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1 Introduction

Higher dimensional gravity and especially black holes in higher dimensional spacetimes

became established and very active area of research. Higher dimensional black holes ex-

hibit very interesting properties and features some of which are completely absent in four

dimensions. Of particular interest are the black holes in spacetimes with compact extra

dimensions (with circle topology in most cases) known as Kaluza-Klein black holes. More

precisely, a five dimensional spacetime M (the case we consider here) is called Kaluza-

Klein spacetime if it is asymptotically M4 ×S1 where M4 is the 4-dimensional Minkowski

spacetime. Very recently the uniqueness theorem for vacuum Kaluza-Klein black holes was

established in [1]. This theorem gives complete classification of the possible horizon topolo-

gies and classification of the black solutions on the basis of the so-called interval (rod)1

1With regard to the general concept of rod structure we refer the reader to [2]. More precise mathematical

definition of the rod structure (the so called interval structure) can be found in [1].
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structure. Some exact Kaluza-Klein black hole solutions2 have also been constructed [2]–

[7]. Among them are the solutions describing sequences of static vacuum black holes and

bubbles [3]–[4] which are of particular interest in the context of the present paper. We also

refer the reader to the review article [17] where the Kaluza-Klein black holes are consid-

ered from different perspectives. Nevertheless, the known exact Kaluza-Klein black hole

solutions are far from being exhaustive. The thermodynamics of Kaluza-Klein black holes

in the presence of Maxwell field is also interesting to be studied. Especially in the case of

black rings the thermodynamics exhibits a novel feature - the (local) dipole charge appears

together with its corresponding potential in the first law [19]. Moreover, new terms related

to the magnetic flux appear in the Smarr-like relations and the first laws for Kaluza-Klein

black holes with Maxwell field along the compact dimension [20].

In the present paper we are dealing with sequences of 5D Kaluza-Klein bubbles and

black rings in the presence of self-gravitating Maxwell field. While in the static vacuum

case the construction of such configurations can be done in relatively simple way by solving

linear equations, in the presence of self-gravitating Maxwell field, the construction of such

configurations is much more difficult since we are forced to solve nonlinear equations. In

this paper we construct new exact solutions to the 5D Einstein-Maxwell gravity describing

sequences of dipole black rings and Kaluza-Klein bubbles. The solutions are generated

by 2-soliton transformations from vacuum black ring - bubble configurations. The basic

physical quantities characterizing the new solutions are computed. We also derive the

Smarr-like relations and the mass and tension first laws for such configurations of dipole

black rings and Kaluza-Klein bubbles in the general case.

2 Solution generating method and the exact solutions

2.1 Solution generating method

In five dimensions the Einstein-Maxwell equations read

Rµν =
1

2

(

FµλF
λ
ν − 1

6
FσλF

σλgµν

)

, (2.1)

∇µF
µν = ∇[µFνλ] = 0.

In this paper we consider 5D EM gravity in spacetimes with the symmetry group

R ×U(1)2 generated by the commuting Killing fields ξ, ζ and η. Here ξ is the asymptotically

timelike Killing field and ζ and η are the axial Killing fields, respectively. The Killing field

η will be associated with the compact dimension. We also assume that all the Killing fields

are hypersurface orthogonal. In this case, using adapted coordinates in which ξ = ∂/∂t,

ζ = ∂/∂ψ and η = ∂/∂φ, the 5D spacetime metric can be written in the form

ds2 = −e2χ−udt2 + e−2χ−uρ2dψ2 + e−2χ−ue2Γ
(

dρ2 + dz2
)

+ e2udφ2 (2.2)

where all the metric functions depend on the canonical coordinates ρ and z only.

2It is worth mentioning that there are interesting Kaluza-Klein black hole solutions which have an

asymptotic different from the standard one M
4
× S1. For explicit examples we refer the reader to [8]–[16].
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For the electromagnetic field we impose the following conditions

LξF = LζF = LηF = 0, (2.3)

iξF = iζF = iη ⋆ F = 0,

where ⋆ is the Hodge dual, LX denotes the Lie derivative along the vector field X and iX
is the interior product of the vector field X with an arbitrary form. From a local point of

view these conditions mean that the gauge potential3 A has the local form A = Aφdφ.

The 1-form iηF is invariant under the spacetime symmetries and therefore can be

considered as 1-form on the factor space M̂ = M/R × U(1)2. Since the factor space

is simply connected [1] and iηF is closed (diηF = 0) there exists a globally well-defined

potential λ such that

iηF = −dλ. (2.4)

It is worth mentioning that locally we have λ = Aφ up to a constant.

Further we introduce the complex Ernst potential E defined by

E = eu +
i√
3
λ. (2.5)

With the help of the Ernst potentials the dimensionally reduced 5D Einstein-Maxwell

equations can be written in the following form

(E + E∗)
(

∂2
ρE + ρ−1∂ρE + ∂2

zE
)

= 2 (∂ρE∂ρE + ∂zE∂zE) ,

∂2
ρχ+ ρ−1∂ρχ+ ∂2

zχ = 0, (2.6)

ρ−1∂ρΓ = (∂ρχ)2 − (∂zχ)2 +
3

(E + E∗)2
(∂ρE∂ρE∗ − ∂zE∂zE∗) ,

ρ−1∂zΓ = 2∂ρχ∂zχ+
6

(E + E∗)2
∂ρE∂zE∗.

The consistency conditions for the last two equations in (2.6), i.e. the equations for

the metric function Γ, are guaranteed by the first two equations in (2.6).

In this way we reduced the problem of solving the 5D EM equations to two effective

4D problems, i.e. two Ernst equations. The central and most difficult task is to solve the

nonlinear Ernst equation. Here we will not discuss in detail the methods for solving the

Ernst equation. Instead we shall present the working formulas we need. Details can be

found in [18].

Let us consider a solution to the vacuum 5D Einstein equations

ds2E = gE00dt
2 + gEψψdψ

2 + gEρρ(dρ
2 + dz2) + gEφφdφ

2 (2.7)

with metric function gEφφ given by

gEφφ = e2u0 =

N
∏

i=1

(

e2Ũνi
)ǫi

, (2.8)

3In the presence of dipole (magnetic) charges the gauge potential is not globally well-defined [19].
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where

e2Ũνi = Rνi + ζνi =
√

ρ2 + ζ2
νi + ζνi =

√

ρ2 + (z − νi)2 + (z − νi) (2.9)

and νi and ǫi are constants.

