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Abstract. Using recent results from coding theory, it is shown how to 
break block ciphers operating on GF(q) where the ciphertext is express- 
ible as evaluations of an unknown univariate polynomial of low degree 
m over the plalntext with a typically low but non-negligible, probability 
p. The method employed is essentially Sudan's algorithm for decoding 
Reed-Solomon codes beyond the error-correction diameter. The known- 
plalntext attack needs n = 2 m / p  2 plaintext/ciphertext pairs and the 
running time is polynomial in n. Furthermore, it is shown how to dis- 
cover more general non-linear relations p(x, y) = 0 between plalntext x 
and ciphertext y that hold with small probability #. The second attack 
needs access to n = (2m/#) 2 plaintext/ciphertext pairs where m = degp 
and its running time is also polynomial in n. As a demonstration, we 
break up to 10 rounds of a cipher constructed by Nyberg and Knudsen 
provably secure against differential and linear cryptanalysis. 
Key words: Cryptanalysis, block cipher, interpolation attack, non-linear 
relations, Reed-Solomon codes, Sudan's algorithm. 

1 I n t r o d u c t i o n  

For some block ciphers, the round function can be described by a low degree poly- 
nomial for a non-negligible fraction of its input values. This may happen if there 
are bad S-boxes or if simple algebraic functions are used unwisely. (Some simple 
functions provide very good immunity against differential and linear cryptanal- 
ysis.) This paper shows how one may break such ciphers. 

Previous work has focused on either the linear case or the case where the out- 
put  is always expressible as a low degree polynomial (not just a fraction of the 
time). For instance, Matsui's linear cryptanalysis [14] is applicable when some 
of the output  bits can be described as a linear combination of the input bits for 
a sufficient fraction of the possible plaintexts. Jakobsen and Knudsen's interpo- 
lation at tack [9] demonstrates how to break ciphers for which the ciphertext is 
always (with probability 1) expressible as a low degree polynomial of the plain- 
text.  Their  attack fails when "noise" is introduced. Similarly, Lai's higher order 
differentials [10] [9] work only in the case where the output  is always expressible 
as a low-degree polynomial of the input. 
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Assume that the output of some block cipher can be expressed as evaluations 
of a degree m polynomial for a fraction of/~ of its possible inputs. We will say 
that such a cipher is (m,/~)-expressible. Intuitively, such ciphers appear to be 
weak. However, the problem of successfully cryptanalyzing (m,/~)-expressible 
ciphers can be shown to be essentially equivalent to the problem of decoding 
very low-rate Reed-Solomon codes subject to severe noise (with error rate above 
�89 Efficient decoding of such codes was not possible until recently where Sudan 
[17] [18] published a very novel algorithm which is able to correct several more 
errors in polynomial time. 

The paper is organized as follows. First we give some preliminaries in Sec- 
tion 2 and show how to obtain the round keys of a block cipher one at a time 
given that there exists a method to distinguish random pairs from actual plain- 
text/ciphertext pairs. 

In Section 3, the Reed-Solomon codes and Sudan's result will be explained 
and in Section 4 an attack using Sudan's algorithm is presented. If there ex- 
ist low degree polynomials describing the ciphertext for a sufficient number of 
the inputs, then the algorithm will find them. This information leak gives prob- 
abilistic knowledge of the ciphertext. As mentioned above this information in 
turn can be used to obtain the round keys. As a demonstration we cryptanalyze 
several rounds of a cipher constructed by Nyberg and Knudsen [15] which is 
immune to both differential and linear cryptanalysis. We break several rounds 
faster than exhaustive key search and using less than 232 plaintext/ciphertext 
pairs (p/e-pairs). 

Section 5 describes a more general attack. Here the probabilistic relation 
between plaintext x and ciphertext y has the more general form p(x, y) = 0 for 
some bivariate polynomial p with low degree. We conclude in Section 6 with some 
comments and by stating possible applications and extensions of the attack. 

