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1 Motivations

For theory with Lagrangian description, we can calculate amplitudes using Feynman dia-

grams. Any Feynman diagram is constructed by putting some elements, i.e., the vertex,

together through propagators. Thus any higher point amplitude can be constructed re-

cursively from lower point amplitudes with one very important feature: these lower point

amplitudes must be well-defined off-shell. Comparing to the on-shell amplitudes, which
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have physical meaning, off-shell amplitudes are usually longer and more complicated, es-

pecially for gauge theory where gauge freedom renders the expression including many

redundant information. Thus it is natural to ask if we can construct any higher point

on-shell amplitude recursively from lower point on-shell amplitudes only. If we could, we

can call this theory ”on-shell constructible” to be distinguish with off-shell constructions

by Feynman diagrams.

Initially by Witten’s twistor program [1], BCFW recursion relation [2, 3] provides the

first concrete example for on-shell constructibility. Let us first review how the goal is

achieved. First we pick up two special momenta p1, p2 and do the following deformation

(BCFW deformation) using an auxiliary momentum q:

p1(z) = p1 + zq, p2(z) = p2 − zq . (1.1)

The opposite sign makes the momentum conservation satisfied. Furthermore, if we impose

the conditions q2 = 0, p1 · q = p2 · q = 0, the on-shell conditions of p1(z) and p2(z) are

also satisfied. In another word, we have a deformed on-shell amplitude A(z) over single

complex variable z. Having the deformed A(z) we consider following contour integration

B =

∮

C

A(z)

z
dz (1.2)

where contour C is big enough circle around z = 0. We can evaluate the integration by

two different ways: either by contour around z = ∞ or the big contour around the origin.

Thus we have

A(z = 0) = −
∑

zα

Res

(
A(z)

z

)
+B , (1.3)

where A(z = 0) is the amplitude we want to find and B is the boundary contribution. The

residue part can always be calculated using the factorization properties from lower-point

on-shell amplitudes. In another word, the expression (1.3) tells us that for any theory,

some parts of tree amplitudes are ”on-shell constructible”. The trouble part comes from

the boundary contribution B. It is easy to see that B 6= 0 when and only when A(z) is not

zero under the limit z → ∞. Thus if there is some deformation such that A(z) → 0 when

z → ∞, we will get the wanted on-shell constructibility. Assuming this strong condition,

i.e., B = 0, some beautiful results can be derived in [4].

From above discussions, we see that for the application of on-shell constructibility,

the knowledge of boundary contribution becomes very important. The analysis of the

boundary behavior is, in general, an extremely nontrivial task for many theories, especially

the one with gauge symmetry, as demonstrated in the beautiful paper [5] as well as others,

for examples [6]–[10]. In these papers, it is shown that for gauge theory or gravity theory,

with proper choice of BCFW deformation we can make the boundary contribution zero

and derive the on-shell recursion relation.

However, there are other theories where we can not find any deformation to set bound-

ary contribution zero. One typical example is the λφ4 theory. For these theories, the
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on-shell constructibility is not so easy to answer. In fact, more accurate statement from

expression (1.3) is following: If B = 0, the theory is on-shell constructible, but if B 6= 0, it

can be on-shell constructible or not on-shell constructible.

In this paper, we will address the problem carefully with B 6= 0. We will show that

for some theories, although there is no any choice to set boundary contribution zero, the

boundary contribution can be analyzed and obtained in fairly simple way through lower

point on-shell amplitudes. Thus for these theories, we can still write down the on-shell

recursion relations.

The structure of our paper is following. In section 2, we use the λφ4 theory as our first

example to demonstrate the on-shell constructibility with nonzero boundary contributions.

In section 2.1, we have identified boundary contributions from Feynman diagram analysis

and written down the BCFW recursion relation. Then in section 2.2, we calculated several

amplitudes using our BCFW formula and compared with results from Feynman diagrams

in appendix A.

There is another way to deal with λφ4 theory by introducing a massive field as given

in [4]. For the new Lagrangian we have a triple deformation with vanishing boundary

contributions and similar BCFW recursion relation. In section 3, we use same triple defor-

mation for λφ4 theory. We showed that how the boundary contributions for λφ4 theory are

mapped to the pole contributions in the new Lagrangian, thus established the equivalent

relation between these two methods.

In section 4, we discuss the scalar QCD, i.e., fermion interacts with scalar through the

Yukawa coupling. This example is more interesting because this kind of interactions is a

major part of standard model. We analyzed the boundary behavior for various helicity

configurations in section 4.1 and wrote down the corresponding BCFW recursion relations.

In section 4.2, we present explicit calculations to demonstrate our results.

There are two appendixes. In appendix A we have present amplitudes calculated

directly by Feynman diagrams. Its role is to check calculations did by BCFW recursion

relation with boundary contributions. In appendix B, we have discussed the boundary

contributions for general 2l fermions in scalar QCD.

2 The λφ4 theory

In this section, we discuss our first example with nonzero boundary contribution: the λφ4

theory. We will analyze the boundary behavior first, and then write down the BCFW recur-

sion relation with boundary contribution. As a comparison we have done same calculation

using the standard Feynman diagram method in appendix A.

2.1 The boundary behavior and BCFW relation

Let us consider following BCFW deformation for massless λφ4 theory

λ(i) = λ(i) + zλ(j) λ̃(j) = λ̃(j) − zλ̃(i) (2.1)

Using the only nontrivial vertex λφ4 to construct the tree-level Feynman diagram, we found

that all diagrams can be divided into two categories: (A) particles i, j are attached to same
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Figure 1. (a) The contribution from boundary. (b) The contribution from pole part.

vertex; (B) particles i, j are attached to different vertexes. For diagrams in category (B),

there is at least one propagator on the line connecting i, j depending on z linearly, i.e., we

will have factor 1
P 2−z〈j|P |i]

in the expression. Thus under the limit z → ∞, expressions in

category (B) will go to zero, so they do not give boundary contributions.

Opposite to the category (B), since i, j are attached to same vertex, the whole ex-

pressions in category (A) do not depend on z at all. In another word, there are nonzero

boundary contributions from category (A). By this simple analysis, we know that the

boundary contribution can be calculated by attaching the lower-point tree level ampli-

tudes to this vertex.

Having above analysis, we can immediately write down the BCFW on-shell recursion

relation for this simple theory as

A = Ab +Apole (2.2)

where Ab as boundary contribution given by

Ab = (−iλ)
∑

I′
S

J ′={n}\{i,j}

AI′ ({KI′))
1

P 2
I′

1

P 2
J ′

AJ ′ ({KJ ′}) (2.3)

and Apole as contributions from poles given by standard BCFW-form

Apole =
∑

i∈I,j 6∈I

AI ({KI′}, pi(zI),−PI(zI))
1

P 2
I

AJ ({KJ ′}, pj(zI), PI(zI)) (2.4)

The expression (2.3) just states the fact that set I ′, set J ′ and particles i, j are attached

to same vertex with coupling constant −iλ. There two contributions can be represented

by figure 1 (a) and (b), where we have set i, j = 1, 2:

In following subsection, we will check the formula above using explicit calculations.

For simplicity, we will focus on the color ordered case. For ordered case, something new is

happening: when particles i, j have distance more than two, they will never be attached

to same vertex and the boundary contribution will be zero. Thus we can check our result

using 〈1|2]-shifting with boundary contribution against the 〈1|4]-shifting without boundary

contribution. We want to emphasize that although for ordered case we can have deforma-

tion without boundary contribution, in real calculation, we need to sum up all orderings,

so formula with boundary contribution will be unavoidable.
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Having above explanation, in following calculations, we will write down results from

shifting 〈1|2] and compare them with the one from shifting 〈1|4] as well as the one with

direct Feynman diagrams in appendix A.

2.2 The 〈1|2] shifting

Since for λφ4 theory we have only quadruple vertex, tree-level amplitudes with odd num-

ber of scalars are automatically zero, thus we will consider six, eight and ten point ampli-

tudes only.

In this part we will use the 〈1|2] shifting given by

λ1(z) = λ1 + zλ2, λ̃2(z) = λ̃2 − zλ̃1 (2.5)

thus we have following results.

Six-point amplitudes: first we consider the 〈1|2] shifting. It is easy to see that there

is only one figure contributing to pole part

A
〈1|2]
6,pole(1, . . . , 6) = A4(5, 6, 1̂,−P̂ )

1

P 2
561

A4(P̂ , 2̂, 3, 4) = (−iλ)2
(

1

P 2
156

)
(2.6)

For the boundary part, there are two contributions

A
〈1|2]
6,b (1, . . . , 6) = A4(1, 2,−P1,−P2)

(
1

p2
3

A2(P1, 3)

)(
1

P 2
123

A4(P2, 4, 5, 6)

)

+A4(1, 2,−P1,−P2)

(
1

P 2
3,4,5

A4(P1, 3, 4, 5)

)(
1

p2
6

A2(P2, 6)

)

= (−iλ)2
(

1

P 2
123

+
1

P 2
126

)
(2.7)

where for simplicity we have defined the notation A2(a, b) = δ4(pa−pb)p
2
a, Pijk = pi+pj+pk.

Putting together we have

AFD
6 (1, . . . , 6) = (−iλ)2

(
1

P 2
123

+
1

P 2
126

+
1

P 2
156

)
(2.8)

which agrees with the one from three Feynman diagrams.

