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Abst rac t .  This paper presents an algorithm for discovering surprising 
exception rules from data sets. An exception rule, which is defined as a 
deviational pattern to a common sense, exhibits unexpectedness and is 
sometimes extremely useful. A domain-independent approach, PEDRE, 
exists for the simultaneous discovery of exception rules and their common 
sense rules. However, PEDRE, being too conservative, have difficulty 
in discovering surprising rules. Historic exception discoveries show that 
surprise is often linked with interestingness. In order to formalize this 
notion we propose a novel approach by improving PEDRE. First, we 
reformalize the problem and settle a looser constraints on the reliability 
of an exception rule. Then, in order to screen out uninteresting rules, we 
introduce, for an exception rule, an evaluation criterion of surprise by 
modifying intensity of implication, which is based on significance. Our 
approach has been validated using data sets from the UCI repository. 

1 I n t r o d u c t i o n  

Rule discovery [1, 2, 6, 7, 8, 9, 10] is, due to its generality and simplicity, one 
of the most important research topics in Knowledge Discovery in Databases 
(KDD). In KDD, a rule can be classified into two categories: strong rules and 
weak rules. A strong rule is a description of a regularity for numerous objects 
with high confidence. On the other hand, a weak rule represents, for a relatively 
small number of objects, a regularity with high confidence. Typically, strong rule 
discovery, while useful in recognizing general trends in a data set, results in a 
set of overly general rules. Finding a widely known rule, such as "most people 
who buy butter also buy bread", is uninteresting. On the other hand, weak rule 
discovery can produce extremely interesting results. 

Various methods for weak rule discovery have been proposed in KDD com- 
munity. Some of them [2, 7] try to capture interestingness by using a criterion. 
Others [6, 8, 9, 10] assume a knowledge representation for this purpose, and seek 
for chunks of knowledge which deviate from strong rules. Among such rules, an 
exception rule, which represents a deviation to a strong rule, exhibits unexpect- 
edness and is often useful. For instance, the rule "using a seat belt is risky for 
a small child", which represents exceptions to the well known regularity "us- 
ing a seat belt is safe", exhibited unexpectedness when it was discovered from 
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ear accident data  several years ago, and is still useful. Moreover, an exception 
rule is often beneficial since it differs from a common sense rule which is often 
a basis for people's daily activity. For instance, suppose a species of poisonous 
mushrooms has a small number of exceptions. The exact description of the ex- 
ceptions is highly beneficial since it enables the exclusive possession of the edible 
mushrooms. 

Simultaneous approach [8, 9, 10], which was proposed by one of us (E. 
Suzuki), discovers a set of rule pairs each of which is a common sense rule and its 
exception rule. This approach deserves special at tention since it requires neither 
domain specific criteria nor background knowledge to obtain interesting rules. 
Especially, the most recent system PEDRE [10], obtains reliable rule pairs. 

Careful observation of historical discovery, however, shows that  surprise, 
which was not directly considered in the previous systems represents an im- 
por tant  aspect in exception knowledge discovery. For instance, antibiotics are 
widely known to cure diseases, however, MRSA, a kind of staphylococci, is of- 
ten resistant to antibiotics in a hospital. Although MRSA is not a dangerous 
bacteria, people in a hospital, often weakened by other causes, die by taking 
antibiotics which kill other bacteria and favor MRSA. This phenomenon, when 
it was observed in the U.S. for the first time, lacked reliability in its generality 
since only a small number of patients were found in this situation. However, it 
showed an astonishment to people because it is represented by the conjunction 
of two very rare events: dying from MRSA and dying by taking antibiotics. 

Here, this rule is not easily discovered by PEDRE since a huge number of 
rule pairs are more reliable. In other words, PEDRE is too conservative in eval- 
uating rules with low reliability to discover surprising exception rules. In order 
to discover such kind of knowledge, we propose a modified approach of P E D R E  
which is based on intensity of implication [3]: an evaluation criterion of surprise 
with several desirable properties. Preliminary results with da ta  sets from the 
UCI repository [5] are promising. 

