
Determining a Structured Spatio-temporal 
Representation of Video Content 

for Efficient Visualization and Indexing 

Marc  Gelgon and  P a t r i c k  B o u t h e m y  

IRISA/ INRIA 
Campus universitaire de Beaulieu 

35042 Rennes cedex, Prance 
e-mail : mgelgon@irisa.fr, bouthemy@irisa.fr 
Tel : 33-2.99.84.74.32 Fax : 33-.2.99.84.71.71 

A b s t r a c t .  Efficient access to information contained in video databases 
implies that  a structured representation of the content of the video is 
built beforehand. This paper describes an approach in this direction, 
targeted at video indexing and browsing. Exploiting a 2D motion model 
estimator,  we part i t ion the video into shots, characterize camera motion, 
extract  and track mobile objects. These steps rely on robust motion esti- 
mation, statistical tests and contextual statistical labeling. The content 
of each shot can then be viewed on a synoptic frame composed of a 
mosaic image of the background scene, on which trajectories of mobile 
objects are superimposed. The proposed method also provides instanta- 
neous and long-term, qualitative and quantitative object motion cues for 
content-based indexing. Its different steps and the system they form are 
designed to keep computational cost low, while being able to cope with 
general video content was aimed at. We provide experimental results on 
real-world sequences. The structured output  opens important  possible 
extensions, for instance in the direction of higher-level interpretation. 1 

1 I n t r o d u c t i o n  a n d  r e l a t e d  w o r k  

Fast ,  re l iable  and  convenient  access to  visual  in fo rmat ion  in stil l  image  and  v ideo  
d a t a b a s e s  is of growing i m p o r t a n c e  in t a sks  concerning  profess ionals  in a va r ie ty  
of fields, as well as emerg ing  services t a r g e t e d  a t  the  genera l  public .  

Broadly ,  stil l  image  and video have led to  the i r  own d i rec t ion  in the  research  
ca r r i ed  out  for accessing con ten t -based  in format ion .  T h e  m a j o r  issues and  cues 
have been  reviewed in [2, 9, 14]. In  the  former  field, p r o t o t y p e s  such as Q B I C  

1 This work was supported in part  by DGA (D~l~gation G~n~rale pour l 'Armement  
- French Ministry of Defense) and AFIRST (French-Israeli Scientific and Technical 
Research Agency). 
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[11] are now available, but recent work such as [22], should contribute to largely 
improving the performance of still image retrieval applications. 

This paper is concerned with access to information contained in image se- 
quences. Ideally, a retrieval system should allow two types of accesses. The first 
one consists in expressing a query to the system, which returns matching en- 
tries. The second one consist in viewing the documents, leaving the user to find 
the relevant information. Indeed, if the query cannot be precisely defined in the 
terms offered by the interface, or if relevant information has not been correctly 
indexed, it is necessary to be able to browse in an efficient way through the video. 
Hence, it is desirable to represent the videos in two ways, an indexed version 
of video used by a query-type interface, and a version for browsing through an 
appropriate interface. 

Content-based video indexing and eƒ content visualization share the 
necessity for a phase of video structuring. Three levels of analysis can be distin- 
guished. A fundamental and early task is the partitioning of the video into shots, 
which is mainly done by detecting shot changes. Current systems generally rely 
on comparison of grey-level or color histograms, computed on successive frames 
[1, 17,26]. Thresholding on the sum of histogram bin differences, or a X 2 test 
have been proposed. In [17], a set of histograms are computed on a parti t ion of 
the image into blocks, and the eight largest differences are discarded, so as to 
reduce the perturbation causes by camera motion and mobile objects. An ex- 
perimental comparison of these approaches is presented in [5]. Direct processing 
of the MPEG bit-stream has been proposed for instance in [19], by computing 
histograms using the DC components of the DCT related to I-frames. The main 
issues tha t  arise in this task are the presence of progressive transitions, such 
as dissolve or wipe effects, strong camera motion, and the presence of mobile 
objects. The first problem is tackled in [1] and [26] by using different tests for 
cuts and progressive transitions. Coping simultaneously with all three problems 
generally involves the use of several dedicated techniques, and then implies tun- 
ing of multiple and sensitive parameter values. We exploit here an approach 
addressing these problems jointly, which we proposed in [6]. 

