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Abst rac t .  Building on the work of Kocher [Koc96], we introduce the 
notion of side-channel cryptanalysis: cryptanalysis using implementation 
data. We discuss the notion of side-channel attacks and the vulnerabili- 
ties they introduce, demonstrate side-channel attacks against three prod- 
uct ciphers--timing attack against IDEA, processor-flag attack against 
RC5, and Hamming weight attack against DES--and then generalize our 
research to other cryptosystems. 
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1 I n t r o d u c t i o n  

Any cryptographic primitive, such as a block cipher or a digital signature al- 
gorithm, can be thought of in two very different ways. It can be viewed as 
a mathematical object; typically, a function taking an input between 0 and 
2 g - 1, and providing an output  between 0 and 2 M - 1. Alternatively, it can be 
viewed as a concrete implementation of that  mathematical object. Traditionally, 
cryptanalysis has been directed solely against the mathematical  object, and the 
resultant attacks necessarily apply to any concrete implementation. The statis- 
tical attacks against block ciphers--differential [BS91,BS93] and linear [Mat93] 
cryptanalysis--are example of this; these attacks will work against DES regard- 
less of which implementation of DES is being attacked. 

Many of these attacks are more theoretical than operational, and are some- 
times called "certificational weaknesses" to indicate that  they may not work 
practical implementations. A known-plaintext attack that  uses 240 plaintexts, 
for example, would require an operational cryptanalyst  to obtain just  under 
nine terrabytes of data  (assuming a 64-bit block cipher) encrypted in a single 
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key. While no cryptographer would seriously recommend such an algorithm for 
operational deployment, is wouldn't be too hard to build a system that denied 
an attacker access to this magnitude of plaintext. 

In the last few years, new kinds of cryptanalytic attack have begun to appear 
in the literature: attacks that target specific implementation details. Both timing 
attacks [Koc96] and differential fault analysis [BDL97,BS97] make assumptions 
about the implementation, and use additional information garnered from attack- 
ing certain implementations. Failure analysis [HGS97,Be196] assumes a one-bit 
feedback from the implementation--was the message successfully decrypted--in 
order to break the underlying cryptographic primitive. Related-key cryptanaly- 
sis [Bih94,KSW96,KSW97] also makes assumptions about the implementation, 
in this case about related keys used to encrypt different texts. 

These attacks don't necessarily generalize--a fault-analysis attack just isn't 
possible against an implementation that doesn't permit an attacker to create 
and exploit the required faults--but can be much more powerful. For example, 
differential fault analysis of DES requires between 50 and 200 ciphertext blocks 
(no plaintext) to recover a key [BS97]. 

In this paper, we consider the general class of side-channel attacks against 
product ciphers. A side-channel attack occurs when an attacker is able to use 
some additional information leaked from the implementation of a cryptographic 
function to cryptanalyze the function. Clearly, given enough side-channel infor- 
mation, it is trivial to break a cipher. An attacker who can, for example, learn 
every input into every S-box in every one of DES's rounds can trivially calculate 
the key. Our research attempts to show how little side channel information is 
required to break product ciphers. 

In real-world systems, attackers cheat; prudent engineers of secure systems 
anticipate this and adapt to it. Exploiting weaknesses in implementations-- 
either by monitoring some "side-channel" of information out of the mechanism 
implementing the cryptographic primitive (such as timing or power consump- 
tion), or by altering some internal data inside that mechanism--may feel like 
cheating, but that just makes their effects more devistating. 

1.1 Side Channels  and Product  Ciphers 

Symmetric encryption is most often done with product block ciphers, such as 
DES [DES81], IDEA [LMM91], and Blowfish [Sch94]. To understand why side 
channels so often provide devastating attacks against product ciphers, it is nec- 
essary to digress a bit into the theory of block cipher design. 

