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Abs t rac t .  An approach for perceptual segmentation of colour image 
textures is described. A multiscale representation of the texture image, 
generated by a multiband smoothing algorithm based on human psy- 
chophysical measurements of colour appearance is used as the input. 
Initial segmentation is achieved by applying a clustering algorithm to 
the image at the coarsest level of smoothing. Using these isolated core 

c lus ters  3D colour histograms are formed and used for probabilistic as- 
signment of all other pixels to the core clusters to form larger clusters 
and categorise the rest of the image. The process of setting up colour his- 
tograms and probabilistic reassignment of the pixels is then propagated 
through finer levels of smoothing until a full segmentation is achieved at 
the highest level of resolution. 

1 Introduct ion 

The topics of texture segmentation and colour segmentation have a t t rac ted  the 
at tention of many researchers. At first sight it might seem trivial to solve the 
problem of colour texture segmentation, as it may appear  that  the obvious route 
would be to combine the knowledge gained from the research in the texture area 
with tha t  gained in the colour area. However, there is a fundamental  proper ty  
which characterises colour texture and which has just emerged from the research 
in psychophysics [1]: Human perception of colour depends on the spatial fre- 
quency of the colour component.  In other words, the perceptual response of the 
human visual system to a certain part  of the electromagnetic spectrum depends 
on the frequency with which this stimulus is spatially distributed. Thus, colours 
tha t  appear  in a multicolour pat tern  are perceived differently from colours tha t  
form uniform areas (e.g. it has been shown [2] that  any coloured pat tern  with 
frequency higher than 8 cycles per 1 ~ of visual angle is seen as black). Zhang 
and Wandell [1] actually proposed a new colour system, called SCIE-Lab, which 
takes into consideration exactly this property of the visual system. 

At least two issues seem relevant here. Firstly, the human vision system is 
able to extract  colour textures as single entities without difficulties, with colour 
being a segmentation cue that  is an integral part  of pre-attentive vision. Sec- 
ondly, image features which characterise a texture at a certain resolution may 
be entirely different from image features that  characterise the same texture at 
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another resolution. Another important  characteristic of the human vision sys- 
tem is that  it works as a process, with the analysis of a frame relying on a 
previous grosser analysis. This is achieved either with the help of peripheral vi- 
sion followed by foveation to the area of interest, or by increasing the physical 
proximity of the viewed object. The former approach relies on the mechanism 
of switching sensors (going from the information obtained by the rods to that  
obtained by the cones). The latter approach, however, relies on using the same 
sensor but changing the number of degrees of visual angle it occupies in the field 
of view, in other words changing the spatial frequency a pat tern extents to the 
eye. Both approaches are characterised by causality: the information flows from 
the coarse level to the finer level of resolution as the coarser analysis precedes 
the one performed at the finer level. 

The reason we are concerned with the human colour perception is because 
the criteria by which we judge a segmentation to be good or not are subjective. 
In the absence of specific application requirement, we expect the segmentation 
of an image to agree with that  performed by our own vision system. Thus, our 
interest in colour texture perception here concerns the way different textures 
can be perceived as separate homogeneous regions in the preattentive stage of 
vision. 

Inspired by the above observations, in this paper we are proposing a mecha- 
nism of segmenting colour textures, by constructing a causal, multiscale tower of 
image versions based on perceptual considerations. The reason we call it "tower" 
and not a "pyramid" is because we do not perform subsampling and thus we 
preserve the same number of pixels at all levels. The levels of the tower are con- 
structed with the help of blurring masks put forward by Zhang and Wandell [1], 
by assuming that  the same colour-textured object is seen at 1,2,3,... meters dis- 
tance. Hence, each coarser version of the image imitates the blurred version 
the human vision system would have "seen" at the corresponding distance. The 
analysis of the image starts at the coarsest level and proceeds towards the finest 
level, just like it would have happened if a person was slowly approaching a dis- 
tant  object. The mechanism with which information is transfered from a coarse 
to a finer level is probability theory that  makes use of causality. We do not 
advocate that  this is actually the mechanism deployed by humans; we use this 
approach because it is a sound mathematical tool that allows the incorporation 
of both features and preliminary conclusions that  refer to many different levels 
of analysis. 

