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1 Introduction

Supersymmetric theories have drawn much attention over the last decades. There is a va-

riety of application for this symmetry ranging from supersymmetric quantum mechanical

systems to extensions of the standard model (like MSSM) and string theory. While per-

turbative calculations and some nonperturbative arguments already relveal some intresting

features of supersymmetric theories, it is still desirable to have a nonperturbative tool at

hand for further investigations. Lattice calculations have proven to provide an important

insight in the nonperturbative sector of quantum field theories like QCD. To get reliable

results of supersymmetric models with this method the theory must be discretised in such

a way that the correct theory is reproduced in the continuum limit. The established tech-

niques of discretisation lead, however, to a breaking of supersymmetry on the lattice. There
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are various attempts to get, nevertheless, a supersymmetric theory in the continuum limit

(cf. [1–3] for reviews). These approaches contain a fine-tuning towards the correct contin-

uum limit [4] and a partial realization of supersymmetry on the lattice [5–8]. However, the

violation of supersymmetry at a finite lattice spacing seems to be unavoidable. The reasons

for this violation of the continuum supersymmetry on the lattice are further investigated

in this work. As a possible solution nonlocal realizations will be investigated.

The most difficult problem is the absence of the Leibniz rule that is necessary for

the invariance of the (interacting) lattice action. This problem was first discussed in [9],

where as a possible solution an action with a nonlocal interaction term was presented.

This approach was further pursued in [10, 11], where also the breaking of the translational

invariance of this suggestion was found. In [12] a discretisation of the four-dimensional

Wess-Zumino model was suggested that respects all the continuum supersymmetry. Its

disadvantage is a nonlocal derivative operator in addition to the nonlocal interaction term

in the lattice action. In [13] a “No-Go theorem” was presented, that for the implementa-

tion of full supersymmetry on the lattice either a nonlocal interaction term or a nonlocal

derivative is necessary. According to this argument the nonlocal SLAC derivative should

provide a realization with intact supersymmetry on the lattice. Such an action was al-

ready investigated in [14], where despite the usage of the nonlocal derivative operator still

a violation of supersymmetry at a finite lattice spacing was found. I will present here a

more complete version of the simple “No-Go” statement. I will show that only with a

nonlocal derivative and a nonlocal interaction term supersymmetry can be realized on the

lattice. The conditions for a controlled approximation of the continuum theory on the

lattice, presented here, also exclude the suggestion of [9].

For the evaluation of the importance of the supersymmetry breaking by all local lat-

tice realization, I will compare this effect with other sources of supersymmetry breaking

on the lattice. These other important sources of supersymmetry breaking can be traced

back to the fermion doubling problem. Although the considerations are quite generic for

supersymmetric lattice realizations, I will focus here on Wess-Zumino type models.

According to the “No-Go” statement the two options for the lattice simulations are

that either locality or supersymmetry is not realized at a finite lattice spacing and must be

recovered in the continuum limit. The best way would be to compare the results of both

of these options. If they agree a supersymmetric and local continuum limit can be ensured

in the nonperturbative sector theory.

It demands, however, a large numerical effort to simulate the nonlocal supersymmetric

lattice actions. I will present here a lattice formulation that allows for a simulation of

at least the lower dimensional models. The first results of a such a fully supersymmetric

lattice simulation are shown in this paper.

The paper is organized as follows: First I will give a short summary of supersymmetric

models in the continuum, that are the starting point of the general discussion. In section 2 I

will introduce a lattice discretisation for supersymmetric theories and show how a violation

of supersymmetry appears due to the absence of the Leibniz rule on the lattice. In section 3

a simple “No-Go” statement for local supersymmetric lattice realizations will be presented.

A concrete lattice realization that allows for a simulation with intact supersymmetry on
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the lattice will be considered in section 4. In most of the earlier work the supersymmetry

breaking due to either the Leibniz rule or the fermion doubling problem was discussed.

For a more complete discussion and a comparison of these effects, section 5 adds some

considerations of the doubling problem. Section 6 contains some perturbative arguments

for the local continuum limit of the nonlocal lattice actions. The more important nonper-

turbative results of a supersymmetric lattice simulation are presented in section 7. The

conclusions 8 at the end of the paper contain some suggestions for further improvements

of the full supersymmetric lattice simulations. This work is based on an updated version

of the results in [15].

1.1 Continuum supersymmetry

The results of this work are quite generic for supersymmetric field theories, i. e. field theories

with a symmetry that connects fermions and bosons and contain derivative operators in

the symmetry transformations. Gauge theories demand some further discussions, especially

when nonlocal operators are considered. Therefore, the main focus of the paper are Wess-

Zumino type models. Models of that type are used for the matter sector of supersymmetric

extensions of the standard model. The simplest example is the one-dimensional Wess-

Zumino model. A derivation of the action in superspace and its off-shell representation is

shown in appendix A. The on-shell action of this model is

S =

∫

dt

(

1

2
(∂tϕ)2 + ψ̄/∂ψ +

1

2
(W ′(ϕ))2 + ψ̄W ′′(ϕ)ψ

)

. (1.1)

It contains the scalar bosonic field ϕ and a complex fermion field ψ. The bosonic poten-

tial, the Yukawa interaction between fermions and bosons, and possible mass terms are

derived from the superpotential W (ϕ) that is a polynomial of the fields.1 Hence, there are

relations between the bosonic and fermionic vertices. A possible mass parameter appears

in certain bosonic interaction vertices. The action transforms under the supersymmetry

transformations

δϕ = ε̄ψ + ψ̄ε , δψ = (∂tϕ−W ′(ϕ))ε , δψ̄ = −ε̄(∂tϕ+W ′(ϕ)) , (1.2)

into the integration of a total derivative term

δS = −ε̄

∫

dt
[

(∂tψ)W ′(ϕ) + ψW ′′(ϕ)∂tϕ
]

(1.3)

− ε

∫

dt
[

(∂tψ̄)W ′(ϕ) + ψ̄W ′′(ϕ)∂tϕ
]

.

For the invariance of the action appropriate (e. g. periodic) boundary conditions must be

assumed. In addition also the Leibniz (chain) rule is used. In the off-shell formulation of

the theory the same terms appear as variation of the action.2

1The prime denotes a derivative of the superpotential (W ′(ϕ(t)) = d
dϕ(t)

W (ϕ(t))).
2A contribution Fϕn + nψ̄ϕn−1ψ transforms into (∂tψ)ϕn + nψ̄ϕn−1∂tϕ since the auxiliary field F

generates a derivative of a fermionic field and ψ a derivative of a bosonic field.
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There are similar models in other dimensions (with or without extended supersymme-

try). The most prominent example for this class of models is the four-dimensional N = 1

Wess-Zumino model. In the off-shell representation it reads ([16])

S =

∫

d4x

[

1

2
∂µA∂

µA+
1

2
∂µB∂

µB +
1

2
ψ̄/∂ψ −

1

2
F 2 −

1

2
G2

+m

(

FA+GB −
1

2
ψ̄ψ

)

+ g
(

FA2 − FB2 + 2GAB − ψ̄(A− iγ5)ψ
)

]

. (1.4)

This model contains the scalar field A, the pseudoscalar field B, a Majorana-spinor ψ and

the auxiliary fields F and G.3 An important feature of supersymmetric theories is the

cancellation between bosonic and fermionic quantum correction. Bosonic loop diagrams

are canceled by fermionic ones in perturbation theory. In the four-dimensional case this

leads to the well-known nonrenormalisation theorem: To get finite expressions only a wave

function renormalization (Z) that is the same for all fields is needed. The corresponding

counterterm is

Scounter =

∫

d4x(Z − 1)

[

1

2
∂µA∂

µA+
1

2
∂µB∂

µB +
1

2
ψ̄/∂ψ +

1

2
F 2 +

1

2
G2

]

. (1.5)

As in the one-dimensional case the action (1.4) is invariant up to terms that can be identified

with surface terms when the Leibniz rule is applied.