A block cipher is a cipher that encrypts whole blocks of plaintext at a time; 
all the abovementioned block ciphers operate on blocks of 64 bits at a time. 
A product cipher (sometimes called an iterative block cipher) is a block cipher 
made by iterating a fairly simple round function many times, each time with its 
own key. Thus, a four-round product cipher would look like: 

EK(X) = RK~ (RK2 (ngl (nKo (X)))), 
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where/(0..3 are functions of K. 

Each round function, R K 0 ,  is actually a weak block cipher, in the sense 
that  if an attacker knows much about the plaintext (such as simple plaintext 
statistics), he can quickly break the round function and recover its round key. 
However, if the same attacker is faced with a sequence of random numbers, each 
encrypted with the round function, he has no way to mount such an attack. 

Nearly all attacks on product ciphers work by learning some way to distin- 
guish the output  of all but the last rounds from a random permutation.  In a 
linear attack [Mat93], a subset of bits in the input to the cipher and to the last 
round don't  quite have a balanced parity; in a differential at tack [BS91,BS93], 
the relationship between a pair of inputs to the last round isn't quite random. 
Partit ioning attacks, higher-order differential attacks, differential-linear attacks, 
and related-key attacks all fit into this pattern.  A strong product  cipher will 
have as the input to its last round a random permutat ion of the input to the 
cipher: something an attacker can't  distinguish from a random number. 

Side channel information, even a tiny fraction of a bit of it per ciphertext 
output,  can provide another way of distinguishing the input of the last round 
from a random number. If the attacker can learn the parity of the input to 
the last round, or its Hamming weight, or the carry-flag resulting from the last 
round's addition operation, then he can usually break the cipher fairly quickly. 

2 T i m i n g  A t t a c k s  A g a i n s t  I D E A  

IDEA [LMM91] is a product  block cipher designed by Lai, Massey, and Murphy, 
to resist all forms of cryptanalysis publicly known at that  time. Except for some 
special "weak-key" conditions, the full 8-round IDEA is apparently very strong 
against the standard differential, linear, and related- and chosen-key attacks. 
However, IDEA can be cryptanalyzed with a piece of side-channel information: 
whether one of the inputs into one of the multiplications is zero. 

This side channel can be obtained in several ways. Since the multiplication 
is done modulo 216, a zero operand is treated as a special case. Some implemen- 
tations bypass the multiplication completely and simply patch in the correct 
value. Timing 1, power consumption, radiation, etc., will all be different if one 
input is a zero. For the rest of this discussion, we assume that  this information 
is received through timing measurements. However, any side channel that can 
yield the same information is just as effective. 

2.1 T h e  B a s i c  A t t a c k  

The basic mechanism used in all of these attacks is to search for one or two 16- 
bit values visible to the cryptanalyst  which indicate a zero input into a multiply 
somewhere in the cipher. 

1 This observation was borne out experimentally using the PGP 2.3 implementation 
of IDEA, on a 486SX-33. 
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The time taken to encrypt one block with IDEA may be broken into three 
parts: 

1. Operations which take approximately constant time. These may be assumed 
to include all operations except the multiplications modulo 216 + 1. 

2. All the multiplications except for the one being targeted. This is probably 
approximately normally distributed. 

3. The multiplication being targeted. If this has a zero input, it will invariably 
take less t ime than if it has a nonzero input. 

The time taken by the whole encryption process is the sum of these three 
times. If the multiplication being targeted has a zero input, then the mean of 
this time will be slightly lower than if the multiplication being targeted does not 
have a zero input. If we can reliably detect this difference, then we can detect 
whether or not the multiplication operation being targeted is getting zero inputs. 

Timings can be acquired in two simple ways: Either the cryptanalyst makes 
extremely precise timings of each encryption, or he measures total time to en- 
crypt many similar plaintext blocks at a time. In either case, however, he must 
then statistically test the hypothesis that  one of these sets of times is significantly 
lower than the others. 

A Ciphertext-Only Attack Requiring Precise Block Encryption Tim- 
ings With precise timing of each encryption, we can apparently recover the key 
using ciphertext only. Our at tack works as follows: 

1. Record precise timings for n encryptions. Also store the resulting plaintexts. 
Let To..n-1 be the timings, and Co..n-1 be the ciphertext blocks. 

