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A b s t r a c t .  In this paper,  we study the statistical theory of shape for 
ordered finite point configurations, or otherwise stated, the uncertainty 
of geometric invariants. Such studies have been made for affine inva- 
riants in e.g. [GHJ92], [Wer93], where in the former case a bound on 
errors are used instead of errors described by density functions, and in 
the lat ter  case a first order approximation gives an ellipsis as uncertainty 
region. Here, a general approach for defining shape and finding its den- 
sity, expressed in the densities for the individual points, is developed. No 
approximations are made, resulting in an exact expression of the uncer- 
ta inty region. Similar results have been obtained for the special case of 
the density of the cross ratio, see [May95,/~st96]. 

In particular,  we will concentrate on the atfine shape, where often ana- 
lytical computations are possible. In this case confidence intervals for 
invariants can be obtained from a priori assumptions on the densities 
of the detected points in the images. However, the theory is completely 
general and can be used to compute the density of any invariant (Eu- 
clidean, similarity, projective etc.) from arbi t rary densities of the indivi- 
dual points. These confidence intervals can be used in such applications 
as geometrical hashing, recognition of ordered point configurations and 
error analysis of reconstruction algorithms. Another approach towards 
this problem, in the case of similarity transformations, can be found in 
[Ken89]. For the special case of normally distr ibuted feature points in a 
plane and similarity transformations, see [Boo86], [MD89]. 

Finally, an example will be given, illustrating an application of the theory 
for the problem of recognising planar point configurations from images 
taken by an affine camera. This case is of part icular importance in appli- 
cations, where details on a conveyor belt are captured by a camera, with 
image plane parallel to the conveyor belt  and extracted feature points 
from the images are used to sort the objects. 

keywords: shape ,  invar iants ,  densi t ies ,  e r ror  analys is ,  recogni t ion ,  d i s t r i bu t ion  
of invar ian ts  
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1 I n t r o d u c t i o n  

In many disciplines (technology, science, biology, etc), one often encounters a 
need to describe geometrical shapes. This is usually done by extracting a confi- 
guration of feature points for the object at hand. Once these points have been 
extracted, they have to be treated collectively, and not as individual points. For 
example, the location and orientation in space is in general irrelevant for the 
shape, which means that  one should not distinguish between configurations that  
can be transformed into each other by rotations and translations. To achieve this 
one often defines a function from the set of possible point configurations, which 
is constant or invariant under rotations and translations of a point configuration. 

Often there are other immaterial properties at hand, like for example scaling. 
To treat this quantitatively, a parametrisation of point configurations is needed, 
that only bothers about essential properties, 'the shape', of the application at 
hand. What is meant by 'essential' can often be described in terms of a group of 
transformations, by identifying objects that can be transformed into each other 
by elements of the group. 

When using such parametrisations of shape in practice, one soon encoun- 
ters the problem of how uncertainties in the measurements of individual feature 
points affect the shape parameters. This is the subject of the present study, 
i.e. to device a general, method for parametrisation of shape, taking only rele- 
vant information into account, and to investigate the statistical density of the 
shape parameters given the statistical density for the individual points of the 
configurations. 

As an example of a specific field of applications in computer vision we have the 
structure and motion problem. When deriving the structure of a 3D-scene from a 
sequence of 2D-images, one often has little or none calibration information about 
the cameras. Fortunately, cf [Spa96], it is still often possible to derive structure 
information, but only up to some class of transformations, i.e. a situation similar 
to the one described above. The algorithms for this only use some kind of shape 
data, with respect to some group of transformations. This means that the data 
needed by the algorithms consists of shape parameters, which are 'packages' 
of measurement parameters. To analyse the stability and robustness of such 
algorithms, the densities of these shape parameters are needed. 

Another computer vision application of the result of this paper, is model ba- 
sed recognition. Here a data base is built containing e.g. affine or projective sha- 
pes of a number of model objects. The recognition problem consists of matching 
measured image features to the right model object. To do this, shapes are com- 
puted from image data. Knowing the densities of shape, this can be done in a 
firm way, using quantitative hypothesis testing. We give the necessary densities, 
which will allow us to determine confidence sets for shape below. 

In this paper we will outline a general framework for shape. The result will 
be explicit parametrisations of shape spaces together with formulas for the exact 
density of shape, given as integrals. The general theory will be illustrated by a 
number of examples of affine shape. Furthermore, we will show how the theory 
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can be used to solve the problem of recognising point configurations taken by 
a n n e  cameras, using real images. 

The pioneer in the study of shape along these lines is Kendall, cf [Ken89], who 
dealt with the case of positive shnilarity transformations. Bookstein, cf [Boo86], 
introduced variables for size and shape to t reat  this problem when all feature 
points belongs to a plane. The density for the shape variables was later computed 
in [MD89], where the feature points were assumed to be normally distributed. 