More generally one can show that a nontrivial Lagrangian can be invariant under

all supersymmetry transformations only up to a total derivative term. This is a direct

consequence of the algebra: The commutator of some supersymmetry transformations

applied to a field leads to a derivative of the field. All the transformation of a field can

hence only be zero if it is constant. Schematically the action of a more general model can

be written as

Son =

∫

dDx

(

1

2
χ(−∂µ∂

µ +m2 )χ+ ψ̄(/∂ +m)ψ

+mV1(χ) + V2(χ) + ψ̄VY (χ)ψ

)

, (1.6)

The action is written here with the interaction vertices mV1(χ) that carry in contrast to

V2(χ) besides dependence on the coupling constants also the mass parameter. The vertices

of the Yukawa type interaction are summarized by VY (χ). These vertices can involve a

nontrivial dependence in the spinor indices. The χ now can stand for several bosonic (e. g.

scalar and pseudoscalar) fields.4

3The problems of the correct definition of Majorana spinors in Euclidian space and on the lattice will

not be discussed here.
4The condensed notation means χ(−∂µ∂

µ + m2)χ =
P

r
χr(−∂µ∂

µ + m2)χr with, e. g., in the four

dimensions N = 1 model the scalar field χ1 = A and the pseudoscalar field χ2 = B.
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Supersymmetry transformations of such a general model lead to a variation of the

action consisting of terms of the following form

δS ∝ε

∫

dDx
[

(∂µφ
(1)) · · · φ(nf) + φ(1)(∂µφ

(2)) · · · φ(nf) + . . . + φ(1) · · · (∂µφ
(nf))

]

. (1.7)

φ(1) · · ·φ(nf) denotes a product of fields, of which some may be of the same kind. One of

these fields must be fermionic. As in the one-dimensional case each of these contributions

vanishes if the Leibniz rule holds and appropriate boundary conditions are applied. The

variation of the off-shell action are of a similar form. Just as in one dimension one can

easily show in the off-shell formulation that (1.7) comes from the variation of the terms

with a product of nf fields in the action.

The appearance of these contributions can also be understood from a possible super-

space representation of the theory. The supercharges contain Graßmann and space-time

derivatives (Q ∝ ∂θ + Θµ∂µ with Θµ depending on the Graßmann coordinates θα, and

∂θ represents a derivative operator with respect to some of these coordinates). The rele-

vant part of the action can be represented by a product of superfields (Φ(i)(x, θ1, θ2, . . .))

integrated over superspace. Hence the supercharges generate the following variation of

the action5

δS ∝

∫

∏

α

dθαd
Dx
[

(εQΦ(1))Φ(2) · · ·Φ(nf) + Φ(1)(εQΦ(2)) · · ·Φ(nf) + . . .
]

. (1.8)

The contributions of the Grassmann derivatives in the supercharge vanishes after the Grass-

mann integrations. The above expression (1.7) can be identified with a component form of

this variation.6

This brief review of continuum supersymmetry indicates that the generic form of the

variation of the action is (1.7). If the action should be invariant on the lattice as well as

in the continuum we have to impose, as can always be done, periodic boundary conditions

on the lattice. The second, more significant, condition for supersymmetry on the lattice is

the Leibniz rule.

2 The failure of the Leibniz rule and supersymmetry breaking on the

lattice

The crucial source of supersymmetry breaking on the lattice is the failure of the Leibniz

rule for any discretised derivative operator. I will discuss possible solutions of this problem

in this section. In the present discussion of the Leibniz rule the following assumptions are

made: The same lattice derivative operator ∇µ replaces the continuum derivative in the

fermionic and bosonic kinetic part of the action as well as in the supersymmetry transfor-

mations. As a starting point, the lattice action is chosen to be the same as the continuum

5Note that is written rather schematically in general one would have to take into account possible

constraints that are applied to the superfields and several different supercharges.
6In other words: The variation of the highest component (highest power of Grassmann coordinates) of

a product of superfields transforms into terms of the form presented in (1.7) as found in [9].
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action (1.6) except for a summation instead of the integration and the lattice derivative

operator replacing the continuum derivative (the conventions of the lattice formulation

are summarized in appendix B). This derivative operator is assumed to be antisymmetric

∇µ = −(∇µ)T and translational invariant. Its antisymmetric form ensures the hermiticity

of the fermionic part of the action. The doubling problem of such an operator is discussed

in section 5, since it introduces an additional source for supersymmetry breaking on the

lattice. In that way, I want to separate the effect of the Leibniz rule from the fermion

doubling problem.

As detailed in the last section the Leibniz rule is needed for the invariance of the con-

tinuum lattice action. When the continuum derivative is replaced by a discrete derivative

operator the Leibniz rule becomes

(∇µ(φ(1)φ(2)))m = φ(1)
m (∇µφ(2))m + (∇µφ(1))mφ

(2)
m , (2.1)

for arbitrary lattice fields φ(1) and φ(2). One can easily verify the following statement.

Lemma 1 The Leibniz rule, as presented in equation (2.1), is violated by all lattice deriva-

tive operators.7

Although this relation does not hold for any lattice derivative operator, it is still valid in

the zero momentum sector, i. e. after the summation of m.8

Since the same derivative operator is used in the transformations the variation of the

lattice action is just the lattice counterpart of (1.7), namely

δSL ∝ ε
∑

n

[

(∇µφ
(1))n · · ·φ

(nf)
n +

φ(1)
n (∇µφ

(2))n · · ·φ(nf)
n + . . .+ φ(1)

n · · · (∇µφ
(nf))n

]

. (2.2)

The fulfillment of the Leibniz rule after the summations ensures hence the invariance of

a quadratic lattice action (nf = 2). In the higher than quadratic case the variation of

the action (2.2) is non-zero as for a product of three ore more fields the analog of (2.1) is

violated even after the summation. To show this in detail, let us consider such a product

of fields in momentum space. The repeated application of (2.1) results in9

(∇µ(φ(1) · · ·φ(nf)))(ps) =
∑

k1...knf

δL(pk1 + . . .+ pknf
− ps) ×

×(∇µ(pk1) + . . .+ ∇µ(pknf
))φ(1) · · · φ(nf) . (2.3)

7To proof of this statement just insert a lattice field that is zero everywhere except on a single lattice

point for φ(1) and φ(2). I thank A. Wipf for this simple argument.
8If one splits the antisymmetric matrix ∇ according to (B.10) one can find the modified Leibniz rule

for each of the components,
P

n
∇

(r)
mn(ϕ

(1)
n+rϕ

(2)
n ) = (

P

n
∇

(r)
mnϕ

(1)
n+r)ϕ

(2)
m+r + ϕ

(1)
m (

P

n
∇

(r)
mnϕ

(2)
n ). Thus the

Leibniz rule is fulfilled up to translations, which are not relevant under the summation.
9Cf. appendix B for the transformation to momentum space.

– 6 –



J
H
E
P
0
1
(
2
0
1
0
)
0
2
4

For the invariance of the action this equation must hold for ps = 0 and all fields φ(i). This

is equivalent to10

δL(pk1 + . . .+ pknf
)(∇µ(pk1) + . . .+ ∇µ(pknf

)) =

nf−1
∑

i=1

∇µ(pki
) −∇µ

( nf−1
∑

i=1

pki

)

= 0 . (2.4)

The locality of the action is analyzed in the thermodynamic limit, where the discrete

momentum becomes continuous, pki
→ pi.

For convenience the modulus of
∑nf−1

i=1 pµ
i is first assumed to be smaller than the lattice

cutoff Λµ
L = π

aµ
for all directions µ. These assumptions fix the solution of equation (2.4) to11

∇µ(p) = c1p
µ . (2.5)

This derivative operator is (apart from irrelevant constants) the SLAC-derivative. The only

possible solution is hence known to be nonlocal. This is the one of the basic observations

of [13]. It does, however, not mean that the Leibniz rule (2.1) is fulfilled for such a

derivative operator. The solution is no longer valid, when the modulus of
∑nf−1

i=1 pµ
i becomes

larger than the lattice cutoff. The periodic continuation and the antisymmetry of ∇µ in

momentum space leads to a violation of (2.4), when the argument of ∇µ(p) is outside the

first Brillouin zone. The violation is for (2lµ−1)Λµ
L <

∑nf−1
i=1 pµ

ki
< (2lµ +1)Λµ

L (∀µ; lµ ∈ Z)

given by
nf−1
∑

i=1

pki
−

nf−1
∑

i=1

∇(pki
) = 2ΛL

∑

µ

lµ . (2.6)

Even a nonlocal derivative operator is hence not enough to ensure the invariance of the

lattice action. The basic reason of the violation of the Leibniz rule by the SLAC derivative

is an incompatibility with the standard multiplication of the algebra of lattice fields. In

this kind of multiplication a momentum of a product of fields, that exceeds the lattice

cutoff is mapped back onto the region below this cutoff. It induces a periodic lattice “delta

function” in momentum space (cf. (B.6)), which is resolved by a periodic continuation

of ∇µ(p).

