ̄ = 0 = f (left) and ρ̃ = 0, f = 0.5 (right).

varying T̄ corresponds to a trajectory B̃ = B̄
T̄ 2 in figure 7. Hence we need to look at e.g.

large values of B̄ and T̄ at fixed ρ̄ or f and the critical temperature will be T̄c ∝ B̄1/2. If

we expand the equation of motion for Ψ around small values of Ψ and study the resulting

linear second order equation, we find that this phase transition always exists for sufficiently

large B̄ and T̄ . For finite values of f & 1, the onset of the phase transition gets shifted

to B̄, T̄ ≫ 1, whereas for finite ρ̄ & 1, the temperature scaling of ρ̄ implies that the phase

transition always appears at finite values of the temperature. In figure 11, we show how

the phase transition appears at small values of ρ̄ and fixed B̄ = 2, and at increasing values

of B̄ for fixed ρ̄ = 0.5.

In the light of the fact that the blackhole embedding is always thermodynamically

preferred, the phase B1 and the phase transition between B and B1 are a smooth contin-

uation of the Minkowski phase and the blackhole-Minkowski embedding phase transition

as we we turn on the quark density ρ. This is also reflected in the fact that the B1 phase

has lower entropy due to the larger fraction of quarks bound in mesons.

– 22 –



J
H
E
P
0
1
(
2
0
1
0
)
0
5
6

Figure 13. The chemical potential µ̄ as a function of the temperature-mass ratio T̄ and the density

ρ̄ at B̄ = 0 = f (left) and as a function of B̄ at ρ̄ = 1/2 (right).

Let us finally just take a quick look at the other derivatives of the free energy. In

figure 12, we show the magnetization and we notice that the magnetization is higher in

the blackhole phase, which is dominated by free quarks, and lower in the Minkowski phase

that are dominated mesons. In the case of small finite f (qualitatively the same happens

also for ρ̄) however, the difference is highly suppressed and both phases have essentially

the same magnetization.

In figure 13, we look at the chemical potential. In contrast to the magnetization, there

is a a significant difference in the chemical potential, that persists in all cases, with the

one of the Minkowski phase being higher than the one of the black hole phase. Hence,

inducing a difference in the density of quarks and anti-quarks requires more energy in the

Minkowski phase. This arises intuitively, as the Minkowski phase is dominated by mesons.

It might also be related to the fact that in string theory, there should be no finite net

baryon density in the Minkowski phase.

In the remainder of this section, we look at the second derivatives of the free energy that

we obtained with the methods described in section 3.2. In figure 14, we show the magnetic

susceptibility in the presence of the various parameters. In each of the plots, as also in

figures 15 and 16, we show also the f = ρ̄ = B̄ = 0 case for reference. In the top left, at

finite magnetic field, we observe the saturation behavior with increasing magnetic field and

the phase transition with the temperature independent behavior in the Minkowski phase

and the “dimensional” T̄−1 scaling in the blackhole phase. This is because the Minkowski

phase is dominated by the physics and energies of mesons, whereas the blackhole phase is

dominated by the statistical mechanics of free quarks in the plasma. Also, turning on a

small density in the presence of the magnetic field changes the susceptibility only sightly,

in particular around the region of the phase transition, but turning a finite f changes it

more significantly. Hence, apparently the net quark density is less relevant than the total

quark density. Also the large temperature “tail” is universal, as it is dominated by the

thermal equilibrium of “quark-anti-quark” production. At vanishing magnetic field, we

see no divergent susceptibility at the phase transition, which is expected as there is no

remnant magnetization at B = 0 and hence also the “latent magnetization” of the phase
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Figure 14. Dimensionless magnetic susceptibility of the defect, χ̄B =
4π

2
√

2Mq

λNcNf
χB at finite magnetic

field (top left), finite density (top right) and finite f (above). The case M̄ = ρ̄ = f = 0 is shown in

all plots as a reference and divergent “spikes” are cut off at finite values for clarity.

transition vanishes. In the presence of (only) a finite density, it appears that the high

temperature blackhole phase also extends to small temperatures. For numerical reasons

as we will discuss in the below, we cannot trace this phase to vanishing temperatures.