The 2-soliton transformation generates the following solution to the 5D Einstein-

Maxwell equations from the vacuum solution (2.7)

ds2 =
gE00
W
dt2 +

gEψψ
W

dψ2 +
Y3

W
gEρρ(dρ

2 + dz2) +W 2gEφφdφ
2, (2.10)

λ = 4
√

3∆keu0
[Rk1a(1 + b2) +Rk2b(1 + a2)]

W2
+ λ0,

where k1, k2 (∆k = k1 − k2) and λ0 are constants. Without loss of generality we put

λ0 = 0. The functions included in (2.10) are presented below. The functions a and b are

given by

a = α
N
∏

i=1

(

e2Uk1 + e2Ũνi

eŨνi

)ǫi

,

b = β

N
∏

i=1

(

e2Uk2 + e2Ũνi

eŨνi

)−ǫi

,

where α and β are constants and

e2Uki = Rki − ζki =
√

ρ2 + (z − ki)2 − (z − ki). (2.11)

The function W is presented in the form

W =
W1

W2
(2.12)

where

W1 =
[

(Rk1 +Rk2)
2 − (∆k)2

]

(1 + ab)2 +
[

(Rk1 −Rk2)
2 − (∆k)2

]

(a− b)2, (2.13)

W2 = [(Rk1 +Rk2 + ∆k) + (Rk1 +Rk2 − ∆k)ab]2

+ [(Rk1 −Rk2 − ∆k)a− (Rk1 −Rk2 + ∆k)b]2 .

For the function Y we have

Y = Y0
W1

(Rk1 +Rk2)
2 − (∆k)2

e2h (2.14)

where Y0 is a constant and

h = γk1,k1 − 2γk1,k2 + γk2,k2 +
N
∑

i

ǫi (γk1,νi − γk2,νi) , (2.15)

γk,l =
1

2
Ũk +

1

2
Ũl −

1

4
ln[RkRl + (z − k)(z − l) + ρ2]. (2.16)
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Figure 1. Rod structure of the bubble - black ring sequence

Before closing this subsection we should explain the following. The 2-soliton trans-

formation involves two parameters k1 and k2 but one of them can be absorbed by a shift

z → z + constant under which the ”electromagnetic part” of the field equations is in-

variant. We prefer to keep using the two parameters k1 and k2 but those readers who feel

unconformable with these parameters may think that parameters k1 and k2 are appropriate

functions only of ∆k and examples will be given below (see eq. (3.2)).

2.2 The exact solutions

In order to generate the solutions to the 5D Einstein-Maxwell equations describing sequence

of dipole black rings and Kaluza-Klein (KK) bubbles we take as a seed the vacuum solution

describing neutral black rings4 on KK bubbles constructed in [4]. More precisely this

solution describes a sequence of q black rings and p = q+ 1 KK bubbles in the form bubble

– black ring – bubble – black ring – ... – bubble – black ring – bubble with rod structure

shown on figure (1). There are q finite rods [a2, a3], [a4, a5], ...., [aN−2, aN−1] corresponding

to the black ring horizons and p finite rods [a1, a2], [a3, a4], ..., [aN−1, aN ] corresponding to

the KK bubbles, i.e. the axes of the Killing vector ∂/∂φ. The semi-infinite rods [−∞, a1]

and [aN ,+∞] describe the axes of the Killing vector ∂/∂ψ. The number N is even and

is given by N = 2(q + 1). For simplicity we will confine here to the particular case of

one black ring surrounded by two KK bubbles, i.e. we will consider q = 1 and p = 2.

The generalization to sequences consisting of arbitrary number of bubbles and black rings

is straightforward and it is presented in appendix A. The explicit analytical form of the

solution in the specified case is the following

gE00 = −(Ra2 − ζa2)

(Ra3 − ζa3)
= −

3
∏

i=2

(

e2Uai
)(−1)i

, (2.17)

gEφφ =
(Ra1 − ζa1)(Ra3 − ζa3)

(Ra2 − ζa2)(Ra4 − ζa4)
=

4
∏

i=1

(

e2Uai
)(−1)i+1

, (2.18)

gEψψ = (Ra1 + ζa1)(Ra4 − ζa4), (2.19)

gEρρ =
Y14Y23

4Ra1Ra2Ra3Ra4

√

Y12Y34

Y24Y13

Ra4 − ζa4
Ra1 − ζa1

, (2.20)

4It should be noted that the topology of the black rings is S2
×S1 where S1 is not topologically supported,

i.e. S1 is associated with the orbits of ζ and is not the Kaluza-Klein circle. This can be seen from the rod

diagram (1).
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where

Yij = RaiRaj + ζaiζaj + ρ2. (2.21)

Taking into account that

e2Uai = ρ2e−2Ũai (2.22)

and
∑N

i=1(−1)i+1 = 0 for even N , it is not difficult to see that

gEφφ =

4
∏

i=1

(

e2Ũai
)(−1)i

. (2.23)

For the seed solution under consideration we find

a = α
4
∏

i=1

(

e2Uk1 + e2Ũai

eŨai

)(−1)i

, (2.24)

b = β

4
∏

i=1

(

e2Uk2 + e2Ũai

eŨai

)(−1)i+1

. (2.25)

3 Analysis of the solution

The investigation of the solution shows that the functions W , Y and λ, under some condi-

tions discussed below, are regular everywhere for the following ordering of the parameters

a2m−1 < k2 < k1 < a2m (3.1)

wherem = 1, 2. In other words the parameters k1 and k2 must lie on any of the bubble rods.

A convenient choice for the parameters k1 and k2 is the following

k1 =
a2m + a2m−1

2
+

1

2
∆k, (3.2)

k2 =
a2m + a2m−1

2
− 1

2
∆k.