2 D i s c o v e r y  o f  R e l i a b l e  E x c e p t i o n s :  P E D R E  [10] 

2.1 R e l i a b l e  Exception 

Consider a data  set D with n examples each of which is expressed by m discrete 
attr ibutes.  An event representing, in propositional form, a single value assign- 
ment to an at t r ibute will be called an atom. We define a conjunction rule as the 
production rule of which premise is represented by a conjunction of atoms and 
conclusion is a single atom. Another interesting class of rules is an association 
rule [1], in which premise and conclusion are a set of examples and all at t r ibutes 
are binary. Conjunction rules have been chosen in P E D R E  since they do not 
assume such restrictions on attributes.  

In PEDRE,  we consider the problem of finding a set of rule pairs each of 
which consists of an exception rule associated with a common sense rule. Let 
ai,bj,c and c ~ be a single atom, where c and c ~ have the same at t r ibute with 
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different values, then a rule pair  r (# ,  u) is defined as a pair  of conjunct ion rules 
as follows: 

{At `  --+ c 
r(tt ,  v) = A t, A B~ --+ c'. (1) 

where At` = a l A a s A " - A a t ` ,  B u = - - b l A b 2 A ' " A b u .  (2) 

We hereaf ter  call At` -+ c, At` A Bg -+ d and By --+ c I a common  sense rule, an 
except ion rule, and  a reference rule respectively. 

In discovery of reliable except ion rules, bo th  a common  sense rule and an 
except ion rule should be general  and accura te  with some confidence level. It  
should be also noted  tha t ,  in an exception rule, the ex t ra  condit ion By should 
not cont r ibu te  to the predict ion of the conclusion c', unless the except ion rule 
is easily predic ted  f rom B~ --+ c' and is thus uninterest ing.  Let 1 - 5 be a 
user-provided confidence level, and 8s, 82,0 i s  F, O~,0~ and M be a user-provided 
threshold,  then  the cons t ra in ts  considered in P E D R E  for a discovered rule pair  
are given as follows. 

P r {  p(At`) > oS, p(c]At`) > 0"~, p(At`,B,~) > oS, p(c'[A~,B~,) > 0"~, 
V(c'[B,,) _< O~ } > 1 - 5. (3) 

tt, u < M. (4) 

For resolving (3), we should es t imate  the confidence region of the probabi l i t ies  
re la ted  to (3). Norma l  approx imat ions  of  a mul t inomial  dis t r ibut ion is a na tu ra l  
choice for this purpose .  I t  is shown tha t  the following equat ions are equivalent  
to (3) [10]. 

G (At`)~(At`) > O s, F(At`, c)~(c[At`) > 0[, G(At, , B~,)~(At`, By) > 0 s, 
f (At`B~,,c')~(c'[At`,B,,) > 0~, f(B~,,c')~(c'[S~,) < 0~, (5) 

where, 

- ~(x) F(x,  y) 1 ~/ ~(x) - ~(zc, y) 
G(x) _= 1 - / 3 V ~  ~ , = - / 3__ lS (~ ,y ){ (n  +/3~.)i5(:c) _ f l a } ,  (6) 

and /3  is a posit ive cons tan t  re la ted to the confidence level [10]. 

2.2 Search Algorithm 

In P E D R E ,  a discovery task  is viewed as a search problem,  in which a node 
of a search tree represents  a rule pair  r( t t  , u). Let tt = 0 and u = 0 represent  
the s ta te  in which the premises of  a rule pair  r (# ,  u) conta in  no ai and no bl 
respectively,  then we define tha t  # = v = 0 holds in a node of dep th  1, and  as 
the dep th  increases by  1, an a t o m  is added to the premise of  the except ion rule 
or the c o m m o n  sense rule. A node of depth  2 is assumed to satisfy tt --- 1, v -- 0, 
a n d a n o d e o f d e p t h l ( > 3 ) , t t + u - - l - 1  ( i t >  1, u > 0 ) .  



]3 

A depth-first  search method  is employed to traverse this tree, and the max-  
imum value M of p and v is given by the user. To improve search efficiency, a 
node which satisfies at least one of  the s topping criteria (7) in theorem 1 is not  
expanded without  altering the a lgori thm's  output .  