For the shifting 〈1|4], there is no boundary part but there are three terms in pole part:

(123|456), (612|345) and (561|234). Adding three terms together we get the same answer.

Eight-point amplitudes: there are two types of trees with three vertexes contributing at

this level: (A) type (123|45|678) plus Z8 cyclic ordering and (B) type (123|48|567) where

4, 8 at at the two sides of propagators, plus Z4 cyclic ordering. Adding them together

we have

AFD
8 (1, . . . , 8) = A

FD(a)
8 +A

FD(b)
8 (2.9)

= (−iλ)3
∑

σ∈Z8

(
1

P 2
σ(1)σ(2)σ(3)P

2
σ(6)σ(7)σ(8)

+
1

2P 2
σ(1)σ(2)σ(3)P

2
σ(5)σ(6)σ(7)

)
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where FD means the result from direct Feynman diagrams.

Now we use the 〈1|2]-shifting. The pole contribution is given by sum of following two

terms (notice that the tree amplitude is zero with odd number of external lines):

A
〈1|2]
8,pole(1, 2, . . . , 8) = Â4(7, 8, 1̂,−P̂ )

1

P 2
178

Â6(P̂ , 2̂, 3, 4, 5, 6)

+Â6(5, 6, 7, 8, 1̂,−P̂ )
1

P 2
234

Â4(P̂ , 2̂, 3, 4) (2.10)

= (−iλ)3

[
1

P 2
178

(
1

P̂ 2
b234

+
1

P 2
345

+
1

P 2
456

)
+

(
1

P 2
567

+
1

P 2
678

+
1

P̂ 2
b178

)
1

P 2
234

]

Using the locations of the poles z1 = −
P 2

178
〈1|P178|2]

, z2 = −
P 2

234
〈1|P234|2]

, we can simplify

1

P 2
178P̂

2
b234

+
1

P̂ 2
b178
P 2

234

=
1

P 2
178P

2
234

(
1

1 − z1
z2

+
1

1 − z2
z1

)
=

1

P 2
178P

2
234

, (2.11)

where we have used the identity 1
1−

z1
z2

+ 1
1−

z2
z1

= 1. In fact, there is a general identity

n∑

i=1

n∏

j=1
j 6=i

1

1 − zi

zj

= 1, (2.12)

which will be useful also in our ten-point calculation.

For boundary part, there are following three splitting (3|45678), (345|678) and

(34567|8). Adding them up we have

A
〈1|2]
8,b (1, 2, . . . , 8) = (−iλ)3

[
1

P 2
123

(
1

P 2
456

+
1

P 2
567

+
1

P 2
678

)
(2.13)

+
1

P 2
812

(
1

P 2
345

+
1

P 2
456

+
1

P 2
567

)
+

1

P 2
345P

2
678

]

It is easy to check that add the pole part and boundary part we indeed reproduce the result

from Feynman diagrams.

Now we move to the shifting 〈1|4]. There is no boundary part, but for the pole

part, there are following six terms: (123|45678), (812|34567), (781|23456), (78123|456),

(67812|345) and (56781|234). Adding them up, we get again the same answer.

It should be interesting to compare terms we have added up in each method. For

Feynman diagram method, there are 8 + 4 = 12 terms. For 〈1|2]-shifting there are 2 + 3 =

5 terms while for 〈1|4]-shifting there are 6 terms. Different method has given different

combinations of various propagators.

Ten-point amplitudes: for this case, there are several topologies for tree amplitudes as

shown in appendix A. The result can be summarized with cyclic ordering as (A.12). There

are four kinds of diagrams with Z10 cyclic ordering and another three, Z5 cyclic ordering,

so there are total 55 terms.
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For the 〈1|2]-shifting, the boundary part has following four terms: (3|456789(10)),

(345|6789(10)), (34567|89(10)) and (3456789|(10)). The result is given by

A
〈1|2]
10,b (1, 2, . . . , 10)

= A4(1, 2,−P1,−P2)

(
1

p2
3

A2(P1, 3)

)(
1

P 2
123

A8(P2, 4, . . . , 10)

)

+A4(1, 2,−P1,−P2)

(
1

P 2
345

A4(P1, 3, 4, 5)

)(
1

P 2
12345

A6(P2, 6, . . . , 10)

)

+A4(1, 2,−P1,−P2)

(
1

p2
34567

A6(P1, 3, . . . , 7)

)(
1

P 2
89(10)

A4(P2, 8, 9, 10)

)

+A4(1, 2,−P1,−P2)

(
1

p2
(10)12

A8(P1, 3, . . . , 9)

)(
1

p2
10

A2(P2, 10)

)

= (−iλ)4
1

P 2
123


∑

σ∈Z8

(
1

P 2
σ(3)σ(4)σ(5)P

2
σ(6)σ(7)σ(8)

+
1

2P 2
σ(3)σ(4)σ(5)P

2
σ(7)σ(8)σ(9)

)


+
1

P 2
345P

2
12345

(
1

P 2
678

+
1

P 2
789

+
1

P 2
89(10)

)
+

1

P 2
34567P

2
89(10)

(
1

P 2
345

+
1

P 2
456

+
1

P 2
567

)

+
1

P 2
12(10)

∑

σ∈Z8

(
1

P 2
σ(3)σ(4)σ(5)P

2
σ(6)σ(7)σ(8)

+
1

P 2
σ(3)σ(4)σ(5)P

2
σ(7)σ(8)σ(9)

)
(2.14)

The pole part is given by the sum of three terms

A
〈1|2]
10,pole(1, 2, . . . 10)

= Â4(9, 10, 1̂,−P )
1

P 2
9(10)1

Â8(P, 2̂, 3, 4, 5, 6, 7, 8)

+Â6(7, 8, 9, 10, 1̂,−P )
1

P 2
2345

Â6(P, 2̂, 3, 4, 5, 6)

+Â8(5, 6, 7, 8, 9, 10, 1̂,−P )
1

P 2
234

Â4(P, 2̂, 3, 4)

= (−iλ)4
1

P 2
9(10)1


∑

σ∈Z8

(
1

P̂ 2
σ(2)σ(3)σ(4) P̂

2
σ(5)σ(6)σ(7)

+
1

2P̂ 2
σ(2)σ(3)σ(4) P̂

2
σ(6)σ(7)σ(8)

)


+

(
1

P̂ 2
789

+
1

P̂ 2
89(10)

+
1

P̂ 2
9(10)1

)
1

P 2
23456

(
1

P̂ 2
234

+
1

P̂ 2
345

+
1

P̂ 2
456

)

+
1

P 2
234


∑

σ∈Z8

(
1

P̂ 2
σ(5)σ(6)σ(7) P̂

2
σ(8)σ(9)σ(10)

+
1

2P̂ 2
σ(5)σ(6)σ(7) P̂

2
σ(9)σ(10)σ(1)

)
 (2.15)
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Using (2.12) we can show following identity:

(−iλ)4
[

1

P 2
9(10)1

(
1

P̂ 2
b234

1

P 2
567

+
1

P 2
456

1

P̂ 2
b23456

+
1

P̂ 2
b23456

1

P̂ 2
b234

+
1

P̂ 2
b234

1

P 2
567

+
1

P 2
345

1

P̂ 2
b23456

)

+
1

P 2
234

(
1

P 2
678

1

P̂ 2
9(10)b1

+
1

P̂ 2
9(10)b1

1

P̂ 2
b23456

+
1

P̂ 2
b23456

1

P 2
789

+
1

P 2
567

1

P̂ 2
9(10)b1

+
1

P 2
89(10)

1

P̂ 2
b23456

)

+
1

P̂ 2
9(10)b1

1

P 2
23456

(
1

P̂ 2
b234

)]
(2.16)

= (−iλ)4
[

1

P 2
9(10)1

(
1

P 2
234

1

P 2
567

+
1

P 2
456

1

P 2
23456

+
1

P 2
23456

1

P 2
234

+
1

P 2
234

1

P 2
567

+
1

P 2
345

1

P 2
23456

)

and then we can show that the result is same as given by AFD
10 .

For shifting 〈1|4], there are nine terms from the recursion relations. Summing it up

with some algebra we see that it reproduce the right answer.

Again, we count terms from different methods. The Feynman diagrams give 55 terms.

The 〈1|2] shifting gives 4 + 3 = 7 terms while the 〈1|4] shifting gives 9 terms.

3 Boundary BCFW and auxiliary field

As we have discussed, for λφ4 theory, the boundary contribution is not zero for BCFW

deformation (here we means the general unordered case). However, as presented in [4], by

introducing a massive auxiliary field χ, it is possible to rewrite the λφ4 theory into another

form where three-particle BCFW deformation without boundary contribution does exists.

In this section, we will explore the relation between auxiliary field method and the boundary

BCFW method for λφ4 theory.

The new Lagrangian with auxiliary field is given by

L(φ, χ) =
1

2
(∂µφ) (∂µφ) +

1

2
(∂µχ) (∂µχ) −

1

2
m2

χχ
2 − gχφ2. (3.1)

The theory is not the λφ4 theory, but under some limit, we can recover late. The limit is

the large mass limit, where χ is not excited, so we can use the equation of motion (where

the kinematic part has been set to zero) m2
χχ+ gφ2 = 0 to solve χ and then put it back to

the Lagrangian to get

L(φ) =
1

2
(∂µφ) (∂µφ) −

λ

4!
φ4. (3.2)

where to match up the coupling constant, we need to set g2

2m2
χ

= λ
4! .