However, the one of the fiducial Minkowski phases that typically mimics the blackhole

phase is finite at vanishing temperature. As we saw in the massless case in section 3.3,

increasing the density lowers the magnetic response. In the presence of (only) finite f ,

the behavior is significantly different. On the one hand, the curves do not converge in

the high temperature regime, mainly because of the absence of a temperature scaling of

the parameter f . At large temperatures, we still have the effect that finite f lowers the

susceptibility, but at small temperatures, the susceptibility increases. Tracking the “lower”

Minkowski phase to T → 0 shows actually that the lines of f = 1 and f = 4 cross and

the zero temperature magnetization remains finite. The (stable and hence more relevant)

blackhole phase however appears to diverge at small temperatures — but the numerics

start to fail in this branch around T ∼ 0.05 (Ψ0 ∼ 1 − 5 × 10−4). This means that the

defect is becoming magnetized. However, our methods are not sufficient to explore whether

there is some spontaneous magnetization at vanishing temperature.

The “density of states”, i.e the inverse of the response of the chemical potential to the

net quark density, is shown in figure 15. In the Minkowski phase, ǫ is highly suppressed

at some small, but constant, value as we expect for the mesonic phase. At finite magnetic
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Figure 15. Dimensionless density of states of the defect, ǭ = 4π
2
√

2

MqNcNf
ǫ at finite magnetic field (top

left), finite density (top right) and finite f (above). The case M̄ = ρ̄ = f = 0 is shown in all plots

as a reference and divergent “spikes” are cut off at finite values for clarity.

fields, this increases with some multiplicative factor. This just means that the chemical

potential decreases with increasing magnetic field, and there is some rapid increase as

we turn on a small density. At large temperatures, however, all curves converge to the

f = ρ̄ = B̄ = 0 case. As we turn on a finite density, this suppressed density of states is lifted

to larger, but still approximately constant values, now in the blackhole phase that “allows”

free quarks. That is the case if inducing a net quark density corresponds to increasing the

total quark density — with a finite quark mass. If we turn on a magnetic field in addition

to the finite density, there is a strong increase in ǫ in the low temperature blackhole phase.

A wild speculation would be that this is related to the density of Landau levels. Just as

in the case of the susceptibility, the high-temperature behavior depends significantly on

f . This may be simply because increasing f increases the physical “width” of the defect.

As it is the case with the other quantities, there is no apparent phase transition in the

blackhole phase. Now it seems, that in the blackhole phase ǫ vanishes as T → 0, which is

similar to the diverging magnetic susceptibility. In the presence of a small magnetic field,

surprisingly, the low temperature behavior does not get scaled by some factor as in the

case of f = 0, but it actually gets substantially shifted to some larger value.

Finally, we study the results for the heat capacity in figure 16. There, we see that

there is no significant difference between the Minkowski and blackhole phases, except for

the diverging heat capacity around the phase transition and some shift between the phases
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Figure 16. Dimensionless heat capacity of the defect, c̄V =
√

λ

8M2
q NcNf

cV at finite magnetic field

(top left), finite density (top right) and finite f (above). The case M̄ = ρ̄ = f = 0 is shown in all

plots as a reference and divergent “spikes” are cut off at finite values for clarity.

in the f = ρ̄ = B̄ = 0 case with a higher value in the blackhole phase, because of the extra

degrees of freedom of free quarks. Increasing the magnetic field slightly lowers the heat

capacity, as does turning on a finite density. We can also nicely observe the peak in the heat

capacity around the crossover between the high and low temperature blackhole phases at

ρ̄ = 1, B̄ = 4. There are a divergence at T = 0 and some noise at small temperatures, both

of which are due to numerical inaccuracy. There are two more noteworthy observations.

One is the negative heat capacity at finite f . This effect is simply due to the fact that the

extra degrees of freedom from modifying Nc → Nc + δNc are not available from z = 0 but

turn on only gradually over the defect — as we discussed in the context of the entropy in

section 3.3. The numerics at f = 1, B̄ = 4 at small temperatures seem to be not reliable.