There are potential singularities in the functions W and Y for z = k1 and z = k2. In

order to eliminate these potential singularities we must impose

α2 =

2m−1
∏

i=1

(k1 − ai)
(−1)i+1

4
∏

j=2m

(aj − k1)
(−1)j+1

, (3.3)

β2 =
2m−1
∏

i=1

(k2 − ai)
(−1)i

4
∏

j=2m

(aj − k2)
(−1)j . (3.4)
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3.1 Asymptotics

In order to study the asymptotic behavior of the solution we introduce the asymptotic

coordinates r and θ defined by

ρ = r sin θ, z = r cos θ.

Then in the asymptotic limit we find

gE00 ≈ −1 +
1

r

q=1
∑

s=1

(a2s+1 − a2s) = −1 +
cEt
r
, (3.5)

gEψψ ≈ r2 sin2 θ, (3.6)

gEφφ ≈ 1 − 1

r

p=2
∑

s=1

(a2s − a2s−1) = 1 +
cEφ
r
, (3.7)

gEρρ ≈ 1, (3.8)

W ≈ 1 − 1 − αβ

1 + αβ

∆k

r
, (3.9)

Y ≈ Y0(1 + αβ)2, (3.10)

λ ≈
√

3
α+ β

1 + αβ

∆k

r
. (3.11)

In order for our solution to be asymptotically Kaluza — Klein we must impose

Y0 =
1

(1 + αβ)2
. (3.12)

3.2 Balance conditions

Let us first consider the semi-infinite rods corresponding to the axes of the Killing vector

∂/∂ψ. The regularity conditions then give the following period of ψ

∆ψ = 2π lim
ρ→0

√

ρ2gρρ
gψψ

= 2π. (3.13)

For any bubble rod [a2m−1, a2m],m = 1, 2 corresponding to an axis of the Killing vector

∂/∂φ the regularity condition gives

(∆φ)Rod[a2m−1 ,a2m] = 2π lim
ρ→0

√

ρ2gρρ
gφφ

=

( Y
W

)3/2

Rod[a2m−1,a2m]

(∆φ)ERod[a2m−1 ,a2m] (3.14)

where

(∆φ)ERod[a1,a2] = 4π(a4 − a1)

√

a2 − a1

a3 − a1
,

(∆φ)ERod[a3,a4] = 4π(a4 − a1)

√

a4 − a3

a4 − a2
, (3.15)

– 7 –
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are the periods for the seed solution corresponding to the two bubble rods, and

( Y
W

)

Rod[a1,a2]

=





1 + αβ
(

k2−a1
k1−a1

)

1 + αβ





2
(

k1 − a1

k2 − a1

)

,

( Y
W

)

Rod[a3,a4]

=





1 + αβ
(

a4−k1
a4−k2

)

1 + αβ





2
(

a4 − k2

a4 − k1

)

.

Then we obtain two balance conditions

(∆φ)Rod[a2m−1 ,a2m] = L, m = 1, 2. (3.16)

The parameters can be adjusted in appropriate way so that the balance conditions

be satisfied.

3.3 Dipole charge

The dipole charge associated with the black ring is defined as

Q =
1

2π

∫

S2
H

F (3.17)

where S2
H is the 2-sphere of the black ring horizon.

When we calculate the charge of the black ring horizon for our solution we have to

consider two separate cases, i.e. when the parameters of the soliton transformation k1 and

k2 belong to the first bubble rod a1 < ki < a2 or to the second bubble rod a3 < ki < a4.

We find the following expressions

a1 < ki < a2 (3.18)

Q =

L
√

3β∆k(a3 − a2)(a2 − k2)
−1(a4 − k2)

−1

[

1 + αβ
∏4
i=3

(

ai−k1
ai−k2

)(−1)i
]

2π
[

1 + αβ
(

a4−k1
a4−k2

)]

[

1 + αβ
∏4
i=2

(

ai−k1
ai−k2

)(−1)i
] ,

a3 < ki < a4 (3.19)

Q = −
L
√

3α∆k(a3 − a2)(k1 − a1)
−1(k1 − a3)

−1

[

1 + αβ
∏2
i=1

(

ai−k1
ai−k2

)(−1)i
]

2π
[

1 + αβ
(

k2−a1
k1−a1

)]

[

1 + αβ
∏3
i=1

(

ai−k1
ai−k2

)(−1)i
] .

3.4 Dipole potential and magnetic fluxes

If we consider the dual field H defined by H = ⋆F and more precisely

iζiξH = iζiξ ⋆ F, (3.20)

we can show (see the next section) that there exists a potential B such that

iζiξH = dB. (3.21)

– 8 –
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In our case B can be given explicitly by the expression

B =
√

3e−u0
ω̂k1k2
W1

+ CB, (3.22)

where CB is a constant. The constant CB plays no essential role and we set it zero. The

function ωk1k2 is given by [18]

ωk1k2 = [(Rk1 +Rk2)
2−(∆k)2](1 + ab)[(Rk1−Rk2+∆k)b+(Rk1−Rk2−∆k)a]

+[(Rk1−Rk2)2−(∆k)2](b− a)[(Rk1 +Rk2+∆k)−(Rk1 +Rk2−∆k)ab]. (3.23)

The asymptotic behaviour of the potential B is

B ≈
√

3∆k

1 + αβ
[(1 − cos θ)β − (1 + cos θ)α] . (3.24)

Further, we need the value of the potential B on the black ring horizon and on the

axes of the Killing field ζ = ∂/∂ψ. After some algebra we find

BH = −2
√

3α∆k
∏4
i=3(ai − k1)

(−1)i

[

1 + αβ
∏4
i=3

(

ai−k1
ai−k2

)(−1)i
] , a1 < ki < a2 (3.25)

BH =
2
√

3β∆k
∏2
i=1(k2 − ai)

(−1)i+1

[

1 + αβ
∏2
i=1

(

ai−k1
ai−k2

)(−1)i
] , a3 < ki < a4,

B+ = BRod[z4,+∞] = −2
√

3∆k
α

1 + αβ
, (3.26)

B− = BRod[−∞,z1] = 2
√

3∆k
β

1 + αβ
. (3.27)

The magnetic fluxes Ψ+ and Ψ− are defined in the next section - see the discussion

around eqs. (4.27) and (4.29). For our exact solution we find

Ψ+ = L

√
3∆kβ(a4 − k2)

−1

[

1 + αβ a4−k1a4−k2

] , (3.28)

Ψ− = −L
√

3∆kα(k1 − a1)
−1

[

1 + αβ k2−a1k1−a1

] . (3.29)

The quantities BH, B+, B−, Ψ+ and Ψ− play important role in the Smarr-like relations

and the mass and tension first laws as we will see in the next section.