The Lagrangian L(φ, χ) is on-shell constructible without boundary contribution under

following three-particle BCFW deformation

λ̃(1)(z) = λ̃(1) − z

(
[1, 3]

[2, 3]
λ̃(2) +

[1, 3]

[3, 4]
λ̃(4)

)

λ(2)(z) = λ(2) + z
[1, 3]

[2, 3]
λ(1), λ(4)(z) = λ(4) + z

[1, 3]

[3, 4]
λ(1). (3.3)

– 8 –



J
H
E
P
0
1
(
2
0
1
0
)
0
1
9

ℛ
...

1 2

3

4

(a)

ℛ

1

2

3

4

... ℛ

1

4

3

2

... ℛ

2

1

3

4

...

(b)

Figure 2. Pure scalar case: (a) boundary term figure (b) boundary term figure in view of auxil-

iary field.

but L(φ) has boundary contribution under same deformation. In another word, for L(φ, χ)

theory the BCFW recursion relation for n φ scalars is given by

Ãn =
∑

i∈I, 2 or 4∈J

ÃI(I(z), Pφ)
1

P 2
ÃJ (J(z),−Pφ)

+
∑

i∈I, 2 or 4∈J

ÃI(I(z), Pχ)
1

P 2 −m2
χ

ÃJ(J(z),−Pχ) , (3.4)

where the first term has 〈φφ〉 propagator in middle and the second term, has 〈χχ〉 propa-

gator. For L(φ) theory the corresponding recursion relation is modified to

An =
∑

i∈I, 2 or 4∈J

AI(I(z), Pφ)
1

P 2
AJ(J(z),−Pφ) +An,b (3.5)

where Ab is the contribution from boundary. Comparing these two formula (3.4) and (3.5),

we find that first term of both formula is, in fact, identical. Thus Ãn = An is equivalent to

the condition that the second term of Ãn, which is provided by the auxiliary propagator,

is equal to the boundary part of An. Now we show this is true in remaining part of

this section.

The boundary part of (3.5): just by checking the Feynman diagrams, it is easy to

identify which kind of Feynman diagrams contributes the boundary term. It is nothing,

but the one where particles 1, 2, 4 are attached to same vertex, as shown in figure 2 (a).

The second term of (3.4): for this part, we need to use the amplitudes with one χ field,

so it is important to know the g,mχ power dependence of these amplitudes. First it is easy

to know that the amplitude of m φ scalars and one χ scalar is zero when m = odd while

when m = even, it is not zero. Assuming there are V triple-vertex, I1 〈φφ〉 propagators

and I2 〈χχ〉 propagators, by some simple arguments we have

I1 = I2 =
m

2
− 1, V = m− 1 , (3.6)
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thus the large mass limit is given by

A(mφ,χ) ∼
gV

(m2
χ)m/2−1

∼ λ
m−1

2 mχ . (3.7)

Now we consider the amplitude under z-deformation where z is solved by P 2(z)−m2
χ =

0, i.e., zα ∼ m2
χ for large mass limit. With the appearance of z, propagators will have

different large mass behavior than the one without z-deformation. For 〈χχ〉 propagator

since P 2(zα) −m2
χ ∼ m2

χ, the large mass behavior is same before and after z-deformation.

Opposite to that, the 〈φφ〉 propagator will be P 2(z) ∼ m2
χ after z-deformation and P 2 →

(m2
χ)0 before the z-deformation. Putting this back, we have

A(mφ,χ, zα) ∼ λ
m−1

2 m1−2t
χ , (3.8)

where t is the number of 〈φφ〉 propagators affected by z-deformation. Applying (3.8) to

the second term of (3.4) we have

λ
mL−1

2 m1−2tL
χ

1

m2
χ

λ
mR−1

2 m1−2tR
χ ∼ λ

n−2
2 (m2

χ)−2(tL+tR) , (3.9)

which is not zero under large mass limit when and only when tL = tR = 0.

What are these nonzero contributions with tL = tR = 0 under our triple deformation?

They are nothing, but the one given by figure 2 (b). It is also easy to see that they

correspond exactly to the boundary part of (3.5).

Thus we have shown that how the boundary contribution can be transferred into

contribution from auxiliary fields under triple deformation.

4 The scalar QCD theory

In this section, we consider another example where scalar and fermion interacting by

Yukawa coupling form ψφψ. Similar interaction terms are presented in Standard Model,

so our example will have potential applications for practical calculations.

As in previous section, we will discuss the boundary behavior first and then write

down the BCFW recursion relation with boundary contributions. After that we do several

concrete calculations to demonstrate our method. For simplicity, our attention will focus

on color ordered amplitudes with exactly two fermions and n scalars. Other situations can

be discussed similarly.

4.1 The analysis of Feynman diagrams

For ordered amplitudes with two fermions and n scalars, we use q1, q2 to denote momenta of

fermions and p1, . . . , pn, the momenta of scalars, thus the ordered amplitude is denoted by

A(q1, p1, . . . , pn, q2). By inspecting the general Feynman diagram given in figure 3, we see

that there is one common feature: a single fermionic line connecting these two fermions

while other scalars are attached through Yukawa coupling at same side. Using the fermionic

propagator i6p
p2 , the amplitude can be written as

A =
∑

diagrams

SiQi (4.1)
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q2 q1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅
1 n1

⋅ ⋅ ⋅
ni−1 + 1 ni

⋅ ⋅ ⋅
nm−1 + 1 nm

Figure 3. General Feynman diagrams.

where Si is contribution from scalar part and Qi is the form

Q(q−1 , q
+
2 ;R1, . . . , Rm) ∼ im

〈1|R1|R2| . . . |Rm|2]

R2
1R

2
2 . . . .R

2
m

(4.2)

where we have assumed the helicity of q1, q2 is (−,+) and there arem fermionic propagators

along the line. In fact, it is easy to see that when hq1 = hq2, to get nonzero amplitudes we

must have even number of fermionic propagators (i.e., m = even) while when hq1 = −hq2, to

get nonzero amplitudes we must have odd number of fermionic propagators (i.e., m = odd).

Now we introduce following 〈1|2]-deformation between the two fermions

λ(1) = λ(1) + zλ(2) λ̃(2) = λ̃(2) − zλ̃(1) (4.3)

It is easy to see from Fig 3 that all Si factor in (4.1) do not depend on z and the only

z-dependence is inside Qi. With different helicity configurations, the discussion will be a

little different, so we consider it case by case.

The helicity (hq1
, hq2

) = (+, +): in this case the number of propagator should be

even and we have following two cases: (A) m = 0; (B) m ≥ 2. For case (B), we have

Q(q+1 , q
+
2 ;R1, . . . , Rm) (4.4)

∼ im

[
1|(q1 +R1 + zλ2λ̃1)(

∏m−2
j=1 (q1 +Rj + zλ2λ̃1))(q1 +Rm + zλ2λ̃1)|λ̃2 − zλ̃1

]

(q1 +R1 + zλ2λ̃1))2(
∏m−2

j=1 (q1 +Rj + zλ2λ̃1)2)(q1 +Rm + zλ2λ̃1)2

= im

[
1|(q1 +R1)(

∏m−2
j=1 (q1 +Rj + zλ2λ̃1))(q1 +Rm + zλ2λ̃1)|λ̃2 − zλ̃1

]

(q1 +R1 + zλ2λ̃1))2(
∏m−2

j=1 (q1 +Rj + zλ2λ̃1)2)(q1 +Rm + zλ2λ̃1)2

= im

[
1|(q1 +R1)(

∏m−2
j=1 (q1 +Rj + zλ2λ̃1))(q1 +Rm)|λ̃2 − zλ̃1

]

(q1 +R1 + zλ2λ̃1))2(
∏m−2

j=1 (q1 +Rj + zλ2λ̃1)2)(q1 +Rm + zλ2λ̃1)2

+im

[
1|(q1 +R1)(

∏m−2
j=1 (q1 +Rj + zλ2λ̃1))(zλ2λ̃1)|λ̃2

]

(q1 +R1 + zλ2λ̃1))2(
∏m−2

j=1 (q1 +Rj + zλ2λ̃1)2)(q1 +Rm + zλ2λ̃1)2

which goes zero under the z → ∞ limit since each term has (m− 1) z in numerator and m

z in denominator. For the case (A) we have

Q(q+1 , q
+
2 ) = [1|2 − z1] = [1|2] (4.5)
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q+2 q+1

⋅ ⋅ ⋅1 n

q2 q1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅
1 n1

⋅ ⋅ ⋅
ni−1 + 1 ni

⋅ ⋅ ⋅
nm−1 + 1 nm

m ≥ 2

Figure 4. Amplitude in total.

which is independent of z.