2. Group the ciphertexts and timings into 216 subsets, based on the low-order 
16 bits of the output.  

3. Test the average times of each group against the average times of all the 
groups statistically, to find whether one of the sets has (with some acceptably 
high probability) a lower average than the other sets. If so, then the inputs 
to the last multiply of the output  transformation must have been 0 for all 
inputs in tha t  set. Solve for the last multiplicative subkey. If there is no 
difference, then either we've chosen some parameters (i.e., n) wrong, or the 
subkey is a 0. 

4. Repeat steps 2-3, above, for the high-order 16 bits and the first multiplicative 
subkey of the output  transformation. We now have 32 bits of expanded key. 

5. We now attack the second additive subkey in the output  transformation. For 
each possible value of this subkey, we look at which ciphertexts lead us to a 
zero value going into the first multiplication of the last round's MA box. For 
one of these subkey guesses, the average timing should be less than for all the 
other subkey guesses. This reveals the right subkey. If there is no difference, 
then either we've chosen some parameters wrong, or the first subkey in the 
MA-box is zero. We have now recovered 48 bits of expanded key. 
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6. We 
the 
(a) 

now attack the first additive subkey in the output transformation, and 
first subkey in the MA-box. We do this as follows: 
Break the ciphertexts and timings up into 216 subsets based on the value 
of the leftmost (first) input to the MA-box. 

(b) For each possible subkey value for the first additive subkey of the output 
transformation, break each subset up into 216 sub-subsets, based on what 
the value of the second MA-box input would be if this were the right 
subkey. 

(c) For the right subkey, each subset will have one sub-subset which has a 
smaller timing value than all the other sub-subsets in that subset. We 
have now found 64 bits of subkey. 

(d) We now choose any three of these sub-subsets, and use them to solve 
for the first multiplicative subkey of the MA-box. We have now found 
80 bits of subkey, and can brute-force the remaining 48. (There are also 
ways to continue this attack.) 

This kind of attack might be practical for recovering the key from a tamper- 
resistant box which always encrypts under the same IDEA key. The cryptanalyst 
does not need to know anything about the plaintext for this attack, but must 
always know precisely when the encryption started and when it ended. Chaining 
modes have no real impact on this attack. 

2.2 A n  Adapt ive  C h o s e n  P la in tex t  T i m i n g  Attack 

An attack very similar to the one described above is possible, even if the crypt- 
analyst doesn't have the ability to measure each encryption time precisely. In 
this case, we require the ability to choose plaintext batches to send through the 
encryption algorithm, along with the ability to time these batches. 

The attack works as follows: 

1. Choose 216 batches of plaintexts large enough that changing the input of an 
average of one multiply instruction per encryption to zero will be detectable 
in the timing, with high probability. (We need to specify numbers for the 
timing statistics here before we can know how many plaintexts must be in 
each batch.) Every plaintext has the same X0. Each batch of plaintexts has 
the same X2. 

2. Determine the time required for each batch to be encrypted. 
3. The batch that took the least time to encrypt indicates one equation involv- 

ing some key material." 

. 

(x0 e z0) = (x2 [] &)  

Generate another set of 216 plaintexts to be encrypted, this time using a 
different value for X0, X~. Follow the steps above, to get a second equation: 

(x ;  e z0) = (x2 [] &) 
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In most cases, this should allow the cryptanalyst to recover the two key 
values Z0 and Z2. (If Z4 = 0, then this attack will simply not work--there 
won't be a significant difference in the times.) 

5. Generate another set of 216 batches of plaintexts, this time holding (A) 
constant by use of fixed values for Xo and X2, and also holding X3 constant. 
For each different batch, X1 must take on a different value. 