3.5 Mass and tension

The ADM mass and the tension can be calculated from the asymptotic expansion of

the metric

M =
1

4
L(2cEt − cEφ ) =

L

LE
ME , (3.30)

T L =
1

4
L(cEt − 2cEφ ) +

3

4
L

1 − αβ

1 + αβ
∆k = T E L

LE
+

3

4
L

1 − αβ

1 + αβ
∆k, (3.31)

here T E and LE are the tension and the length of the Kaluza-Klein circle at infinity

corresponding to the seed solution.

– 9 –



J
H
E
P
0
1
(
2
0
1
0
)
0
4
8

3.6 Temperature and entropy

The temperature of the event horizon is given by

T =
1

2π
lim
ρ→0

√

−gtt
ρ2gρρ

. (3.32)

Applying this formula to our solution we find

T = Y−3/2
H TE, (3.33)

where

YH =







1 + αβ
∏4
i=3

(

ai−k1
ai−k2

)(−1)i

1 + αβ







2

4
∏

i=3

(

ai − k2

ai − k1

)(−1)i

and

TE =
1

4π

√
a4 − a2

√
a3 − a1

(a4 − a1)(a3 − a2)
(3.34)

is the temperature of the event horizon for the seed solution and the metric function Y is

evaluated on the horizon rod a2 < z < a3.

Further we can find the black ring entropy.

S = Y3/2
H SE

(

L

LE

)

. (3.35)

Again

SE =
LE

4TE
(a3 − a2) (3.36)

is the entropy corresponding to the seed solution.

3.7 Mirror solutions

The solutions with ki placed on different bubble rods are related by a discrete symmetry

described below. For a given solution with parameters a1, a2, a3, a4, k1, k2 where a1 < ki <

a2, we can find a ”mirror” solution which has the same mass and opposite charge. The

parameters a ′
1, a

′
2, a

′
3, a

′
4, k

′
1, k

′
2 of this ”mirror” solution are given by the transformations

(k2 − a1) → (a ′
4 − k ′

1),

(a2 − k1) → (k ′
2 − a ′

3),

(a4 − a3) → (a ′
2 − a ′

1), (3.37)

(a3 − a2) → (a ′
3 − a ′

2),

(k1 − k2) → (k ′
1 − k ′

2),

where a ′
3 < k ′

i < a ′
4. The physical quantities of the mirror solution are given by

M ′ = M, L ′ = L, T ′ = T , S ′ = S, T ′ = T, (3.38)

Q ′ = −Q, Ψ ′+ = −Ψ−, Ψ ′− = −Ψ+,B ′+ = −B−, B ′ − = −B+.
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We can also consider a mirror solution of second kind. This solution is obtained from

the mirror solution by reversing the sign of the electromagnetic potential, i.e. λ ′′ = −λ ′ =

−λ. For the mirror solution of the second kind we have

M ′′ = M, L ′′ = L, T ′′ = T , S ′′ = S, T ′′ = T, (3.39)

Q ′′ = Q, Ψ ′′+ = Ψ−, Ψ ′′ − = Ψ+,B ′′+ = B−, B ′′− = B+.

3.8 Parameter counting

Our solutions are characterized by 4 parameters - the lengths of the three finite rods and

∆k. For a given length L of the KK circle at infinity we have 2 constraints coming from

the balance conditions. Therefore we are left with 2 parameters for the regular solutions.

This means that the regular solutions are characterized by two independent parameters

which can be chosen to be the mass M and the dipole charge Q. Let us note, however,

that the solutions in the general case are not uniquely specified by the mass and the dipole

charge. There are different solutions which can have the same mass and dipole charge —

for example, a given solution and its mirror solution of second kind have the same mass

and dipole charge.

The full classification of the KK black holes with dipole charges exceeds the scope of

this paper. This question was briefly discussed in [20] where it was pointed out that the

dipole KK black holes (with electromagnetic field along the compact dimension) can clas-

sified by the rod structure, the dipole charges and also by the magnetic flux(es). Detailed

consideration of the classification will be presented elsewhere.

4 Smarr-like relations and first laws for the mass and the tension

In this section we derive the Smarr-like relations and first laws for the mass and the tension

for the configurations under consideration. Our derivation will be done for the more general

case of 5D Einstein-Maxwell-dilaton gravity given by the field equations

Rµν = 2∂µϕ∂νϕ+
1

2
e−2γϕ

(

FµσF
σ
ν − 1

6
gµνFλσF

λσ

)

,

∇µ

(

e−2γϕFµν
)

= 0, ∇[σFµν] = 0, (4.1)

∇µ∇µϕ = −γ
8
e−2γϕFσλF

σλ,

where Rµν is the Ricci tensor for the spacetime metric gµν , Fµν is the Maxwell tensor, ϕ is

the dilaton field and γ is the dilaton coupling parameter. For γ = 0 (and ϕ = 0) we obtain

the 5D Einstein-Maxwell equations.

4.1 Smarr-like relations

In order to derive the Smarr-like relations we shall use the generalized Komar integrals [21]

in the form presented in [20]. The generalized Komar integrals are given by

M = − L

16π

∫

S2
∞

[2iη ⋆ dξ − iξ ⋆ dη] , (4.2)

T = − 1

16π

∫

S2
∞

[iη ⋆ dξ − 2iξ ⋆ dη] , (4.3)
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where the integration is performed over the 2-dimensional sphere at the spatial infinity

of M4.