One can try to avoid this nonlocality of the lattice action with the introduction of a

modified interaction term. For example, the product of three fields is represented on the

lattice according to

∫

dDxφ(1)(x)φ(2)(x)φ(3)(x)
on the lattice

−→
∑

m1,m2,m3

C̃m1,m2,m3φ
(1)
m1
φ(2)

m2
φ(3)

m3
. (2.7)

In Fourier space this ansatz brings equation (2.4) into the form (cf. (B.12))

C̃(p1, p2, p3)(∇
µ(p1) + ∇µ(p2) + ∇µ(p3)) = 0 ∀µ , (2.8)

10In momentum space ∇
µ
mn is periodically continued for momenta larger than the lattice cutoff (cf.

section B).
11c1 = 1 in the continuum limit; additional constant contributions are zero because ∇

µ is antisymmetric.
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which is solved by

C̃(p1, p2, p3) =
∏

µ

δ(∇µ(p1) + ∇µ(p2) + ∇µ(p3)) . (2.9)

This modification corresponds to a modified product rule on the lattice. This kind

of product is defined in such a way that after the summation of the lattice index
∏

µ δ(
∑nf−1

i=1 ∇µ(pi)) instead of the usual (periodic) lattice delta δL(
∑nf−1

i=1 pi) appears in

momentum space. From the mathematical point of view the mentioned incompatibility of

the Leibniz rule with the usual product on the lattice suggests such a modification of the

product.

For the symmetric derivative ∇µ = (∇(s))µ such a solution was proposed in [9]. How-

ever, with a derivative different from (2.5) the solution breaks for continuous momenta the

translational invariance on the lattice. A possible way out is to accept a modification of this

invariance [10]. Here this property is, however, considered to be even more important than

locality. Another problem of the solution (2.9) with a symmetric derivative appears when

discrete momenta of a finite lattice instead of the continuous momenta in the thermody-

namic limit are considered. Then it corresponds to a projection onto the trivial solutions,

pk1 = 0, pk2 = 0, or pk3 = 0 (as already mentioned in [9]). Consequently, the nonlocal

interaction term allows for every finite lattice only a trivial interaction with at least one

field at zero momentum, i. e.
∫

dDxφ(1)(x)φ(2)(x)φ(3)(x)
on the lattice

−→
∑

k

[

φ(1)(0)φ(2)(−pk)φ
(3)(pk)

+φ(1)(−pk)φ
(2)(0)φ(3)(pk) + φ(1)(−pk)φ

(2)(pk)φ
(3)(0)

]

. (2.10)

It is obvious that such an expression is supersymmetric. The fields with zero momentum

arguments are similar to a mass term for the other fields in the product. Although for a con-

tinuous momentum the correct classical (tree level) continuum limit has been shown in [9],

such a solution can not be useful for the lattice simulations.12 The nonlocal interaction

term alone does not provide a sufficient lattice realization of the theory.

A translational invariant choice for a modified lattice product in (2.7) is C̃n1,n2,n3 =

C(n1−n2),(n1−n3) (cf. (B.15)). The resulting product of three fields then leads to

∑

m1,m2,m3

Cm3−m1,m3−m2

[

(∇µφ(3))m3φ
(1)
m1
φ(2)

m2
+ φ(3)

m3
(∇µφ(1))m1φ

(2)
m2

+φ(3)
m3
φ(1)

m1
(∇µφ(2))m2

]

=

∫

p1,p2,p3

φ(3)(−p1 − p2)C(p1, p2)(∇(p1) + ∇(p2) −∇(p1 + p2))φ
(1)(p1)φ

(2)(p2) ,

for the supersymmetry variation of the action. Obviously, this approach can be gener-

alized to the situation of nf fields, and the condition for the invariance of the action,

cf. (2.4), becomes

C(p1, . . . , pnf−1)

[

nf−1
∑

i=1

∇(pi) −∇

( nf−1
∑

i=1

pi

)

]

= 0 . (2.11)

12Perhaps this interaction term can, however, be interpreted as the interaction with a kind of mean field.
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It corresponds to the Leibniz rule for nf − 1 fields with the modified lattice product

(φ(1) ∗ φ(2) ∗ · · · ∗ φ(nf−1))l : =
∑

m1,...,mnf−1

Cl−m1,...,l−mnf−1φ
(1)
m1

· · ·φ(nf−1)
mnf−1

=
∑

m1,...,mnf−1

C̃l,m1,...,mnf−1φ
(1)
m1

· · ·φ(nf−1)
mnf−1

. (2.12)

This time the modification of the product is defined such that after the summation of

the lattice index the usual (periodic) lattice delta δL(
∑nf−1

i=1 pi) is combined with an

additional factor C(p1, . . . , pnf
) in momentum space. The modified product is commutative

as C is assumed to be symmetric under the exchange of its arguments.

With the help of the modified product on the lattice, we arrive at a more general

realization of a supersymmetric lattice action. Although the Leibiz rule (2.1) can not be

fulfilled by any lattice derivative operator the generalized ansatz allows the construction

of a supersymmetric realization of a nontrivial lattice action, as detailed later on. Before

I present a concrete realization of such a supersymmetric lattice action, I first address

the question in as much locality can be realized in such an approach. In [13] a “No-Go

theorem” for a local supersymmetric lattice realization was found. Since the effect of the

violation of the Leibniz rule by the SLAC derivative for large momenta was not included

in these investigations, I get here an even stronger statement for the violation of locality

by supersymmetric lattice actions.

3 A No-Go theorem

With the results of the discussion presented in the last section I now introduce the assump-

tions for a simple No-Go statement.

As above the same antisymmetric lattice derivative operator is assumed to replace the

continuum derivative in the action and the supersymmetry transformations. In addition

to the lattice derivative operator a modified translational invariant product on the lattice

(2.12) is included. The modification of the product is assumed to appear in every term in

the action, except for the kinetic part that contains the terms with the derivatives and the

squares of the auxiliary fields. It appears also in the nonlinear part of the supersymme-

try transformations.

A kind of “smoothness condition” for the limit of infinitely many lattice points is

assumed. This condition should exclude trivial solution similar to (2.10). When the number

of lattice points increases, also the number of modes (φ(nf)(pknf
)) that are allowed to

interact with all modes of the other fields satisfying the constraint pknf
+
∑nf−1

i pki
= 0

should increase. Otherwise it is hard to extrapolate the continuum limit, where no other

constraint besides pnf
+
∑nf−1

i pi = 0 is imposed on the interacting lattice fields. In the

thermodynamic limit at least in a certain interval around pnf
= 0 all momenta should

be allowed to interact as in the continuum without any further constraint. As the lattice

spacing tends towards zero this interval has to increase.

The locality of a lattice derivative operator (∇µ)nm means that it decays exponentially

when the distance between the lattice points n and m increases. The width of this expo-
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nential decay is proportional to the lattice spacing. A generalization leads to the locality

condition for C. In this case locality means that the elements of Cl−m1,...,l−mnf
decrease

exponentially when the distance between the lattice point l and one of the m1, . . . ,mnf

increases (at fixed distance between l and all the other mi).

The careful definition of the conditions for a suitable lattice realization is the crucial

part of the derivation of the following No-Go statement. Its proof is rather trivial.

Lemma 2 (No-Go theorem) In order to get an interacting supersymmetric lattice the-

ory one needs a nonlocal derivative operator and a nonlocal interaction term.

The basic message of this statement is that either locality or supersymmetry must be given

up on the lattice.

For the proof of this statement I first recall some well-known facts that relate properties

of a function with its Fourier transformed. If a function is differentiable to all orders,

its Fourier transform decays faster than any polynomial. For an exponential decay it

must be analytic in a region around the real axis. For the Fourier transformed of the

lattice operators (in thermodynamic limit) these conditions must not only hold for the

whole Brillouin zone. In addition they must be fulfilled at the boundary of the Brillouin

zone, when the function is periodically continued. Hence locality means nothing but the

analyticity of the periodically continued functions ∇µ(p) and C(p1, . . . , pnf−1). In the case

of C(p1, . . . , pnf−1) this must hold with respect to each of the p1, . . . , pnf−1 holding all

other arguments fixed at an arbitrary value. If an analytic function is constant in a certain

region (and not only on isolated points) it is constant everywhere. The same is true for

the derivative of an analytic function. This implies that if the derivative operator has

the momentum space representation (2.5) in a certain region of the BZ, it has to obey this

momentum space relation in the complete BZ. Otherwise it would violate analyticity inside

the BZ. It is hence a SLAC type derivative, that is analytic inside the BZ but nonlocal

because periodicity is not fulfilled.

The invariance of the action under supersymmetry transformations demands that equa-

tion (2.11) is fulfilled in the interacting case, i. e. nf > 2. Therefore either the term in square

brackets or the function C(p1, . . . , pnf−1) has to be zero. According to the smoothness con-

dition there must always be a continuous region for the sum of the nf − 1 momenta where

C(p1, . . . , pnf−1) is nonzero. In this region the term in the square bracket must be zero and

the derivative has to be (2.5). A derivative operator that has this kind of momentum space

representation in a certain region of the BZ can, however, not be analytic and periodic.