2.3 General izat ions 

We detailed this attack assuming that  the cryptanalyst was able to determine 
when a multiply by zero occurred by watching the relative encryption time. This 
is not the only side channel that  can yield this information; radiation and power 
consumption can also leak this multiply-by-zero condition. Moreover, radiation 
and power consumption can generally determine the exact round where the 
multiplication by zero occurred, greatly simplifying the attack. 

3 A P r o c e s s o r - F l a g  A t t a c k  A g a i n s t  R C 5  

There may be cases when we can learn the internal flags states of processors. 
For example, we may be able to determine the state of the carry flag after each 
half-round of RC5. Recall that an RC5 round looks like 

Ri ~- (Rz-1 �9 Lz-1) ~L'-I + S2z-1 
Li = (L~-I | Ri) <<R' + $2, 

where S/ denote the round subkeys, (L0, R0) is the original plaintext, and 
(L~, Rr) is the output of the last round. There is one final transformation 

Rr+l = (Rr G L4) <<L~ + S2r-{-1 
Lr+l = Lr 

before we obtain the resulting ciphertext (Lr+l, Rr+l)  (this last transformation 
makes the encryption and decryption processes identical). 

RC5 is a variable-width cipher usually the width is set so that  Ri (resp. Li) 
fits into one register. Therefore the addition performed may cause the carry flag 
to be set and we denote C2i-1 (resp. C2i) the value of the carry flags after the 
addition computing R~ (resp. L/). 

We will show that  with high probability, an attacker can reconstruct $2~+1 
given several ciphertext pairs (L~+Ij ,  R~+I,j) and the corresponding carry flags 
C2 r - l j .  Once an attacker determines $2~+1, they can strip off the last half round 
and reapply our attack (reversing left and right). 

As we will see in the next sections, each of the two possible values of msb(SK~r_1)l 
lead to exactly one value of SK2~+1. Hence an attacker could simply guess the 
most significant bit of SK2~-1 for all i < r, solve for each of the subkeys, and 



Side Channel Cryptanalysis of Product Ciphers 103 

perform a few trial decryptions. If r is small (say 32), this is certainly feasible. 
However, in the event that  r is too big, we must a t tempt  to find m s b ( S K ~ r - 1 ) l  
by other means. The next section gives an algorithm for doing exactly that.  

3.1 D e t e r m i n i n g  m s b ( S K 2 r - 1 ) l  

Determining the most significant bit of S K 2 r - 1  is rather  simple. Consider three 
ciphertext pairs (Lr+l,j ,  Rr+l , j ) ,  j = 1, 2, 3 and their corresponding carry flags 
C2~-1,j. Then we simply take the most significant bit of SK2r-1 to be the 
majority value of the carry flags C2r-l , j .  The analysis which shows that three 
pairs suffices follows. 

First we must consider a simplified experiment. Let K be a randomly chosen 
n-bit value and consider the experiment in which we repeatedly chose a random 
n-bit value A and determine the value C of the carry flag for A + K.  Then 

P [ C  = I l K  = X] = P [ A  + X > 2 n] = X / 2  n. 

Furthermore, we can generalize this where we only consider the l most significant 
bits of K.  Then 

2 ~ - I  --1 

P [ C =  l l m s b ( K ) l  = X ] =  E 
i = 0  

2 ~ - l  --1 

= E  

P [ C  = I IK = X .  2 n- t  + i].  P[lsb(K),~_l = i] 

X �9 2 n - l  + i 

2 2 n - I  
z = 0  

= X 2  - I  + 2 - / - 1  _ 2 - n - 1 .  

Therefore, in order to estimate msb(K)l  we simply need to perform sufficiently 
many trials so the X such that  

#'  _ t ( X 2  - t  + 2 -I-1 _ 2 -n -1 )  

is minimal satisfies msb(K)l  = X with high probability, where # '  is the observed 
number of carries and t is the number of trials. Let Pl (X) denote the probability 
of a carry when msb(K)l  = X.  Then 

p l ( X )  = X 2  -I  + 2 - I -1  - 2 - n - 1  

To approximate the number of trials, we assume that  the distribution of #~ 
is normal. After t trials with #~ observed carries, we have 

P [tp,(X) - 3x / tp t (X ) (1  - p t (X) )  < it' < tp t (X)  + 3x / t p , (X ) (1  - pt(X))] ~ 0.997. 