From above analysis we see that under our 〈1|2] shifting, there is nonzero boundary

contribution and it is purely given by diagrams of case (A). Thus it is easy to write down

the BCFW recursion relation with boundary term as

An+2(q
+
1 ; p1, . . . , pn; q+2 )

=
n−1∑

i=1,h=±

Ai+2(q
+
1 (zi); p1, . . . , pi; q

h
i (zi))

1

(q1 +
∑i

j=1 pj)2
×

×An−i+2(−q
−h
i (zi); pi+1, . . . , pn; q+2 (zi)) +

(−ig) [1|2]

(
∑n

i=1 pi)2
An+1(p1, . . . , pn, Pφ) (4.6)

where An+1 is the amplitude of (n+1) pure scalars. The expression can also be represented

by following figure 4

The helicity (hq1
, hq2

) = (−, −): in this case the number of propagator should again

be even and we have following two cases: (A) m = 0; (B) m ≥ 2. For case (B), we have

Q(q−1 , q
−
2 ;R1, . . . , Rm)

∼ im

〈
λ1 + zλ2|(q1 +R1 + zλ2λ̃1)(

∏m−2
j=1 (q1 +Rj + zλ2λ̃1))(q1 +Rm + zλ2λ̃1)|λ2

〉

(q1 +R1 + zλ2λ̃1))2(
∏m−2

j=1 (q1 +Rj + zλ2λ̃1)2)(q1 +Rm + zλ2λ̃1)2

= im

〈
λ1 + zλ2|(q1 +R1 + zλ2λ̃1)(

∏m−2
j=1 (q1 +Rj + zλ2λ̃1))(q1 +Rm)|λ2

〉

(q1 +R1 + zλ2λ̃1))2(
∏m−2

j=1 (q1 +Rj + zλ2λ̃1)2)(q1 +Rm + zλ2λ̃1)2

= im

〈
λ1 + zλ2|(q1 +R1)(

∏m−2
j=1 (q1 +Rj + zλ2λ̃1))(q1 +Rm)|λ2

〉

(q1 +R1 + zλ2λ̃1))2(
∏m−2

j=1 (q1 +Rj + zλ2λ̃1)2)(q1 +Rm + zλ2λ̃1)2

+im

〈
λ1|(zλ2λ̃1)(

∏m−2
j=1 (q1 +Rj + zλ2λ̃1))(q1 +Rm)|λ2

〉

(q1 +R1 + zλ2λ̃1))2(
∏m−2

j=1 (q1 +Rj + zλ2λ̃1)2)(q1 +Rm + zλ2λ̃1)2
(4.7)

which goes zero under the z → ∞ limit since each term has (m− 1) z in numerator and m

z in denominator. For the case (A) we have

Q(q−1 , q
−
2 ) = 〈1 + z1|2〉 = 〈1|2〉 (4.8)
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which is independent of z. Thus under our 〈1|2] shifting, there is nonzero boundary con-

tribution and it is purely given by diagrams of case (A). Thus it is easy to write down the

BCFW recursion relation with boundary term as

An+2(q
−
1 ; p1, . . . , pn; q−2 )

=

n−1∑

i=1,h=±

Ai+2(q
−
1 (zi); p1, . . . , pi; q

h
i (zi))

1

(q1 +
∑i

j=1 pj)2
× (4.9)

×An−i+2(−q
−h
i (zi); pi+1, . . . , pn; q−2 (zi)) +

(−ig) 〈1|2〉

(
∑n

i=1 pi)2
An+1(p1, . . . , pn, Pφ)

where An+1 is the amplitude of (n+1) pure scalars. It is obvious that (+,+) is conjugated

to (−,−).

The helicity (hq1
, hq2

) = (+, −): in this case the number of propagator should be

odd, i.e., we have at least one propagator. This case is, in fact, simpler than previous two

cases. The general expression of Q should be

Q(q+1 , q
−
2 ;R1, . . . , Rm)

∼ im

[
λ̃1|(q1 +R1 + zλ2λ̃1)(

∏m−1
j=1 (q1 +Rj + zλ2λ̃1))|λ2

〉

(q1 +R1 + zλ2λ̃1))2(
∏m−2

j=1 (q1 +Rj + zλ2λ̃1)2)(q1 +Rm + zλ2λ̃1)2

= im

[
λ̃1|(q1 +R1)(

∏m−1
j=1 (q1 +Rj + zλ2λ̃1))|λ2

〉

(q1 +R1 + zλ2λ̃1))2(
∏m−2

j=1 (q1 +Rj + zλ2λ̃1)2)(q1 +Rm + zλ2λ̃1)2
(4.10)

which goes zero under the z → ∞ limit since each term has (m− 1) z in numerator and m

z in denominator. In other word, with this helicity configuration and the choice of BCFW

deformation, the boundary contribution is zero and we have familiar BCFW recursion

relation which is given by

An+2(q
+
1 ; p1, . . . , pn; q−2 )

=
n−1∑

i=1,h=±

Ai+2(q
+
1 (zi); p1, . . . , pi; q

h
i (zi))

1

(q1 +
∑i

j=1 pj)2
×

×An−i+2(−q
−h
i (zi); pi+1, . . . , pn; q−2 (zi)) . (4.11)

It is worth to emphasize that although (h1, h2) = (+,−) case does not have boundary

contributions, the sub-amplitudes in the recursive calculation will meet the helicities con-

figurations (+,+), (−,−) and (−,+), thus the boundary contributions have been included

implicitly through these sub-amplitudes.

The helicity (hq1
, hq2

) = (−, +): in this case the number of propagator should be

odd and we should have at least one propagator. However, unlike the previous case where

boundary contribution is zero, current one is the most complicated one and we should

divide diagrams into three cases: (A) m = 1; (B) m = 3; (C) m ≥ 5. Let us first show that

the case (C) does not give boundary contributions. The observation we will use is that
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when zλ2λ̃1 are nearby, its contribution is zero, i.e.,
〈
α|zλ2λ̃1|zλ2λ̃1|β

〉
= 0. Using this,

when we have five (q1+Ri+zλ2λ̃1) factors in a row, we can expand it into the power of z as

(it is worth to remember that there are five corresponding propagators with 1
z dependence)

(q1 +R1 + zλ2λ̃1)(q1 +R2)(q1 +R3 + zλ2λ̃1)(q1 +R4)(q1 +R5 + zλ2λ̃1)

+(q1 +R1)(q1 +R2 + zλ2λ̃1)(q1 +R3)(q1 +R4 + zλ2λ̃1)(q1 +R5) + O(z)

For the first term, when we contract with spinor as
〈
λ1 + zλ2|(q1 +R1 + zλ2λ̃1)|β

]
, we

have 〈λ1 + zλ2|(q1 +R1)|β] +
〈
λ1|(zλ2λ̃1)|β

]
, thus all terms are at most 1

z order.

Having established that the case (C) does not give boundary contribution, we move to

case (A) and (B). For case (A) the general result should be

IA = (−ig)2
n−1∑

i=1

〈
λ1 + zλ2|(q1 +Ri + zλ2λ̃1)|λ̃2 − zλ̃1

]

(q1 +Ri + zλ2λ̃1)2

Ai,φ

R2
i (q1 + q2 +Ri)2

, (4.12)

where Ri = p1 + . . .+ pi and Ai,φ is the contribution from scalars as

Ai,φ = Ai+1(p1, . . . , pi, pRi
)An−i+1(pi+1, . . . , pn, pR2) (4.13)

Taking the residue of IA around z = ∞ we will get

B[IA] = (−ig)2
n−1∑

i=1

(R2
i + 2Ri · q2)

〈2|R|1]

Ai,φ

R2
i (q1 + q2 +Ri)2

. (4.14)

For the case (B), first we consider which term gives nonzero contributions. Expanding

the product of three (q1 +Ri + zλ2λ̃1) we find that following five terms:

〈α|(q1 +R1)(q2 +R2)(q3 +R3)|β] +
〈
α|(zλ2λ̃1)(q2 +R2)(q3 +R3)|β

]

+
〈
α|(q1 +R1)(q2 +R2)(zλ2λ̃1)|β

]

+
〈
α|(q1 +R1)(zλ2λ̃1)(q3 +R3)|β

]
+
〈
α|(zλ2λ̃1)(q2 +R2)(zλ2λ̃1)|β

]

with α = λ1 + zλ2, β = λ̃2 − zλ̃1. Remembering the 1
z3 factor from three propagators, we

see that except the fourth term, all other terms will vanish under the limit z → ∞. In

another word, only the fourth term gives nonzero contribution.

Having identified the term, we write down its expression as

IB = (−ig)4
∑

i1+i2+i3+i4=n

〈
λ1 + zλ2|(q1 +R1)(q1 +R2 + zλ2λ̃1)(q1 +R3)|λ̃2 − zλ̃1

]

(q1 +R1 + zλ2λ̃1)2(q1 +R2 + zλ2λ̃1)2(q1 +R3 + zλ2λ̃1)2

×
Ai1i2i3i4,φ

R2
1(R2 −R1)2(R3 −R2)2(R4 −R3)2

, (4.15)

where R1 =
∑i1

j=1 pj, R2 =
∑i1+i2

j=1 pj, R3 =
∑i1+i2+i3

j=1 pj, R4 =
∑n

j=1 pj , and

Ai1i2i3i4,φ = Ai1+1(p1, . . . , pi1 , pRi1
)Ai2+1Ai3+1Ai4+1 (4.16)
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where Aik+1, k = 2, 3, 4 have similar structure like Ai1+1 so we have written them briefly.