The generalized Komar integrals allow us to define the intrinsic mass of each object in

the configuration [7]. The intrinsic mass of each black hole is given by

MH
i = − L

16π

∫

Hi

[2iη ⋆ dξ − iξ ⋆ dη] (4.4)

where Hi is the 2-dimensional surface which is an intersection of the i-th horizon with a

constant t and φ hypersurface. Analogously the intrinsic mass of each bubble is

MB
j = − L

16π

∫

Bj

[2iη ⋆ dξ − iξ ⋆ dη] . (4.5)

One can show that the intrinsic masses of the black holes and bubbles are given by

MH
i =

1

2
LlHi , MB

j =
1

4
LlBj , (4.6)

where lHi and lBj are the lengths of the horizon and bubble rods, respectively. It was also

shown in [7] that

MH
i =

1

4π
κHi

AHi
, MB

j =
L

8π
κBjABj , (4.7)

where κHi
and AHi

are the surface gravity and the area of the i-th horizon and the surface

gravity and area of j-th bubble. The surface gravity and the area for a bubble were first

introduced in [22]. The bubble surface gravity is defined by

κ2
B =

1

2
∇[µην]∇[µην] (4.8)

where the right hand side is evaluated on the bubble. The reader might consult [22] for

other equivalent definitions. The bubble area is given by

AB =

∫

B

√

|gtt|gρρgψψ dzdψ. (4.9)

For regular (smooth) bubbles (i.e. bubbles without conical singularities), the case we

consider here, one can show that

κB =
2π

L
. (4.10)

Using Stokes theorem the tension can be represented as a bulk integral over a constant

t and φ hypersurface Σ and surface integrals over the black hole horizons and bubbles

T L = − L

16π

∑

i

∫

Hi

(iη ⋆ dξ − 2iξ ⋆ dη) −
L

16π

∑

j

∫

Bj

(iη ⋆ dξ − 2iξ ⋆ dη) (4.11)

− L

16π

∫

Σ
d (iη ⋆ dξ − 2iξ ⋆ dη)
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where we have taken into account that ∂Σ = S2
∞−∑iHi−

∑

j Bj. Using the definitions (4.4)

and (4.5), the Killing symmetries and the identity d ⋆ dξ = 2 ⋆R[ξ] for an arbitrary Killing

field, we have

T L =
1

2

∑

i

MH
i + 2

∑

j

MB
j +

L

8π

∫

Σ
(iη ⋆ R[ξ] − 2iξ ⋆ R[η]) (4.12)

where R[X] is the Ricci 1-form5 with respect to the vector field X. Making advantage of

the field equations (4.1) we obtain

⋆ R[ξ] = −1

2
e−2γϕ

(

−2

3
iξF ∧ ⋆F +

1

3
F ∧ iξ ⋆ F

)

(4.13)

and the same expression for ⋆R[η], however with ξ replaced by η. Hence we find

iη ⋆ R[ξ] − 2iξ ⋆ R[η] =
1

2
e−2γϕiηF ∧ iξ ⋆ F (4.14)

and therefore

T L =
1

2

∑

i

MH
i + 2

∑

j

MB
j +

L

16π

∫

Σ
e−2γϕiηF ∧ iξ ⋆ F. (4.15)

Using now the invariance under the Killing field ζ we can write

∫

Σ
e−2γϕiηF ∧ iξ ⋆ F = 2π

∫

M̂
iζ
[

e−2γϕiηF ∧ iξ ⋆ F
]

(4.16)

where M̂ = M/U(1)2 ×R = Σ/U(1) is the factor space. For iζiηF we have

diζiηF = iζ iηdF + iζLηF − iηLζF = 0 (4.17)

and taking into account that iζiηF vanishes on the axes of η and ζ we conclude that

iζ iηF = 0 everywhere. Hence we find

∫

Σ
e−2γϕiηF ∧ iξ ⋆ F = 2π

∫

M̂
iζ
[

e−2γϕiηF ∧ iξ ⋆ F
]

(4.18)

= −2π

∫

M̂
e−2γϕiηF ∧ iζiξ ⋆ F.

As a consequence of the field equations and the spacetime symmetries we have

d[e−2αϕiζiξ ⋆ F ] = 0. Since the factor space is simply connected [1] there exists a globally

well-defined potential B on M̂ such that e−2αϕiζiξ ⋆ F = dB. With this in mind we obtain

∫

Σ
e−2γϕiηF ∧ iξ ⋆ F = −2π

∫

M̂
e−2γϕiηF ∧ iζ iξ ⋆ F (4.19)

= 2π

∫

M̂
d[BiηF ] = 2π

∫

∂M̂
BiηF.

5We recall that the Ricci 1-form R[X] is defined by R[X] = RµνX
µdxν.
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The next step is to calculate the integral on the boundary of the factor space which

formally can be presented in the following way ∂M̂ = Arc(∞)+Rodψ(−∞, z1]+
∑

iRod−
Horizoni+

∑

j Rod−Bubblej +Rodψ[z2N ,+∞), where Arc(∞) is the upper infinite semi-

circle. It can be shown that for an upper semi-circle with radius R we have

∫

Arc(R)
BiηF ∼ 1

R
(4.20)

which means that this integral does not give any contribution in the limit R → ∞. The

same is true for the integral on the bubble rods since the Killing field η vanishes on them.

In this way we find

∫

∂M̂
BiηF =

∫

Rodψ(−∞,z1]
BiηF +

∫

Rodψ [z2N ,∞]
BiηF +

∑

i

∫

Rod−Horizoni

BiηF. (4.21)

One can prove that the potential B is constant on the horizon rods, therefore

∑

i

∫

Rod−Horizoni

BiηF =
∑

i

Bi
∫

Rod−Horizoni

iηF =
∑

i

Bi
L

∫

S2
Hi

F =
∑

i

2πBi
L

Qi (4.22)

where

Qi =
1

2π

∫

S2
Hi

F (4.23)

is the magnetic (dipole) charge associated with the i-th horizon. In order to prove that B
is constant on the horizons we consider the following chain of equalities

< e−2γϕiζiξ ⋆ F, e
−2γϕiζiξ ⋆ F >= −e−4γϕ < ξ ∧ (F ∧ ζ), ξ ∧ (F ∧ ζ) >=

−e−4γϕ < ξ, ξ >< F ∧ ζ, F ∧ ζ > +e−4γϕ < iξ(F ∧ ζ), iξ(F ∧ ζ) > (4.24)

where <,> denotes the inner product of two forms of the same degree. Further we should

take into account that iξ(F ∧ ζ) = 0 since Killing fields ξ and ζ are orthogonal and in our

case iξF = 0. In this way we find

< e−2γϕiζiξ ⋆ F, e
−2γϕiζiξ ⋆ F > = −e−4γϕ < ξ, ξ >< F ∧ ζ, F ∧ ζ > (4.25)

= −e−4γϕ < ξ, ξ >< ζ, ζ >< F,F >

which shows that e−2γϕiζiξ ⋆F is null on the horizons where < ξ, ξ >= g(ξ, ξ) = 0. Taking

into account also that e−2γϕiζiξ ⋆ F is orthogonal to ξ (by definition) we conclude that

e−2γϕiζiξ ⋆F is proportional to ξ on the horizons, i.e. e−2γϕiζiξ ⋆F = Λξ (on the horizons).