The  originality of the work presented is twofold: While multiresolution pyra- 
mids have been proposed and successfully utilised for several tasks, including 
texture segmentation [3-6], it is the first time that  a multiscale/multilevel repre- 
sentation of the image which emulates the human colour perception, and which 
most significantly, takes into consideration the change in spatial frequency of 
the perceived pattern,  is used for segmentation. Secondly, although the issue of 
transfer of information from one level of resolution to the next has been tackled 
by several researchers, and probabilistic relaxation has been used in multiresolu- 
tion pyramid representations of data [7-10], it is the first time that  a probabilistic 
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relaxation theory, appropriate for operating across different levels of scale and 
exploiting a dictionary of permissible label configurations appropriate for region 
labelling, as opposed to edge or line labelling [10], is developed. 

In the next section we shall give a brief literature review of the relevant issues. 
We must stress that  there is very little work that  is directly concerned with colour 
textures. In Section 3 we shall describe the method by which the perceptual tower 
of images is created. In Section 4, we shall present our probabilistic framework 
of propagating information in the causal direction across the levels of the tower, 
and in Section 5, the application of the probabilistic framework to colour texture 
images will be described. In Section 6, we shall present results of our approach 
when used to segment several colour texture images. We shall compare them with 
the results obtained by the recently proposed method in [11]. Our conclusions 
are presented in Section 7. 

2 L i t e r a t u r e  S u r v e y  

The main consideration of texture perception in the Computer Vision literature 
has been with the derivation of descriptive features of the underlying texture. 
For example, Julesz and Bergen [12] used descriptions such as colour, widths, 
lengths, and orientations of local features, namely textons, to explain differ- 
ences in artificially generated images. Also, Malik and Perona [13] provided a 
comparison of their computational model of human texture perception with psy- 
chophysical data obtained in texture discrimination experiments, while Tamura 
et al. [14] approximated computationally some basic textural  features such as 
coarseness, directionality, line-likeness, contrast, roughness and regularity, which 
correspond to human visual perception. Most of these studies did not consider 
colour information, and moreover, their features are useful when viewing a scene 
from a fixed distance only. 

Segmentation of texture images is a major field of research in Computer 
Vision. Textures may be regular or randomly structured, and various struc- 
tural, statistical and spectral approaches have been proposed towards segmenting 
them [15-17]. One example of a recent technique is by Jain and Farrokhnia [18] 
who presented a texture segmentation algorithm focussed on a multi-channel 
Gabor filtering approach which is believed to characterise the processing of vi- 
sual information in the early stages of the human visual system. Multi-scale 
approaches for texture analysis are few and far in-between. Unser and Eden[19] 
extracted texture energy measures form the image and smoothed the output  
of the extraction filter bank using Gaussian smoothing at different scales. The 
features in these multiscale planes are reduced, by diagonalising scatter matrices 
evaluated at two different spatial resolutions, and thresholded to yield texture 
segmentation. Matalas et al.[20], used a B-spline transform in order to obtain 
images at several smoothing levels to calculate vector dispersion and gradient ori- 
entation at different scales. A small disparity function is then applied to segment 
textures. Roan et al. [21] describe a method for classification of textured surfaces 
viewed at different resolutions, i.e. viewed at different scales or distances, while 
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the image size remains constant. They used greylevel cooccurrence matrices and 
the Fourier power spectrum of an unknown texture image, taken at one of any 
several resolutions, to classify it as one of six known textures. 

