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Abstract. Discovering association rules (AR) among items in a large database 
is an important database mining problem. The number of association rules may 
be large. To alleviate this problem, we introduced in [1] a notion of 
representative association rules (RR). RR is a least set of rules that covers all 
association rules. The association rules, which are not representative ones, may 
be generated by means of a cover operator without accessing a database. On the 
other hand, a subset of association rules that allows to predict as much as 
possible from minimum facts is ~ l y  of interest to analysts, This kind of 
rules we will call minimum condition maximum consequence rules (M~R). In 
this paper, we investigate the relationship between RR andM3AR. We prove that 
MMR is a subset of RR and it may be extracted from RR. 

I I n t r o d u c t i o n  

Discovering association rules (AR) among items in large databases is recognized as an 
important database mining problem. The problem was introduced in [2] for sales 
transaction database. The association rules identify sets of items that are purchased 
together with other sets of items. For example, an association rule may state that 90% 
of customers who buy butter and bread buy also milk. Several extensions of the 
notion of an association rule were offered in the literaatre (see e.g. [3-4]). One of such 
extensions is a generalized rule that can be discovered from a taxonomic database [3]. 
Applications for association rules range from decision support to telecommunications 
alarm diagnosis and prediction [5-6]. 

The number of association roles is usually large. A user should not be presented 
with all of them, but rather with these which are original, novel, interesting. There 
were proposed several definitions of what is an interesting association rule (see e.g. 
[3,7]). In particular, pruning out uninteresting rules which exploits the information in 
taxonomies seems to be quite useful (resulting in the rule number reduction 
amounting to 60% [31). The interestingness of a ride is usually expressed by some 
quantitative measure. 
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In the paper we consider two other approaches to extracting interesting rules from 
a database. In the first approach, rules are regarded as interesting if they allow to 
predict as much as possible from minimum facts (see e.g. [8]). Association rules of 
this kind will be called minimum condition maximum consequence rules (MMR). The 
second approach, introduced in [1], consists in looking for a least set of association 
rules that allows to deduce all other association rules without accessing a database. 
Such a basic set of association nfles is called a set of representative association rules 
(RR). An efficient FastGenAllRepresentatives algorithm of computing representative 
rules was proposed in [9]. 

In this paper, we investigate the relationship between RR and MMR. We prove that 
MMR is a subset of RR. We also show how to extract MMR from RR instead of 
extracting it from the whole set of association rules. 

2 Assoc ia t ion  Rules  

The definition of a class of regularities called association rules and the problem of 
their discovering were introduced in [2]. Here, we describe this problem after [2,10]. 
Let I = {il, i2 ..... ira} be a set of distinct literals, called items. In general, any set of 
items is called an itemset. Let D be a set of transactions, where each transaction T is a 
set of items such that T c L An association rule is an expression of the form X ~ Y, 
where | ~ X,Y a I and X n Y = @. X is called the antecedent and Y is called the 
consequent of the ride. 

Statistical significance of an itemset X is called support and is denoted by sup(X). 
Sup(X) is defined as the number of transactions in D that contain X. Statistical 
significance (support) of a rule X ~ Y is denoted by sup(X ~ Y) and defined as 
sup(X ~ I1). Additionally, an association rule is characterized by confidence, which 
expresses its strength. The confidence of an association rule X ~ Y is denoted by 
conflX ~ Y) and defined as the ratio sup(X ~ Y) / sup(X). 

The problem of mining association rules is to generate all rules that have support 
greater than some user specified minimum support s >_ 0 and confidence not less than 
a user specified minimum confidence c > 0. In the sequel, the set of all association 
rules whose support is greater than s and confidence is not less than c will be denoted 
by AR(s,c). If s and c are understood then AR(s,c) will be denoted by AR. 

3 Cover Operator 

A notion of a cover operator was introduced in [1] for deriving a set of association 
rules from a given association rule without accessing a database. The cover C of the 
n f l e X ~  Y, Y~ | is defined as follows: 

C(X ~ Y) = {X~Z ~ 1/] Z,V c_ Y and ZcTV = g and V ~ ~} .  