The other interesting observation is the fact that the heat capacity vanishes very

quickly with decreasing temperatures in the blackhole phase at finite densities. As men-

tioned before, the numerics let us down in this case at T̄ ∼ 0.7 in the ρ̄ = 4 case and

around T̄ ∼ 0.74 for ρ̄ = 1, but already at these values cv has converged to 0 much faster

than expected for some power law scaling. This region is very interesting, as it turns out

that at fixed ρ̄ = ρ̃
m̃2 , large values of m̃ = 1

T̄
are obtained at some “finite” Ψ0 ∈]0, 1[ and

not at Ψ0 → 1. This arises because at large m̃ and ρ̃, we have m̃(Ψ0, ρ̃) ∝ ρ̃2. The value

of Ψ0 determines the proportionality factor, such that we get a value of Ψ0 depending on

ρ̄. Such coincidence in the scaling arises generically only in ddef. + 1 dimensional matter
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embedded in dbulk + 1 = 2ddef. dimensions. From a physical point of view in the gravity

picture, the probe brane becomes “stiffer” with increasing ρ̃, which causes some “straight”

limiting profile as we take T̄ → 0. This limit can however not be suitably studied with

the methods of this paper, as we tune Ψ0 (or umax) to obtain m̃. A similar behavior also

occurs in the corresponding branch of the (fiducial) Minkowski embedding.

4 Discussion and conclusions

In this paper, we applied the holographic duality to study the thermodynamic properties of

a class (2+1)-dimensional defect CFT’s emersed in a heat bath of 3+1 dimensional N = 4

SU(Nc) SYM theory. To do that, we considered the properties that are extrinsic in the

“area” of the defect, i.e. from a (3 + 1)-dimensional point of view are independent of the

placement of boundaries at some zbdy away from the defect — in the limit of large zbdy.

We considered primarily the string theory setup realized by embedding Nf probe D5-

branes in an AdS5 × S5 background, in which case the system (at T = 0) preserves eight

supersymmetries. At vanishing quark mass, the thermodynamic properties are identical

(modulo overall factors) to the defect CFT dual to embedding Nf probe D7-branes in the

AdS5 × S5, which preserves no supersymmetries. As this contains only fermions at the

massless level, it is of particular interest to condensed matter physics. As discussed in [64]

the results of these embeddings are not reliable because it is not quite sure in how far the

D7 setup persists in the light of gravitational backreaction.

As we outlined in section 2, we considered deformations to the theory corresponding to

a shift Nc → Nc+δNc in the level of the gauge group on one side of the defect parametrized

by f = π δNc√
λNf

, to a finite quark mass Mq, finite net baryon number density ρ and magnetic

field B.

First, in section 3.1, we discussed the choice of thermodynamic variables. We Legendre-

transformed the action in order to use the density as a thermodynamic variable, rather than

the chemical potential. There we also demonstrated that the parameter f is represented by

the change in (3+1) free energy and its dual, defect width. As f also parametrizes the shift

in the level of the gauge group δNc we chose to keep it as a fixed parameter, for which we

also needed to Legendre transform with respect to ∂uz. In that context, we demonstrated

how the tension of the probe brane at its endpoint in the case of Minkowski embeddings

is matched by the appropriate number of attached D3 branes.

We then derived the response functions, which allowed us to verify the expressions for

the chemical potential and dual condensate assumed in section 2.2. We also developed a

method to obtain the second derivative of the thermodynamic potential in closed-form, i.e.

without taking numerical derivatives.

In the massless case, we were able to obtain analytic expressions for all the thermody-

namic quantities. We presented those in section 3.3, were we also discussed the negative

entropy of the defect, and verified that it does not imply a negative entropy region and

is simply related to the fact that the extra degrees of freedom due to δNc turn on only

gradually over the “width” of the defect. We also observed the implications of the electro-

magnetic duality that was discussed in [64]. Here it corresponds again to an exchange of
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dimensionless density and magnetic field, ρ̃↔ B̃, and e.g. an exchange of chemical poten-

tial and magnetization. Overall, we found a saturating behavior, where e.g. the chemical

potential scales as µ̃ ∝ √
ρ̃ at large densities.