2 P r e l i m i n a r i e s  

We consider r-round iterated block ciphers with round function 

Ci = FK,(Ci-1) 

where Co is the plaintext, K is the ith round key, and Cr is the ciphertext. We 
will assume that F is a bijection taking values in GF(q), where q is an integer 
such that a finite field of size q exists. In addition, we assume that the round keys 
are independent, uniformly distributed, and, moreover, that they are introduced 
by some group operation in such a way that the cipher is a Markov cipher [12]. 
Considering plaintext and keys to be random variables this implies that the 
inputs to each round may be considered independent. 

Definit ion 1. Given a function f : GF(q) -~ GF(q) and a polynomial p : 
GF(q) -+ GF(q) we say that f is (m,p)-expressible if 

f ( x )  = p(x) holds with probability at least/~, (1) 

where deg(p) < m. 
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Example 2. Let a, b E GF(2 w) and let the function XOR(a, b) = a + b be defined 
by the bitwise addition of its arguments. Similarly, let ADD(a, b) be defined by 
the modulo-n addition of the arguments considered as elements of ~ n  where n = 
2 w. These functions are used in several block ciphers to represent "incompatible" 
groups, e.g. in [11] or [16]. 

Given two values a and b, if there is no bit position other than the most 
significant bit where both have a 1, then XOR(a, b) = ADD(a, b). In other words, 

3 w - 1  ADD is (1, (~) )-expressible over GF(2W). 

We now show what happens if one iterates (m,/~)-expressible round functions. 

P r o p o s i t i o n  3. Consider an r-round Markov cipher with round function F.  
Assume that F is (m,p)-expressible. Then the cipher is (mr,#r)-expressible. 

Note that  there may be a better approximation for the whole r-round cipher. 
However, it is at least (m r, pr)-expressible. 

Proof. Consider two applications of Fk,: y --- Fk~(x) and z = Fk2(y), i.e., z ---- 
Fk2(Fk~ (x)). Then y is expressible as a polynomial ql(x) with deg(pl) _< m for 
a fraction ~ul -- p of the possible values of x. Similarly z is expressible as a 
polynomial p2(Y) with deg(p2) _< m for a fraction ;u2 = ~ of the possible values 
o fy .  

Since the cipher is a Markov cipher, we may assume that  the inputs to each 
round are statistically independent, and hence z is expressible as a polynomial 
p(x)  = p2(Pl(X)) with deg(p) < m 2 for a fraction PiP2 = #2 of the possible 
input values, i.e., it is (m 2, #2)-expressible. 

The proof is finished by induction on the number of rounds. 

If we have a probabilistic relation between plaintext and ciphertext expressed 
as a polynomial, then we already have an information leakage and the cipher 
may be considered broken. Indeed, the following proposition shows us how we 
may divide and conquer using this information to obtain the round keys one 
at a time, in effect peeling off one round after another. But first we need some 
definitions. 

Definit ion 4. Let there be given a set S = {(xi, yi)}i=l ..... n o.f pairs and a block 
cipher. An  algorithm which can successfully distinguish a set of p/c-pairs from 
a set of random pairs is called a discriminator (with respect to that cipher). 

Matsui's linear relations, the differential characteristics of Biham and Shamir, 
and the polynomial relations described above are all examples of useful expres- 
sions for discriminators. 

The following is a variant of what Harpes, Kra.mer, and Massey [6] refer to 
as the hypothesis of wrong-key randomization. 

De f in i t i on  5. Let there be given an r-round block cipher C. Define by the re- 
duced cipher C the first r - 1 rounds of C. Additionally, let there be given a set 
S = {(xi, Yi)}i=l ..... n of p/c-pairs and a discriminator for the reduced cipher C. 
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Let Sh be the set constructed from S by decrypting the ciphertexts y by one round 
using last-round key k. Furthermore, let kc denote the actual (correct) last-round 
key and let kw ~ kc be a wrong guess. The discriminator is said to be compliant 
if it successfully distinguishes Sko from Sk~. 

Informally speaking, the term "wrong-key randomization" comes from the fact 
that (hopefully) decryption using the wrong last-round key will randomize the 
p]c-palrs. 