Each rule in C(X ~ }1) consists of a subset of items occurring in the rule X ~ Y. 
The antecedent of any rule r covered by X ~ Y contains X and perhaps some items 
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from Y, whereas r's consequent is a non-empty subset of  the remaining items in Y. It 
was proved in [1] that each rule r in the cover C(r'), where r' is an association rule 
having support s and confidence c, belongs in AR(s,c). Hence, if r belongs in AR(s,c) 
then every rule r' in C(r) also belongs inAR(s,c). The number of different rules in the 
cover of  the association n d e X ~  Yis equal to 3 m - 2", where m = [:q (see [1]) .  

Example 3.1 Let 7"1 = {A,B,C,D,E}, T2 = {A,B,C,D,E,F}, T3 = {A,B,C,D,E,Hj}, T4 = 
{A,B,E} and Ts = {B,C,D,E,H,I} are the only transactions in the database D. Let 
r: (B ~ CDE). Fig. 1 contains all rules belonging in the cover C(r) along with their 
support and confidence in D. The support of  r is equal to 4 and its confidence is equal 
to 80%. The support and confidence of all other rules in C(r) are not less than the 
support and confidence of r. [] 
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Fig. 1. The cover of the rule r: (B ~ CDE) 

Below, we present a simple property, which will be used further in the paper. 

Property 3.1 Let r: (X ~ Y) and r': (X" ~ Y') be association rules. 

r~C(r')  iff X ~ Y  G X ' ~  Y' a n d X  ~_X'. 

4 R e p r e s e n t a t i v e  A s s o c i a t i o n  R u l e s  

In this section we describe a notion of representative association rules which was 
introduced m [1]. Informally speaking, a set of  all representative association rules is a 
least set of  rules that covers all association roles by means of the cover operator. 

A set of  representative association rules wrt. minimum support s and minimum 
confidence e will be denoted by RR(s,c) and defined as follows: 

RR(s,c) = {r~AR(s,c)l -~3r' ~AR(s,c), r '~r and reC(r ' )  }. 
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ff  s and c are understood then RR(s,c) will be denoted by RR. Each rule in RR is 
called a representative association rule. By the definition of RR no representative 
association rule may belong in the cover of another association rule. 

Proper ty  4.1 

RR(s,c) = { ( X ~  Y)eAR(s,c)I--,30(" ~ Y')eAR, (X=X ' A X u Y  C X ' ~ Y ' ) v  
( X : ~  AX~Y = X'~Y')}.  

Proof: RR = {r: (X ~ I1)eAR I ~3r ' :  (X" ~ Y') eAR, r'r A X:zX" A XwY G X'uY'} = 
{ ( X ~  DeARI ~3(X' ~ Y')~AR, (X=X" AXuY c X ' w Y ' )  V 
( X ~ F  AX~Y c X ' ~ Y ' ) } .  

Let (AT ~ ]9 be an association rule. One can notice that: 

3(X" ~ Y')eAR, (XDX" A X u Y  c X ' u Y ' )  (1) 

is true iff the expression: 

3(X" ~ F')eAR, (XDX" AXwY = X " u F ' )  (2) 

is true. The proof of implication: (1) if (2) is trivial, so it will be omitted. Now, we 
will prove that (2) follows from (1). Let (X' ~ Y') be an association rule such that 
(X:=~C A X w Y c X ' w Y ' ) .  Let X"=X" and F'=(XL~)wY. Then, X:zX" and 
X~Y=X"wF' .  Additionally, (X" ~ F')eC(X" ~ Y') because X " w F '  GX'uY '  and 
X"=X'. Thus, X" ~ F '  is an association rule as a rule belonging to the cover of an 
association rule. Applying the equivalence of the expressions (1) and (2), we obtain: 
RR = { ( X ~  Y)eARI ~3(X'  ~ Y')eAR, (X=X" A X ~ Y c X ' ~ Y ' )  v 
(X:::~" A XuY =X'uY' )} .  [] 

Property 4.1 tells us that an association rule r is representative one if there is no 
longer rule that has the same antecedent as r and is built from a superset of all items 
occurring in r, and if there is no rule the antecedent of which is a proper subset of the 
antecedent of r and which is built from all items occurring in r. 

Example  4.1 Given minimum support s = 2 and minimum confidence c = 80%, the 
following representative rules would be found for the ~tabase  D from Example 3.1: 

RR(2,80%) = {AC~BDE, AD~BCE, B=>CDE, C~BDE, D~BCE, E~BCD, 
A ~BE, B~AE, E~AB }. 