In computer vision, the density of a n n e  shape has been studied in [GHJ92], 
[Wer93] and [Hey95]. In [GHJ92], the uncertainty of the a n n e  coordinates of a 
planar four point configuration is treated. However, instead of errors described 
by a density function, a bound on errors is derived. In [Hey95] a first order 
approximation is used to compute the density of the a n n e  shape to a planar 
four point configuration, when the points are normally distributed. A similar 
method is used in [Wer93]. A first order approximation has also been applied for 
the density of similarity invariants in [RH95]. 

Densities of projective shape have been studied in [lst96] and [May95], where 
exact densities for the cross ratio for four points on a line are computed. 

The approach of the present paper uses an abstract setting, which makes 
it possible to cover all these situations simultaneously. For a more thorough 
t reatment  of the contents of this paper, we refer the reader to [Ber97]. 

2 Shape of finite ordered point configurations 

In this section, we will define a general notion for the shape of finite point 
configurations. To begin with, some terminology is needed. 

Let C,~ be the set of ordered m-point configurations 

2( = (Pl ,P2, . . .  ,Pm) 

in 1~ n, where pi C ]R ~ is the coordinate vector of point number i in X. Thus, 
there is a natural  isomorphism between C~n and ]~m~. As topology on C~, we 
will use the one inherited from ~mn. 

Let G be a group of transformations C~ --~ C n.  By the G-orbit of 2( E C~ 
is meant the set 

{Y l Y = g ( X ) ,  g � 9  . 

We write X ,-~ y ,  when 2( and 32 are in the same orbit. For a group G of 
transformations ]R n --+ ]R ~, let G "~ be the group of product  transformations, 
C,~ --+ C~, defined by 

g(X)  = (g(Pl ) , . . . , g (Pm)) ,  when X = (p l , . . . , p ,~ )  �9 C~ and g �9 G . 

For our applications, this is the most usual situation, i.e. the same transformation 
is applied to all points of the configuration. By abuse of language, we write G 
instead of G "~. 

For the geometric applications we are interested in, the following terminology 
is convenient. 



rbits 

D e f i n i t i o n  1. Let G be a group of transformations g~ --+ g~. The shape space 
is defined as the set of orbits C~/G. Let 

s:c2 

be the natural projection. For X C g~, the orbit s(X) E C~IG is called the 
shape of X and each element of s(X) is called a representative of s(X). A 
function ~ on C n,  which is constant on each orbit is called an invariant.  The 
functions ~ = ( 9 1 , . - . ,  ~k) form a complete set of  invariants  if ~(X) = ~(y)  
if and only if 2d ,,~ y .  As topology on Ca~G, we choose the strongest topology 
that makes s continuous. 

Since G forms a group, the orbits of g~/G are disjoint. The space C~ can 
then be viewed as divided into disjoint strings, where each string is an orbit, see 
Figure 1. 
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Fig. 1. Orbits of g~. 

According to Klein, in his Erlanger-program, geometry is the study of pro- 
perties of geometric objects, which are invariant with respect to some class of 
t ransformation.  This point of view fits with Definition 1, as is also illustrated by 
the following examples. 

Example 1. Let G be the group of nonsingular Euclidean transformations,  acting 
on g,~. Euclidean invariants are distances between points in the point configu- 
rations. The orbits consist of configurations that  are congruent, in the sense of 
classical Euclidean geometry. 
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Example 2. When G is the group of affine transformations,  C ~ / G  is isomorphic 
to a Grassman manifold, consisting of linear subspaces of some ambient linear 
space, cf [Spa92]. These subspaces have been called affine shape, and can be 
described explicitly as 

} s ( x )  = ~ ~x~ = 0, ~ = 0, x = ( X l , . . . , x ~ )  
i=-1 i = 1  

3 Density of shape, general theory 

We now introduce a parametr isat ion of point configurations C n ,  by taking the 
t ransformation group G into account, which will enable us to write down a for- 
mula for a density function on the shape space C~/G,  when a density function on 
C,~, i.e. the individual points of the configurations is known. This parametr isa-  
tion will be done by pulling C~ back to two parameter  sets A and B, such tha t  B 
labels the orbits C ~ / G  and A provides parameters  along each orbit. Recall tha t  
a function is called a C**-d i f f eomorph i sm if it is invertible and f ,  f - 1  E C'L 

Definition 2. Let A C I~ k and B C I~ k' be two open subsets for some k and k ~ 
and let G be a group of transformations C~n -+ C~. Suppose that there exist open 
sets A C_ ]~k and B C_ ~k' a bijection 

and a function 

such that the ]unction 

7r : A x B ~ C~, 

g : A ~ a - + g a E G  , 

r : B - - + C ~  , 

defined by "yr b) = ga o r , 

has a dense open range U C_ C,~ and Vr : A • B --+ U, is a C 1-diffeomorphism. 
Then r is said to be a p a r a m e t r i s a t i o n  o f  shape  and g a parametrisation 
o S G .  