Thus the derivative operator must be nonlocal.

On the other hand, the term in square brackets can only be zero in the region where the

sum of the nf − 1 momenta stays inside the first BZ. In this case the derivative operator is

the nonlocal SLAC derivative. Hence at least in the region where the sum gets larger than

the lattice cutoff C(p1, . . . , pnf−1) must be zero. Since it is zero in a certain region of its

arguments it can not be analytic. Thus also the modified lattice product must be nonlocal.

In contrast to [13] the smoothness condition and the effect of the periodic lattic delta

are considered here. This implies that neither a local derivative operator nor a nonlocal

product alone can provide a sufficient supersymmetric lattice realization.
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A possible approach to circumvent this No-Go statement is a fine tuning of the bare

parameters towards the supersymmetric continuum limit. Instead of the complete contin-

uum supersymmetry one can also realize only a part of the symmetry on the lattice, as done

in several current investigations. It might be that this reduces the necessary fine tuning,

but it can lead to other problems (cf. [17]) including the violation of basic symmetries of

the model. Like the Ginsparg-Wilson relation for chiral symmetry, a similar relation could

lead to a solution for the lattice realization of the symmetry. Such a symmetry relation

has been found for supersymmetry in [18]. However, a solution of this relation in terms of

an interacting local lattice action was so far not constructed. In [13] a certain realization

using matrices instead of fields was proposed. Although it allows to circumvent the No-Go

statement it induces an infinite number of degrees of freedom (same number as lattice

points) in the continuum limit. The approach of [19] may be related to this proposal. In

the derivation presented here I have used the same commutation relations for the fields as

in the continuum. In [19] a modification of these relations was introduced, which allows

other solutions for the Leibniz rule than derived here. Shortcomings of this approach were

discovered in [20]. The basic reason for these observations is that the modified commuta-

tion relation demand for a different representation of the degrees of freedom than in terms

of fields, e. g. matrices. In the continuum limit these representations must be associated

with the usual continuum ones. It seems to be unavoidable that this corresponds, as in [13],

to an infinite number of degrees of freedom.

Different from these attempts I will construct here a nonlocal lattice representation.

This allows for a way to find a supersymmetric lattice realization. Instead of supersym-

metry one can investigate how locality is restored in the continuum limit. At least in low

dimensions no fine tuning is necessary for this restoration. I will show in perturbative

calculations and numerical simulations that correct results can be obtained from such a

nonlocal lattice theory.

4 A realization of the complete supersymmetric on the lattice

In this section I will construct a lattice action that preserves all supersymmetries. A

similar lattice realization was constructed in [12] in the thermodynamic limit starting from

a momentum space representation of the theory. Here I will formulate the lattice theory

in a different way, that allows for a computation in the simulations.

I start with the off-shell representation of the theory. Since anyway a nonlocal lattice

derivative is needed one can, for convenience, choose the SLAC derivative (∇µ = (∇SLAC)µ)

in the lattice action and the transformations. The translation of a product of continuum

fields into a nonlocal lattice term, cf. (2.12), is done for each term of the action separately

according to the number nf of fields appearing in the product. A quadratic term needs

no further modification. For a number of nf > 2 fields (no matter if they are bosonic,

fermionic, or auxiliary) the appropriate C(pk1, pk2 , . . . , pknf−1) must be included. The Cs

can be decomposed into a product of their one-dimensional counterparts C1,

C(pk1, pk2 , . . . , pknf−1) =
∏

µ

C1(p
µ
k1
, pµ

2 , . . . , p
µ
knf−1

) . (4.1)
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As found above in a realization with the SLAC derivative the nonlocal product has to

exclude all momenta with a sum that exceeds the lattice cutoff. The following C solves

(2.11) and leads to a supersymmetric lattice action:

C1(p
µ
k1
, pµ

k2
, . . . , pµ

knf−1
) :=

{

0 if |
∑nf−1

i=1 pki
| > Λµ

L

1 otherwise
. (4.2)

In such a way a nonperiodic delta is introduced in the lattice theory,

δ(nf−1)(pk1 + pk2 + . . .+ pknf
) := δL(pk1 + . . .+ pknf

)C(pk1 , pk2, . . . , pknf−1) . (4.3)

This nonperiodic delta function is nonzero only if the sum of the nf − 1 momenta is equal

to pknf
. A nonperiodic delta was also introduced in [12].

For the purpose of the lattice simulation, an appropriate representation of the modified

product with a nonperiodic delta is needed. Since C can in higher dimension be represented

as a product of its one-dimensional counterparts, it is enough to find a solution the one-

dimensional case. Consider a lattice with the (nf−1)-fold number of lattice points compared

to the original lattice. The lattice spacing of this finer lattice is a/(nf − 1). Hence the

periodicity of a Fourier space delta of this lattice (δnf−1) is (nf−1)ΛL. The boundary of the

first BZ of this finer lattice cannot be reached with the sum of the momenta pk1 . . . pknf−1 .

They are hence never folded back and the δnf−1(pk1 + . . . + pknf
) is equal to one only

when
∑nf−1

i=1 pki
exactly matches pnf

, and otherwise zero. Thus it represents a nonperiodic

delta. A one-dimensional interaction term with a nonlocal product of nf fields can hence

be represented on the lattice in the following way (cf. equation (B.20))

∫

dxφ(1)(x) · · · φ(nf)(x)
on the lattice

→
∑

k1,...,knf

δnf−1(pk1 + . . .+ pknf
)φ(1)(pk1) · · · φ

(nf)(pknf
)

=
∑

k1,...,knf

a

nf − 1

(nf−1)N−1
∑

m=0

e
−i a

nf−1
m(pk1

+...+pknf
)
φ(1)(pk1) · · ·φ

(nf)(pknf
) . (4.4)

It is clear that a representation of a nonperiodic delta is also provided when δm−1 with

m > nf instead of δnf−1 is used. Consequently for all products δm−1 can be used, where m

the highest appearing power of the fields (nf).

Going back from momentum to real space representation one arrives at13

∫

dxφ(1)(x) · · · φ(nf)(x)
on the lattice

→

a

nf − 1

(nf−1)N−1
∑

n=0

φ̃(1)
n · · · φ̃(nf)

n with φ̃(i)
n =

∑

m

F (nf)
nm φ(i)

m . (4.5)

The
(

(nf − 1)N
)

×N matrix F
(nf)
nm translates all of the fields into fields on the finer lattice.

It comprises a Fourier transformation on the lattice with N lattice points and an inverse

13The ordinary definition of the Fourier representation of the fields φ
(i)
n is employed.
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Fourier transformation on the larger lattice with (nf − 1)N lattice points. The matrix

elements read explicitly

F (nf)
nm =

sin(π(m− n/(nf − 1))

aN sin( π
N (m− n/(nf − 1)))

for m 6= n/(nf − 1) and 1 otherwise. (4.6)

In this representation the nonlocal product is defined by

C̃n1,...,nnf
=

a

nf − 1

(nf−1)N−1
∑

n=0

F (nf)
mn1

· · · F (nf)
mnnf

. (4.7)

This approach can easily be generalized to the higher-dimensional case. One obtains

a fully supersymmetric lattice action, which can be used in numerical simulations. The

result of the simulations can be found in the section 7.

For the on-shell representation of the theory the approach can also be applied. The

modification of the product must then be chosen according to the power of fields that

appear in the corresponding variation of the action (1.7). The same modification of the

product must also be applied for the nonlinear part of the supersymmetry transformations.

The considered lattice action can also be represented completely on the finer lattice

with nf − 1 lattice points, if nf is the largest number of fields that appear in a product. It

leads to a theory where the momentum of all fields is constrained below the cutoff Λ/(nf−1)

instead of Λ.

According to the No-Go theorem there are also other possibilities to realize an in-

tact supersymmetry on the lattice. In each of these representations the nonlocal product

constraints the momentum in the interaction terms to a region, where the Leibniz rule is

fulfilled. For a high enough momenta of the fields there are effectively no interaction terms

present in the theory. The interacting theory hence effectively lives on a lattice with a

larger lattice spacing. The advantage of the approach presented in this section is that a

contribution of the noninteracting modes is not present.