There are 9 representative association rules in RR(2,80%), whereas the number of 
all association rules in AR(2,80%) is 93. Hence, RR(2,80%) constitute 9.68% of all 
association rules. [] 

5 Minimum Condition Maximum Consequence Association Rules 

In the classification problems, rules with minimum conditions seem to be very useful. 
Here we extend the problem for generation of rules not only with minimum 
antecedents but also with maximum consequents. Formally, a set of minimum 
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condition maximum consequence association rules wrt. minimum support s and 
minimum confidence c will be denoted by MMR(s,c) and defined as follows: 

MMR(s,c) = {r: (X ~ Y)eAR(s,c)[-~3r': (X" ~ Y')e_AR(s,c), r'~rand 
X' c ~  and Y'~_Y}. 

If s and c are understood then MMR(s,c) will be denoted by MMR. Below we prove 
a property stating that the minimum condition maximum consequence rules constitute 
a subset of the representative association rules. 

Property 5.1 

MMR(s,c) c RR(s,c) 

Proof: MM-R = {r: ( X ~  Y)eARI -~3r': ( ~  ~ Y')e_AR, r'*r A X'_CX A Y'~_Y} = 
{r: ( X ~  Y)eAR I Vr': (X' ~ Y')eAR, r'=r v ~(X'_cX) v ~(Y'_DY)} = 
{r: ( X ~  iOeAR[ Vr': (X' ~ F)dR,  r'=r v ~(X'cX) v ((X'_c_X)A-~(Y'_DY))}. 

RR = {reAR} -~3r'eAR, r'*r A reC(r ' )}  = {r: ( X ~  Y)eAR} Vr': OF ~ Y')eAR, 
r'=r v ~(X'_cX) v - ~ ( X ~ Y c X ' ~ F ) }  = {r: ( X ~  DEAR] Vr': (X' ~ Y')e_AR, r'=r v 
-Xx'_cX) v ((X'_c_x%-Xx~Y c_ x 'voF))}.  

Let us note that ((X'_cX)A~(Y'~Y)) implies ((X'_cX)A~(X~Yc_ X'~Y')). Hence, 
RR : {{r: (X ~ Y)eAR[ Vr'" OF ~ Y')eAR, r'=r v ~(X" c ~  v 

( (x '_cx)A-<x~z c_ X 'wF) )  v ((X'cX)A-XF_~r))}. 
The obtained formulae expressing MMR and RR allow us to conclude that MMR is 

a subset of RR. [] 
In the next property we prove that it is sufficient to know only the representative 

association nfles to compute the minimum condition maximum consequence rules. 

Property 5.2 

MMR(s,c) = {r: (X ~ Y)eRR(s,c)l ~3r'  : (X" ~ F)eRR(s,c), rMr and 
X'  c X  and Y" ~_Y}. 

Proof: By Property 5.1, MMR are contained in RR. So, MMR = {r: ( X ~  Y)eRR} 

-~3r': (X" ~ Y')eAR, r'~r A X ' G Y A  Y'~Y}. 
Let r: (X ~ I1) eAR. It can be noticed that the expression: 

~r': 0C ~ ](')eAR, r '~r  A . X ~ A  F_DY (3) 

is equivalent to the expression: 

3r": (X" ~ F')eRR, r ' * r  AX'_CXA F'_~Y. (4) 

Let r~ (X' ~ Y') be an association rule such that r'~r a n d X ' ~ Y  and Y'~_Y. Each 
association rule belongs in the cover of some representative rule, so there is some 
r": (X" ~ F')  in RR, such that r'eC(r"). Hence, X"cX '~Y and F ' ~ F D Y  and thus, 
(3) implies (4). The inverse implication is trivial (any representative ride is 
association one). Applying the equivalence of the expressions (3) and (4), we obtain: 
MMR = {r: ( X ~  Y)eRR I ~Br': (X' ~ Y')eRR, r ' : C r A X ~ A  F_~Y}. [] 

The efficient computation of MMR may be performed as follows: 
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1. Compute the representative association rules (e.g. by applying the efficient 
algorithm FastGenAllRepresentatives [9]; see also Appendix). 