Taking the residue we have

B[IB] = (−ig)4
∑

i1+i2+i3+i4=n

−1

〈2|q1 +R2|1]

Ai1i2i3i4,φ

R2
1(R2 −R1)2(R3 −R2)2(R4 −R4)2

. (4.17)

Having these two boundary contributions (4.12) and(4.17) we can finally write down the

boundary BCFW recursion relation as

An+2(q
−
1 ; p1, . . . , pn; q+2 ) = B[IA] +B[IB ] (4.18)

+

n−1∑

i=1,h=±

Ai+2(q
+
1 (zi); p1, . . . , pi; q

h
i (zi))

1

(q1 +
∑i

j=1 pj)2
×

×An−i+2(−q
−h
i (zi); pi+1, . . . , pn; q−2 (zi)) .

There is one thing we want to remark for this helicity. Our above analysis is done

with the 〈1|2]-shifting. However, if we use the [1|2〉-shifting, it is easy to see that there

is no boundary contribution. Thus we can calculate same amplitudes using two different

methods: one with boundary contribution and one without. This will be a strong consistent

check for our formula.

4.2 Explicit calculations for various helicity configurations

In this subsection we will use the BCFW recursion relations presented in previous subsec-

tion to calculate various amplitudes with all possible helicity configurations. All results

are same as the one given by Feynman diagrams in appendix A.

4.2.1 The helicity (hq1 , hq2) = (+,−)

This is the simplest case where boundary contributions are zero. However, as we have

emphasized, the sub-amplitudes used in the recursion relation will involve other helicity

configurations, thus the knowledge of boundary behavior is essential.

With two scalars, there is only one possible channel I = {q+1 , 1} with z =
P 2

q11

〈2|Pq11|1]
where we have defined Pq1i = q1 + p1 + . . .+ pi. Putting this we have

A
(
q+1 ; p1, p2; q

−
2

)
= A

(
q̂+1 ; p1;−P̂

+
q11

) 1

P 2
q11

A
(
P̂−

q11
; p2; q̂

−
1

)
= (−ig)2

[1|Pq11|2〉

P 2
q11

(4.19)

With four scalars there are three channels and we have

A
(
q+1 ; p1, p2, p3, p4; q

−
2

)
= (−ig)4

3∑

i=1

[1|(Pq11 + ziq)(Pq12 + ziq)(Pq13 + ziq)|2〉
∏3

j=1
j 6=i

(
1 − zi

zj

)
P 2

q11P
2
q12P

2
q13

+(−ig)2(−iλ)

[
[1|Pq11|2〉

P 2
q11

+
[1|Pq13|2〉

P 2
q11

]
(4.20)
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where zi are poles for these three channels. Using identities

n∑

i=1

n∏

j=1
j 6=i

1

1 − zi

zj

= 1,

n∑

i=1

n∏

j=1
j 6=i

zm

1 − zi

zj

= 1, (m ∈ Z, 1 ≤ m < n),

n∑

i=1

n∏

j=1
j 6=i

zn

1 − zi

zj

=

n∏

k=1

zk

(4.21)

the first term can be reduced to

(−ig)4
[1|Pq11Pq12Pq13|2〉

P 2
q11
P 2

q12
P 2

q13

(4.22)

thus we get the same answer as in appendix.

With six scalars there are five channels. Using identity (4.21) we can simplify the

expression and get

A
(
q−1 ; p1, p2, p3, p4; q

+
2

)
= (−ig)6

[1|Pq11Pq12Pq13Pq14Pq15|2〉

P 2
q11
P 2

q12
P 2

q13
P 2

q14
P 2

q15

(4.23)

+(−ig)4(−iλ)

[
[1|Pq11Pq12Pq13|2〉

P 2
q11P

2
q12P

2
q13P

2
46

+
[1|Pq11Pq12Pq15|2〉

P 2
q11
P 2

q12
P 2

q15
P 2

35

+
[1|Pq11Pq14Pq15|2〉

P 2
q11
P 2

q14
P 2

q15
P 2

24

+
[1|Pq13Pq14Pq15|2〉

P 2
q13
P 2

q14P
2
q15P

2
13

]

+(−ig)2(−iλ)2
{

[1|Pq13|2〉

P 2
q13P

2
13P

2
46

+
[1|Pq11|2〉

P 2
q11
P 2

26

[
1

P 2
24

+
1

P 2
35

+
1

P 2
46

]

+
[1|Pq15|2〉

P 2
q15
P 2

15

[
1

P 2
13

+
1

P 2
24

+
1

P 2
35

]}

which is again the right one.

4.2.2 The helicity (hq1 , hq2) = (−,+)

This is the most complicated helicity configuration because there are two possible boundary

contributions B[IA] and B[IB] with one or three fermion propagators respectively. Since

for these two case (A) and (B), there are also corresponding pole contributions, we can

combine pole part and boundary part together. Sometimes this combination gives simpler

expression. Noticing this we move to the explicit calculations.

With only two scalars, there are only one B[IA] contribution and one pole contribution:

A
(
q−1 ; p1, p2; q

+
2

)
= A

(
q̂−1 ; p1;−P̂

−
q11

) 1

P 2
q11

A
(
P̂+

q11; p2; q̂
+
2

)
+B[IA] (4.24)

The boundary term of case (A) is given by

B[IA] = (−ig)2
(R2

I + 2RI · q2)

〈2|RI |1]

Ai,φ

R2
I(q1 + q2 +RI)2

(4.25)

where RI = PI + q1. Adding them up we have

−(ig)2

〈
λ1 + zIλ2|PI + zIq|λ̃2 − zI λ̃1

]

P 2
I

Ai,φ

R2
I(q1 + q2 +RI)2

+B[IA]

= −(ig)2
〈1|PI |2]

P 2
I

Ai,φ

R2
I(q1 + q2 +RI)2

(4.26)
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Using result (4.26) and and z1 =
P 2

q11

〈2|Pq11|1]
we can simplify to

A
(
q−1 ; p1, p2; q

+
2

)
= (−ig)2

〈1|Pq11|2]

P 2
q11

(4.27)

With four scalars, both case (A) and case (B) give boundary contributions. For case

(A) there are two nonzero contributions with splitting (1|234) and (123|4) (the splitting

(12|34) will give zero). For case (B) there is only one contribution with splitting (1|2|3|4).

For pole part we have three channels I = {q1, p1}, {q1, p1, p2}, {q1, p1, p2, p3} with location

of poles z1, z2, z3 respectively. Putting all together we have expression

A
(
q−1 ; p1, p2, p3, p4; q

+
2

)

= A
(
q̂−1 ; p1;−P̂

−
q11

) 1

P 2
q11

A
(
P̂+

q11
; p2, p3, p4; q̂

+
2

)
+B[IA(1|234)]

+A
(
q̂−1 ; p1, p2;−P̂

+
q11

) 1

P 2
q12

A
(
P̂−

q11
; p3, p4; q̂

+
2

)

+A
(
q̂−1 ; p1, p2, p3;−P̂

−
q11

) 1

P 2
q13

A
(
P̂+

q11
; p4; q̂

+
2

)
+B[IA(123|4)] +B[IB(1|2|3|4)]

= (−ig)4
3∑

i=1

〈
λ1 + ziλ2|(Pq11 + ziq)(Pq12 + ziq)(Pq13 + ziq)|λ̃2 − ziλ̃1

]

∏3
j=1
j 6=i

(
1 − zi

zj

)
P 2

q11P
2
q12P

2
q13

+B[IB(1|2|3|4)] +B[IA(1|234)]

+(−ig)2(−iλ)

[〈
λ1 + z1λ2|Pq11|λ̃2 − z1λ̃1

]

P 2
q11

+

〈
λ1 + z3λ2|Pq13|λ̃2 − z3λ̃1

]

P 2
q11

]

+B[IA(123|4)]

It can be checked that terms with z3
i will cancel with the contribution from B[IB(1|2|3|4)].

Terms with lower order of zi sum to zero according to the identity in (4.21). z3
i -independent

terms equals (−ig)4
〈1|Pq11Pq12Pq13|2]

P 2
q11P 2

q12P 2
q13

also by identity in (4.21). Finally we have

A
(
q−1 ; p1, p2, p3, p4; q

+
2

)
= (−ig)4

〈1|Pq11Pq12Pq13|2]

P 2
q11P

2
q12
P 2

q13

+(−ig)2(−iλ)

[
〈1|Pq11|2]

P 2
q11

+
〈1|Pq13|2]

P 2
q13

]

(4.28)

With six scalars, there are five pole channels. For boundary contributions of case

(A), there are three nonzero partitions (1|23456), (123|456) and (12345|6). For the case

(B), there are four nonzero partitions (1|2|3|456), (123|4|5|6), (1|234|5|6) and (1|2|345|6).
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Adding them up and simplifying with (4.21) we get

A
(
q−1 ; p1, p2, p3, p4, p5, p6; q

+
2

)

= (−ig)6
〈1|Pq11Pq12Pq13Pq14Pq15|2]

P 2
q11
P 2

q12P
2
q13P

2
q14P

2
q15

+(−ig)4(−iλ)

[
〈1|Pq11Pq12Pq13|2]

P 2
q11P

2
q12P

2
q13P

2
46

+
〈1|Pq11Pq12Pq15|2]

P 2
q11P

2
q12P

2
q15
P 2

35

+
〈1|Pq11Pq14Pq15|2]

P 2
q11
P 2

q14
P 2

q15
P 2

24

+
〈1|Pq13Pq14Pq15|2]

P 2
q13
P 2

q14
P 2

q15
P 2

13

]

+(−ig)2(−iλ)2
{

〈1|Pq13|2]

P 2
q13
P 2

13P
2
46

+
〈1|Pq11|2]

P 2
q11P

2
26

[
1

P 2
24

+
1

P 2
35

+
1

P 2
46

]

+
〈1|Pq15|2]

P 2
q15
P 2

15

[
1

P 2
13

+
1

P 2
24

+
1

P 2
35

]}
(4.29)

which can be checked with result in appendix A.