None of the above approaches is concerned with colour textures. On the other 
hand, there is a vast forum of work on colour image segmentation e.g. [22 27, 11]. 
In general, most colour texture representation schemes either use a combination 
of gray level texture features together with pure colour features, or they derive 
texture features computed separately in each of the three colour spectral chan- 
nels. For example, Coleman and Andrews [28] used K-means clustering in each 
colour band and maximised a cluster fidelity parameter for a more psychovisually 
acceptable segmented image. Tan and Kittler [29] used eight DCT texture fea- 
tures computed from the intensity image and six colour features derived from the 
colour histogram of a textured image for classification. Panjwani and Healey[30] 
presented an unsupervised segmentation technique based on Markov Random 
Fields which clustered a colour image in the RGB space. Their Markov Random 
Fields approach made use of the spatial interaction of RGB pixels within each 
colour plane and the interaction between different colour planes. Matas and Kit- 
tler [11] grouped colour pixels by taking into account simultaneously both their 
feature space similarity and spatial coherence. 

None of the above approaches or any other colour segmentation work known 
to the authors have taken into consideration the interaction between colour and 
spatial frequency of patterns. 

3 B u i l d i n g  t h e  P e r c e p t u a l  T o w e r  

The resolution of an image signifies the area in physical units a pixel corresponds 
to. For example, I pixel = 3 x 3 m m  2 in the scene. When the same physical object 
is seen at a different distance, the resolution of the image changes, for example, 
1 pixel = 3 x 3crn 2. At the same time, the number of "pixels" the image of 
the object occupies in the retina reduces. Each pixel now carries the (blurred) 
information from several other pixels in the finer resolution version. Thus, when 
one blurs the image to imitate human vision, one should subsequently subsample 
the image as well. This way, a pyramid of image resolutions is created. We chose 
not to perform this subsampling, hence we create a tower of images instead of 
a pyramid. The reason is dual: (1) we like to keep the redundant information 
in the coarse levels to increase the robustness of the system, (2) we maintain a 
direct correspondence between the pixels across the resolution/scale levels. As 
we do not perform subsampling, the sizes of the blurring masks we use become 
larger and larger in number of pixels as we proceed to compute the coarser levels 
of the tower. Seen in this way, our approach is multiscale as filters of various 
scale sizes are employed. Therefore, throughout this paper, we do not distinguish 
between the terms multiresolution and multiscale. 

The response characteristics of the human visual mechanism are functions 
of not only the spectral properties of the stimuli, but also of the temporal and 
spatial variations of these stimuli. When an observer deals with multi-coloured 
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objects, with fine textures, their colour matching behaviour is affected by the 
spatial properties of the observed pattern. Furthermore, the human visual sys- 
tem will experience loss of detail at increasing distances away from the object. It 
perceives coloured textures at a large distance as areas of fairly uniform colour, 
whereas variations in luminance, e.g. at the borders between two textured areas, 
are still perceived. Therefore it is necessary to introduce a multiscale smooth- 
ing algorithm that  smooths an image according to human perception. Zhang 
and Wandell [1] studied recently systematically the colour perception of hu- 
man subjects for different frequencies of spatial colour variation. They proposed 
an algorithm for perceptual smoothing appropriate for evaluating image coding 
schemes. It is based on measurements in psychophysical studies which showed 
that  discrimination and appearance of small-field or fine patterned colours dif- 
fer from similar measurements made using large uniform fields. The human eye 
perceives high spatial frequencies of colour as a uniform colour instead of be- 
ing able to separate these colours. An algorithm, which takes this into account 
must smooth the image in luminance and chrominance colour planes separately 
with different filter matrices for the planes. Zhang and Wandell[1] advocated 
the use of the opponent colour space, which consists of three different colour 
planes, Or, 02, 03, representing the luminance, the red-green and the blue- 
yellow planes respectively. In the 010203  colour space, each of the planes is 
smoothed separately with two-dimensional spatial kernels, defined as sums of 
Gaussian functions with different values of a. The result of this operation is 
that  the luminance plane is blurred lightly, whereas the red-green and the blue- 
yellow planes are blurred more strongly. This spatial processing technique is 
pattern-colour separable. Zhang and Wandell's filtered representation was then 
transformed back to CIE-XYZ and then to CIE-Lab resulting in their Spatial 
CIE-Lab space, namely SCIE-Lab. 