2. Compute the minimum condition maximum consequence rules from the 
representative association rules according to Property 5.2. 

Example  5.1 Given minimum support s = 2 and minimum confidence c = 80%, the 
following minimum condition maximum consequence association rifles would be 
found for the database D from Example 3.1: 

MMR(2,80%) = {B~CDE, C~BDE, D~BCE, E~BCD, A ~BE, B~AE, E~AB}. 

There are 7 minimum condition maximum consequence association rules in 
MMR(2,80%), whereas the number of rules in AR(2,80%) is 93 and the number of 
rules in RR(2,80%) is 9 (see Example 4.1). The representative rules AC~BDE and 
AD~BCE are not minimum condition maximum consequence rules. The former role 
is redundant wrt. the representative role C~BDE and the latter one is redundant wrt. 
the representative nile D~BCE. Hence, MMR(2,80%) constitutes 7.53% of 
AR(2,80%) and 77.78% of the representative association rules RR(2,80%). [] 

6 Conclusion 

In this paper, we have investigated the relationship between representative rules and 
minimum condition maximum consequence rules. RR constitute the minimal set of 
rules that allow to derive all association rules without accessing a database. MMR are 
rules that allow to predict as much as possible from minimum facts. We proved that 
MMR is a subset of  RR. We have also shown how to extract MMR from RR instead of 
extracting it from the whole set of association rules. 
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Appendix: Generation of Representative Association Rules 

The process of generating representative association rules was described in [1,9]. In 
general, the process may be decomposed into two subprocesses: 
1. Generate all itemsets whose support exceeds the minimum support s. The 

itemsets of this property are called frequent (large). 
2. From each frequent itemset generate representative association rules whose 

confidence is not less than the minimum confidence c. Let Z be a frequent 
itemset and Q v : X c Z .  Then any rule X ~ 2 5 X  is association one if 
sup(Z)/sup(X) >_ c. The association rule X ~ ZUf is representative if there is no 
association nile ( X ~  Z'W), where ZcZ' ,  and there is no association nile 
(X" ~ ZVf') such that XDX" (see Property 4.1). 

Several efficient solutions to the first subproblem were proposed (see [3,10-11]). 
We will remind briefly the main idea of the Apriori algorithm [10] computing 
frequent iternsets. Next, we will present the efficient algorithm [9] of computing 
representative association rules from the found frequent itemsets. 

In the sequel, we will apply the following simple notions: 
The number of items in an itemset will be called the length of  the itemset. An 

itemset of the length k will be referred to as a k-itemset. Similarly, the length of  an 
association rule X ~ Y will be defined as the total number of items in the rule's 
antecedent and consequent (I X ~ Y I). An association rule of the length k will be 
referred to as a k-rule. An association k-rule will be called shorter than, longer than or 
of  the same length as an association m-rule if k < m, k > m, or k = m, respectively. 

Computing Frequent Itemsets 
The Apriori algorithm exploits the following properties of frequent and non-frequent 
itemsets: All subsets of a frequent itemset are frequent and all supersets of a non- 
frequent itemset are non-frequent. The following notation is used in the Apriori 
algorithm: Ck - set of candidate k-itemsets; Fk - set of frequent k-itemsets. The items 
in itemsets are assumed to be ordered lexicographically. Associated with each itemset 
is a count field to store the support for this itemset. 
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Algorithm Apriori 

F 1 = {frequent l-itemsets} ; 

for (k = 2; Fk-1 ~ Q; k++) do begin 

Ck = AprioriGen (Fk-1) ; 

forall transactions T �9 D do 

forall candidates Z �9 Ck do 

if Z c_ T then 

Z. count++; 

Fk = {Z �9 Ck I Z.count > s}; 

endfor ; 

return ~k Fk; 

First, the support of  all 1-itemsets is determined during one pass over the database 
D. All non-frequent 1-itemsets are discarded. Then the loop "for" starts. In general, 
some k-th iteration of  the loop consists of  the following operations: 
1. The AprioriGen function is called to generate the candidate k-itemsets Ck from 

the frequent (k-1)-itemsets Fk_l. 
2. Supports for the candidate k-itemsets are determined by a pass over the 

database. 
3. The candidate k-itemsets that do not exceed the minimum support are discarded; 

the remaining k-itemsets Fk are found frequent. 