T h e o r e m  1. Let the rule pair of the current node be r(#', v'). I f  the rule pair 
satisfies an equation in (7), no rule pairs r(p,  v) of the descendant nodes satisfy 
(5). 

s F G (A,,)~(At,,) < 8 s, G(A, , )~(c ,A , , )  < 8 tS t ,  G(A~,,B~,)~(A~,,B~,)  < 8 s, 
S F s F 0202 

G (A. , ,B~, )~(c ' ,A . , ,B~, )  < 8282, G(A. , ,B~,)~(B~,)  < 8---~- (7) 

P r o o f  Each equat ion can be proved by contradict ion using tha t  the funct ion 
a ( x )  increases monotonous ly  for/3(x) since n,/3 > 0. [] 

3 M e a s u r e s  f o r  S u r p r i s i n g  E x c e p t i o n s  

3.1 R e f o r m a l i z a t i o n  o f  P r o b l e m  

As ment ioned in Introduct ion,  P E D R E  is appropr ia te  for the discovery of  reliable 
exceptions, but  fails to capture  the surprise of  an exception rule. For instance,  
table 1 [10] shows a rule pair discovered by P E D R E ,  where the edibility class 
is the only a t t r ibute  allowed in the conclusions and the parameters  were set to 
M = 3, ~ = 0.1, 8 s = 0.2, 8 s = 0.05, 8 F = 0.7, O F = 1.0 and 8~ = 0.5. 

Tab le  1. A rule pair with its associated reference rule discovered by PEDRE from 
the mushroom data set, where the edibility class is the only attribute allowed in the 
conclusions. Here, 1" p and $ p represent the upper and lower bound o fp  respectively. 

common sense rule -l. p(A,)  $ p (dA, )  
exception rule $ p(A~,S~,) $ p(c' IA•B,,) 
rererence rule j" p(c'IB~) 

b=f,  gs=b, sts=e -+ class=p 0.213 0.703 
b=f, gs=b, sts=e, s tr=v --+ class=e 0.051 1.000 

str=v ~ class=e 0.318 

We see tha t  the rule pair in the table shows interesting exceptions. However, 
the accuracy  of  the common sense rule is relatively small: its lower bound  value 
is 0.703. We a t t r ibute  this to the high reliability of  the exception rule since it has 
a negative effect on the accuracy of  a common sense rule. In P E D R E ,  a common  
sense rule cannot  have a high accuracy unless the user assumes a low value for 
J, 8 s and 01F. In other  words, P E D R E  has lost surprise while gaining reliability. 
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In order to discover truly surprising exception rules, we reformahze the con- 
straints (3), and consider point-estimated probabilities iS(A~,, B~) and 15(c' IAt,, B~) 
instead of true probabilities p(At, , B~,) and p(c' IAt,, B~,). 

Pr {p(Ag) > 0 s, p(c[At, ) > 0~, p(c'lAt, , B~) < 0[} > 1 - 5. (S) 

(At.,B~) > 0 s, ~(c'IAg, B~. ) > O F, (9) 

/x +r, < M. (10) 

While this modification makes our approach less tolerant to noise, it generates an 
increasing number of rule pairs due to the looser restrictions on the generality 
and accuracy of an exception rule. Constraints on the length of premises are 
slightly modified in order to keep the computation time reasonable. Similarly as 
in the previous section, the following equations are equivalent to (8). 

G(At,)~(At, ) >_ 0 s, F(A~.,c)~(cIA~.) > 0~, F(B~.,c')~(c'lBv ) <_ 0~. (11) 

3 .2  E v a l u a t i o n  o f  S u r p r i s e  

Since this reformalization of the problem increases the numbers of discovered 
rule pairs, an evaluation criterion of surprise is introduced to screen out rule 
pairs of minor interest. 

Intensity of implication [3] is an evaluation criterion of surprise for a rule. It 
represents the degree of surprise that a rule Art --+ c has so few counter examples. 
Let U and V be a randomly-selected set whose number of observation [U[ and 
IVI in data  set D is equal to those of Icl and IA.I respectively 

IUI = Ich IVI = [A.I, (12) 

then an intensity of implication ~(Ag, c, D) for this rule is given as follows. 