Shot content is often characterized by the estimated type of camera motion 
during the shot, and by one or several key-frames. Displaying the sequence of 
these key-frames is a simple way of visualizing the video. Shot content indexing 
has been proposed in [27], consisting in mapping the shot content on its key- 
frames, and applying to them still image indexing techniques. 

Starting from a partit ion of a video into shots, some studies aim at summariz- 
ing the video even more, doing so-called video skimming, as for instance in [23]. 
In order to build shot summaries which are more informative than basic key- 
frames, analysis of the spatio-temporal contents of the shots can be performed. 
Doing so allows content-based indexing using the determined spatio-temporal 
structure. In [3], the structured representation of a sequence takes the form of a 
set of layers, after a joint estimation of the motion models and of their support,  
considered as a mixture model problem, and the number of models is deter- 
mined through a MDL criterion. This approach has shown eff• though a 
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shortcoming of mixture-based approaches is the difficulty to update the number 
of models along the image sequence. Top-down methods consist in iteratively 
computing successive dominant motions and assigning their support a single la- 
bel [16]. Another category of techniques adresses the segmentation issue in a 
Markovian framework, as a contextual labeling problem [24]. Finally, clustering 
approaches such as [25], in contrast, start from elementary regions and group 
them to form the desired regions. The approach we use in the work presented 
belongs to the Markovian-Bayesian methods, although working also upon a layer 
of elementary regions. 

Mosaic images have been used to represent conveniently the scene background 
[3, 15], and mobile objects can for instance be superimposed on the mosaic image 
at several of their positions during the sequence so as to suggest their trajectories. 

Research has also been carried out at the higher level of scene interpretation. 
This step is important,  because scene understanding provides a high level video 
structuring which is very relevant to content-based indexing and retrieval. The 
spatio-temporal content, supplied as motion-based segmentation maps by the 
previous phase, can be represented in a symbolic manner in terms of events and 
spatio-temporal organization of the scene. In [8], mobile objects in a static scene 
are detected and tracked. The scene is then indexed in terms of e.g. appearance, 
disappearance or removal of an object. In [10], the 3D scene is played by the 
user with an appropriate interface, and translated into a spatio-temporal logic 
formulation so as to characterize the scenario in the database. The formalism of 
Petri  nets has been proposed in [7] for scenario description. In [10] and [7], the 
location and temporal tracking of objects of interest were assumed. In a complete 
scheme, however, this high-level analysis relies strongly on the efficiency of the 
earlier phases. 

The work presented in this paper first, proposes an approach for the ear- 
lier phases, that  is shot change detection and motion-based segmentation, and 
then derives a set a object and camera motion descriptors and a compact rep- 
resentation of the dynamic content of a sequence. The method is summarized 
on Figure 1. We first partit ion the image sequence into shots, using a technique 
which handles both cuts and progressive transitions with the same test, and 
copes with the presence of camera motion and mobile objects. Then, for each 
shot, we extract  and track mobile entities along the shot. The method provides, 
for each shot, a synoptic view consisting of a mosaic image of the background 
scene, on which trajectories of mobile objects are represented. Besides, qualita- 
tive and quantitative camera and object motion descriptors are obtained. The 
scheme proposed here is unified around a low-cost robust 2D motion model 
estimator; the various steps of the method exploit its robustness. In compari- 
son with [8] which is targeted at particular scenes (assuming a static camera 
and disconnected mobile objects), we aim at general sequences by performing a 
motion-based segmentation. In contrast with [15], we have an explicit segmen- 
tat ion and trajectory of mobile objects, which can be used for further analysis 
and elaboration of object descriptors. The paper is organized as follows. Sec- 
tion 2 outlines the robust motion model estimator, while Section 3 recalls the 
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method for partitioning a video into shots. Section 4 explains how objects are 
extracted within these shots. Section 5 describes how a synoptic view of the shots 
content is derived. Section 6 deals with motion descriptors. Section 7 provides 
experimental results, and Section 8 contains concluding remarks. 