4.2.3 The helicity (hq1 , hq2) = (+,+)

In this case, we have n = odd for nonzero results. With n = 1, there is no pole contribution,

but there is one boundary contribution and we have

A(q+1 ; p; q+2 ) = (−ig) [λ1|λ2 − zλ1] = (−ig) [1|2] (4.30)

which can be checked to be right. With n = 3 there are two pole contributions and one

boundary contribution Bn=3 = (−ig)(−iλ) 1
P 2

13
[1|2] where Pij = pi +pi+1+ . . .+pj. Adding

up we have

A(q+1 ; p1, p2, p3; q
+
2 ) = Â(p̂+

1 ; q1;−P̂
+
q11)

1

P 2
q11

Â(P̂−
q11; q2, q3; p̂

+
2 )

+Â(p̂+
1 ; q1, q2;−P̂

−
q12)

1

P 2
q12

Â(P̂+
q12; q3; p̂

+
2 ) +Bn=3

= (−ig)3

([
λ̃1

∣∣∣ (Pq11 − z1q)(Pq12 − z1q)

P 2
q11(P

2
q12 − z1P2q)

∣∣∣λ̃2 − z1λ̃1

]

+
[
λ̃1

∣∣∣ (Pq11 − z2q)(Pq12 − z2q)

(P 2
q11

− z2Pq11q)P
2
q12

∣∣∣λ̃2 − z2λ̃1

])

+(−ig)(−iλ)
1

P 2
13

[1|2]

= (−ig)3 [1|
Pq11

P 2
q11

Pq12

P 2
q12

|2] + (−ig)(−iλ)
1

P 2
13

[1|2] (4.31)

With n = 5 the boundary part is given by Bn=5 = (−ig)(−iλ)2 [1|2]
P 2

15

(
1

P 2
13

+ 1
P 2

24
+ 1

P 2
35

)
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Adding the pole part together we have

A(q+1 ; p1, p2, p3, p4, p5; q
+
2 ) (4.32)

= Bn=5 + Â((q̂+1 ; p1;−P̂
+
q11)

1

P 2
q11

Â(P̂−
q11; p2, p3, p4, p5; q̂

+
2 )

+Â(q̂+1 ; p1, p2;−P̂
−
q12

)
1

P 2
q12

Â(P̂+
q12; p3, p4, p5; q̂

+
2 )

+Â(q̂+1 ; p1, p2, p3;−P̂
+
q13)

1

P 2
q13

Â(P̂−
q13

; p4, p5; q̂
+
2 )

+Â(q̂+1 ; p1, p2, p3, p4;−P̂
−
q14

)
1

P 2
q14

Â(P̂+
q14; p5; q̂

+
2 )

= (−ig)(−iλ)2 [1|2]

P 2
15

(
1

P 2
13

+
1

P 2
24

+
1

P 2
35

)
+ (−ig)5

[
λ̃1

∣∣∣ Pq11Pq12Pq13Pq14

P 2
q11
P 2

q12
P 2

q13
P 2

q14

∣∣∣λ̃2

]

+(−ig)3(−iλ)

([
λ̃1

∣∣∣ Pq13Pq14

P 2
q13
P 2

q14

∣∣∣λ̃2

]
+
[
λ̃1

∣∣∣ Pq11Pq14

P 2
q11P

2
q14

∣∣∣λ̃2

]
+
[
λ̃1

∣∣∣ Pq11Pq12

P 2
q11
P 2

q12

∣∣∣λ̃2

])

which is the right one.

4.2.4 The helicity (hq1 , hq2) = (−,−)

This is, in fact, similar to previous one so we will be briefly. For n = 1, similar to the

case (+,+), there is one boundary contribution and the result is Bn=1 = (−ig)〈1|2〉. For

n = 3, we calculate one boundary contribution Bn=3 = (−ig)(−iλ) 1
Q2

13
〈1|2〉 and two pole

contributions as following:

A(q−1 ; p1, p2, p3; q
−
2 ) = Bn=3 + Â(p−1 ; q1;−P

−
q11

)
1

P 2
q11

Â(P+
q11; q2, q3; p

−
2 )

+Â(p−1 ; q1, q2;−P
+
q12

)
1

P 2
q12

Â(P−
q12; q3; p

−
2 )

= (−ig)(−iλ)
1

P 2
13

〈1|2〉

+(−ig)3

(
〈λ1 + z1λ2|

(Pq11 − z1q)(Pq12 − z1q)

P 2
q11

(P 2
q12 − z1Pq12q)

|λ2〉

+ 〈λ1 + z2λ2|
(Pq11 − z2q)(Pq12 − z2q)

(P 2
q11

− z2Pq11q)P
2
q12

|λ2〉

)

= (−ig)3 〈1|
P1

P 2
1

P2

P 2
2

|2〉 (4.33)
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With n = 5, the boundary part is given by B[〈5〉] = (−ig)(−iλ)2 〈1|2〉
P 2

15

(
1

P 2
13

+ 1
P 2

24
+ 1

P 2
35

)
,

thus we have

A(q−1 ; p1, p2, p3, p4, p5; q
−
2 ) (4.34)

= Bn=5 + Â(q−1 ; p1;−P
−
q11)

1

P 2
q11

Â(P+
q11; p2, p3, p4, p5; q

−
2 )

+Â(q−1 ; p1, p2;−P
+
q12)

1

P 2
q12

Â(P−
q12; p3, p4, p5; q

−
2 )

+Â(q−1 ; p1, p2, p3;−P
−
q13)

1

P 2
q13

Â(P+
q13; p4, p5; q

−
2 )

+Â(q−1 ; p1, p2, p3, p4;−P
+
q14

)
1

P 2
q14

Â(P−
q14; p5; q

−
2 )

= (−ig)(−iλ)2 〈1|2〉

P 2
15

(
1

P 2
13

+
1

P 2
24

+
1

P 2
35

)
+ (−ig)5 〈λ1|

Pq11Pq12Pq13Pq14

P 2
q11
P 2

q12
P 2

q13
P 2

q14

|λ2〉

+(−ig)3(−iλ)

(
〈λ1|

Pq13Pq14

P 2
q13P

2
q14

|λ2〉 + 〈λ1|
Pq11Pq14

P 2
q11P

2
q14

|λ2〉 + 〈λ1|
Pq11Pq12

P 2
q11
P 2

q12

|λ2〉

)

is exactly what we get from Feynman diagrams.

5 Conclusion

In this paper, we have analyzed the on-shell constructibility more carefully. We showed

that for some theories, although there is no any deformation which has vanishing boundary

contribution, the boundary contributions can still be identified and calculated on-shell

recursively. With the knowledge of boundary behavior we can write down the generalized

BCFW recursion relation.

Our examples in this paper is simple in this sense that all boundary contributions

can be directly analyzed by just a few Feynman diagrams. There are other examples

where above direct analysis is not so straightforward, for example, the gauge theory with

deformation 〈1−|2+]. It will be interesting to find other methods to deal with these more

complicated situations. Having the knowledge of boundary behavior we can have better

idea for the off-shell and on-shell constructibility. Then we may have better understanding

of S-matrix theory using, for example, the technique presented in [4].

There are many questions we can ask for ourselves. For example, the rational part

of one-loop amplitudes can be calculated by BCFW recursion relation too (see, for exam-

ple, [11]- [16]). It is found that sometimes there is nonzero boundary contribution. Using

our new understanding, it maybe useful to recheck this problem.
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Figure 5. A 6-point Feynman diagram.

(a) (b)

Figure 6. Three kinds of 8-point Feynman diagrams.

A Amplitudes from Feynman diagrams

In this appendix, we will calculate various amplitudes using Feynman diagrams directly

to compare with results from boundary BCFW recursion relation. For simplicity we will

focus on the ordered results.

A.1 Amplitude of pure scalar field

The Feynman rule for this theory is very simple: there is only one vertex with four scalar

lines and coupling constant −iλ. Using this we get following results.

A.1.1 6-point amplitude

The typical Feynman diagrams for the 6-point amplitude are given in figure 5. There are six

of them by cyclic ordering. Each one is given by (−iλ)2 1
P 2

i(i+1)(i+2)

where Pijk = pi +pj +pk.

Adding them up we have

AFD
6 (1, . . . , 6) = (−iλ)2

(
1

P 2
123

+
1

P 2
126

+
1

P 2
156

)
, (A.1)

where we have identified i+ 6 ≡ i.