In this application, we set up three convolution matrices for the colour planes 
for each separate viewing distance. In any particular set, each of the three matri- 
ces consists of a weighted sum of Gaussian kernels. The matrices are computed 
according toil]: 

x2+y 2 

1-- E W~e- ~--2{--~ (1) 
f ; %  . n i 

The values for (wl, ai) which have been determined from psychological mea- 
surements of colour appearance on human subjects are given in [1] for a distance 
of 18 inches from the screen. We have derived new values for various distances by 
appropriate scaling. Divisor ni in equation 1 is introduced to normalise the sum 
of the matr ix elements of each individual Gaussian kernel before the weighted 
sum is applied. Divisor m normalises the sum of the final matrix to 1. These 
kernels are scaled, so that  they each sum up to one. 

Once the kernels are applied to the image in the opponent colour space, we 
transform the image data  from the 010203  to the CIE-Luv space and use it 
as input in the ensuing steps of the algorithm. This step is performed because 
the CIE-Luv space is a perceptually uniform space and therefore more suitable 
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Fig. 1. (Row 1) Real texture collage image (Row 2) perceptual and (Row 3) Gaussiai~ 
smoothed transformations corresponding to viewing distances of 1, 5, and 10 meters 
respectively. 

Fig. 2. Real texture collage image with initial clusters and derived core clusters. 
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for carrying out colour measurements.  Figure 1 shows a real texture collage and 
its associated smoothed images at varying distances for both  perceptual  and 
Gaussian smoothing. Clearly, the perceptually smoothed images provide a more 
realistic representation and blurring of an "object" viewed at varying distances. 
Most particularly, the Gaussian has vastly mixed and smoothed the colour values 
when convolved with each of the three colour channels. 

4 M u l t i s c a l e  Probab i l i s t i c  R e l a x a t i o n  

The problem of multiscale probabilistic labelling of the input image using a set 
of perceptually blurred versions of the image can be stated as follows. Let l 
indicate the levels of coarsening with l = 1, ..., L, representing the levels from 
full resolution to the coarsest level. Let i , i  = 1, ..., N be a pixel and x~, the 
associated measurement  vector for that  pixel at resolution level l. We define a 
label set D, s = {COl, CO2, ..., corn}, which contains all possible labels of the image 
for m possible perceptual categories. Thus, each pixel i has label Oi that  can 
take on values from ~2. 

We wish to choose for pixel i the most probable label 0i given all the available 
information. In other words we wish to set: 

' Vj, VI)} (2) Oi = arg{InffxP(Oi = cok I x j ,  

For simplicity and clarity of exposition we shall restrict ourselves in consid- 
ering only two successive levels of resolution 1 and l + 1. Then, using Bayes's rule 
we have: 

l + l  �9 

P(Oi=cok I l /+1 �9 P ( O i = w k , x } , x j  , g j )  
xj, xj , va) = P(x},  x} +1, vj) (a) 

We can expand the terms in the numerator  and the denominator by applying 
the theorem of total  probability: 

p(oi--cok I x} ,x~+l ,Vj )  = 

, , X 1 . lq-1 
Eta01  "" EcoOi_l  Er " Eco8 N P ( 0 1  : co01 .., 0i  : cok, . . ,  ON • coon j ,  ~ j  , g j )  

l l + l  �9 ~ 0 1  "" E~0,  "" E~0N P ( e l  = co01,.., 0i = co0~,.., ON = COON, x j ,  x j  , V3) 
(4) 

The joint probabili ty that  appears  in equation 4 can be factorised as follows: 

l l + l  �9 P(01 = w<,. . . ,ON = wo~,x~,xj  ,V3) = 

p ( x l q - l , . . . ,  X ~  1 ..., e N , X / ,  X / )  X 1 ] 01 z 0.201 , ~ COON "" ,  

P(e l  = wo~, ..., ON = ~o~, x~, ..., XSv ) (5) 