5 The standard discretisation and supersymmetry breaking on the lat-

tice due to the fermion doubling problem

In the last sections I have discussed the violation of supersymmetry due to the absence of

the Leibniz rule. In this discussions I have assumed an antisymmetric derivative operator

in the lattice action. It is well-known that such a derivative operator introduces a doubling

problem. I will discuss the doubling problem here, separately. This will also explain the

assumption of the same derivative operator for fermions and bosons. Let us therefore

allow different derivative operators and masses for fermions and bosons. The continuum

derivative operators ∂µ in the fermionic and ∂µ∂
µ in the bosonic sector are replaced by

lattice difference operators ∇µ
nm and �nm. The continuum action (1.6) is represented on

the lattice by

Son =

∫

dDx

(

1

2
φ(−� + m2

b)φ + ψ̄( /∇f + mf )ψ + mbV1(φ) + V2(φ) + ψ̄VY (φ)ψ

)

. (5.1)
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In the simplest discretisation in the bosonic sector is the forward and backward derivative

(� =
∑

µ ∇
(−)
µ ∇

(+)
µ , (mb)mn = mδmn). The discretisation in the fermionic sector is more

difficult. It is well-known that a naive discretisation, i. e. with ∇(s), introduces a doubling

of the fermion species in the continuum limit. In accordance with the Nielson-Ninomiya

theorem [21, 22] all local representations with an antisymmetric derivative operator share

this problem. The only way out is an additional contribution that is symmetric in mo-

mentum space (m(W )(−p) = m(W )(p)). The common way to add such a contribution to

the action is with the identity in spinor space. Then it resembles a momentum dependent

mass. To remove the doubling problem, this mass diverges at the additional zero modes

(doublers) in the continuum limit. The doublers have then no dynamic contribution to the

action and are “freezed out”. The most prominent example of such a term is the Wilson

mass. It is

m(W ) =
ar

2

∑

µ

∇(−)
µ ∇(+)

µ . (5.2)

In the case of supersymmetry the doubling modes are problematic. In the naive lattice

formulation they appear only in the fermionic sector. Consequently, there are no longer the

same number of degrees of freedom in the bosonic and fermionic sector, and supersymme-

try is broken. As described above one can try to resolve this problem with a Wilson-type

mass term in the fermionic sector and set mf = m + m(W ). Due to the additional mass

term m(W ) and the different derivative operators in the bosonic and fermionic sector su-

persymmetry is, however, violated even in the free theory. Classically it is restored in

the continuum limit, where the difference between the derivative operators and the addi-

tional mass term vanishes. In the quantum theory divergencies of the loop contributions

alter this classical behavior and violate supersymmetry even in the continuum limit. Thus

neither the difference between different derivative operators for fermions and bosons nor

the additional Wilson mass term can in principle be assumed to have no influence on the

continuum limit.

Indeed, the cancellations of bosonic and fermionic loop contributions are based on the

relations between the bosonic and fermionic vertices and propagators. These relations are,

however, not valid in this discretisations, and the continuum cancellation do not appear in

lattice perturbation theory. They can be recovered only in the continuum limit. To find

out the relevance of certain contributions in lattice perturbation theory for the continuum

limit, one can use the lattice degree of divergence defined by Reisz [23].14 A one loop

diagram in lattice perturbation theory is represented as an integral of the loop momentum p

constrained to the first BZ. When the lattice degree of divergence is negative, the continuum

limit can be obtained in a naive way: The integrand is taken in the limit of a → 0 and

afterwards an unconstrained momentum integration yields the correct continuum limit. In

such a naive continuum limit the contribution of the Wilson mass and of the difference

between the derivative operators disappears (the essential part for this limit comes from

the vicinity of p = 0). A typical one loop diagram with fermionic and bosonic contributions

14As usual for lattice perturbation theory the calculation is carried out in the thermodynamic limit.
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that cancel in the corresponding continuum expressions is

∫

dDp

(2π)D

(

mb

−�(p) +m2
b

−
mf (p)

−
∑

µ ∇
(s)
µ (p)∇

(s)
µ (p) + (mf (p))2

)

=

∫

dDp

(2π)D





mb(� −∇
(s)
µ ∇

(s)
µ +m2

f −m2
b)

(−� +m2
b)(−

∑

µ ∇
(s)
µ ∇

(s)
µ +m2

f )
(5.3)

+
mb −mf

−
∑

µ ∇
(s)
µ ∇

(s)
µ +m2

f



 . (5.4)

The last term (5.4) is nonzero due to the Wilson mass term for the fermions. The bosonic

mass parameter mb that appear there comes from one of the vertices mV1. The lattice de-

gree of divergence of this term is D−1. Already in one dimension the necessary cancellation

between fermionic and bosonic loops is hence not recovered in the continuum limit. This ef-

fect was investigated in detail in [24] (cf. also [14, 25]). It explains the non-supersymmetric

continuum limit of a lattice realization with a straight forward implementation and a Wil-

son mass only for the fermions.

The first term (5.3) is due to the difference between the bosonic and fermionic propa-

gators. Its lattice degree of divergence, D−2, is smaller. In one dimension it is not relevant,

whereas in two dimensions it can lead to a supersymmetry breaking in the continuum.

To avoid this kind of supersymmetry breaking it is necessary to use the same propa-

gators for fermions and bosons (� = (∇f)µ(∇f)
µ; mf = mb). The derivative operator then

introduces a doubling problem also in the bosonic sector that is removed with the same

Wilson mass as for the fermions. It is crucial that this mass parameter appears also in the

bosonic vertices of the theory (mbV1 = mfV1). This nontrivial modification of the theory

leads to the correct cancellations of the considered fermionic and bosonic loop diagrams.

The Wilson mass is hence a modification of the usual mass term in the superpotential.

Such kind of lattice formulations were already investigated, e. g., in [25, 26]. However,

the additional vertices introduced by the Wilson mass can modify or violate symmetries

of the model on the lattice as found in [17]. The SLAC derivative opens the possibility to

circumvent this problem without a modification of the superpotential. Since it is nonlocal,

it does not introduce any doublers, and a Wilson mass term is not needed.

The described adjustment of the fermionic and bosonic mass terms and derivatives

alone does not imply a supersymmetric continuum limit. This can be seen even from the

perturbative point of view. The cancellation of fermionic and bosonic loop diagrams is

present, as it is in the continuum. One can show that the nonrenormalization theorems

of the superpotential in the off-shell theory still holds on the lattice as well as in the

continuum. Nevertheless in the four-dimensional model the wave function renormalization

is not the same for all fields [12], even in the continuum limit. In this way the violation

of the Leibniz rule is present in the lattice perturbation theory. Although the masses and

derivatives are the same for fermions and bosons non-supersymmetric counterterms are

needed to get a supersymmetric continuum limit.

– 15 –



J
H
E
P
0
1
(
2
0
1
0
)
0
2
4

6 Lattice perturbation theory of the nonlocal lattice theory

In the last sections I have shown that only lattice realizations with nonlocal operators

can be invariant under supersymmetry on the lattice. An explicit supersymmetric lattice

action can be constructed with such operators. In addition nonlocal operators do not need

additional Wilson mass terms. Although these mass terms can be consistently included in

the superpotential they still introduce a serious modification of the on-shell theory.

On the other hand the locality of the continuum theory should be respected in the

continuum limit. For the SLAC derivative in lattice QED Karsten and Smit have shown

in [27] that nonlocal and noncovariant counterterms are necessary to achieve this.15 Ac-

cording to the usual argument this shows that nonlocal lattice actions are not allowed in

the simulations.

Let us first consider the SLAC derivative, but no modification of the product in the

interaction terms.16 As has been shown in [14], the two-dimensional Wess-Zumino models

needs no nonlocal or noncovariant counterterms to achieve the correct continuum limit. The

propagators of a theory with the SLAC derivative are the same as in the continuum. The

only difference to the continuum perturbation theory is a lattice momentum conservation

at each vertex (with a periodic delta) and the restriction of each momentum integration to

the first BZ. As a lattice degree of divergence of the diagrams it is enough to take the degree

of divergence of the corresponding continuum diagram.17 The nonperiodic delta leads to

so called “umklapp” contributions in the loop diagrams [28, 30], where the momentum

in one of these delta functions becomes larger than the lattice cutoff. In two dimension

these contributions vanish in the continuum limit [14]. For the situation in more than two

dimensions it was claimed in [28] that that the correct continuum limit is obtained without

any nonlocal or non-covariant counterterms and the “umklapp” contributions are irrelevant.

The only difference of this model with the SLAC derivative and the full supersymmetric

model of section 4 is the absence of the “umklapp” contributions. All momenta that appear

in the propagators are restriction to the first BZ due to the nonlocal product (2.12). Hence,

apart from the restrictions of the integration of the loop momenta, the diagrams are the

same as in the continuum. If the “umklapp” contributions are irrelevant the continuum

limit is obtained with the same counterterms as in the case without a nonlocal interaction.