A.1.2 8-point amplitude

The diagrams for 8-point amplitude have two different topologies as given in figure 6. The

expression of the first kind of diagrams has the form

(−iλ)3
1

P 2
i(i+1)(i+2)P

2
(i+5)(i+6)(i+7)

(A.2)

with eight cyclic orderings. The second kind of Feynman diagram has the form

(−iλ)3
1

P 2
i(i+1)(i+2)P

2
(i+3)(i+4)(i+5)

(A.3)
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with only four cyclic orderings, since it is obvious that this figure is same with shifting

i→ i+ 4. Adding them up we have

AFD
8 (1, . . . , 8) = A

FD(a)
8 +A

FD(b)
8 (A.4)

= (−iλ)3
∑

σ∈Z8

(
1

P 2
σ(1)σ(2)σ(3)P

2
σ(6)σ(7)σ(8)

+
1

2P 2
σ(1)σ(2)σ(3)P

2
σ(5)σ(6)σ(7)

)
.

A.1.3 10-point amplitude

The possible seven topologies of the diagrams are given in following:

i+ 1

i (a)

i+ 1

i (b)

i+ 1

i (c)

i+ 1

i (d)

i+ 1

i (e)

i+ 1

i (f)

i+ 9

i

(g)
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and the corresponding expressions are given as

Q(a) =
1

P 2
i(i+1)(i+2)P

2
i(i+1)(i+2)(i+3)(i+4)P

2
(i+7)(i+8)(i+9)

(A.5)

Q(b) =
1

P 2
i(i+1)(i+2)P

2
i(i+1)(i+2)(i+3)(i+4)P

2
(i+6)(i+7)(i+8)

(A.6)

Q(c) =
1

P 2
i(i+1)(i+2)P

2
(i−1)i(i+1)(i+2)(i+3)P

2
(i+6)(i+7)(i+8)

(A.7)

Q(d) =
1

P 2
i(i+1)(i+2)P

2
(i−2)(i−1)i(i+1)(i+2)P

2
(i+5)(i+6)(i+7)

(A.8)

Q(e) =
1

P 2
i(i+1)(i+2)P

2
i(i+1)(i+2)(i+3)(i+4)P

2
(i+5)(i+6)(i+7)

(A.9)

Q(f) =
1

P 2
i(i+1)(i+2)P

2
(i−1)i(i+1)(i+2)(i+3)P

2
(i+5)(i+6)(i+7)

(A.10)

Q(g) =
1

P 2
i(i+1)(i+2)P

2
(i+3)(i+4)(i+5)P

2
(i+6)(i+7)(i+8)

(A.11)

Among these seven topologies, three of them, i.e., (d), (e), (f), are intrinsic symmetric

under σ : [i] 7→ [i+ 5], while remaining four are full Z10 ordering. Thus the final answer is

given by

AFD
10 (1, 2, . . . , 10)

= (−iλ)4
∑

σ∈Z10

[
1

P 2
σ(1)σ(2)σ(3)P

2
σ(1)σ(2)σ(3)σ(4)σ(5)P

2
σ(8)σ(9)σ(10)

+
1

P 2
σ(1)σ(2)σ(3)P

2
σ(1)σ(2)σ(3)σ(4)σ(5)P

2
σ(7)σ(8)σ(9)

+
1

2P 2
σ(1)σ(2)σ(3)P

2
σ(10)σ(1)σ(2)σ(3)σ(4)P

2
σ(6)σ(7)σ(8)

+
1

P 2
σ(1)σ(2)σ(3)P

2
σ(10)σ(1)σ(2)σ(3)σ(4)P

2
σ(7)σ(8)σ(9)

+
1

2P 2
σ(1)σ(2)σ(3)P

2
σ(1)σ(2)σ(3)σ(4)σ(5)P

2
σ(6)σ(7)σ(8)

+
1

2P 2
σ(1)σ(2)σ(3)P

2
σ(1)σ(2)σ(3)σ(9)σ(10)P

2
σ(6)σ(7)σ(8)

+
1

P 2
σ(1)σ(2)σ(3)P

2
σ(4)σ(5)σ(6)P

2
σ(7)σ(8)σ(9)

]
(A.12)

A.2 Amplitude of two fermions and n scalars

The Feynman rules for ordered scalar QCD is given by figure 7. Using this we can calculate

various amplitudes A2,n(q1; p1, . . . , pn; q2) where q1, q2 for two fermions and pi for scalars.

For these amplitudes, we need to notice that since the scalar part has only λφ4 vertex,

A2,n with helicities (hq1 , hq2) = (+,+)/(−,−) is not zero only when n = odd while with

– 23 –



J
H
E
P
0
1
(
2
0
1
0
)
0
1
9

Propagators:

p
= ip/

p2+iǫ

q
= i

q2
−m2+iǫ

Vertices:

= −ig −iλ

External Lines:

q = 1 q = 1

p = ∣p⟩ p = ⟨p∣

p
= ∣p]

p
= [p∣

Figure 7. Feynman rules for fermion-scalar field.

(hq1 , hq2) = (+,−)/(−,+) it is not zero only when n = even. It is also important to notice

that when we write |1〉 , |2〉 they mean |λq1〉 , |λq2〉.

A.2.1 Amplitude of A(q+1 , q
+
2 ; p1, . . . , pn)

For this case we have n = odd. For this case we have n = odd. With n = 1 we have

A(q+1 ; p; q+2 ) = (−ig) [1|2] (A.13)

With n = 3 we have

A(q+1 ; p1, p2, p3; q
+
2 ) = (−ig)3

[1|Pp11Pp12 |2]

P 2
p11
P 2

p12

+ (−ig)(−iλ)
1

P 2
13

[1|2] (A.14)

where we have defined Pq1i = q1 + p1 + . . .+ pi and Pij = pi + pi+1 + . . .+ pj With n = 5

we have

A(q+1 ; p1, p2, p3, p4, p5; q
+
2 ) = (−ig)5

[1|Pp11Pp12Pp13Pp14 |2]

P 2
p11
P 2

p12
P 2

p13
P 2

p14

+(−ig)3(−iλ)

(
[1|Pp13Pp14 |2]

P 2
p13
P 2

p14

+ [1|
Pp11Pp14 |2]

P 2
p11P

2
p14

+
[1|Pp11Pp12 |2]

P 2
p11
P 2

p12

)

+(−ig)(−iλ)2 [1|2]

P 2
15

(
1

P 2
13

+
1

P 2
24

+
1

P 2
35

)
(A.15)
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A.2.2 Amplitude of A(q−1 , q
−
2 ; p1, . . . , pn)

With n = 1 we have

A(q−1 ; p; q−2 ) = (−ig)〈1|2〉 (A.16)

With n = 3 we have

AFD(q−1 ; p1, p2, p3; q
−
2 ) = (−ig)3

〈1|Pp11Pp12 |2〉

P 2
p11P

2
p12

+ (−ig)(−iλ)
1

P 2
13

〈1|2〉 (A.17)

With n = 5 we have

AFD(q−1 ; p1, p2, p3, p4, p5; q
−
2 )

= (−ig)5
〈1|Pp11Pp12Pp13Pp14 |2〉

P 2
p11
P 2

p12
P 2

p13
P 2

p14

+(−ig)3(−iλ)

(
〈1|Pp13Pp14 |2〉

P 2
p13P

2
p14

+
〈1|Pp11Pp14 |2〉

P 2
p11
P 2

p14

+
〈1|Pp11Pp12 |2〉

P 2
p11
P 2

p12

)

+(−ig)(−iλ)2 〈1|2〉

P 2
15

(
1

P 2
13

+
1

P 2
24

+
1

P 2
35

)
(A.18)

A.2.3 Amplitude of A(q+1 , q
−
2 ; p1, . . . , pn)

In this case we need to have even number of n. With n = 2 we have

A
(
q+1 ; p1, p2; q

−
2

)
= (−ig)2

[1|Pq11|2〉

P 2
q11

. (A.19)

where because the color ordering we have defined Pq1i = q1 +p1 +p2 + . . .+pi. With n = 4

we have

A
(
q+1 ; p1, p2, p3, p4; q

−
2

)
= (−ig)4

[1|Pq11Pq12Pq13|2〉

P 2
q11
P 2

q12
P 2

q13

+(−ig)2(−iλ)

[
[1|Pq11|2〉

P 2
q11

+
[1|Pq13|2〉

P 2
q11

]
.

(A.20)

With n = 6 we have

A
(
q+1 ; p1, p2, p3, p4, p5, p6; q

−
2

)

= (−ig)6
[1|Pq11Pq12Pq13Pq14Pq15|2〉

P 2
q11
P 2

q12P
2
q13P

2
q14P

2
q15

(A.21)

+(−ig)4(−iλ)

[
[1|Pq11Pq12Pq13|2〉

P 2
q11P

2
q12P

2
q13P

2
46

+
[1|Pq11Pq12Pq15|2〉

P 2
q11P

2
q12P

2
q15
P 2

35

+
[1|Pq11Pq14Pq15|2〉

P 2
q11
P 2

q14
P 2

q15
P 2

24

+
[1|Pq13Pq14Pq15|2〉

P 2
q13
P 2

q14
P 2

q15
P 2

13

]

+(−ig)2(−iλ)2
{

[1|Pq13|2〉

P 2
q13
P 2

13P
2
46

+
[1|Pq11|2〉

P 2
q11P

2
26

[
1

P 2
24

+
1

P 2
35

+
1

P 2
46

]

+
[1|Pq15|2〉

P 2
q15
P 2

15

[
1

P 2
13

+
1

P 2
24

+
1

P 2
35

]}
.
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A.2.4 Amplitude of A(q−1 , q
+
2 ; p1, . . . , pn)

With n = 2 we have

A
(
q−1 ; p1, p2; q

+
2

)
= (−ig)2

〈1|Pq11|2]

P 2
q11

. (A.22)

With n = 4 we have

A
(
q−1 ; p1, p2, p3, p4; q

+
2

)
= (−ig)4

〈1|Pq11Pq12Pq13|2]

P 2
q11
P 2

q12
P 2

q13

+(−ig)2(−iλ)

[
〈1|Pq11|2]

P 2
q11

+
〈1|Pq13|2]

P 2
q11

]
.