Proposition 6. Given some block cipher C, assume that there exists a compli- 
ant discriminator for the corresponding reduced cipher C requiring access to n 
pairs and running in t steps. Then it is possible to obtain the last round key of 
C using n p/c-pairs and expected time �89 I where/C is the key space of the last 
round. 

Proof. To find the last round key simply make a guess and decrypt the cipher- 
texts by one round. Then use the discriminator to check if the decryptions belong 
to the reduced cipher. If this is the case we found the correct key. Otherwise pro- 
ceed with another guess. There are I/CI possible round keys and the discriminator 
runs in t steps for an expected running time of �89 I. 

Note that an attack like the above might be entirely impractical due to large 
I/C[. The motivation to include Prop. 6, however, was to demonstrate how an 
information leak can sometimes be exploited to break a cipher entirely. The 
existence of a polynomial approximation in itself is usually enough to consider 
a cipher broken. 

3 Reed-Solomon Codes 

The Reed-Solomon codes [13] are a class of linear codes over the alphabet GF(q). 
The In, k]q Reed-Solomon code, where n is the length (usually n = q - 1) and k 
is the dimension of the code is obtained by letting each message r = r0 . . .  r~-i 
denote the coefficients of a degree k - 1 polynomial p(x) - ~'~i=0&-1 rix=.. The 
corresponding codeword y = Yo.. .  Yn-1 is the concatenation of evaluations of p 
over distinct elements of GF(q) \ {0}, e.g. y~ = p(ai), i = 0, . . .  ,n  - 1, where a 
is a primitive element of GF(q). 

There exist efficient algorithms for decoding Reed-Solomon codes. For in- 
stance, the classical Berlekamp-Massey algorithm [13], which is capable of cor- 
recting t = [(d - 1)[2] errors, where d is the minimum distance of the code. 
However, for previously known algorithms t[n never exceeds 0.5 by much, not 
even for very low rates. To be useful for our purpose this bound on t is too low. 
Sudan's algorithm, on the other hand, corrects 100% of the errors asymptotically 
(for rates going towards 0). 

The decoding problem as treated by Sudan may be stated as the following: 
Given integers n, k, and e. Furthermore n pairs {(xi, Yi)}'~=l, xi, y~ e GF(q) with 
pairwise distinct xi. Compute all polynomials Pl , . . . ,Pm of degree k - 1 such 
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that  for every j = 1, 2 , . . . ,  m, the following holds: pj(xi)  = yi for at  least (n - e) 
values of i = 1 , . . . ,  n. It is not hard to see the similarity between this decoding 
problem and the problem of discovering a probabilistic relation y - p(x) between 
plaintext x and ciphertext y. 

The algorithm given by Sudan [18] solves this problem in polynomial time 
for values of e very close to n. The main result of Sudan [17] is the following: 

T h e o r e m  7. For every e and ~, the bounded distance decoding problem with 
parameters n, k = ~n, and e = e(~)n can be solved in polynomial time provided 

< i 1 pk where p~ = 
1 + Pk 2- ~' 4 2 

Here ~; is the fraction of information bits per codeword and 6(~) is the corre- 
sponding error rate. Note that  for small ~ we have p~ ~ V / ~ ,  and in this case 
the right hand side of the inequality is approximately 1 - V~-~. 

Decoding beyond the packing radius is achieved by a very novel approach. 
Sudan's algorithm obtains a bivariate polynomial Q(x, y) which is then factored 
into irreducibles. The error positions are then derived from the factorization and 
the received vector. 

The following section shows how the error-correcting algorithm may be used 
to mount a.n attack. 

4 A t t a c k  1 

Def in i t i on  8. Let a, b E IN. The (a, b)-weighted degree of a bivariate polynomial 
Q(x, y) = ~ i j  qijxiY j is defined by 

deg (ab) (Q) = max{ia + jblqi j ~ 0}. 

The following algorithm is based on the modified Sudan's algorithm found in [4]. 

