
Optimising Data-Parallel Programs Using the
BSP Cost Model

D.B. Skillicorn 1 M. Danelutto, S. Pelagatti and A. Zavanella 2

1 Department of Computing and Information Science
Queen's University, Kingston, Canada

2 Dipartimento di Informatica
Universit~ di Pisa, Corso Italia 40

56125 Pisa, Italy

Abs t rac t . We describe the use of the BSP cost model to optimise pro-
grams, based on skeletons or data-parallel operations, in which program
components may have multiple implementations. BSP's view of com-
munication transforms the problem of finding the best implementation
choice for each component into a one-dimensional minimisation prob-
lem. A shortest-path algorithm that finds optimal implementations in
time hnear in the number of operations of the program is given.

1 P r o b l e m S e t t i n g
Many parallel programming models gain expressiveness by raising the level of
abstraction. Important examples are skeletons, and data-parallel languages such
as HPF. Programs in these models are compositions of moderately-large building
blocks, each of which hides significant parallel computation internally.

There are typically multiple implementations for each of these building blocks,
and it is straightforward to order these implementations by execution cost. What
makes the problem difficult is that different implementations require different ar-
rangements of their inputs and outputs. Communication steps must typically be
interspersed to rearrange the data between steps.

Choosing the best global implementation is difficult because the cost of a
program is the sum of two different terms, an execution cost (instructions), and a
communication cost (words transmitted). In most parallel programming models,
it is not possible to convert the communication cost into comparable units to
the execution cost because the message transit t ime depends on which other
messages are simultaneously being transmitted, and this is almost impossible to
determine in practice.

The chief advantage of the BSP cost model, in this context, is that it ac-
counts for communication (accurately) in the same units as computation. The
problem of finding a globally-optimal set of implementation choices becomes a
one-dimensional minimisation problem, in fact with some small adaptations, a
shortest path problem.

The complexity of the shortest path problem with positive weights is quadratic
in the number of nodes (Dijkstra's algorithm) or O((e + n)log n), where e is the

699

number of edges, for the heap algorithm. We show that the special s tructure
of this particular application reduces the problem to shortest pa th in a layered
graph, with complexity linear in the number of program steps.

BSP's cost model assumes that the bottleneck in communicat ion performance
is at the processors, rather than in the network itself. Thus the cost of communi-
cation depends on the fan-in and fan-out of da ta at each processor, and a single
architectural parameter , g, that measures effective inverse bandwidth (in units
of t ime per word transferred). Such a model is extremely accurate for today ' s
parallel computers. Other programming models can use the technique described
here to the extent that the BSP cost model reflects their performance. In prac-
tice, this requires being able to decide which communicat ion actions will occur
in the same t ime fl'ame. This will almost certainly be possible for P3L, HPF,
GoldFish, and other data-parMlel models.

In Section 2 we show how the BSP cost model can be used to model the costs
of skeletons or data-parallel operations. In Section 3, we present an opt imisat ion
algori thm with linear complexity. In Section 4, we illustrate its use on a non-
trivial application written in the style of P3L. In Section 5, we review some
related work.

2 Cost Modell ing

Consider the program in Figure 1, in which program operations, BSP supersteps
[7], are shown right to left in a functional style. Step A has two potential im-
plementations, and we want to account for the total costs of the two possible
versions of the program.

Step A
F- -1

1 8 1] / 1 W l ~ h4

I I
L_ _1

I -

Is2 h2 w~ ha

I

k_

Alternate Implementa t ion of Step A

Fig. 1. Making a Local Optimisation. Rectangles represent computation, ovals com-
munication, and bars synchronisation. Each operation is labelled with its total cost
parameter. Both implementations may contain nmltiple supersteps although they are
drawn as containing one. The alternate implementation of step A requires extra com-
munication (and hence an extra barrier) to place data correctly. In general, it is possible
to overlap this with the communication in the previous step.

The communicat ion stage of the operation preceding step A arranges the da ta
in a way suitable for the first implementat ion of step A. Using the second imple-

700

mentation for step A requires inserting extra data manipulation code to change
this arrangement. This extra code can be merged with the communication at the
end of the preceding superstep, saving one barrier synchronisation, and poten-
tially reducing the total communication load. For example, identities involving
collective communication operations may allow some of the data movements to
'cancel' each other.