As we try to emulate here perceptual segmentation, we can imagine tha t  due 
to causality, measurements obtained at level l + 1 (the coarser level) can not 
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possibly depend on measurements obtained at level I. Thus, the first factor on 
the right hand side of equation 5 can be simplified as follows: 

P(x~+l, . . . , x~  1 I 01 = coo,,...,0N ~- COoN,X~,..., X / )  = 

P(x~ +1, .-.,x~ 1 101 = COo,, . . . ,ON = WON) (6) 

We also expect that  the measurement concerning a certain pixel depends on 
the identity of that  pixel alone and on nothing else. Therefore, we can further 
write: 

P ( x ?  1, ...,X~ 1 101 = CO01 , . . . , 0  N : COON ) : 

I f - - "  l+1 P(OJ  =cooJ ] X ?  1) 
~vxj  10; =CO0j)= I I  7 g  7;~;7? ~(x~+') (7) 

J J 

. l+1  where i6(x? 1) is the prior probability of measurements xj  to arise, and/~(0~ = 
CO0j ) is the prior probability of label coos. Now consider the second factor on the 
right hand side of equation 5: 

P(01 = COO,,..., ON = COON,X~, " " , X /  ) = 

' x~v) • P(Xll ] 01 = CO01,... ,  ON = COON , X2,  ..-,  

P(Ol = CO01, ..., 0N  = COoN, x ' ~ , . . ,  x~v) ( s )  

We can further expand the second term on the right hand side of equation 8 
to write: 

P ( O  1 : COO1,... , O N = COON , X~,  . . . ,  X~V ) : 

' x~v) • P(x~ I 01 = CO01,... ,  ON = COON , X2,  ...  , 

, x ~ . . , x ~ )  • .... • P(xZ91 01 = CO01 "" ,  ON = COON, 3, 

P(x /  ] 01 =CO01, . . . ,ON =COON) X 

P(Ot  = COo,, ..., ON = COO,,,) (9) 

For the same reasons explained earlier, we expect that  the measurement 
obtained for a particular object depends on the identity of the object itself and 
on nothing else. Thus, all factors on the right hand side of equation 9, except 
the last one, can be simplified to express dependence only on the identity of the 
object they refer to. The last factor is the joint probability of a certain label 
assignment to arise. So we have: 

P ( e l  = ~ o , ,  , e~  = ~ 0 N , X ~ , , X ~ )  ---- 

1-I P(x~ I Oj = ~o~) • P ( O l  = cool, . . . ,ON = WON) 
J 

Now by substituting from equations 7 and 10 in equation 5 we obtain: 

.l . /+1  
P ( 0 1  : CdOl, . . . ,ON : COON,~j,.,~j , V j )  : 

(io) 
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1 P(Oj I" l+l'~ 
I I  _~(o~ = ~o , )  = oao, �9 ,,j j ~ (x}  +~) P ( x }  I oj = oao,) • 
J 

P(  01 = oao,,..., ON = cOo~) (11) 

Then, upon substitution in equation 4: 

.yl ~.,+1 P(Oi = wk [ - j , ~ j  , V j ) =  

P(x{ [ Oi = cok) P(Oi = oak 1" '+1"~ ~(x '+l~ = ~ j , ~  , l l j p ( x }  +I) Q( <  oak) 

2 ~ 0  P(x~ ] Oi = oao~) P(Oi = oa0~ ]- ,+1, ^ ,+1 (12) . Xi ) P (X i  ) 1-/jR(X5 +1) Q(Oi = oaOi) 

where 

Q(Oi = oaoi) = 

1 . t + l ~  

: oao,I E . . .  E E ... E I I  P(x  r o, :oao, iP(o, : oao, I , 

P(01 = cOox,..., ON = oao~) (13) 

In the above expression 15(x{ +1) is independent of the summation indices 
and cancels in the numerator and denominator. Therefore, equation 12 further 
simplifies to: 

, .,+1 P(x{ I 0~ = oak) P ( <  = oak I x'~ +1) Q ( <  = oak) P(O~ = oak ] x j , , , ~  , V j )  = 
~ o ,  P(x~ [ Oi = oaoi) P(Oi  : oaoi ] 2~i" l~-l't} Q(Oi = oaoi) 

(14) 
At the finest resolution equations 2 and 14 give the final labelling result. 