This is certainly true for the one- and two-dimensional models. Recently a more explicit

proof of this fact was presented in [31]. In addition it was pointed out that the constraints

on the momentum integration lead to new additional counterterms in the four-dimensional

theory. It is still not clear in as much these results are consistent with [28] and whether no

nonlocal counterterms are necessary in the four-dimensional theory.

15In [28] a different conclusion was drawn that was criticized in [29].
16This means � = ∇

2
f , (mb)nm = (mf )mn = mδmn, ∇f = ∇

SLAC in equation (5.1).
17The degree of divergence defined in [23] can, strictly speaking , not be applied here since it assumes

that the integrands are periodic smooth functions of the momentum.
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7 Simulation of a complete realization of supersymmetry on the lattice

in a one-dimensional model

The aim of the present work is not only to suggest a possible nonlocal realizations, as done

in section 4. The solution were also checked on the nonperturbative level. Therefore lattice

simulations of the one-dimensional full supersymmetric model were performed. In this way

I could measure directly signs of a completely realized supersymmetry on the lattice. The

continuum model is chosen to be the same as in [14]. This will allow a direct comparison

with the discretisations considered there.

7.1 The discretised actions

The starting point is a discretised version of the continuum action (1.1)

SL =
1

2

∑

n

(

(∇SLACϕ)2n +W ′
L(ϕ)2n

)

+
∑

n,m

ψ̄n

(

∇SLAC
nm +W ′′

L(ϕ)nm

)

ψm . (7.1)

In the continuum theory the superpotential is chosen to be W (ϕ) = m
2 ϕ

2 + g
4ϕ

4. The

derivative operator is in all of the discretisations considered here the SLAC derivative.

The results of a discretised version with different implementations of the Wilson mass term

can be found in [14].

On the lattice the following supersymmetry transformations are considered

δ(1)ϕn = ε̄ψn ; δ(1)ψn = 0 ; δ(1)ψ̄n = −ε̄(∇SLACϕ+W ′
L(ϕ))n

(7.2)

δ(2)ϕn = ψ̄nε ; δ(2)ψn = (∇SLACϕ−W ′
L(ϕ))nε ; δ(1)ψ̄n = 0 . (7.3)

The discretisation of the continuum transformations (1.2) is in this way chosen according

to the assumptions of section 2 and 3 with the same derivative operator as in the action.

In the simplest discretisation no modification of the lattice product is included. Then

the interaction is represented by

W ′
L(ϕ)n = m+ gϕ3

n , (7.4)

and

W ′′
L(ϕ)nm = (m+ 3gϕ2

m)δnm . (7.5)

This discretisation is called here the unimproved model. The action is not invariant under

the two supersymmetry transformations.

As in [14] a second discretisation of the model is constructed with the so called “Nicolai

improvement”. The difference between (7.1) and the corresponding lattice action are dis-

cretisations of surface terms, which are assumed to vanish in the continuum limit. It reads

SLI =
1

2

∑

n

(

∇SLACϕ+W ′
L(ϕ)

)2

n
+
∑

n,m

ψ̄n

(

∇SLAC
nm +W ′′

L(ϕ)nm

)

ψm , (7.6)
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with the interaction vertices (7.4) and (7.5) as in the unimproved model. It is invariant

under the supersymmetry transformation (7.2), but not under the second supersymmetry

transformation (7.3). This discretised lattice model is called here the improved model.

Finally I present here the first simulations with a model that respects all of the super-

symmetry on the lattice. According to the construction in section 4 the continuum bosonic

interaction vertices are represented on the lattice with

W ′
L(ϕ)n = mϕn +

ag

3

3N−1
∑

m=0

F (4)
mn(ϕ̃m)3 , (7.7)

and the fermionic ones with

W ′′
L(ϕ)nm = mδnm + ag

3N−1
∑

m1=0

F (4)
m1nF

(4)
m1m(ϕ̃m1)

2 . (7.8)

For the current choice of the superpotential the fields ϕ̃ are

ϕ̃n =
∑

m

F (4)
nmϕm , (7.9)

with F (4) according to (4.6). With this choice for W ′
L the difference between the improved

and unimproved discretisation vanishes already at finite lattice spacing. The model is called

here the full supersymmetric model.

7.2 The algorithm

For the simulations the same algorithm as used in [14] was applied. Supersymmetry de-

mands for the simulation of dynamical fermions. This leads to a contribution of the

fermionic determinant in addition to the bosonic part SB of the action in the path in-

tegral measure,

Seff(ϕ) = SB(ϕ) − log detKf (ϕ) . (7.10)

The HMC algorithm [32] is applied. The update algorithm follows a molecular dynamics

trajectory determined by

ϕ̇n =
∂H

∂πn
, π̇n = −

∂H

∂ϕn
, (7.11)

and the Hamiltonian

H =
1

2

N−1
∑

n=0

πn + Seff(ϕ) . (7.12)

The numerical solutions of the differential equations (7.11) are computed with a standard

leap frog algorithm. The fermionic contribution ∂Seff(ϕ)/∂ϕn is calculated from

∂

∂ϕn
(log detKf ) =

∂

∂ϕn
(tr logKf ) = tr

((

∂Kf

∂ϕn

)

K−1
f

)

, (7.13)

where
∂Kf

∂ϕn
=
∂W ′′

L(ϕ)nm

∂ϕn
. (7.14)
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Figure 1. The masses for fermions and bosons of the full supersymmetric model in comparison

to the results of the improved model presented in [14]. The predicted continuum value is 16.865.

In addition the linear fit of the data of the improved model (fermions: 16.81 − 18.53a; bosons

16.84 − 17.97a) is shown.

When W ′′
L is diagonal, the trace collapses. This reduces the cost of the numerical calcu-

lations with a diagonal interaction term. This is not the case for the realization with a

nonlocal interaction term, where the trace includes a sum over all lattice points. Never-

theless the simulation is still possible at least in lower dimensions.

7.3 Numerical results: masses and Ward-identities

To get an indication of supersymmetry on the lattice the masses and Ward-identities of the

theory are measured on the lattice in the same way as in [14]. The masses are obtained from

the exponential decay of the fermionic and bosonic correlators. The fermionic correlator

of the SLAC derivative shows appart from the exponential decay an additional oscillating

contribution that vanishes in the continuum limit. To enhance the signal for the fermionic

mass already at finite lattice spacing a filtering technique was applied (for details cf. [14]).

In addition the following Ward-Identities were measured

ε̄R
(1)
n−m = 〈ϕn δ

(1)ψ̄m〉 + 〈(δ(1)ϕn)ψ̄m〉

Ward identity 1: R
(1)
n−m = 〈ψnψ̄m〉 − 〈ϕn(∇SLACϕ)m〉 − 〈ϕnW

′
L(ϕ)m〉 (7.15)

−R
(2)
n−mε = 〈ϕn δ

(2)ψm〉 + 〈(δ(2)ϕn)ψm〉

Ward identity 2: R
(2)
n−m = 〈ψ̄nψm〉 − 〈ϕn (∇SLACϕ)m〉 + 〈ϕnW

′
L(ϕ)m〉 . (7.16)

If supersymmetry is realized both of them must be identical zero.
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Figure 2. The results of a measurement of the Ward identity in the free theory at small lattice

spacing. This identifies the deviation from zero due to the statistical or systematic errors. No larger

deviation from zero than 0.0003 is observed.

The obtained masses show not much difference for the considered discretisations. The

masses of the improved and unimproved model were already presented in [14]. A good

agreement between fermionic and bosonic masses was measured in both models. In com-

parison to a discretisation with the Wilson derivative18 the discretisations with the SLAC

derivative showed a nearly perfect behavior. Already at finite lattice spacing the results

were very close to the correct continuum value.

Since the simulation of the full supersymmetric model demands a higher numerical

effort, a sightly lower statistic was used than for the improved and unimproved model

in [14]. Nevertheless 105 to 4× 105 independent configurations were obtained. The masses

coincide with the improved model within the statistical errors as shown in figure 1. As

already observed in the earlier calculations the bosonic masses show a larger statistical

error than the fermionic ones. Even the fermionic masses, that are obtained with a high

precision, agree with the linear extrapolation of the masses of the improved SLAC model

towards the continuum limit. Thus the correct continuum value is obtained with the

nonlocal full supersymmetric lattice realization. In [14] it was found that realizations with

the SLAC derivative show an almost perfect behaviour. Only a small deviation form the

continuum value is observed at finite lattice spacing. This is also true for the model with

the nonlocal interaction.