Hence we want to choose t such that  

p l ( X )  - p l ( X  - 1) > 3 / 2 V / P l ( X ) ( 1  - p t ( X ) ) / t  
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for all X > 1. This gives 

p,(X) - p , ( X  - 1) > 3/2V/P,(X)(1 - p , ( X ) ) / t  r 2-' > 3/2X/p,(X)(1 - p z ( X ) ) / t  

2 -2' > (9/4)p,(X)(1 - p , (X)) / t  
~=> t > 22t-29p,(X)(1 - p , ( X ) )  

which will be roughly maximal when X = 21-1 and hence 

t > 22t-29p/(2/-1)(1 - pt(2t-1)) 

= 22t-29(2-2 _ 2-2/-2  + 2 - ' - n - 1  _ 2-2n-2)  

= 9(22l-4 _ 2-4 + 2 z -n-a  _ 22t-2n-4). 

We are interested in the case where 1 = 1 and hence need 

t > 9(2 -2 - 2 - 4  -+- 2 - n - 2  - 2 - 2 n - 2 )  

pairs. For n = 32 this gives t ~ 1.69. Therefore we can take three ciphertext 
pairs and let msb(SK2~_l) l  be the major i ty  value of the carry flags C2~-1,a. 

3.2  D e t e r m i n i n g  l s b ( S K 2 ~ + l ) l  

Once we have determined the most  significant bit of SK2~-1, we can use it 
to determine the least significant bit of SK2~+1. The algorithm is rather  sim- 
ple: we choose pla intext /c ipher text  pairs (L~+I,j, Rr+l,j) such tha t  L~+I,j = 1 
(mod 32) and C2r-1 ~ m s b (S K2~ - l ) l .  

The former condition ensures tha t  if we know the most significant bit of 
R~,a , then we will know the least significant bit of Rr+l,j [] $2r+1. The latter 
condition ensures that  we know the most  significant bit of Rr,a. After all, if 
msb(SK2~- l ) l  = 1 and C2~-1 = 0 we know tha t  msb(R~,a)l = 1. Similarly, if 
msb(SK2r-1)l = 0 and C2r-1 = 1 we know tha t  msb(Rr, j ) l  = 0. Hence 

msb(Rr , , ) l  = msb(SK2~_~)l .  (1) 

From the above and the formula for computing Rr+lo  it is easy to see tha t  

lsb(Rr+l, j  • $2r+1)1 = msb(Rr , j ) l  | msb(Lr, j ) l  

o r  

lsb(S2r+l)l  = ( m s b ( S K 2 r - 1 ) l  | m s b ( L r + l , j ) l ) [ ]  l sb(Rr+l , j ) l .  

Note tha t  we only need one ciphertext pair to determine l sb(SK2r+l) l .  
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3.3 Determining Remaining Bits of SK2,.+1 

Determining the remaining bits of SK2r+I comes from generalizing the attack of 
the previous section. Here we assume that  we know the j least significant bits of 
SK2r+I and wish to determine the j + 1st bit. Again we choose a ciphertext pair 
(Lr+l,Rr+l) such that  C2r-1 ~ msb(SK2~- l ) l .  However, this time we choose 
the pair so that  Lr+l  -= j + 1 (mod 32). 