5 Application to Colour Texture Segments 

In the previous two sections we presented the basic ingredients of our algorithm. 
The core of the multilevel probabilistic relaxation lies in the implementation 
of equations 13 and 14 and the estimation of the quantities that  appear in 
them. The method works in a bootstrapping manner to estimate the various 
quantities needed. Thus, it is almost wholly unsupervised, with the possible 
exception of specifying the initial number of clusters in the coarsest level, if the 
K-means clustering method is used. It is possible to eliminate totally even this 
requirement by using a self-organising initial segmentation algorithm, like for 
example a watershed approach, or the method presented in [11], but we consider 
this as a point of secondary importance at present. In what follows we shall 
describe how each quantity that  appears in 13 and 14 is estimated. 

5.1 C o r e  C l u s t e r s  

The core clusters describe groups of pixels which can be confidently associated 
with the same region of texture in the image. The core clusters form the basis 
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for setting up the colour histograms at different levels. To derive core clusters 
from the initial clusters, we need to fuzzily the segmentation/classification result 
obtained at the coarsest initialisation level. As this is only a step to help s tar t  
the iteration process, we are adopting a rather simplistic approach: we first 
calculate the s tandard deviation ac of each cluster c, c = 1, .., C where C is the 
total  number  of clusters. Then, we associate with every pixel a confidence, ;Sic, 
with which it may be associated with each cluster: 

/~ _- do +0-c Vi, VC (15) 
0.2 0-2 0-2 

where d~ 2 is the squared distance of pixel i from the mean of cluster c. Note 
tha t  this formula has the property of giving a confidence higher than 50% to 
pixels tha t  are closer than 1 a from the mean of the cluster to belong to that  
cluster. Each core cluster is formed from the pixels that  can be associated with 
it with a confidence of at least 80%. Figure 2 shows an example image with both 
its initial clusters and the subsequently derived core clusters. 

Quantities/3 / are also used to initialise the values of P(Oi = w0~ I x/i +1 ) which 
appear  in 13 and 14. Thus, we set: 

P(Oi = wc I x2) = $~ Vi, Vc. (16) 

At all other levels l < L these quantities are the probabili ty label assignments 
computed for each pixel at level l + 1. 

5.2 P r i o r  P r o b a b i l i t i e s  

The relative sizes of the core clusters are used as measures of the prior proba- 
bilities of the cluster labels, i.e. quanti ty lS(0j = woj) appearing in equation 13. 

This is based on the observation that  the larger clusters will appear  most  
dominant  when a texture mosaic is viewed from a large distance, and at the same 
t ime the prior probabili ty of a pixel to belong to each cluster is proport ional  to 
the size of each cluster, in absence of any other information concerning the pixel. 

5.3 3D Colour  His tograms  

The core clusters formed at resolution level l + 1 are mapped back into the image 
at resolution I and using the colour pixel values in those regions, a three dimen- 
sional colour histogram is set up (dynamically) for each region. This provides 
a statistical characterisation for each different texture at each resolution. From 
these colonr histograms, the likelihood of a pixel i at smoothing stage l to have 
label u~k can be calculated using the colour of this pixel. This likelihood is rep- 
resented by P(x~ I ~ = ~k). Note that  this way the distribution of the features 
that  characterise a texture at each resolution level can be derived. 
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5.4 The Q-Function Pattern Dictionary 