We can describe the cost of these two possible implementations of Step A
straightforwardly in the BSP cost framework. The cost of the original implemen-
tat ion of Step A is wl + hlg + sll and the cost of the new implementation is
w2 + h2g + s2l plus a further rearrangement cost hag + l To determine the extent
to which the h3g cost can be overlapped with the communication phase of the
previous step we must break both costs down into fan-out costs and fan-in costs.
So suppose that h4 is the communication cost of the preceding step and

h3 = max(h~ ~t, h~ ~) h4 = max(h~ ~t, h~ ~)

since fan-ins and fan-outs are costed additively. The cost of the combined, over-
lapped communication is

max(h~ ut Jv h~ ut,]~3~ -~ hi4'z)~

The new implementation is cheaper than the old, therefore, if

w 2 + h 2 g + s 2 l + m a x (h ~ ~ t + n 4 ,n3 + < + h l g sll

3 O p t i m i s a t i o n

The analysis in the previous section shows how a program is transformed into
a directed acyclic graph in which the nodes are labelled with the cost of com-
putat ion (and synchronisation) and the edges with the cost of communication.
Alternate implementation corresponds to choosing one path between two points
rather than another. In what follows, we simply assume that different implemen-
tations for each program step are known, without concerning ourselves with how
these are discovered.

Given a set of alternate implementations for each program step, the com-
munication costs of connecting a given implementation of one step with a given
implementation of the succeeding step can be computed as outlined above. If
there are a alternate implementations for each program step, then there are a 2
possible communication patterns connecting them. If the program consists of n
steps, then the total cost of setting up the graph is (n - 1)a 2.

We want to find the shortest path through this layered graph. Consider the
paths from any implementation block at the end of the program. There are (at
most) a paths leading back to implementations of the previous step. The cost of
a path is the sum of the costs of the blocks it passes through and the edges it
contains. After two communication steps, there are a ~ possible paths, but only
(at most) a of them can continue, because we can discard all but the cheapest

701

of any paths that meet at a block. Thus there are only a possible paths to be
extended beyond any stage. Eventually, (at most) a paths reach the start of the
program, and the cheapest overall can be selected. The cost of this search is
(n - 1) a 2, and it must be repeated for each possible starting point, so the overall
cost of the optimisation algorithm is (n - 1)a 3. This is linear in the length of
the program being optimised. The value of a is typically small, perhaps 3 or 4,
so that the cubic term in a is unlikely to be significant in practice.

4 A n E x a m p l e

We illustrate the approach with a non-trivial program, Conway's game of Life,
expressed in the intermediate code used by the P3L compiler[5,1]. The opera-
tions available to the P3L compiler are:

distribute :: Distr_pattern -+ SeqArray o~ -+ ParArray (SeqArray a)
gstencil :: ParArray a --~ Distr_pa.l, tcrn --~ SI,enci] -+ Distr_pattern -+ ParArray c~
lstencil :: ParArray (., ~ Sl.(;ncil --+ l)istr_pattern -+ ParArray (SeqArray a)

map :: ParArray a -~ (a -+/?) -+ ParArray fl
reduce :: earArray a --~ (a -+ a -+ a) -+

reduceall :: ParArray a -+ (a --+ (~ -+ a) -+ ParArray a
gather :: ParArray a -+ Distr_pattern -+ ScqArray a

where distribute distributes an array to a set of worker processes according to a
distribution pattern (Distr_pattern), gstencil fetches data from neighbour workers
according to a given stencil, Istencil arranges the data local to a worker to have
correct haloes in a stencil computation, map and reduce are the usual functional
operations, reducea]l is a reduce in which all the workers get the result, and gather
collects distributed data in an array to a single process. Possible intermediate
P3L code for the game of life is:

1. dl = (block_block p)

2. W = distribute dl World

3. while NOT(C2)

4. W1 = gstencil W dl [(I,I),(I,i)] dl

5. W2 = istencil WI [(I,I),(I,I)] dl

6. (W3,C)= map (map update) W2

7. Cl = map (reduce OR C)

8. C2 = reduceall OR C

9. X = gather dl W3

where dl is the distribution adopted for the World matrix (block,block over a
rectangle of p processors), and W is the ParArray of the distributed slices of the
initial World matrix. Line 4 gathers the neighbours from non-local processors.
Line 5 creates the required copies. Line 6 performs all the update in parallel.
Array C contains the boolean values saying if the corresponding element has
changed. Line 9 gathers the global results. We concentrate on the computat ion
inside the loop. It may be divided into three phases: Phase A gathers the needed
values at each processor (Line 4). Phase B computes all of the updates in parallel
(Lines 5-7). Phase C checks for termination: nothing has changed in the last
iteration (Line 8). There are several possible implementations for these steps:

702

Operation Computation Cost Comment
A1
A2

Aa

B
C1

C2

l
21

31

(9 + te)N 2 + 1
(p- 1)top

(logp -- 1)(/+ toR,)

direct stencil implementation
gather to a single process then
distribute
gather to a single process then
broadcast
local update and reduce
!total exchange of results, then lo-
cal reductions
tree reduction

where t e is the cost of a local update, tOR is the time taken to compute a
logical OR, and N is the length of the side of the world region held by each
processor.