Fig. 1. An overview of the video structuring and representation method : partitioning 
into shots, locating and tracking mobile objects, and building a still image summary 
of the shot content showing the trajectories of objects. For indexing or understanding 
purposes, a table describing each mobile object is also produced, and camera motion is 
annotated. 

2 D o m i n a n t  m o t i o n  e s t i m a t i o n  

In this work, we manipulate motion information, which support can be either 
the whole image, or a region in the image. In both cases, motion is represented 
by 2D atfine motion model. The motion model parameters are estimated on the 
relevant support (a region, or the whole frame) using a motion estimator called 
R M R m o d  presented in [18]. Since a robust estimator is exploited, only the model 
accounting for the dominant motion between a pair of successive frames within 
the considered support is estimated. 

Between two successive frames, we first estimate the global dominant mo- 
tion over the whole image. This measurement is then exploited in the successive 
phases of the scheme : partitioning of the video into shots, characterization of 
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camera motion, construction of a mosaic image by image warping, and deter- 
mination of trajectories and object motions in a coordinate system, called syn- 
optic frame in the subsequent, where estimated camera motion is compensated 
for. Motion model estimation on region supports is used for the motion-based 
segmentation and tracking phases, and for the derivation of object motion de- 
scriptors. 

We briefly recall here the general case where the estimation support  is de- 
noted by R, which gravity center is denoted g = (xg,yg). R can be the whole 
image or a given region in the image. The displacement vector w o  at pixel p(x,  y) 
between two successive frames It and It+l is expressed as : 

w o ( p )  = ( a l  + a2(x -- Xg) + a3(y -- yg) 
a4 + ~ ( x  x~) + ~6(y - yg) J 

(1) 

where O = (al, a2, a3, a4, as, a6) represents the parameters of the 2D affine mo- 
tion model. To estimate O, an incremental approach is adopted in a multireso- 
lution framework to handle large displacements. Given the current estimate ~k,  

A 

at step k, of the motion parameter vector, we calculate the increment AOk as : 

AO ~ k  = arg min E P (ri) (2) 
piER 

where the residual ri is computed using the spatial intensity gradient V I  and 
the current motion model estimate ~)k as follows : 

ri = [(pi + wc)k (pi), t + 1) - I(pi,  t) + VI (p i  + w~k (Pi), t + 1).Wz~o k (pi) (3) 

p(x) is a hard-redescending M-estimator. Here, we consider Tukey's biweight 
h A A A 

function. We can then update the estimate O k : 0 k+l = O k + AO k. This 
incremental process is iterated until a stopping criterion is met. This estimator 
allows us to get an accurate computation of the dominant motion on the support  
at hand, even if other motions are present. 

3 V i d e o  p a r t i t i o n i n g  i n t o  s h o t s  

The method we employ for this early step in structuring an image sequence 
uses motion models accounting for the global dominant image motion between 
successive images [6]. The evolution of the size of the associated estimation 
support  enables the detection of both cuts and progressive transitions. More 
precisely, we consider the variable Ct = nd/no, where nd is the measured size 
of the estimation support, nd is provided by the motion estimation phase, as 
the set of pixels conforming to the global dominant motion, no is the maximum 
expected support area, and is computed geometrically as the size of the part  of 
I ( t )  which is likely to be also in I ( t  + 1). This is derived from the dominant 
motion, supposed to correspond to the camera motion and estimated between t 
and t + 1. Observations of the evolution of this variable along the sequence are as 



600 

follows. Within a shot, it is close to 1. Between two images of different shots, i.e. 
at a cut instant, no consistent motion can be estimated, and ~t suddenly drops 
close to 0. In the case of progressive transitions, we observe a less pronounced 
decrease of ~t, but  which still enables a correct detection. Significant jumps 
in ~t are detected using the statistical cumulative Hinkley's test [4], involving 
very little computation, and providing also the temporal bounds of the detected 
transition. 