Equation 13 involves a summation over all possible labels of all pixels other 
than the pixel under consideration. Clearly, such a summation is impossible 
due to the enormous number of combinations one would have to consider. We 
prune the number of possibilities by imposing a limit to the number of pixels 
we shall consider as influencing the labelling of the pixel under consideration. 
Thus, instead of examining all other N - 1 pixels, we handle only a subset of 
them constituting a local neighbourhood around the pixel. We restrict this to 
be a 3 • 3 neighbourhood. This allows us then to introduce a dictionary of 
permissible label configurations within each 3 • 3 patch. As junctions are rare 
events in images, in most cases we have only 1 or at most 2 regions present in 
any 3 • 3 patch. Hence, we restrict the entries of our dictionary to be of the 
form presented in Figure 3 where A and B stand for any pair of cluster labels 
present in the image. All entries of the dictionary are assigned equal probability, 
thus factor P(01 = w01, ..., ON = weN) in 13 becomes a constant and therefore 
redundant.  Label combinations that do not appear in the dictionary have zero 
probability to exist and so they do not enter the summation on the right hand 
side of 13. Thus, equation 13 simplifies to 

1 P ( x ~  I Oy = woj)P(Oj = Woj I X? 1) 
O(Oi : wo,) - ~(Oi - w o , )  E E g "/5-~j ----~oo~ (17) 

where ~ is the set of all patterns in the dictionary, ~ is the set containing all 
possible combinations of two labels where centre pixel has label w0~, and R is the 
set of 3 • 3 pixel neighbourhood entries in dictionary 

An improvement of the Q-function is possible by expanding the pat tern dic- 
t ionary to patterns with more than two different labels. It is also possible to 
calculate the Q-function for a neighbourhood larger than 3 • 3 pixels. 

Fig. 3. Entries in pattern dictionary 
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6 E x p e r i m e n t a l  R e s u l t s  

The results in this section are shown using arbitrarily selected colours to high- 
light different regions. All images tested were smoothed at different scales "or 
distances" (every meter up to 10m) using the perceptual smoothing kernels. The 
processing commences from the distance at which the cluster histograms can be 
regarded as having separated modes. The results for the Gaussianly smoothed 
images were simply very wrong. To save space we do not report them here. In- 
stead, we compare the results to an alternative approach (Matas and Kittler [11]) 
which is a more objective and comparable exercise. 

The images shown on the left of Figure 4 are the original images of real tex- 
ture collages put  together from ceramic tile and granite stone textures. These 
textures are inherently random in nature. Our segmentation results are shown 
in the rightmost column while in the middle column the results from Matas 
and Kittler 's [11] approach (hereafter referred to as MK) are demonstrated. MK 
exploit global and local image statistics simultaneously while also incorporat- 
ing connectivity information. They discard the intensity information and form a 
2D histogram of the chromaticity components. The image feature space is then 
parti t ioned by locating locally unimodal parts of the histogram. The spatial 
consistency of this segmentation is then examined and refined by incorporating 
neighbourhood connectivity. In the latter sense, our Q-function is also involving 
neighbourhood information. Moreover, we also consider more global contextual 
information by incorporating the prior label probabilities and the iterative re- 
finement of the initial segmentation. More poignantly, we encompass information 
from all three bands in our 3D histograms. Ignoring the intensity information 
can be useful if observing non-flat objects where the changes in intensity will de- 
ceive the observer's true colour perception. However, our purpose is to segment 
the scene as the observer views it, and not necessarily as the scene colours truly 
are. Therefore, considering the intensity band is very important.  

As we have ground-truth information on these cases, the error measures for 
incorrectly classified pixels in both MK's and our perceptual segmentation are 
compared in Table 1. In every case we achieve a better  segmentation. In the 
difficult test case T1, MK's technique finds a slightly smaller circle, therefore 
quite a number of pixels along the perimeter of the circle are misclassified. In 
test case T2, MK's technique has incorrectly combined the top-left and bottom- 
right patches as one class, while the latter is riddled with noisy segmentation; 
this is due to the non-unimodal representation of the guilty texture in MK's 
histograms, while it also is affected in a different way through its association 
with other types of texture in the image. In case T4, in which the image is a 
combination of real granite stone textures, the pixel values are quite spread out 
in the histogram, and there is little gradient there for MK's algorithm to work, 
while by perceptual segmentation the image can be correctly segmented (98.3%). 