T(A~, c, D) -- 1 - P r ( I U V I  _< I~a~l). (13) 

Assuming that  U and V are independent, the random variable [UV[ follows the 
hypergeometric law. Poisson approximations can be applied when IUVI is small 
[4], which is often the case in rule discovery. 

I~A, I 
T(At, , c, D) = 1 - E H(A . ,  c, D, k) (14) 

k=m,~(0,la, l-lcl) 
I~A,,I Ak _ 

1 -  E ~.v e ~ (15) 
k=O 

where (ICJlAgl_k)(Ikl) ~ I A ~ l ( n -  Icl) (16) 
n 
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Since intensity of implication is based on a statistical significance Pr ( IUV I 
I~At`l), its definition is easier to be interpreted than an information-based cri- 
terion such as J measure [7]. This definition shows that  intensity of implication 
increases as the number of counter examples I~At`l decreases. Moreover, intensity 
of implication has the desirable property of evaluating the reliability of a rule 
according to the size of a data  set: it increases as n increases. Also, it evaluates 
the rareness of the conclusion that  a rule predicts: it increases as Icl decreases. 
A detailed analysis of this criterion is given in [2]. 

Let consider a direct application of intensity of implication to the evaluation 
of an exception rule. First, we should replace n by IAt, I since the premise of 
a common sense rule can be considered as the universe for an exception rule. 
Similarly, At, and c are replaced by At`B~, and c'At` respectively. Therefore, the 
intensity of implication for an exception rule in a rule pair r (p ,  v) is given by 
~,o( At` B~, c' At` , At`). 

~(At, B~, ,c 'At` ,At , )= l -  KZ~ -ffff. e (17) 
k = 0  

IAt`B,,I(lAt`l - / at`l) (18) 
where A' _: iAt` [ 

Let examine this criterion in the context of exception knowledge discovery. 
If  we have a large number of exception rules each of which covers more than 
20 examples IAt, B~, I > 20, then its A' is also nearly 20. If  these rules have few 
counter examples ]dAt, B v [, which is often the case, their intensity of implication 
is all equal to 1. Therefore, the intensity of implication r is 
inappropriate for ranking exception rules according to their degree of surprise. 

To overcome this problem, we propose a modified version of this criterion. 
The idea is to take the logarithm of the probabili ty of having so few counter 
examples in order to have a precise view when this probabili ty is nearly 0. The 
criterion of surprise ~d(At, B~, dAt,  , At, ) for an exception rule in this paper  is 
given as follows. 

" A - -  ' -  At`) - l n  e - A  (19) ~o i, t`1:~v,c At`,  =_ 

\ k=O 

where In(x) represents the natural  logarithm of x. Note that  this criterion is 
equal to A' when an exception rule has no counter examples (l-JAt`Bv] = 0). 

3.3 Search Algorithm 

Similarly to PEDRE,  the proposed approach employs a depth-first search to 
traverse a search tree for obtaining rule pairs which satisfy (9) ~ (11) and which 
have the K highest !d(At`B~,, c'At,,At, ). A theorem similar to theorem 1 holds 
in this search problem. 
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T h e o r e m  2. Let the rule pair of the current node be r(# ' ,  u'). If  the rule pair 
satisfies an equation in (20) or (21), no rule pairs r(#, u) of the descendant nodes 
satisfy (9) and (11). 

S F C (A~,)#(At,,) < OSl, C(Av,)#(c,A~,,) < 0101, 

(A~,,,B~,,) < 0 s, i5(c',Au,,B~,, ) < oSo F 

(20) 
(21) 

P r o o f  First, the proof for (20) is equivalent to theorem 1. Second, (21) is derived 
from ~(A~,,B~,) >_ ~(A~,B~) and ~(d,A~, ,B~,)  >_ ~(c' ,A~,B~). [] 

An improvement to PEDRE is that a node represents not only a rule pair 
{A~, --+ c & A~,B~ --+ c'}, but also {A~ --+ c' & A~,B~ --+ c}, {B~ -+ 
c & B~,A~ --+ c'}, and {B~ -+ c' & B~,A~, -+ c}. Since these 4 rule pairs 
employ similar atoms in calculating (9) ~ (11) and (20) ~ (21), this fourfold 
representation improves time efficiency. A 4-bit flag is employed to represent 
which rule pairs are considered in a node of a search tree. 