The key point of this technique is its generality of use in terms of kind of 
transitions and scene content. First, in contrast with most approaches which 
perform different tests for cuts and gradual changes, the proposed approach 
copes with these different kinds of transitions with the same test involving a 
single threshold which is kept constant [6]. Secondly, the scheme can cope with 
scenes including mobile objects, even of important  size, and important  camera 
motion. The scheme has also been validated on MPEG-1 and -2 reconstructed 
image sequences. 

4 Segmentation-Tracking 

]K3 Adjacency graph 
Spatial pa ~ ' "','~of elementary regions 
(intensity based) ", ~ 

Temporal I! l ( ~ ~  
prediction :]  ( ~ ~  

/ / Motion-based labeling 
. , ' / /  of graph nodes 

(region grouping) 

Motion-based image partition 

Fig. 2. Overview of the segmentation and tracking method. A spatial partition of the 
image is tracked along the sequence, along with a region-level motion-based partition 
built upon this spatial partition. 
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Once partitioned into shots, we apply to the content of each shot a hierarchical 
motion-based segmentation method we more extensively describe in [13]. An 
overview diagram is provided in Figure 2. An intensity-based parti t ion of the 
image is first built. Affine motion models are robustly estimated on each of 
these regions, using the approach described in Section 2. This first stage leads 
to deliberately over-segmented partition, relatively to a meaningful parti t ion 
in terms of moving objects of interest. Its purpose is to retrieve all relevant 
boundaries. In a second stage, the elementary regions are grouped on a more 
meaningful motion-based criterion. The adjacency graph defined on the regions 
of the elementary partition is considered. The goal is then to assign labels to 
the nodes of this graph in such a way that  regions undergoing similar (resp. 
different) motions are at tr ibuted the same (resp. different) labels. An optimal 
label configuration is sought for as a statistical contextual labeling problem. 
An energy function U(e, o) is defined, associated to a graph-level Markovian 
model, and composed of the sum os local potentials 1/1 and V2 defined on pairs 
of neighbouring nodes as follows : 

U(e,o) = Z Z 
7jcF 7jcF 

(4) 

where e(Tj) , o(Tj) respectively denote the local label configuration and the ob- 
servations assigned to a pair of neighbouring nodes 7j- F is the set of all such 
pairs on the graph. The two potentials relate assignment of labels to motion and 
geometrical measurements made on the regions. V1 is defined so as to favour 
identical label of neighbouring nodes, if the two motion fields estimated on each 
of the two corresponding regions form a coherent motion field [13]. v2 is defined 
so as to favour identical label of neighbouring nodes, also taking into account the 
degree of geometrical adjacency of the region pair. An HCF procedure is used 
to perform the minimization of U(e, o). The motion-based regions are derived 
from the label configuration at convergence. A motion model is then estimated 
over each motion-based region group, thus characterizing the motion of mobile 
objects, or of the background region. A temporal prediction-updating technique, 
both of the spatial partition and of the region-level label configuration, enables 
a correct updating of spatial and motion boundaries along the sequence, as well 
as emergence of new motion-based regions, as appropriate. 

The advantages of this technique are that,  in contrast with merging-only, 
split-and-merge or clustering methods, and because the topology of the graph 
is kept unchanged throughout the labeling of its nodes, groups of elementary 
regions can be re-arranged in a flexible and well-controlled manner during the 
grouping step and from one frame to the next. Besides, contextual information 
can easily be incorporated in such a formalism. 

5 C a m e r a  a n d  o b j e c t  m o t i o n  d e s c r i p t i o n  

Section 3 and 4 have described the steps leading to a structured representation of 
the image sequence content. In this section, we describe how motion descriptors 



602 

can be obtained for the entities tha t  have been extracted, namely for shots and 
mobile objects. 