In A~, all workers in parallel exchange the boundary elements (4(g + 1)),
requiring a single barrier (costing l). In As, all the results are gathered on a single
processor and redistributed giving each worker its halo; this requires much more
data exchange (g2p + 4(N + 1)) and two synchronisations (20. In A3, data are
collected as in A2 and then broadcasted to all the workers. This requires three
synchronisations (30, as optimal BSP broadcast is done in two steps [7]. The
cost of the communication between different implementations is:

Pair
(A1, B)
(A2, B)
(A3, B)
(B, c1)i
(B, C2)
(C1, *)
(C2,*)

Communication Cost Comment
4(N + 1)g send the halo of an N x N block

N2pg + 4(N + 1)g gather and distribute the halo
3N2pg gather and broadcast, no haloes

(p - 1)g total exchange
2g
0 data already placed as needed

2(logp- 1)g
where p is the number of target processors, and N the length of side of the
block of World on each processor). The optimal solution depends on the values
of g, 1 and s of the target parallel computer. In general, for this example, A1 is
better than A2 and A3, but C1 is better than C2 only for small numbers of pro-
cessors or networks with large values of g. For instance, if we consider a CRAY
T3D (with values of g ~ 0.35#s/word, 1 ~ 25#s and s ~-, 12M flops as in [7]),
C1 is faster than C2 when p <_ 128, so the optimal implementation is AI-B-C1.
For larger numbers of processors, A1-B-C2 is the best implementation. For ar-
chitectures with slower barriers (Convex Exemplar, IBM SP2 or Parsytec GC)
the best solution is always A1-B-C1.

5 R e l a t e d W o r k

The optimisation problem described here has, of course, been solved pragmat-
ically by a large number of systems. Most of these use local heuristics and a
small number of program and architecture parameters, and give equivocal re-
sults [4, 3, 2]. Unpublished work on P3L compiler performance has shown that
effective optimisation can be achieved, but it requires detailed analysis of the

703

target architecture and makes compilation time-consuming. The technique pre-
sented here is expected to replace the present optimisation algorithm. A number
of global optimisation approaches have also been tried. To [8] gives an algo-
r i thm with complexity n2a to choose among block and cyclic distributions of
data for a sequence of data-parallel collective operations. Rauber and Riinger
[6] optimise data-parallel programs that solve numerical problems. Different im-
plementations are homogeneous families of algorithms with tunable algorithmic
parameters (the number of iterations, the number of stages, the size of systems),
and the cost model is a simplification of LogP.

6 Conc lus ions
The contribution of this paper is twofold: a demonstration of the usefulness of
the perspective offered by the BSP cost model in simplifying a complex problem
to the point where its crucial features can be seen; and then the application of
a shortest-path algorithm for finding optimal implementations of skeleton and
data-parallel programs.

The known accuracy of the BSP cost model in practice reassures us tha t the
simplified problem dealt with here has not lost any essential properties. Reducing
the problem from a global problem with many variables to a one-dimensional
problem that can be optimised sequentially makes a straightforward optimisation
algorithm, with linear complexity, possible.
A c k n o w l e d g e m e n t . We gratefully acknowledge the input of Barry Jay and
Fabrizio Petrini, in improving the presentation of this paper.

R e f e r e n c e s

1. B. Bacci, B. Cantalupo, M. Danelutto, S. Orlando, D. Pasetto~ S. Pelagatti,
and M. Vanneschi. An environment for structured parallel programming. In
L. Grandinetti, M. Kowalick, and M. Vaitersic, editors, Advances in High Perfor-
mance Computing, pages 219-234. Kluwer, Dordredlt, The Netherlands, 1997.

2. Z. Bozkus, A. Choudhary, G. Fox, T. Haupt, S. Ranka, and M.-Y. Wu. Compiling
Fortran 90D/HPF for distributed memory MIMD computers. Journal of Parallel
and Distributed Computing, 21(1):15-26, April 1994.

3. S. Ciarpaglini, M. Danelutto, L. Folchi, C. Manconi, and S. Pelagatti. ANACklCTO:
a template-based p31 compiler. In Proceedings of the Seventh Parallel Computing
Workshop (PCW '97), Australian National University, Canberra, 1997.

4. M. Danelutto, F. Pasqualetti, and S. Pelagatti. Skeletons for data parallelism in
p31. In C. Lengauer, M. Griebl, and S. Gorlatdl, editors, Proc. o] EURO-PAR '97,
Passau, Germany, volume 1300 of LNCS, pages 619-628. Springer-Verlag, August
1997.

5. S. Pelagatti. Structured development of parallel programs. TaylorSzFrancis, London,
1997.

6. T. Rauber and G. Rfinger. Deriving structured parallel implementations for numer-
ical methods. The Euromicro Journal, (41):589 608, 1996.

7. D.B. Skillicorn, J.M.D. Hill, and W.F. McColl. Questions and answers about BSP.
Scientific Programming, 6(3):249-274, 1997.

8. H.W. To. Optimising the Parallel Behaviour of Combinations of Program Compo-
nents. PhD thesis, Imperial College, 1995.