For arbitrary vector field u tangent to a given horizon we have iudB = LuB = Λiuξ = 0

which shows that B is indeed constant on the horizons.

Let us now consider the integrals on the semi-infinite rods of the axis of ζ. The potential

B is constant on the axes of ζ and this follows directly from the definition of the potential

B. To be specific we will consider Rodψ[a2N ,+∞). In the next step we follow [20] and

define C+ to be the 2-dimensional surface generated from the path [a2N ,∞) by acting with

– 14 –



J
H
E
P
0
1
(
2
0
1
0
)
0
4
8

the isometry generated by η. Since η|a2N = 0 the 2-surface C+ has disk topology. Then

we have

∫

Rodψ [z2N ,∞]
BiηF = B+

∫

Rodψ [a2N ,∞)
iηF =

B+

L

∫

C+

F =
B+

L
Ψ+ (4.26)

where B+ = B|Rodψ[a2N,+∞)
and we have introduced the magnetic flux through the 2-surface

C+ defined by

Ψ+ =

∫

C+

F. (4.27)

Analogously we obtain

∫

Rodψ(−∞,a1]
BiηF =

B−

L
Ψ− (4.28)

where

Ψ− =

∫

C−

F (4.29)

is the magnetic flux through the 2-dimensional surface C− generated from (−∞, a1] by

acting with the isometry generated by η and B− = B|Rodψ[−∞,a1)
.

Summarizing the results so far we obtain

∫

Σ
e−2αϕiηF ∧ iξ ⋆ F = 2π

∫

∂M̂
BiηF =

∑

i

4π2Bi
Qi
L

+ 2πB+ Ψ+

L
+ 2πB−Ψ−

L
(4.30)

or equivalently

T L =
1

2

∑

i

MH
i + 2

∑

j

MB
j +

∑

i

π

4
BiQi +

1

8
B+Ψ+ +

1

8
B−Ψ−. (4.31)

The magnetic fluxes Ψ+ and Ψ− are related via the equation

Ψ+ + Ψ− = −2π
∑

i

Qi. (4.32)

This follows from the following chain of equalities

0 = L

∫

M̂
diηF = L

∫

∂M̂
iηF = L

∫

Rod(−∞,a1]
iηF + L

∑

i

∫

RodHorizoni

iηF (4.33)

+L
∑

j

∫

RodBubblej

iηF + L

∫

Rod[a2N ,+∞)
iηF = Ψ+ + 2π

∑

i

Qi + Ψ−.

Using this constraint and defining

Ψ =
1

2
(Ψ+ − Ψ−) (4.34)
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we find

L

16π

∫

Σ
e−2γϕiηF ∧ iξ ⋆ F = 2π

∫

∂M̂
BiηF (4.35)

=
∑

i

π

4

(

Bi −
1

2
B+ − 1

2
B−

)

Qi +
1

8
(B+ − B−)Ψ

which substituted in (4.15) gives the desired Smarr-Like relation for the tension, namely

T L =
1

2

∑

i

MH
i + 2

∑

j

MB
j +

∑

i

π

4

(

Bi −
1

2
B+ − 1

2
B−

)

Qi +
1

8
(B+ − B−)Ψ. (4.36)

Following the same method as for the tension we find

M =
∑

i

MH +
∑

j

MB
j − L

16π

∫

Σ
e−2αϕiξF ∧ iη ⋆ F. (4.37)

which in view of the fact that iξF = 0 gives the Smarr-like relation for the mass

M =
∑

i

MH
i +

∑

j

MB
j . (4.38)

The Smarr-like relations for the mass and the tension were derived for the rod structure

shown on figure 1. It is not difficult one to show that the derived relations also hold for

more general rod structures containing black rings and bubbles.

We have checked explicitly that the derived Smarr-like relations are satisfied for the

exact solution constructed in the present paper.

4.2 Mass and tension first law

Our next goal is to derive the mass and tension first laws for the black configurations under

consideration. In our derivation we shall follow in part our previous work [20] based on

Wald’s approach [23].

Our diffeomorphism covariant theory is derived from the Lagrangian

L = ⋆R − 2dϕ ∧ ⋆dφ− 1

2
e−2γϕF ∧ ⋆F. (4.39)

When the field equations are satisfied, the first order variation of the Lagrangian is given by

δL = dΘ (4.40)

where

dΘ = d ⋆ υ − 4(d ⋆ dϕ)δϕ −
(

e−2γϕ ⋆ F
)

∧ δF (4.41)

and

υµ = ∇νδgµν − gαβ∇µδgαβ . (4.42)

Here δ denotes the first order variation of the corresponding quantity.

– 16 –



J
H
E
P
0
1
(
2
0
1
0
)
0
4
8

The Noether current IX associated with a diffeomorphism generated by an arbitrary

smooth vector field X, as it has been shown in [23], is

IX = Θ(P,LXΓ) − iXL, (4.43)

where the fields gµν , F, ϕ are collectively denoted by P . The current IX satisfies dIX = 0

when the field equations are satisfied. Since IX is closed there exists a 3-form NX (Noether

charge 3-form) such that I = dNX .

Now, let P be a solution to the field equations (4.1) and let δP be a linearized per-

turbation satisfying the linearized equations of the Einstein-Maxwell-dilaton gravity. For

simplicity we will also assume that LξδP = LηδP = LζδP = 0. Then, choosing X to be a

Killing field one can show that [23]

δdNX = diXΘ. (4.44)

In the case under consideration we need the Noether forms N ξ and N η. After some

calculations it can be shown that they are given by

N ξ = − ⋆ dξ, (4.45)

N η = − ⋆ dη − λ
(

e−2γϕ ⋆ F
)

, (4.46)

where the potential λ is defined by iηF = −dλ (see eq. (2.4)).