First, a qualitative descriptor of camera motion for each pair of successive 
frames can be provided. To this purpose, the spatial support  associated to the 
global dominant motion model, that  has been computed in the shot change 
detection step, can be again exploited. The parameters  of the affine motion model 
as here expressed in the following basis, corresponding to basic translational,  
divergence, curl and hyperbolic models, so as to be physically more meaningful: 

0 = (tl, t2, div, rot, hypl, hyp2) with : (5) 

t l  -~ a l  t2 ---- a4  
1 a 1 1 a 1 a div = ~( 2 + a6) rot = ~(a5 - a3) hypl = 5( 2 - a6) hyp2 = ~( 3 + a5) 

For the various basic types of camera shooting situations, such as zooming, 
panning, static camera,  only a subset of the six parameters  as expressed in this 
basis should be non zero. In the case of pure horizontal panning, for instance, only 
parameter  tl should be non zero. If camera is pure zooming, only the divergence 
te rm will be non-zero. In practice, the presence of noise and estimation errors has 
to be accounted for, and one must shift from an idea of "non-zero" to "significant 
value". 

As regards the problem of determining which motion parameters  are signif- 
icant, we have shown in [12] tha t  likelihood ratio tests tackled this issue in an 
efficient way, not requiring unstable parameter  tuning. We resort to this ap- 
proach, consisting in testing, for each parameter  in ~9, the hypothesis tha t  it is 
significant, against the hypothesis that  it is equal to zero. This is carried out 
by re-estimating the motion model on the support  associated to the dominant  
motion, while applying the constraint that  the considered parameter  is equal to 
zero, and evaluating whether this constrained model explains the da ta  almost as 
well as the full-affine model. The degree of fitness of the two models to the da ta  
are compared using a statistical log-likelihood ratio test. The support  on which 
motion estimation is performed makes the motion characterization technique re- 
silient to mobile objects, even of significant size. Using this test, measurement  
noise and inadequacy of the model to explain the da ta  can be implicitly taken 
into account [12]. 

The application of this significance test  to each of the six parameters  supplies 
a binary symbolic parameter  vector, which can be mapped  onto a set of quali- 
tat ive motion labels, such as static camera, pan, zoom or sideways, forward or 
backward traveling. The sign of the significant parameters  can also be exploited. 
It  indicates, for instance, the direction of panning (left, right, up, down), whether 
a zoom or traveling is forward or backward, or the direction of a possible rotat ion 
around the optical axis. 

The method for qualitative motion labeling, applied to the whole frame when 
dealing with camera motion, can in the same way be applied to the regions cor- 
responding to the mobile objects extracted by the segmentation and tracking 
steps. By this means, we obtain, for each mobile object in each frame, a charac- 
terization of its motion. The motion-based segmentation step involves the robust  
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estimation of a motion model on every region, and thus of the associated esti- 
mation support. We advocated that  on the whole frame, utilizing the support  of 
the dominant motion model made the motion characterization technique robust 
to other mobile objects. In the same way, at region level, we benefit from the 
respective dominant motion model supports by increasing resilience to minor 
errors in the determination of region boundaries. 

Qualitative description of motion, whether of the camera or of mobile entities 
in the scene, is well suited for indexing. Indeed, the user may want to retrieve 
objects on a motion criterion, such as an object going leftwards, or coming 
towards the camera. However, it is likely the user will express his query in terms 
of perceived object motion, regardless of the camera motion in the scene. For 
instance, if he asks for an object going right, it is likely he may be interested 
in objects going rightwards in a fixed coordinate systen, and consequently also 
in objects being tracked rightwards by the camera. In many cases, an object 
motion descriptor obtained after having compensated for camera motion should 
fulfill bet ter  the goal of motion cues for indexing. We thus operate as follows. 

Given two successive frames It and It+l, let us denote the estimated global 
i 

dominant motion parameter vector O~+ 1 between these frames, to indicate clearly 

the temporal  aspect of the problem. We built the image /~t+l using a back- 
i 

warping technique and exploiting 0 t t+l, so as to compensate for camera motion. 
Assuming the scene is approximately planar and that  this plane is not too much 
slanted, only the projected motion of mobile objects remains between It and 
[t+z. The technique described above, applied between It and it+l, for each of 
the relevant regions, provides qualitative "scene related" motion descriptors of 
significant interest to an indexing system. We also indicate frame appearance and 
disappearance number, whether a mobile object emerges or disappears within 
the image, or from an image side, and in this case, from which side. Objects 
with no apparent translation, while camera translation is significant, are labeled 
as "tracked by the camera". This information can identify them to indexing or 
higher-level analysis systems as objects of interest. The part  of the image cor- 
responding to the object in a given image frame, can be stored in the database 
(Figure 1), enabling the use of region-based still image cues. 