Attack 1: 

�9 Input: n p/c-pairs {(xi, Yi)}~=I, 0 ~/~ ~ 1, m E IN, such that  n > (2m)/(#u2). 
�9 Output: All expressions y - p(x) with deg(p) < rn such that  y = p(x) holds 

with probability at least #. 
�9 Step A: Denote by si(x ,y)  the i-th bivariate monomial in the (1,m - 1)- 

weighted graded order. Let Q(x, y) = ~-~__+~ si(x, y) and let q~j denote the 
coefficient of the monomial x~y ~. Find a nonzero solution qij to the set of 
linear equations Q(xs,ys)  = O, s = 1 , . . .  ,n. 

�9 Step B: Factor the polynomial Q(x, y) into irreducibles over GF(q)[x, y]. 
�9 Step C: Output  all factors y - p(x) with deg(p) < m such that  p(xi) = yi 

for at least a fraction # of i = 1 , . . . ,  n. 
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For a proof of Sudan's algorithm consult [17], [18], or [4]. The algorithm runs in 
polynomial time since there are efficient algorithms for solving linear equations 
and factoring polynomials [5]. 

As an optimization [8], note that it is possible to obtain from a bivariate poly- 
nomial factors on the form y -p ( x )  by using a homomorphism from GF(q)[y] to 
GF(q2) (for an appropriate power of q, q2). Simply consider Q(x, y) e GF(q)[x, y] 
as a polynomial in y from GF(q2)[y] and then use, e.g., Berlekamp's algorithm 
[2] for factorization of univariate polynomials. 

T h e o r e m  9. An (m, p)-expressible cipher can be broken by Attack I using 

2 m  
n = (2) 

plaintext/ciphertext pairs in time polynomial in n. 

Proof. The theorem follows directly by rewriting Sudan's formula (setting m = 
k, # = 1 - E and approximating h / 2 / ~  + 1/4 - 1/2J by V / ~ ;  ~ is assumed to 
be near 0 since k << n). 

Example 10. The cipher constructed in [15] by Knudsen and Nyberg is immune 
to differential and linear cryptanalysis. It falls for an attack using Sudan's algo- 
rithm. 

The cipher is a Feistel network with round function Fk(x) = d(f(e(x) + 
k)) where f : GF(233) ~ GF(233), f(x) = x s, k e GF(233), e : GF(2 s2) -* 
GF(233) is a function which extends its argument by concatenation with an 
affine combination of the input bits, and d : GF(233) ~ GF(232) discards one 
bit from the argument. As in [9] we call this cipher ~Af. The following equations 
describe the cipher 

Ci L = CiR1 

= + C _I. 

The plaintext is (COL, Co R) and the ciphertext is the concatenation of Cr R and 
Cr L. Note that because of the extend and discard functions, one round cannot 
be written as a low-degree polynomial over GF(q). 

Define the following variant K:Af' taking inputs (Co L, C0~) e GF(2a3) 2 and 
having outputs (C~, C L) E GF(233)2: 

Do = d ( C o  

Do = a(Co 
D~ = D R i-1 

= FK, + D L i - -1  
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In other words, ICA/'~ is simply ICA/" preceded by discard operations and followed 
by extend operations. Clearly, if we can break )~A/'~ then we can also break ~A/'. 
Consequently, we proceed by attacking ICA/"~. 

Consider yet another cipher P H ~  defined by the purely algebraically given 
round function F : GF(2 ss) --~ GF(2S3), Fk(x) = f (x  + k), f(x) = x s. I.e., 

c f = c f _ ,  
c," = + c,',_,. 

Again, the ciphertext is the concatenation of C~ and C~. Here C L, C~ E 
GF(233). Essentially, PUT~ is the same cipher as ICAf ~ but without the ex- 
tend/discard functions that ruin the algebraic simplicity. Now keep the right 
half of the plaintext Co R constant and express the right half of the ciphertext 
C L as a polynomial of the left half of the plalntext Co L. In the original proposal, 
]C~ has r = 6 rounds. Assume that this holds for IC)V" and ~L/7"~ as well. Then 
the output polynomial of the right half has degree 3 (6-2) = 81 due to the ci- 
pher's simple algebraic structure (Co L passes through r - 2 instances of ~' before 
"becoming" CrL). This implies that P H T ~  can be broken by the interpolation 
attack which was exactly what was done in [9]. 