function AprioriGen(frequent (k-1)-itemsets Fk I) ; 

insert into Ck 

select (Z[I], Z[2], ... , Z[k-l], Y[k-l]) from Fk-i Z, Fk-l Y 

where Z[I]=Y[I] A ... A Z[k-2]=Y[k-2] A Z[k-l]<Y[k-l]; 

delete all itemsets Z �9 Ck such that some (k-1)-subset of Z 

is not in Fk_�94 

return Ck; 

Computing Representative Association Rules 

The FastGenAllRepresentatives algorithm generates representative association rules 
from frequent itemsets. In order to justify the correctness of  the algorithm we will 
apply Property 4.1 and the following observation: no rule X ~ A X i s  representative if 
there is a proper superset Z' of  Z having the same support as Z. The observation may 
be justified as follows: 

If X ~ ZLV is not an association rule then it is not representative. However, if  
X ~ ZkX- is an association rule and there is Z'~Z such sup(Z)= sup(Z') thenX ~ Z'bY 
has the same support and confidence as X ~ Z ~ .  Hence, X ~ Z'W is also an 
association rule. Additionally, X ~ ZLV belongs in the cover o f X  ~ Z'~X, so X ~ LAX 
is not representative. 

procedure FastGenAllRepresentatives(all frequent itemsets F); 

forall Z e Fk,k >_ 2, do begin 

maxSup = max({sup(Z') l ZcZ" eFk+1} ~ {0}); 
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if Z. sup ~ maxSup then begin 

AI = {{Z[I] }, {Z[2] } ..... 

/* Loopl */ 

for (i = I; (Ai ~ Q) and (i 

forall X e Ai do begin 

find YeFi such that Y = X; 

XCount = Y. count; 

{Z[k] ]}; //create 1-antecedents 

< k); i++) do begin 

/* Is X ~ Z\X an association rule? */ 

if (Z. count/XCount > c) then begin 

/*Isn't any longer assoc, rule X~Z'iX that covers X~Z\X?*/ 

if (maxSup/XCount < c) then // see Property 4.1 

print(X, "~", Z\X, " with support: ", Z. count, 

" and confidence: ", Z.count / XCount); 

/* Antecedents of association rules are not extended */ 

A i = A i \ {X} ; 

endif; 

endfor ; 

Ai+1 = AprioriGen(Aj ; // compute /+l-antecedents 

endfor; 

endi f; 

endfor; 

endproc; 

The FastOenAllRepresentatives algorithm computes representative association 
rules from each k-itemset, k>2, in F. Let Z be a considered itemset in Fk. Only k-rules 
are generated from Z. First, maxSup is determined as a maximum from the supports of 
these itemsets in F~+I which are supersets of Z. If there is no superset of Z in Fk+a then 
maxSup=O. Let us note that the supports of other proper supersets of Z, which do not 
belong in Fk+1, are not greater than maxSup. Clearly, maxSup>s or maxSup=O. If 
sup(Z) is the same as maxSup then no representative rule can be generated from Z. 
Otherwise, single-item antecedents of candidate k-rules are created. Loopl starts. In 
general, the i-th iteration of Loopl looks as follows: 

Each candidate X ~ ZW, where Xc_Z belongs in i-itemsets Ai, is considered. Z is 
frequent, soX, which is a subset of Z, is also frequent. In order to check i f X  ~ Z ~ i s  
an association rule its confidence: sup(Z)/sup(X) has to be determined. 
sup(Z)=Z.count, while sup(X) is computed as sup(Y) of a frequent itemset Y in Fi such 
that Y=X. Only association rules that satisfy Property 4.1 are representative. Checking 
whether there is a longer association rule X ~ Z'U( that covers X ~ Z~V is performed 
explicitly in the algorithm. If maxSup/XCount _> c then there is such a longer rule. 
Otherwise, X ~ ZLV is a representative rule. Checking ff there is another association 
rule X" ~ ZW', XzzX', that covers X ~ Z ~  is not necessary since no candidate rules, 
whose antecedents are proper supersets of antecedents of some association rules, are 
considered in the algorithm. This feature is obtained by removing the itemsets from 
i-itemsets Ai that are antecedents of association rules and by applying the AprioriGen 
function in order to generate Ai+a antecedents from the remaining itemsets inAi. 