18This means the symmetric derivative and the Wilson mass term in the fermionic and bosonic sector as

discussed in section 5.
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Figure 3. The Ward identity of the unimproved model at a larger coupling. The deviation from

zero is clearly above the errorbounds.

As the masses show not much difference between the considered models and do not pro-

vide a clear sign of supersymmetry breaking at a finite lattice spacing, the Ward-identities

are considered. At lower couplings and a smaller lattice spacing the Ward identities vanish

in all cases. Therefore a smaller lattice and a large coupling was chosen. The configurations

were obtained in eight independent runs with each 5× 105 independent configurations. To

estimate possible systematic errors the Ward identities of the free theories were measured,

which are analytically zero. The result is shown in figure 2, and no larger deviation from

zero than 0.0003 is observed. This implies that if a Ward identity stays within these bounds

(illustrated by a shaded region in the plot), it can be assumed to be zero within the er-

rorbounds. This is not the case in the unimproved model. If the coupling constant g is

large enough a clear deviation from zero can be observed (figure 3). In the improved model

one of the two Ward identities is zero within the errors (figure 4). On the other hand the

second Ward identity gets an enhanced deviation from zero.

This indicates one of the problems of a partial realized supersymmetry on the lattice:

In order to avoid the breaking of one of the supersymmetries a larger breaking of the

remaining supersymmetries is generically induced. Note furthermore that the measured

Ward identities of the unimproved model are related via R
(2)
n = −R

(1)
−n. For the fermionic

part of the Ward identity this is due to 〈ψ̄xψy〉 = −〈ψyψ̄x〉. The bosonic part of the

relation between the two Ward identities comes form the invariance of the path integral

measure under the transformation t → −t in the action. This symmetry is present in the

continuum and the unimproved models. Thus a partial realization of supersymmetry can
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Figure 4. The Ward identity of the improved model. The Ward-identity 1 is zero within the errors.

On the other hand Ward identity 2 shows a deviation from zeronearly two orders of magnitude above

the errorbounds.

only be achieved at the cost of a breaking of another symmetry of the continuum model.

Additional problems that can be induced by a partial realization of supersymmetry are

discussed in [17].

A comparison of the different results obtained in [14] shows that for unimproved and im-

proved models with a symmetric derivative and a Wilson mass in the bosonic and fermionic

sector the same sign of supersymmetry breaking appears.

In the full supersymmetric model both Ward identities are zero within the errors

(figure 5). These results verify that only in the full supersymmetric realization with a

nonlocal interaction term supersymmetry can be realized at a finite lattice spacing. It

provides the first precise measurement of a fully supersymmetric model on the lattice.

8 Conclusions and outlook

In this work I have shown that a realization of a complete supersymmetry on the lattice

can only be achieved with nonlocal interactions and a nonlocal derivative. This fact is

due to the breaking of the Leibniz rule by all lattice derivative operators. The nonlocal

interaction term comes form a modified product on the lattice that restricts the momen-

tum modes. A concrete implementation for the realization of the nonlocal product was

presented. Another important breaking mechanism due to the fermion doubling problem

is also not present in this nonlocal discretisation. A local continuum limit without nonlocal
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Figure 5. The Ward identity of the full supersymmetric model. Within the determined small

errorbounds it is zero.

or noncovariant counterterms can be verified in lattice perturbation theory at least in lower

dimensions. Despite the nonlocal form of the action simulations in supersymmetric quan-

tum mechanics were performed in this work. The realization of a complete supersymmetry

on the lattice can be verified with a high precision. In this way the present work has proven

that simulations with intact supersymmetry on the lattice are indeed possible.

The general discussion of lattice perturbation theory in this work reveals a hierarchy of

supersymmetry breaking mechanisms. Each of the breaking mechanisms becomes relevant

when supersymmetry breaking counterterms are needed for a supersymmetric continuum

limit. The first problem is due to the Wilson mass, that must be included in the fermionic

sector for all local lattice derivative operators. The mass parameter is, however, not present

in the bosonic sector. This problem is relevant already in one dimension. In the two-

dimensional case the differences between the fermionic and bosonic derivative operators

(propagators) can also become a relevant source of supersymmetry breaking. Both of these

effects can be avoided when the same derivative and mass operators are chosen for fermions

and bosons. In the on-shell theory this requires also an unconventional modification of

some bosonic vertices. In lattice perturbation theory the missing Leibniz rule becomes a

relevant effect in the four-dimensional models. This makes a full supersymmetric realization

attractive especially in this case, where, however, it still has to be proven that no nonlocal

counterterms are needed in the continuum limit.

On the nonperturbative level it is still not guaranteed that the violation of supersymme-

try can be neglected even in lower dimensions. Thus a model with complete supersymmetry
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on the lattice is a good cross check for other simulations. If the simulations of a nonlocal

model with intact lattice supersymmetry and a local model without lattice supersymmetry

leads to the same results, the recovery of locality and supersymmetry in the continuum

limit can be ensured.

On the technical side the simulations of the nonlocal lattice action require a large

numerical effort. The formulation used in this work provides a possibility only in the

lower dimensional case. Further improvements are, however, possible. The nonperiodic

delta function (4.3) is realized via a periodic delta function on a finer lattice. One can

also formulate the whole lattice theory on the finer lattice, where no modification of the

product is necessary. On the finer lattice the only important requirement for the full

supersymmetric theory is a restriction of all momentum modes below the cutoff of the

coarser lattice. In addition one has to keep in mind that the theory effectively lives on

a coarser lattice when the observables are computed. This opens another possibility for

the calculation of the supersymmetric theory. The lower cutoff of the theory may be

implemented via a momentum-truncation of the force, such that no higher momenta are

generated in the update step. This must be ensured for (pseudo-) fermionic and bosonic

fields. Instead of a sharp cutoff one can also try to realize a smooth version of it. Instead

of the full supersymmetric model one can also try to find improved actions with a reduced

violation of the Leibniz rule and a moderate suppression of higher momentum modes.19

A disadvantage of the present approach is that it can not be directly applied for

supersymmetric gauge theories. The SLAC derivative requires a gauge invariant connection

between distant lattice points and according to [27] nonlocal and noncovariant counterterms

are needed in the continuum limit. Perhaps a gauge fixed version of this theory can be

used in the simulations.
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A Superspace formulation and off-shell representation of the one-dimen-

sional theory

The one-dimensional (bosonic) superfield has the following expansion in the Grassmann

coordinates θ θ̄

Φ(t, θ, θ̄) = ϕ+ θ̄ψ + ψ̄θ + θ̄θF . (A.1)

It contains the real bosonic field ϕ, the fermions ψ and ψ̄ as well as the auxiliary field F .

The supersymmetry transformations of the superfields are generated by the supercharges

Q = i∂θ̄ + θ∂t and Q̄ = i∂θ + θ̄∂t . (A.2)

19A similar treatment was suggested in [33].
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This implies the following supersymmetry transformation for the component fields:

δϕ = iε̄ψ − iψ̄ε , δψ = (∂tϕ− iF )ε ,

δψ̄ = ε̄(∂tϕ+ iF ) , δF = −ε̄∂tψ − ∂tψ̄ε . (A.3)

A Lagrangian is constructed using the covariant derivatives

D = i∂θ̄ − θ∂t , D̄ = i∂θ − θ̄∂t , (A.4)

that anticommute with Q and Q̄. The action is hence obtained from an integration over

the whole superspace,

S =

∫

dθdθ̄dt

[

1

2
Φ(t, θ, θ̄)KΦ(t, θ, θ̄) + iW (Φ(t, θ, θ̄))

]

(A.5)

=

∫

dt

(

1

2
(∂tϕ)2 − iψ̄∂tψ +

1

2
F 2 + iFW ′(ϕ) − iψ̄W ′′(ϕ)ψ

)

, (A.6)

where W (Φ) (here W (Φ) = mΦ2/2 + gΦ4/4) is a polynomial in Φ and K = 1
2 (DD̄− D̄D).

B Some conventions

In the µ direction there are assumed to be Nµ lattice points separated by the spacing aµ.

The number of lattice points is odd in each direction. If the index of N and a is not

specified the same number of points and the same lattice spacing applies for all directions.

Each lattice point is labelled by a vector n with D integer components running from 0 to

Nµ − 1. The lattice point is defined as xn =
∑

µ(n)µaµ. ϕn is the value of the field at this

point. The vector eµ has zero components except a 1 in its µ direction (xn+eµ is the next

neighboring lattic point of xn in µ direction).