Assume that the position of the discarded bit is the same as the position 
of the extended bit. In this case, given the same inputs, the outputs from the 
round functions F and/~ of ~A/" and P H i ,  respectively, will agree with prob- 
ability �89 (when the extension function correctly "guesses" the missing bit). In 
other words, e(d(f(x))) is (3, �89 over GF(233). Consequently, given 
identical inputs with right halves fixed, the right halves of the outputs of the 
two ciphers ~ N  ~ and P U ~  will agree on a fraction of 2 -(6-2) --- 1/16 of the 
possible plaintexts (we assume that the inputs to each round are uncorrelated). 

Now we can use Thm. 9. We have m - 81 and # - 1/16. Consequently, using 
Sudan's algorithm we need at least 

2 x 8 1  
n = ( , ~ ) ~ -  ~ 40000  < 216 

pairs (xi, Yi) to successfully discriminate random samples from p/c-pairs. 

Combining Prop. 3 and Thm. 9 we can calculate the maximum number of rounds 
possible to break. Solving 

2 .3  r-2 
1/(2r-2) 2 < 232 

for integer solutions gives a maximum of r = 10 rounds for which the cipher is 
breakable using at most 232 p/c-pairs. Using higher order differentials (h.o.d.) 
as in [9], one can break only 7 rounds of ]CJV'. Additionally, the h.o.d, approach 
depends on the extension bit being an arlene combination of the input bits; 
this implies that the output bits of the round function may be considered as 
evaluations of quadratic polynomials of the input bits. Our attack does not rely 
on this assumption. 
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5 A t t a c k  2 

In [1], Ar et al. shows how to obtain low-degree relations p(x,y)  = 0 that hold 
on a non-negligible number of elements of some set {(xi, Yi)}i=t ..... n (given the 
relations exist). Here we present a slightly weaker theorem which has the ad- 
vantage of a shorter and less involved proof. In order to prove that the attack 
works, we need the following lemmas. 

L e m m a  11. Bdzou t ' s  Theo rem.  Let P(x,  y), Q(x, y) e GF(q)[x, y] be polyno- 
mials in two variables over GF(q). /] the polynomials have no common ]actors, 
then the number of common zeros is at most deg P �9 deg Q, where deg denotes 
total degree. 

For a proof consult [7]. 

Lemma 12. Let f (a,  b) denote the number of bivariate polynomials in GF(q)[x, y] 
with degree a in x and degree b in y. Similarly, let #(a, b) count the number Of 
irreducibles among these polynomials. Then 

#(a, b) = (1 - q-a)f(a ,  b) + O(aqab), 

where the constant in the O-term depends on q and a. 

A proof is found in [3]. Restated we get the following. 

Lernma 13. Let p(x, y) be a random bivariate polynomial over GF(q) of degree 
a in x and degree b in y. Then the probability o fp(x ,y)  being irreducible satisfies 

Prob[p(x, y) is irreducible] > 1 -  q-max{~.b}. 

In other words, nearly all bivariate polynomials are irreducible. 

Attack 2: 

�9 Input: p, m, n p/c-pairs {(xi,yi)}, where n > (2m//~) 2. 
�9 Output (with high probability): All probabilistic links p(x, y) with deg(p) < 

m satisfying Prob~(x, y) = 0] >_ #. 
�9 Step A: Let t i(x,y) denote the i-tax monomiM in the graded order. Let 

Q(x, y) = ~n+l  t~(x, y) and let qlj be the coefficient of the monomial xiy j. 
Find a nonzero solution qlj to the set of linear equations Q(xs,ys) = O, 
s - - -1 , . . . , n .  

�9 Step B: Factor Q(x, y). Output all factors of degree less than m. 

T h e o r e m  14. Given a block cipher, assume that there exists a probabilistic re- 
lation p(x, y) = 0 with deg(p) < m between plaintext x and eiphertext y which 
holds for a fraction # of the possible plaintexts. 