(A.23)

With n = 6 we have

A
(
q−1 ; p1, p2, p3, p4, p5, p6; q

+
2

)

= (−ig)6
〈1|Pq11Pq12Pq13Pq14Pq15|2]

P 2
q11
P 2

q12P
2
q13P

2
q14P

2
q15

(A.24)

+(−ig)4(−iλ)

[
〈1|Pq11Pq12Pq13|2]

P 2
q11P

2
q12P

2
q13P

2
46

+
〈1|Pq11Pq12Pq15|2]

P 2
q11P

2
q12P

2
q15
P 2

35

+
〈1|Pq11Pq14Pq15|2]

P 2
q11
P 2

q14
P 2

q15
P 2

24

+
〈1|Pq13Pq14Pq15|2]

P 2
q13
P 2

q14
P 2

q15
P 2

13

]

+(−ig)2(−iλ)2
{

〈1|Pq13|2]

P 2
q13
P 2

13P
2
46

+
〈1|Pq11|2]

P 2
q11P

2
26

[
1

P 2
24

+
1

P 2
35

+
1

P 2
46

]

+
〈1|Pq15|2]

P 2
q15
P 2

15

[
1

P 2
13

+
1

P 2
24

+
1

P 2
35

]}
.

B Amplitudes with more external fermions

In section four, we have focused on the case with only two fermions. In this appendix,

we will discuss the general case with multiple pair of fermions. For amplitudes with 2l

fermions and n scalars, there are l fermion lines, which are connected to each other by

scalar lines. The amplitudes will be the form

A =
∑

i

Si

l∏

j=1

Qij (B.1)

where Si are scalar parts and each Qi,j is following form

Qi,j(q
−
i , q

+
j ;R1, . . . , Rm) ∼ im

〈
λi|R1|R2| . . . |Rm|λ̃j

]

R2
1R

2
2 . . . .R

2
m

(B.2)

where depending on the helicities of i, j, we may need to change λ→ λ̃.

Now we choose two fermions, for example, q1, q2 to make the 〈1|2]-deformation. There

are two categories of Feynman diagrams: (A) two fermions q1, q2 are connected by same
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fermion line; (B) two fermions q1, q2 locate at different fermion line and are connected

through scalar propagators.

For the category (A), the boundary behavior is exactly the same one as we have

discussed in section four with only two fermions. Thus we can write down similar boundary

contributions and add them to the boundary BCFW recursion relation.

For the category (B) things are different. First there is at least one scalar propagator

connecting fermion lines and having 1
z dependence. Second, when there are two nearby

fermion propagators along same fermion line, because
〈
α|(R1 + zλ2λ̃1)(R2 + zλ2λ̃1)|β

〉

(R1 + zλ2λ̃1)2(R2 + zλ2λ̃1)2

=

〈
α|(R1 + zλ2λ̃1)R2|β

〉

(R1 + zλ2λ̃1)2(zλ2λ̃1)2
+

〈
α|R1(zλ2λ̃1)|β

〉

(R1 + zλ2λ̃1)2(R2 + zλ2λ̃1)2
, (B.3)

we have another 1
z dependence instead of naive z0-dependence. Using above two observa-

tions, we can discuss case by case:

• (B-1) Helicity (hq1 , hq2) = (+,+):

For this case, along the line with z-dependence (this line will be constituted by fermion

propagators and scalar propagators), we have one z from external wave-function of

q2, i.e.,
∣∣∣λ̃2 − zλ̃1

]
, 1

zs from s ≥ 1 scalar propagators and f fermion propagators

with naive z0-dependence. However, when there are m pair nearby propagators

as discussed above, we have another 1
zm -dependence. Putting all together, we found

that to have nonzero boundary contributions, we need to satisfy following conditions:

(a) there is only one scalar propagator depending on z; (b) there is no any nearby

z-depending fermion propagator pair.

The condition (a) implies that the line connecting q1, q2 involves only two fermion

lines. Furthermore, condition (b) tells us that there is at most one fermion propagator

along each fermion line (remembering that we have two fermion lines here). Using

(R + zλ2λ̃1)
∣∣∣λ̃2 − zλ̃1

]
is only order of z and [λ̃1|(R + zλ2λ̃1| = [λ̃1|R|, we see that

no any z-depending fermion propagator can be nearby the external particle q1, q2,

thus the only boundary contribution is the one without any fermionic propagator

depending on z as shown by figure 8. The figure can also be represented as

C
[
λ̃1|α

] 1

(R+ zλ̃2λ1)2

[
β|λ̃2 − zλ̃1

]
(B.4)

where α, β,C are z-independent part from other components of diagrams.

The helicity (−,−) will be similar and we will not discuss it further.

• (B-2) Helicity (hq1 , hq2) = (+,−):

For this case, along the line with z-dependence, we have 1
zs from s ≥ 1 scalar propa-

gators and f fermion propagators with naive z0-dependence. Thus there is no bound-

ary contribution.
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1+

2+

ℐ ′

J ′

Figure 8. Special case.

• (B-3) Helicity (hq1 , hq2) = (−,+):

For this case, along the line with z-dependence, we have z2 from external wave-

functions
∣∣∣λ̃2 − zλ̃

]
and |λ1 + zλ2〉,

1
zs from s ≥ 1 scalar propagators and f fermion

propagators with naive z0-dependence. This is the most complicated case with many

possibilities, so we list them one-by one.

With only one scalar propagator (i.e., s = 1), we have several diagrams which can be

represented as following:

(I − 1) : C 〈λ1 + zλ2|α]
1

(Q+ zλ̃2λ1)2

[
β|λ̃2 − zλ̃1

]
∼ z1

(I − 2) : C
〈
λ1+zλ2|(R1+zλ2λ̃1)|α

] 1

(Q+zλ̃2λ1)2(R1+zλ2λ̃1)2

[
β|λ̃2−zλ̃1

]
∼ z0

(I − 3) : C 〈λ1+zλ2|α]
1

(Q+zλ̃2λ1)2(R1+zλ2λ̃1)2

[
β|(R1+zλ2λ̃1)|λ̃2 − zλ̃1

]
∼ z0

(I − 4) : C

〈
λ1 + zλ2|(R1 + zλ2λ̃1)(R2 + zλ2λ̃1)|α

]

(R1 + zλ2λ̃1)2(R2 + zλ2λ̃1)2(Q+ zλ̃2λ1)2

[
β|λ̃2 − zλ̃1

]
∼ z0

(I − 5) : C 〈λ1 + zλ2|α]

[
β|(R1 + zλ2λ̃1)(R1 + zλ2λ̃1)|λ̃2 − zλ̃1

]

(R1 + zλ2λ̃1)2(R1 + zλ2λ̃1)2(Q+ zλ̃2λ1)2
∼ z0

(B.5)

The case (I-1) tells us that there is no any z-depending fermion propagator. Case (I-

2) and (I-3) represent the diagrams with one z-depending fermion propagator nearby

external particles q1, q2 respectively. Case (I-4) and (I-5) represent the diagrams with

two z-depending fermion propagators nearby external particles q1, q2 respectively. It

is worth to notice that we have not included the case where we have two z-depending

fermion propagators and each external qi has one propagator nearby, since this one

has vanished boundary contribution.

With two scalar propagators, there are again two situations we need to consider. The

first one is that there are only two fermion lines involved. The expression for this

one is

(II − 1) : C 〈λ1 + zλ2|α]
1

(Q1 + zλ̃2λ1)2(Q2 + zλ̃2λ1)2

[
β|λ̃2 − zλ̃1

]
. (B.6)
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The second one is that there are three fermion lines involved. For this one, there are

two different representations. The first one is

C 〈λ1 + zλ2|α]
1

(Q1 + zλ̃2λ1)2
[γ|δ]

1

(Q2 + zλ̃2λ1)2

[
β|λ̃2 − zλ̃1

]
, (B.7)

where there is no fermion propagator in middle fermion line depending on z. However,

since we have only triple-vertex ψφψ, this case can not be realized. The second one is

(II − 2) : C 〈λ1 + zλ2|α]
1

(Q1 + zλ̃2λ1)2
×

×

[
γ|(R + zλ2λ̃)|δ

〉

(R+ zλ2λ̃)2

1

(Q2 + zλ̃2λ1)2

[
β|λ̃2 − zλ̃1

]
(B.8)

where there is one fermion propagator in middle fermion line depending on z.

Adding all seven cases together, we get total boundary contribution when q1, q2 are

not in same fermion line.
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