The size of the lattice in µ direction is, consequently, Lµ = Nµaµ and its volume

ΩL =
∏

µ Lµ. Periodic boundary conditions are assumed for this volume. If not further

specified the sum
∑

n of a lattice index is

∑

n

=
∏

µ



aµ

(n)µ=Nµ−1
∑

(n)µ=0



 (B.1)

The lattice index is labeled by n and m. ni or nj are treated as individual lattice

indices; only the (n)µ or (n)ν stands for a component of an index. Thus (n1)µ is the

component of n1 in µ direction. The same applies for the dimensionless wave vector k.

The derivative operators used here are defined as

symmetric derivative (∇
(s)
µ ϕ)n =

1

2aµ
(ϕn+eµ − ϕn−eµ)

forward derivative (∇
(+)
µ ϕ)n =

1

aµ
(ϕn+eµ − ϕn)

backward derivative (∇
(−)
µ ϕ)n =

1

aµ
(ϕn − ϕn−eµ)

SLAC derivative (∇SLAC
µ ϕ)n =

π

aµNµ

Nµ−1
∑

l=0

(−1)(n)µ−l ϕn+leµ

sin(π((n)µ − l)/Nµ)

(B.2)
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The SLAC derivative,20 [34–36], is derived from a discretisation of the Fourier space rep-

resentation of the continuum derivative operator.

Functions on the lattice can be represented in Fourier space according to,

φn =
∑

k

φ(pk)e
ipkxn (B.3)

φ(pk) =
∑

n

φne
−ipkxn , (B.4)

with (pk)µ =
2πkµ

Lµ
and the components of k are integers running form −(Nµ − 1)/2 to

(Nµ − 1)/2. (pqx here stands for a scalar product of the two vectors.) If not further

specified the above sum over k represents

∑

k

=
1

ΩL

∏

µ

(k)µ=(N−1)/2
∑

(k)µ=−(N−1)/2

. (B.5)

φ(pk) is periodic in pk, φ(pk) = φ(pk + eµl2π/aµ) ∀l ∈ Z and all directions µ. The mo-

mentum (pk)µ of the modes is inside the Brillouin zone (BZ) defined by BZ = {(pµ)| |pµ| ≤

(ΛL)µ = π
aµ
}.

The Fourier transformation implies the following representation of the delta

on the lattice

δL(xn − xm) :=
∑

k

eipk(xn−xm) =
∏

µ

(aµ)−1δ̄(n)µmµ

δL(pk1 − pk2) :=
∑

n

e−i(pk1
−pk2

)xn =
∏

µ

(Nµaµ)δ̄(k1)µ(k2)µ
, (B.6)

where δ̄(n)µmµ
is one for (n)µ = mµ mod Nµ and zero otherwise. The two delta functions

are periodic: δL(pk) = δL(pk + eµl2π/aµ); δL(xk) = δL(xk + eµlNµ) ∀l ∈ Z and µ.

For the lattice perturbation theory the thermodynamic of the lattice expressions is

performed. Then one gets the following Fourier representation with the now continuous

momentum p:

φn =

∫

p
φ(p)eipxn :=

∫

BZ

dDp

(2π)D
φ(p)eipxn (B.7)

φ(p) =
∑

n

φne
−ipxn . (B.8)

(n ∈ Z
D now runs over an infinite number of lattice points.) One can easily change

between the Fourier representation on a finite lattice and in the thermodynamic limit. The

expressions in Fourierspace remain the same, only the discrete momentum pk has to be

replaced by the continuous p. This continuous momentum is, because of the finite lattice

spacing still restricted to the BZ. Consequently the delta in Fourier space is still periodic

as on the lattice.

20This derivative is also called DWY derivative (Drell, Weinstein, and Yankielowicz).
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In a similar way the Fourier representation of translational invariant operators with

two indices is derived on the lattice:

∇µ
nm =

∑

k

∇µ(pk) e
ipk(xn−xm) . (B.9)

The obtained operator has the same periodicity as the Fourier space representation

of a field. On the lattice the matrix entries of ∇ should be real. Therefore, the

imaginary part of ∇(p) is antisymmetric (ℑ∇(−p) = −ℑ∇(p)) and the real part is

symmetric (ℜ∇(−p) = ℜ∇(p)).

An antisymmetric derivative operator acting in µ direction can always be represented as

∇µ
nm =

N−1
∑

r=1

cr(∇
(r))µmn , with (∇(r))µnm = δn+reµ,m − δn−reµ,m , (B.10)

and some constants cr.

For the operators defined in (B.2) the Fourier representation is thus

∇(s)
µ (p) =

i

aµ
sin(pµaµ)

(∇(+)
µ ∇(−)

µ )(p) =
4

a2
µ

sin2(pµaµ/2)

m(W )(p) =
∑

µ

2r

aµ
sin2(pµaµ/2)

∇SLAC
µ (p) = ipµ . (B.11)

Apart from the SLAC derivative these are all functions of the type adF (ap) where d is

determined by the dimension of the operator. Obviously the behavior of F in the vicinity of

p = 0 is the important part in the continuum limit unless there are other points with F = 0.

Now consider a more complicated operator C̃m1,...mnf
. Translational invariance implies

that a shift of all lattice points by xm is irrelevant. One way for the representation in

Fourier space is

C̃m1,...,mnf
=

∑

k1,...,knf

C̃(pk1, . . . , pknf
)e

i(pk1
xm1+...+pknf

xmnf
)

C̃(pk1, . . . , pknf
) =

∑

m1,...,mnf

C̃m1,...,mnf
e
−i(pk1

xm1+...+pknf
xmnf

)
. (B.12)

The translational invariance means for the Fourier space representation

C̃(pk1 , . . . , pknf
)e

i(pk1
+...+pknf

)xm = C̃(pk1 , . . . , pknf
) . (B.13)

This implies pµ
knf

= −pµ
k1

− . . .− pµ
knf−1

mod Λµ
L for all µ. A representation that explicitly

implies the translational invariance is obtained by going from C̃ with nf indices to a matrix

C with nf − 1 indices according to

C̃m1,...,mnf
= C(mnf

−m1),...,(mnf
−mnf−1) . (B.14)
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A representation in Fourier space of this matrix is

Cm1,...,mnf−1 =
∑

k1,...,knf−1

C(pk1, . . . , pknf−1)e
ipk1

xm1+...+ipknf−1
xmnf−1 . (B.15)

Thus the two representations are in Fourierspace related by

C̃(pk1 , . . . , pknf
) = δL(pk1 + . . .+ pknf

)C(pk1, . . . , pknf−1) . (B.16)

With these operators the modification of the product on the lattice (2.12) is defined.

The commutativity of the product is ensured by the fact that C̃ is invariant under

the exchange of its arguments. A requirement for a modified product, not discussed in the

main text, is its associativity,

(φ(1) ∗ φ(2) ∗ φ(3))l = ((φ(1) ∗ φ(2)) ∗ φ(3))l. (B.17)

In Fourier space associativity on the lattice demands

C̃(pk1 , pk2, pk3 , pk4) =
∑

k5

C̃(pk5 , pk2, pk3)C̃(pk1,−pk5 , pk4) (B.18)

or C(pk1, pk2 , pk3) =
∑

k4

δL(pk4 − pk2 − pk1)C(pk4 , pk3)C(pk1 , pk2). (B.19)

This condition is fulfilled for the proposed lattice action in section 4.

The matrix F (nf) used in this construction follows from

F (nf)
nm =

1

aN

(N−1)/2
∑

k=−(N−1)/2

exp

(

i
2πk

aN

(

am−
a

(nf − 1)
n

))

=
e
−i 2π(N−1)

2N
(m− n

nf−1
)

aN

1 − ei2π(m−n/(nf−1))

1 − ei2π/N(m−n/(nf−1))

=
sin(π(m− n/(nf − 1))

aN sin(π/N(m− n/(nf − 1))
. (B.20)

It is clear that for this kind of matrix the following summation rule holds

a

(nf − 1)

nfN−1
∑

n=0

F (nf)
nm1

F (nf)
nm2

= δ(xm1 − xm2) . (B.21)

This implies for the modified product of two fields

∑

l

(φ(1) ∗ φ(2))l =
∑

l

φ
(1)
l φ

(2)
l . (B.22)

F (nf) maps the fields ϕ(i) with a lattice size N on the fields ϕ̃
(i)
n =

∑

n F
(nf)
nm ϕ

(i)
n with

a lattice size (nf − 1)N . The fields on the larger lattice have, however, a momentum

constraint that is constraint below π
a instead the larger lattice cutoff

π(nf−1)
a . Thus F (nf)

generates a one to one map of ϕ(i)(pk) onto the modes of the larger lattice below the

cutoff π
a .
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