Then the cipher can be broken by Attack ~ using at most 

plaintext/ciphertext pairs and time polynomial in n. 
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Proof. First, we show that Q(x, y) has non-constant factors if there is a proba- 
bilistic low degree relation between input and output. Assume that 

p(x, y) = 0 with probability ju (3) 

for some p(x, y) E GF(q)[x, y] with degp _< m. In addition, assume that 

We have Q(xi,yi)  = 0 for n pairs (xi,yi). Of these m = #n pairs have the 
additional property that p(x, y) = O. Consequently, the number of common zeros 
of p and Q is at least m. We also have degp _< rn and because of the way we 
constructed Q, we have degQ < 2v/~. Then due to (4) we have degQ.degp < m. 
By BSzout's theorem this means that p and Q have a common factor. Since 
p r Q, the polynomial Q(x, y) must be reducible. In addition, p has a high 
probability of being irreducible implying that p is most probably one of the 
obtained factors. 

Secondly, to prove that the algorithm outputs nothing when the pairs are 
truly random (implying that no probabilistic relations exist) it suffices to show 
that Q is "random". Recall that a random bivariate polynomial has very slim 
chances of being reducible. Also notice that the construction of Q is a mat- 
ter of solving n linear equations of n unknown variables (assuming Q is to be 
normalized). In fact, we may choose the pairs (xi, Yi) such that we obtain any 
assignment of coefficients qij E GF(q). As a consequence, given random input we 
may assume that Q is random and therefore irreducible with high probability. 

The algorithm runs in polynomial time since there exists efficient algorithms 
for solving sets of linear equations and factoring polynomials. 

6 C o m m e n t s  

It is possible to break block ciphers which are probabilistically expressible as 
low degree polynomials faster than exhaustion of the key space. This fact should 
lead to new design criteria. Clearly, to thwart these attacks it is not enough 
that round functions have high boolean complexity. Likewise, good properties 
against differential and linear attacks are no guarantee either. In fact, many 
almost perfect non-linear functions should be avoided exactly because they are 
too simple algebraically. At least, they should not be the only ingredients of a 
strong block cipher. It remains to carry out analysis of existing block ciphers 
and discover whether they are susceptible to these new attacks. 

Although both attacks run in polynomial time, in practice the running time 
may be substantial. Step A dominates the complexity; more precisely, solving 
linear equations using, e.g., simple Ganssian elimination gives time complexity 
O(n3). Factorization of bivariate polynomials over a finite field has complexity 
O(n log q) ~ see [5]. The memory requirement (to hold the system of linear 
equations) is proportional to the square of the number of unknown coefficients 
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qij in Q(z, y), i.e. O(n2). It might be possible to improve these complexities with 
elimination algorithms suited for a particular purpose. 

For both algorithms to work, there must be included in the n pairs a t  least 
/m pairs that satisfy the polynomial relation. Statistically, for n randomly chosen 
p/c-pairs this holds approximately 50% of the time since there is a fraction # of 
good pairs among all possible p/c-pairs. To obtain a higher success rate one can 
simply use sufficiently many more p/c-pairs. 

In this paper we have considered only bivariate relations. However, Su- 
dan et al. describe extensions to several variables. This might be useful for 
ciphers where there is no natural correspondence between input or output and 
GF(q), e.g., for DES a more natural input domain would be GF(2) w instead 
of GF(2 w) leading to polynomial relations of the form Yi = p ( x l , . . . ,  zsa) or 
q ( x l , . . . ,  X64,Yl,. .-  ,Y64) -- 0. 

Notice that for Prop. 6 to work, the discriminator does not need to explicitly 
output the probabilistic relation; it just has to state whether one exists. This fact 
might make it possible to construct even better attacks. In the error-correction 
setting, this resolves to computing whether a received word is closer to the set 
of codewords than some given distance. 

More recently, Sudan [19] has improved his algorithm by requiring each pair 
(x, y) to appear as a root in Q with multiplicity greater than 1. This makes it 
possible to correct even more errors when decoding. In our case, the new results 
imply that the factor of 2 in Eq. (2) becomes close to 1. 

Finally, note that both attacks are very well suited for (nearly-)black box 
analysis since no structure on the block cipher is assumed except the correspon- 
dence between plaintext/ciphertext ~ and the elements of GF(q). 
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