The former condition ensures that  we know the most significant bit of R~ 
by the same argument as in the previous section. The latter condition ensures 
that  we know the j + 1st bit of R,.+I [] $2~+1. Since we know lsb(S2r+l)3, we 
can compute lsb(R~+l [] S2r+l)j.  However, we also know the j + 1st bit of the 
difference as it is a function of R~+I [] lsb(S2~+l)j, msb(R~)l and msb(Lr)l .  
Hence 

lsb((R~ @ Lr)<<L')j = lsb(R~+l)3 [] lsb(S2~+l)j 

=~ lsb(S2~+l)i+l = lsb(R~+l)j+l [] (lsb((R~ | L~)<<L~)3 

[]2 j "  (msb(Rr) l  | msb(Lr) l ) )  

Of course Lr : Lr+l  so this formula allows us to determine the j + 1st bit of 
$2~+1 directly. Repeatedly applying this algorithm for j = 2 , . . . ,  32 we recover 
the remaining bits of $2r+1. 

3.4 Adaptive Chosen-Plaintext Attack 

We can recover $1 much more directly using a chosen-plaintext attack which 
requires n chosen texts. Once we determine $1 we can peel off the first half- 
round and repeat the attack for the remaining subkeys. 

The at tack is a very simple binary search on $1. The crucial observation is 
that  C1 = 1 iff (R0 | L0) <<L~ [] $1 ~ 2 n. If we let L0 = 0, this simplifies to 
R0 [] $1 > 2 n. Therefore we perform a simple binary search on 2 n [] SI:  61 ---- 1 
i f f R 0 > 2  n [ ] S 1 .  

3.5 Generalizations 

This is not the only side channel that  can be used to cryptanalyze RC5; other 
side-channel information can also be used to break the cipher. For example, 
the timing may be different depending on the number of bits rotated. This 
information can be used to recover the RC5 key [Koc98]. Or the power consumed 
by the rotate mechanism might be different depending on the Hamming weight 
of the bits rotated. 

4 A H a m m i n g - W e i g h t  A t t a c k  A g a i n s t  D E S  

Next we introduce Hamming-weight cryptanalysis. This assumes we have a side 
channel that  gives information on the Hamming weight of intermediate encryp- 
tion values. We claim that  this model is not implausible: for instance, in some 
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hardware implementations total power consumption is correlated to the total 
Hamming weight of all intermediate values, and in software timing data  may 
leak information about  the Hamming weight of internal variables when certain 
operations (e.g. integer multiplication) are used. 

We show here that Hamming weight side channels can enable powerful ciphertext- 
only attacks in many cases. We will concentrate throughout  on cryptanalysis of 
DES for concreteness, but it should become clear tha t  these attacks will apply 
directly to any product  cipher. 

Let's start first with a very simple scenario. Assume that  we are provided 
with a side channel that  discloses the Hamming weight of the block after 15 
rounds of encryption (i.e. the input to the 16th and final round). Then attacks 
to recover the last-round subkey abound. For instance, we could simply guess 
the 48-bit last-round subkey, and verify correct guesses on a few known cipher- 
texts. This at tack will require about 48/ log  2 ~ ~ 15 ciphertexts and offiine 
work equivalent to 244 trial encryptions; the computational  complexity could be 
reduced to about 222 with meet-in-the-middle techniques. 

For reasons that  will become clear later, we wish to describe a different 
statistical attack which uses the Hamming weight of the input to the last round. 
Let (R, L @ F ( L ) )  be the last-round input corresponding to the ith ciphertext 
(L, R) where F ( L )  is the output  of the Feistel F function under the last-round 
subkey. We write W = wt F ( L )  for the Hamming weight of the output  of the 
last-round Feistel function; W is easily determined from the side channel. Also, 
we write S for the Hamming weight of the 4-bit output  of the first S-box in 
the computation of F(L) ,  and N for the total Hamming weight of the other 
S-box outputs, so that  W = S + N. Then guessing the 6 key bits entering the 
first S-box (in the 16th round) gives us S if the guess was correct, or (say) T 
otherwise (where T is a random variable with the same distribution as S, but T 
is independent of S). The core idea of the statistical at tack is that  S is strongly 
correlated with the known values W = S + N, but  T is not, so we can detect 
correct guesses at those 6 key bits by the statistically-significant correlation that  
results. 