In fact what we need are the 2-forms iηN ξ and iξN η [20]. For them one can show that

δ
(

diηN ξ
)

= diηiξΘ, δ (diξN η) = −diηiξΘ. (4.47)

It turns out useful to combine (4.47) to a single equality

δ
(

2diηN ξ − diξN η
)

= 3diηiξΘ. (4.48)

Integrating on Σ we have

δ

∫

Σ

(

2diηN ξ − diξN η
)

= 3

∫

Σ
diηiξΘ. (4.49)

Calculations very similar to those in deriving the Smarr-like relations give the following

result for the integral on the left hand side of (4.49)

∫

Σ

(

2diηN ξ − diξN η
)

= −4π2
∑

i

Bi
Qi
L

− 2πB+ Ψ+

L
− 2πB−Ψ−

L
(4.50)

Respectively, for the integral of the right hand side of (4.49), we obtain (see also [20])

∫

Σ
diηiξΘ = −4π(δct − δcφ) + 16πDδϕ∞ − 2

∑

i

AHi

L
δκHi − 2

∑

j

ABjδκBj

−4π2
∑

i

Biδ
(

Qi
L

)

− 2πB+δ

(

Ψ+

L

)

− 2πB−δ

(

Ψ−

L

)

. (4.51)
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where D is the dilaton charge defined by

D =
1

4π

∫

S2
∞

iηiξ ⋆ dϕ. (4.52)

It is worth noting that the dilaton charge is not an independent characteristic. One can

show that the dilaton charge can be expressed in the form

D = − γ

4πL

[

2π
∑

i

BiQi + B+Ψ+ + B−Ψ−

]

= − γ

4πL

[

2π
∑

i

(

Bi −
1

2
B+ − 1

2
B−

)

Qi +
(

B+ − B−
)

Ψ

]

. (4.53)

Substituting these results in (4.49) we obtain

3

4
(δct − δcφ) = 3Dδϕ∞ − 3

8π

∑

i

AHi

L
δκHi

− 3

8π

∑

j

ABj

L
δκBj

−π
2

∑

i

Biδ
(

Qi
L

)

+
π

4

∑

i

Qi
L
δBi −

1

4
B+δ

(

Ψ+

L

)

+
1

8

Ψ+

L
δB+ (4.54)

−1

4
B−δ

(

Ψ−

L

)

+
1

8

Ψ−

L
δB−.

The next step is to take into account that 3/4(δct−δcφ) = δ(M/L)+δT and to express

δT from the Smarr-like relation (4.31) which gives

δ

(

M

L

)

= 3Dδϕ∞ − 1

2π

∑

i

AHi

L
δκHi

− 1

8π

∑

i

κHi
δ

(AHi

L

)

− 5

8π

∑

j

ABjδκBj

− 1

4π

∑

j

κBj δABj −
3

4
π
∑

i

Biδ
(

Qi
L

)

− 3

8
B+δ

(

Ψ+

L

)

− 3

8
B−δ

(

Ψ+

L

)

. (4.55)

Now using again the Smarr-like relation (4.38) we also find

δ

(

M

L

)

=
1

4π

∑

i

AHi

L
δκHi

+
1

4π

∑

i

κHi
δ

(AHi

L

)

+
1

8π

∑

j

ABjδκBj (4.56)

+
1

8π

∑

j

κBjδABj .

Combining the above equalities (4.55) and (4.56) we obtain

δ

(

M

L

)

= Dδϕ∞ +
∑

i

κHi

8π
δ

(AHi

L

)

− 1

8π

∑

j

ABjδκBj −
π

4

∑

i

Biδ
(

Qi
L

)

−1

8
B+δ

(

Ψ+

L

)

− 1

8
B−δ

(

Ψ−

L

)

(4.57)
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which in view of the relation (4.31) gives

δM = LDδϕ∞ +
∑

i

κHi

8π
δAHi

− 1

8π

∑

j

ABjδ(κBjL) −
∑

i

π

4
BiδQi

−1

8
B+δΨ+ − 1

8
B−δΨ− + T δL. (4.58)

Further taking into account (4.32) and (4.34) we find

δM = LDδϕ∞ +
∑

i

κHi

8π
δAHi

− 1

8π

∑

j

ABjδ(κBjL) −
∑

i

π

4

(

Bi −
1

2
B+ − 1

2
B−

)

δQi

−1

8

(

B+ − B−
)

δΨ + T δL. (4.59)

This is the desired form of the mass first law. For smooth bubbles (the case we consider

here) δ(κBjL) = 0 and the third term in (4.59) gives no contribution. Once having the

mass first law, the tension first law can be easily found and the result is

δT = Dδϕ∞ +
1

8π

∑

j

κBjδABj −
1

8π

∑

i

AHi

L
δκHi

+
∑

i

π

4

Qi
L
δ

(

Bi −
1

2
B+ − 1

2
B−

)

+
Ψ

L
δ

[

1

8
(B+ − B−)

]

. (4.60)

The mass and the tension first laws we derived in this subsection also hold in the

general case not only for the rod structure shown in figure 1. We have checked explicitly

that the mass and tension first laws are satisfied for our exact solutions.

Summarizing, in this section we have derived the mass and tension Smarr-like relations

and the mass and tension first laws. The explicit expressions show that not only the dipole

charge appears together with its (effective) potential [19] but also new terms related to the

magnetic flux are present.

5 Conclusion

In the present paper we have constructed new exact solutions to 5D Einstein-Maxwell

gravity describing sequences of Kaluza-Klein bubbles and dipole black rings. The basic

properties and characteristics of the solutions were calculated and discussed. We also

derived the Smarr-like relations and the mass and tension first laws. The novel feature is

the appearance of the magnetic flux in the Smarr like relations and the first laws. Another

interesting feature is the fact that the effective potential associated with the magnetic flux

involves the values of B on the axes of the non-compact direction.