6 S y n o p t i c  v i e w s  o f  t h e  d y n a m i c  c o n t e n t  of a s h o t  

We describe here how, for each shot, a still image can be built that  aims at 
summarizing its content, using the structured spatio-temporal representation 
and the motion descriptors found. 

First, the background scene is represented by a mosaic image. Because we 
wish to build a view fbr quick visualization, in a context where a user searches 
for the part  of interest in a video, we do not require a mosaic image display- 
ing very low distortion. Such advances have however been recently proposed for 
instance in [20, 21]. Hence, we use an elementary technique consisting in consid- 
ering a reference frame Ito, the first one in the shot, and back-warping all the 
frames towards a coordinate system related to this first frame, using the global 
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A A A 

dominant motion model 0 t computed by composing O~ .O~_ l The parts 
t o ' - . , 

of the image corresponding to mobile objects are withdrawn beforehand. The 
processing is fast, since the dominant motion model between successive frames 
is readily available. 

We then superimpose on this mosaic the trajectories of mobile objects during 
the shot. The trajectory of an object is represented as the sequence of position 
measurements of its gravity center along the shot, also back-warped in the ref- 
erence frame, so as to coincide with the mosaic image. For objects tha t  are 
detected to be either partially appearing or disappearing from one side of the 
image, the gravity center does not approximately correspond to a single physical 
point along the sequence. For such objects, only the first gravity center measure- 
ment is used, the trajectory is built from there on using motion estimates. The 
mosaic image with the superimposed trajectories suggest in a simple way, yet 
effective, the contents of the shot. Rotation of objects around their center and 
objects coming towards or moving away from the camera are annotated with 
appropriate icons. 

7 R e s u l t s  

The method was validated on several real video sequences. The experimental 
results presented here show the application of the different steps of the method 
for different sequences, so as to illustrate better  their performance. 

We report  here results for the partitioning into shots and camera motion 
characterization on a real documentary, that  includes various types of camera 
motions, cuts, dissolves and a special video effect. It also include a mobile per- 
son occupying a significant part of the image. The summary created for that  
sequence is shown on Figure 3, and corresponds to the correct partitioning, with 
an accurate temporal location of shots. A key-frame per shot is shown, and for 
any user-selected shot, the synoptic frame is displayed, along with qualitative 
camera motion estimated during the shot. Results obtained on various MPEG- 
reconstructed versions of the same sequence at various compression rates showed 
almost no difference with regard to the original sequence. Unoptimized code leads 
to a computation time per frame pair of about 30s (image size 360x288) on an 
Sun UltraSparc workstation. The time-consuming operations are mainly the spa- 
tial segmentation updating phase and motion model estimations (one per spatial 
region and seven per motion-based region). As far as interesting configuration in 
terms of mobile objects is concerned, we show how a shot content can be struc- 
tured and represented on a 125 frame sequence called Mobi .  In this sequence, 
the camera is panning leftwards and tracking a train, which is pushing a rolling 
ball. This ball stops rolling from frame 35 to frame 47. On the right, a calendar is 
being pulled upwards, it stops, and then goes downwards. On the left is a rapidly 
swinging gyroscope. These mobile objects cause shadow effects. The extracted 
motion boundaries for frames 1, 60 and 120 are shown in Figure 4. The calendar 
and the train are correctly separated from the background tapestry. The rolling 
ball is identified, but its boundaries are unstable over time. It disappears from 
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Fig. 3. Visualization of the video summary (a). A key-frame per detected shot is dis- 
played (bottom row), and, for a user-selected shot, more information about its contents 
is supplied (mosaic image and sequence of camera motion types). Examples shown cor- 
respond to (a) shot 6, (b) shot 3 and (e) shot 5. The first frame and last frame numbers 
for each shot account for having suppressed frames within progressive transitions. 
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frames 37 to 47, and reappears as a new object, because no long-term trajec- 
tory association technique is included. The same issue arises for the calendar. 
A low-cost extension to alleviate these problems for simple cases, considering 
each object in the scene is to be indexed by still image cues anyway, would con- 
sist in matching objects using these cues. Figure 5 shows the created synoptic 
view. Camera motion is correctly globally characterized as "left panning". The 
trajectories of the train and the calendar, and the piece-wise t rajectory of the 
rolling ball are drawn as described in Section 6. Because they are temporarily 
motionless, two distinct objects are considered, both in the case of the ball and 
the calendar, hence the trajectories on the synoptic view. Descriptors assigned 
to meaningful objects have been summarized in Figure 6, and describe correctly 
their behaviour. Though Figure 6 only includes qualitative measurements, the 
t ra jectory could also be used for indexing, and retrieval on this cue could be 
done by a sketch. A few spurious regions are extracted and are not included in 
the table. They slightly perturbate the clarity of the synoptic view, but, with 
a view to indexing, the effect on memory occupation in the database is minor, 
and besides, they do not severely disturb the features found for the meaningful 
objects. 