4 Appl icat ion to Data Sets 

The proposed method was implemented and tested with data sets from several 
domains. The results were quite successful. Here, we show the results using the 
mushroom data set and the shuttle data set from the UCI Repository [5]. 

The mushroom data set includes 22 descriptions and the edibility class of 
8,124 mushrooms, each attribute having 2 ~ 12 values. Table 2 shows the rule 
pairs discovered by our approach, where the edibility class is the only attribute 
allowed in the conclusions and the parameters were set to M = 3, 5 -- 0.1, 0 s = 
0.2, 0 s -- 40/8124, O F = 0.8, O F = 1.0, 01 -- 0.5 and g = 5. 

The discovered rule pairs in the table show very interesting exceptions. Ac- 
cording to the first rule pair, with 90 % confidence level, at least 86.6 % of the 
mushrooms whose "gs" is "n" are poisonous but 100 % of them are actually 
edible if "sts" is "e" and "p" is "y". The first rule holds for at least 2,388 mush- 
rooms (29.4 %). Note that, from the reference rule, only at most 28.0 % of the 
mushrooms whose "sts" is "e" and "p" is "y" are edible. This shows that the 
discovered exception rule is truly unexpected. Compared with the rule pair dis- 
covered by PEDRE (table 1), each rule pair in this table has a stronger common 
sense rule, and thus a more surprising exception rule. These results confirm the 
validity of our approach. 

The shuttle data set includes 10 descriptions of 58,000 examples, each at- 
tribute having 3 to 8 values. Table 3 shows the rule pairs discovered by our 
approach, where the parameters were set to M = 3, 5 = 0.1, 0 s ---- 0.2, 0 s ---- 
50/58,000, O F -- 0.7, O F = 1.0, 01 -- 0.5 and g -- 5. 

The discovered rule pairs in the table also show very interesting exceptions. 
According to the second rule pair, with 90 % confidence level, at least 83.6 % of 
the examples whose "att9 = 2" have "att8 = 1" but 100 % of them actually have 
"att8 = 0" if "att2 = 1" and "att7 -- 0". The first rule holds for at least 19,836 
examples (34.2 %). Note that, from the reference rule, only at most 27.7 % of 
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T a b l e  2 .  T h e  r u l e  p a i r s  d i s c o v e r e d  f r o m  t h e  m u s h r o o m  d a t a  s e t ,  w h e r e  t h e  e d i b i l i t y  

c l a s s  i s  t h e  o n l y  a t t r i b u t e  a l l o w e d  i n  t h e  c o n c l u s i o n s .  

c o m m o n  s e n s e  r u l e  $ p(A,,) .k p(clA.) 
N o .  e x c e p t i o n  r u l e  ]c'A~,B,, I ~(c'IAt, B~ ) 

r e f e r e n c e  r u l e  ~o'(At, B~, c'A~,, A~,) • p(c'lB~ ) 
g s  - -  n - +  c l a s s  = p 0 . 2 9 4  0 . 8 6 6  