The statistical at tack thus proceeds as follows. Suppose we have n cipher- 
texts where the side channel discloses W[1] , . . . ,W[n] .  Guess the 6 key bits 
k entering the first S-box and compute the Hamming weight of that  S-box's 
output,  calling it (say) Uk[1],. . . ,Uk[n]. Calculate a measure of correlation 2 

n Ck = ~ i=1  Uk[i]W[i] /n ,  which is an estimate at the expected value E U k W  of 
Uk �9 W .  When k is correct, we get Uk[i] = Sill ,  and thus ck is an estimate of 
E S W  = E S ( S  + N)  = E S  2 + E S E N ;  when k is false, Ck is an estimate of 
E T W  = (ms) 2 + E S  E N .  Therefore, the counter Ck is expected to be notice- 
ably larger when k is correct. If n is sufficiently large, we should be able to pick 
out the correct value of k from the largest of the 64 counters. 

2 It is in fact equivalent in power to calculating the observed correlation coefficient p, 
or the covariance for that matter. 
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Of course, once we have determined the correct values of the 6 key bits 
entering the first S-box, we can repeat  the at tack for each of the other S-boxes 
in turn, until we have recovered the entire last-round subkey. In practice one 
could make do with significantly fewer ciphertexts by t reat ing several S-boxes 
at once; here we focus on giving the essence of the central ideas of the attack, 
with an eye towards applying them to a wider class of Hamming-weight-based 
side channels. 

We now analyze the complexity of this algorithm. The random variables S, T 
are independent symmetr ic  binomial random variables with mean 2; also N is 
a symmetric  binomial with mean  14. We see tha t  E ( S W  - T W )  = E S  2 - 
(ES)  2 = 1. Also, a bit of computa t ion  shows tha t  Vat ( S W  - T W )  = 232. 
Letting k be a (generic) incorrect guess and K be the correct guess, we see that  
CK -- Ck will be approximately  Gaussian with mean 1 and s tandard  deviation 
2 3 / v ~  when n is not too small. We expect success when cK is larger than all 
the incorrect ck counter values, and we can roughly est imate the probabil i ty of 
this as Prob(cK > Ok) 63 : ~ ( v ~ / 2 3 )  63. Therefore, with n = (3 �9 23) 2 ~ 4800 
ciphertexts, we expect to succeed with probabili ty about  (1 - .0013) 63 ~ .92. 

To recap, we have expressed the known Hamming weight W as a sum W = 
S + N of "signal" S and "noise" N.  Each guess at the 6 key bits entering the first 
S-box gives us a list of candidate observations for S. This reduces the problem 
of recognizing correct guesses to the problem of filtering out the noise from a 
noisy signal; this, in turn,  is made possible because S is strongly correlated with 
S + N .  

This technique can be generalized to scenarios with just about  any Hamming-  
weight-based side channel imaginable. 

For instance, imagine a side channel which gives us W, the to ta l  weight of all 
of the DES F function outputs  summed over all 16 rounds. This is a good deal 
more plausible than our previous model, where we obtained the Hamming  weight 
of only the last-round F function output;  however, it may not be immediately 
obvious how to use such a side channel to break DES. We note tha t  the statistical 
techniques developed above will apply immediately. As before, we let S stand for 
the total  Hamming  weight of the output  of the first S-box in the last round. The 
total  weight W can be expressed as W = S + N,  where N is a sum of 127 other 
S-box outputs.  Thus N can be t reated as a symmetr ic  binomial random variable 
of mean 254 which is independent of S. The a t tack proceeds as before, though 
we will of course need significantly more known ciphertexts. We est imate tha t  
n = 220 known ciphertexts and offiine work comparable to 219 trial encryptions 
suffices to recover the entire DES key with very high probability. This figure could 
be reduced to about  2 is known ciphertexts and 237 offiine work by simultaneously 
guessing 24 key bits entering 4 S-boxes. 