It is noteworthy that  the perceptual segmentation algorithm has the ability to 
recover from incorrectly assigned pixels through the iterative relaxation process. 
Pixels already assigned to the wrong cluster, change their label again in future 
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IWest Image [ T1 [ T2 I T 3  I T 4  
Matas & Kittler 2.2% 30% I 1.3% I - 
Perceptual 0.02% 1.2% % 0.04% 1.7% 

Table  1. Error percentages of incorrectly classified pixels 

steps thanks to the refinement in context, new neighbourhood information, and 
higher resolution information at consecutive levels. 

The next set of results are more subjective and are expected to provide a more 
perception based representation of an image. Figures 5, 6, 7 respectively show 
the perceptual  segmentation of a forest scene, the painting La seine it argenteuil 
by Claude Monet, and an aerial image. In all these cases, there are no nice 
straight edges tha t  the Q-function could take advantage of to give an "accurate" 
segmentation. This is in fact the desired result as these images demonstrate  the 
typical fuzzy segmentation of a scene that  an observer may view from a distance. 

Other  important  issues to note are that  the histogram resolution in our ex- 
periments allows each bucket to cover an interval of 3.5 units in each direction in 
the Luv colour space. This is the resolution for the minimum perceivable colour 
distance for human vision. The clustering parameters  are naturally very impor-  
tant  since they determine the quality of the initial clusters on which our percep- 
tual segmentation technique is based. However, we hope to use a parameter-free 
clustering approach in the future such as histogram watershed clustering[31]. 

The relaxation process can be i terated not only through the smoothed images, 
but also at each smoothed image for further incorporation and validation of 
image context. Naturally, this would add to the computat ional  cost. At present, 
the smoothing stage demands a high computat ional  cost due to the convolution 
filter sizes of Zhang and Wandell. However, the clustering and the relaxation 
process take approximately 60 seconds on a Silicon Graphics R10000 processor 
for a 128 x 128 image. 

7 D i s c u s s i o n s  and Conc lus ions  

Colour is an important  parameter  in the human visual experience. Most work in 
the past  on texture analysis and segmentation has been concerned with deriving 
structural  descriptors of texture,  e.g. coarseness, regularity, blobiness, orientation 
etc., with the colour information perhaps used as an extra  cue. 

In this paper  we t reated the interplay of colours and their spatial distribution 
in an inseparable way as they are actually perceived during the pre-attentive 
stage of human colour vision. To do this we developed a tower of blurred versions 
of an image created by masks imitating the blurring the human vision sensors 
experience for scenes viewed at different distances, and allowed the information 
in this tower to flow in a causal direction, from the most blurred level to the most 
focussed. The creation of the tower made use of the latest results of psychophysics 
research, while the framework developed for the causal transfer of information 
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is quite general and can be applied for image segmentation where the features 
used could be other than colour. 

Finally, the probabilistic relaxation methodology developed works in the op- 
posite sense than other probabilistic relaxation schemes where the flow of in- 
formation starts  from the immediate neighbours of a pixel and, as the iteration 
steps progress, the influence of more distant pixels is incorporated through the 
succession of immediate neighbour interactions. In our case, probabilistic relax- 
ation works in the same sense as all other multiresolution/multiscale schemes 
where first the information of long-range interaction is absorbed, followed by 
the information from the shorter range interaction. As we do not perform sub- 
sampling when we create the levels of the multiscale tower and we keep only the 
same immediate neighbours as contextual neighbourhood of a pixel, it may ap- 
pear tha t  we lack the mechanism to incorporate information from distant pixels. 
This is not so, because through the increasing size of the blurring masks we use 
to create the multiscale tower, the information from larger and larger distances 
is "smeared" into the immediate neighbours of a pixel and through interaction 
with them is incorporated into it. 
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Fig, 4. Four test cases (T1-T4) and their segmentation by applying (mid-column) 
Matas & Kittler's approach and (right-column) perceptual segmentation. 
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Fig. 5. Forest image and its perceptual segmentation. 

Fig. 6. Monet's painting and its perceptual segmentation. 

Fig. 7. Land image and its perceptual segmentation. 