1 g s  - -  n ,  s t s  = e,  p = y --+ c l a s s  = e 72  1 . 0 0 0  

s t s  = e,  p = y - +  c l a s s  = e 6 3 . 7  0 . 2 8 0  

g s  = n --+ c l a s s  = p 0 . 2 9 4  0 . 8 6 6  

2 g s  = n ,  b = f ,  p = y --+ c l a s s  = e 72  1 . 0 0 0  

b = f ,  p = y --+ c l a s s  = e 6 3 . 7  0 . 1 5 6  

g s  = n - ~  c l a s s  = p 0 . 2 9 5  0 . 8 6 8  

3 g s  = n ,  g s p  = c ,  s s b  = f - - +  c l a s s  = e 4 8  1 . 0 0 0  

g s p  = c ,  s s b  = f --+ c l a s s  = e 4 2 . 4  0 . 3 3 9  

g s  = n - +  c l a s s  = p 0 . 2 9 4  0 . 8 6 6  

4 g s  = n ,  s t r  = b ,  s c b  = n --+ c l a s s  = e 4 8  1 . 0 0 0  

s t r =  b ,  s c b  = n --+ c l a s s  = e 4 2 . 4  0 . 1 7 5  

g s  ----- n --> c l a s s  = p 0 . 2 9 5  0 . 8 6 8  

4 g s  = n ,  s p c  = h--+ c l a s s  = e 4 8  1 . 0 0 0  

s p c  = h--+ c l a s s  = e 4 2 . 4  0 . 0 4 1  

T a b l e  3 .  T h e  r u l e  p a i r s  d i s c o v e r e d  f r o m  t h e  s h u t t l e  d a t a  s e t .  

common sense rule $ p(A.) $ P(cIA.) 
N o .  e x c e p t i o n  r u l e  Ic'A~,Bv I f(c']At, B,,) 

r e f e r e n c e  r u l e  ~o'(A~,B,,, c'A,,  A,)  ~ p ( c ' l B ~  ) 

t i m e  - -  0 --+ a r t 7  = 2 0 . 6 7 8  0 . 7 2 9  

1 t i m e  = 0 ,  a t t 3  = 2 - +  a t t 7  = 3 2 , 4 0 0  1 . 0 0 0  

a t t 3  = 2 - +  a t t 7  - -  3 1 7 6 6 . 3  0 . 3 4 3  

a t t 9  = 2 --+ a t t 8  = 1 0 . 3 4 2  0 . 8 3 6  

2 a t t 9  = 2,  a r t 2  = 1, a t t 7  = 0 - +  a t t 8  = 0 5 5 5  1 . 0 0 0  

a t t 2  = 1,  a t t 7  = 0 --+ a r t 8  = 0 5 1 1 . 0  0 . 2 7 7  

a t t 9  = 2 --~ a r t 8  = 1 0 . 3 4 2  0 . 8 3 6  

3 a t t 9  = 2,  a t t 2  = 1,  C l a s s  = 4 - +  a t t 8  = 0 5 5 4  1 . 0 0 0  

a t t 2  = 1,  C l a s s  - -  4 --+ a t t 8  = 0 5 1 0 . 1  0 . 2 7 6  

a r t 5  = 2 --+ a r t 7  - -  2 0 . 8 6 1  0 . 7 3 6  

4 a t t 5  = 2 ,  a t t 8  = 2 --+ a t t 7  = 3 9 4  1 . 0 0 0  

a r t 8  : 2 --+ a t t 7  = 3 7 3 . 9  0 . 0 5 8  

a r t 7  = 2 --+ t i m e  = 0 0 . 6 8 1  0 . 7 2 6  

5 a t t 7  = 2,  a t t 2  = 1, a r t 3  --- 3 --+ t i m e  = 2 5 9  1 . 0 0 0  

a r t 2  = 1,  a r t 3  = 3 --+ t i m e  = 2 4 6 . 0  0 . 1 2 7  
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the examples which satisfy "att2 = 1" and "art7 = 0" have "att8 = 0". This 
shows that  the discovered exception rule is truly unexpected and surprising. 

5 C o n c l u s i o n  

This paper  has described a novel approach for discovering surprising exception 
rules using a simultaneous estimation method and a modified version of intensity 
of implication. The approach depends on neither a subjective evaluation nor an 
inspection of the reliability by a human. An exception rule discovered in this 
approach deviates from a strong common sense rule, has few counter examples 
and predicts a rare conclusion. Consequently, our exception knowledge discovery 
system, compared with PEDRE [10], is oriented to the discovery of surprising 
exception rules rather  than reliable exception rules. We believe that  both  ap- 
proaches are valuable, and should be used according to the goal of discovery. 

Our approach has been applied to several benchmark data  sets in the machine 
learning community. Experimental  results show that  our system is promising for 
the efficient discovery of surprising exception rules. Ongoing research is focused 
on the comparison of various rule evaluation criteria and practical applications 
of our approach to large databases. 
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