In some environments,  we may not be able to obtain the total  Hamming 
weight of all the F function outputs ,  but  we may be able to obtain a "noisy" 
version of it. (As an example,  imagine a hardware implementat ion where the 
power consumption reveals the total  Hamming  weight of all intermediate values 
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computed during a single DES encryption, or even something correlated to this 
weight. This would yield a side channel which is correlated to the total Hamming 
weight of all F function outputs.) In these situations, it is clear that we can filter 
out the noise as before: the same statistical technique still works, though more 
ciphertexts will be needed to compensate for the stronger "noise" contribution 
to the side channel value. 

So far we have concentrated on ciphertext-only attacks. In fact, by symmetry, 
one can just as easily apply the attacks to scenarios where only the plaintext 
is known, and not the ciphertext! We are not aware of any other cryptanalytic 
technique where this is possible. 

In summary, we see that even a side channel which is only mildly correlated 
to values of interest (such as the input to the last round) can be used to mount a 
powerful statistical attack against just about any product cipher. These attacks 
require only known-ciphertexts, and so should be quite practical to mount in 
practice. This shows that cryptosystem implementors must take great care to 
avoid even the slightest correlation between observable outputs and internal 
values. 

5 C o n c l u s i o n s  a n d  F u r t h e r  D i r e c t i o n s  

The purpose of this paper was to demonstrate the power of side-channel crypt- 
analysis against product ciphers. Our attacks are by no means exhaustive; the 
algorithms discussed have other possible side channels and other attacks are 
possible given other side channel information. And other product ciphers are 
vulnerable to similar attacks. We believe attacks based on cache hit ratio in 
large S-box ciphers like Blowfish [Sch94], CAST [Ada97], and Khufu [Mer91] are 
possible. 

Stream ciphers with irregular clocking features can be especially vulnerable 
to side-channel attacks. A5 [XHW94], PIKE [And95], Gollman cascades [CG88], 
shrinking and self-shrinking generators [CKM94,MS94], and any of the fam- 
ily of alternating stop-and-go generators [Sch96] are easily breakable if an at- 
tacker knows how many LFSRs clocked for each output. Implementations of 
RC4 [Sch96] that have different side-channel characteristics when i = j are also 
vulnerable. 

Public-key algorithms are vulnerable. Kocher showed how to mount at tim- 
ing attack against several public-key algorithms [Koc96]. These results can be 
generalized to any primitive that uses multiplication modulo large numbers for 
security, e.g. stream ciphers like Blum-Blum-Shub [BBS86] and hash functions 
like IBC Hash. 

The open questions lead in two different directions: how to obtain more 
detailed side-channel information, and how little side-channel information is re- 
quired to break a cryptographic primitive. With regards to the former, we leave 
that to the electronic engineers. We have collected side-channel information using 
both timing and power channels, and have often been surprised by how easy it 
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is. We can only speculate how much more information a well-equipped hardware 
laboratory can collect. 

As to the second question, the surprising result from this research is that  the 
amount of side-channel information necessary to break a product  cipher is very 
small. Ciphers have not been designed with side channels in mind; hence, they 
are often very vulnerable to analysis using them. 

It is our belief that  most operational cryptanalysis makes use of side-channel 
information. Sound as a side-channel--listening to the rotat ion of electrome- 
chanical rotor machines--was alluded to in Kahn [Kah67]. Van Eck radiat ion--  
another side channel--has been demonstrated as a way to get plaintext [vEc85]. 
And Peter Wright discussed data  leaking onto a transmission line as a side chan- 
nel used to break a French cryptographic device [Wri87]. 

Using side channels to break cryptographic primitives is such a powerful no- 
tion that  it is reasonable to expect intelligence organizations to have built on the 
successes alluded to in the previous paragraph. By continuing to research both 
the collection of side-channel data  and the vulnerabilities to specific primitives 
to side-channel data, it is our hope that  we can begin to build mathematical 
algorithms that  are more resistant to side-channel cryptanalysis as well as im- 
plementations that  leak less side-channel data. 
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