Future work may involve the inclusion of rotation.
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A Multi black rings and Kaluza-Klein bubbles sequences

The general form of the vacuum solution describing sequences of q dipole black rings and

p = q + 1 Kaluza-Klein bubbles is [4]

gE00 = −
N−1
∏

i=2

(Rai − ζai)
(−1)i = −

N−1
∏

i=2

(

e2Uai
)(−1)i

, (A.1)

gEφφ =
N
∏

i=1

(Rai − ζai)
(−1)i+1

=
N
∏

i=1

(

e2Ũai
)(−1)i

, (A.2)

gEψψ = (Ra1 + ζa1)(RaN − ζaN ), (A.3)

gEρρ =
Y1N

2N/2

(

N
∏

i=1

1

Ri

)





∏

2≤i<j≤N−1

Y
(−1)i+j+1

ij





√

√

√

√

N−1
∏

i=2

(

Y1i

YiN

)(−1)iRaN − ζaN
Ra1 − ζa1

, (A.4)

where

Yij = RaiRaj + ζaiζaj + ρ2. (A.5)

a = α

N
∏

i=1

(

e2Uk1 + e2Ũai

eŨai

)(−1)i

(A.6)

b = β
N
∏

i=1

(

e2Uk2 + e2Ũai

eŨai

)(−1)i+1

(A.7)

The 2-soliton transformation applied to this seed solution produces a solution to the

5D Einstein-Maxwell equations describing a sequence of dipole black rings and KK bubbles.

The functions W , Y and λ are regular everywhere provided parameters k1 and k2 lie

on any of the bubble rods

a2m−1 < k2 < k1 < a2m, (A.8)

where m = 1, 2, ..., N/2, and α and β satisfy

α2 =

2m−1
∏

i=1

(k1 − ai)
(−1)i+1

N
∏

j=2m

(aj − k1)
(−1)j+1

, (A.9)

β2 =
2m−1
∏

i=1

(k2 − ai)
(−1)i

N
∏

j=2m

(aj − k2)
(−1)j . (A.10)

Conical singularities are avoided satisfying p balance conditions on each of the bub-

ble rods

(∆φ)Rod[a2s−1 ,a2s] = L, s = 1, 2, ..., N/2. (A.11)
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where

(∆φ)Rod[a2s−1 ,a2s] = 2π lim
ρ→0

√

ρ2gρρ
gφφ

=

( Y
W

)3/2

Rod[a2s−1,a2s]

(∆φ)ERod[a2s−1 ,a2s]

( Y
W

)

Rod[a2s−1,a2s]

=







1 + αβ
∏2s−1
i=1

(

k1−ai
k2−ai

)(−1)i

1 + αβ







2

2s−1
∏

i=1

(

k2 − ai
k1 − ai

)(−1)i

(∆φ)E is the period for the seed solution given by

(∆φ)ERod[a2s−1 ,a2s]
= 4π(aN − a1)

2s−1
∏

i=2

×
N−1
∏

j=2s

(aj − ai)
(−1)i+j+1

2s−1
∏

i=2

[
√
aN − ai]

(−1)i+1
N−1
∏

i=2s

[
√
ai − a1]

(−1)i .

The general expressions for the dipole charge and dipole potential characterizing the

s-th black ring (m < s) are respectively.

Qs =

L
√

3β∆k∆s(a2s − k2)
−1
∏N
i=2s+2(ai−k2)

(−1)i+1

[

1+αβ
∏N
i=2s+1

(

ai−k1
ai−k2

)(−1)i
]

2π

[

1+αβ
∏N
i=2s

(

ai−k1
ai−k2

)(−1)i
] [

1+αβ
∏N
i=2s+2

(

ai−k1
ai−k2

)(−1)i
] ,

Bs = −2
√

3α∆k
∏N
i=2s+1(ai − k1)

(−1)i

[

1 + αβ
∏N
i=2s+1

(

ai−k1
ai−k2

)(−1)i
] (A.12)

where ∆s denotes the horizon rod length a2s+1 − a2s.

The general expressions for the dipole charge and dipole potential characterizing the

s-th black ring (m > s) are respectively.

Qs = −
L
√

3α∆k∆s(k1 − a2s+1)
−1
∏2s−1
i=1 (k1 − ai)

(−1)i
[

1 + αβ
∏2s
i=1

(

ai−k1
ai−k2

)(−1)i
]

2π

[

1 + αβ
∏2s−1
i=1

(

ai−k1
ai−k2

)(−1)i
] [

1 + αβ
∏2s+1
i=1

(

ai−k1
ai−k2

)(−1)i
] ,

Bs =
2
√

3β∆k
∏2s
i=1(k2 − ai)

(−1)i+1

[

1 + αβ
∏2s
i=1

(

ai−k1
ai−k2

)(−1)i
] (A.13)

where ∆s denotes the horizon rod length a2s+1 − a2s.

Similarly, we find for the temperature and entropy of the s-th black ring.

Ts = Y−3/2
Hs

TEs (A.14)

Ss = Y3/2
Hs
SEs

(

L

LE

)

,

– 21 –



J
H
E
P
0
1
(
2
0
1
0
)
0
4
8

where

YHs =







1 + αβ
∏N
i=2s+1

(

ai−k1
ai−k2

)(−1)i

1 + αβ







2

N
∏

i=2s+1

(

ai − k2

ai − k1

)(−1)i

and

TEs =
1

4π
(aN − a1)

−1
2s
∏

i=2

N−1
∏

j=2s+1

(aj−ai)(−1)i+j
2s
∏

i=2

[
√
aN−ai](−1)i

N−1
∏

i=2s+1

[
√
ai − a1]

(−1)i+1
,

(A.15)

SEs =
LE

4TEs
(a2s+1 − a2s), (A.16)

are the temperature and entropy corresponding to the s-th event horizon of the seed solution

and the metric function Y is evaluated on the horizon rod a2s < z < a2s+1.

The magnetic fluxes are given by

Ψ+ = L

√
3∆kβ(aN − k2)

−1

[

1 + αβ aN−k1
aN−k2

] , (A.17)

Ψ− = −L
√

3∆kα(k1 − a1)
−1

[

1 + αβ k2−a1k1−a1

] . (A.18)
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