In section 3.4, we discussed the massive case. Using the dual condensate as an order

parameter, we mapped out the phase diagram. We found that c̃ vanishes in the blackhole

phase but not in the Minkowski phase, where it increases with increasing magnetic fields;

and that the critical mass of the phase transition decreases, i.e. the critical temperature

increases, with increasing magnetic field similar to what was observed in [76–79]. In the case

of a finite density or finite f , the blackhole phase extends to large dimensionless masses,

i.e. vanishing temperature and the Minkowski phase splits into two metastable phases that

extend to large mass or vanishing temperature. This deformation is smooth, and at small

values of ρ̃ and f the blackhole phase tracks closely the Minkowski phase, and hence we

find a transition between two different blackhole phases. At larger ρ̃, f , this transition

disappears and also the two Minkowski phases split further — one remains approximately

unchanged and the other one approaches the blackhole phase. The phase transition, or

minimum mass/largest temperature of the Minkowski phase shifts towards lager masses,

approximately m̃crit. ∝
√
ρ̃,
√
f .

We then studied the results for the response functions. To do so, we considered fixed

mass, and quantities made dimensionless with the appropriate powers of the combination

2
√

2/λMq, rather than πT . First, we looked at the entropy and found that the blackhole

phase has higher entropy than the Minkowski phase, as expected since it is dominated by

free quarks rather than mesons in the Minkowski phase. The entropy vanishes at vanishing

temperature within the limitations of numerical accuracy, except for the blackhole phase

at finite density, where there is some “ground state degeneracy”. We also demonstrated

how the phase diagram gets mapped in this parametrization of fixed mass; e.g. the phase

transition at large magnetic fields is at T ∝
√
B.

Overall, in the high temperature regime, the effect of fixed B and ρ disappears, because

the relevant parameters are the dimensionless B̃ and ρ̃ that scale ∝ T−2, but the effect of

fixed f obviously remains. The behavior in this regime is verified to be consistent with the

massless limit.

At small temperatures, there are a few interesting effects. At finite f the crossover

between the blackhole phases disappears and one of the Minkowski phases is very similar to

the blackhole phase. For the magnetic response, we find that at finite f , the defect seems

to become magnetized at vanishing temperature, as the susceptibility diverges at small

temperatures and vanishing magnetic field but is finite and constant at finite magnetic

fields. In the Minkowski phase, it becomes large, but finite. A similar behavior occurs

with the response to the density, where the “density of states”, the inverse of the second

derivative of the free energy, vanishes. Certainly, it would be interesting to see whether

there is a spontaneous symmetry breaking at vanishing temperature and finite Mq and f ,

but this is beyond the scope of this paper.

At ρ = B = f = 0 and in the presence of finite magnetic fields, the density of states

below the phase transition is small but finite and approximately temperature independent

and increases with increasing magnetic field. The susceptibility is also approximately
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constant, but of O(1) and decreases consistent with the magnetic saturation effects. In the

case of finite density, the density of states is also O(1) and approximately constant at low

temperatures, increasing with increasing density consistent with saturation effects and the

susceptibility is finite and increases with decreasing temperature in a smooth continuation

of the high temperature behavior.

A big surprise however happens for the heat capacity, which vanishes at finite ρ with

decreasing temperatures more quickly and at larger temperatures than expected for the

general T 2 behavior. This is particularly interesting in the context of the unusual embed-

ding in this regime. Rather than at Ψ0 → 1, i.e. the limit that the probe brane intersects

the horizon only at a point, we obtain T → 0 at fixed Mq and ρ at some smaller value of Ψ0.

This arises because of a coincidence in the dimensionless scaling of the quark mass Mq/T ∝
√

ρ/T 2 at small temperatures, with a proportionality constant depending on Ψ0 and hence

relating ρ/M2
q to Ψ0. Physically, this means that the brane has a higher effective tension,

i.e. becomes “stiffer” as we decrease the temperature at fixed ρ, i.e. as we increase ρ/T 2 in

such a way that there is a limiting “straight” embedding at fixed Ψ0 as we decrease the tem-

perature at fixed mass, i.e. as we increaseMq/T . It would be very interesting to explore this

new behavior further, but we will postpone this to future research as the methods used for

this paper are not suitable and break down at small, but finite temperatures in this regime.
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