Fig. 4. Mobi sequence : extracted motion segmentation boundaries for frame 4(a) and 
associated estimated motion(b), motion boundaries for frame 120(c) 

8 C o n c l u s i o n  

We have described a method for structuring the content of a video in several 
steps, namely video partitioning into shots, motion-based segmentation of each 
shot, and tracking of mobile objects. From this structure, we infer a technique 
for indexing and quick-viewing of the dynamic content. The method supplies 
ample descriptions of object and camera motions, that  are relevant and use- 
ful for indexing. They are both of instantaneous and long-term, qualitative and 
quantitative nature, by exploiting the extracted motion information and trajec- 
tories. The various steps of the scheme exploit an efficient robust 2D motion 
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Fig.  5. Mobi sequence : Synoptic summary of the dynamic content of the shot. The 
background scene is discarded, mobile objects are displayed at their first position in 
the sequence, and their trajectories are drawn in the global coordinate system. The 
rotation of the ball is annotated by a curved arrow. 

Fig.  6. Object motion descriptors 
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es t ima to r ,  app l i ed  as a p p r o p r i a t e  on the  whole image  or on regions.  So doing,  
the  same mo t ion  measu remen t s  have mul t ip le  purposes  in the  s t r u c t u r i n g  and  
desc r ip t ion  phases .  Overal l ,  the  sys tem is des igned wi th  a view to p rov id ing  rich 
s p a t i o - t e m p o r a l  in format ion ,  coping wi th  a b r o a d  range  of scene contents ,  while 
keeping  c o m p u t a t i o n a l  cost  low. 

Poss ib le  ex tens ions  are  numerous .  F i r s t ,  since ob jec t s  are  de l imi ted ,  the  cues 
used  in st i l l  image  indexing,  such as shape ,  color, t h a t  are  usua l ly  m e a s u r e d  
e i ther  globally,  or on somewha t  a r b i t r a r y  regions,  can then  be  c o m p u t e d  on 
mean ingfu l  regions.  In  ano the r  d i rec t ion ,  we are  cur ren t ly  e xpe r ime n t ing  a long- 
t e r m  m u l t i - t r a j e c t o r y  app roach  to  region t racking .  This  would enable  a dd i t i ona l  
desc r ip t ion  of s p a t i o - t e m p o r a l  re la t ions  be tween  mobi le  ob jec t s ,  such as occlu-  
sions and  crossings,  which are  in te res t ing  f rom the  semant i c  po in t  of view, and  
improve  the  qua l i ty  of l ong- t e rm mo t ion  desc r ip t ion  in t he  case of piece-wise 
t r a j ec to r i e s ,  or in cases as shown for the  Mobi sequence.  
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