The reason for using a dense open subset of C~ instead of the whole set, 
is tha t  it is in general not possible to parametr ise  the entire g~.  However, the 
remaining set C~ \ U is of measure zero and are therefore irrelevant here. 

The dimensions k, k I only depend on C~ and G, as 7r is a Cl-diffeomorphism. 
The specific choices of parametrisat ions for shape and G merely represent a 
choice of coordinates on U C_ gn ,  such tha t  r labels the orbits and g describes 
the location within each orbit, see Figure 2. 

It  can be shown tha t  B and s(U) are homeomorphic,  see [Ber97]. Thus, s(U) 
is also metrizable, since B is a metric space. We call s(U) the non-degenerate 
shape space .  

We now turn to the main question, to define densities on shape spaces. To 
this end assume tha t  C~ has a density function 0 < r C L1 (Cure), where f r = 
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r 

Fig. 2. Parametrisation of C~. Each orbit has a unique intersection with r 

1. Often it is obtained from density functions for the individual points of the 
configurations. We want to define a density function on Cn/G,  i.e. a density 
function for shapes. Let ~,r be as in Definition 2, then 

fc  r 1 6 2 1 7 6 1 6 2  

where det(7~) is the functional determinant of 7r b). It is thus a determinant 
of order k + k I. Here the function 

B ~ b-+ /A r o 7r b)Idet(7~)l da e L 1 

is defined almost everywhere. As B and the non-degenerate shape space s(U) 
are homeomorphic, it is natural  to use this function when defining a density of 
shape. 

D e f i n i t i o n  3. Let r C L 1(Cam) be a density function, r : B -+ C n a parametri- 
sation of shape, g : A ~ a --+ ga C G a parametrisation of the group G and set 
3'r b) = ga o ~(b). The function ~( r  4) : B --+ N, defined by 

~(~ ,~)  : b -+/A~)OTr Idet 7~1 da (1) 

is called the dens i ty  o f  shape on C n,  with respect to G. 

Observe that  the density of shape depends on the parametrisation of shape, 
which can be chosen in many ways. This seems to bring in an ambiguity. Also 
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the parametrisation of G can be done in many ways. However, it can be shown, 
see [Ber97] that  the density of shape is independent of the parametrisation of G 
and that  there exist canonical transformations between the density of shape for 
different parametrisations of shape. This canonical transformation implies that  
if we integrate over a set in s(U) the result will be independent of the specific 
choice of parametrisation of shape ~. 

Example 3. As an illustration of Definition 2 and 3, let G be the group of nonsin- 
gular affine transformations Ii~ ~ --+ lt~ 2 . Extend G to the space C42, which consist 
of all ordered four point configurations in li~ 2 . Using matrix notation, we write 

,~  ~ Xl  X2 X3 

Yl Y2 Y3 Y4 

where each column represents a point in ~2. Let 

~ : ~2 9 b--+ (~ 0 0 bl'~ 

be a parametrisation of shape and 

g:A~a--+ga(')=r a22] (') + ( a l )  E G ' a 2  det({ai j} )~O 

be a parametrisation of G, where A C ~6 is open and dense. Then ~/r in Definition 
2 is given by 

(i 7r215  ( a l l a ' ~ a l )  10 CC4 ~ . 
\a21 a22 a2 1 1 

Here 7r has a dense open range in C~ and 7r : A • ]~2 ~ 7r • I~ 2) is a 
C 1-diffeomorphism. 

If ~ e LI(C 2) is a density function, inserting 7r in (1) in Definition 3, gives 
us a density function of affine shapes for C42. Examples will be given below. 

The following theorem shows how the density of r C C~ can be transformed 
without changing the the density of shape. 

T h e o r e m  1. Let r ~ Ll,(Cnmj, ~ be a density function, g : A -+ g~ E G a paramet- 
risation of G and ~ a parametrisation of shape. If  f E G is a Cl-diffeomorphism, 
then 

(~, ~) = ~ (Idet f ' l  r o f ,  r 

As a consequence of Theorem 1, neither scaling nor translation of the density 
r E L 1 C n ( ,~ ) ,  affect the density of affine or positive similarity shape. 

4 D e n s i t y  o f  a f f i n e  s h a p e  

We will now focus on the affine group of transformations. First the theory of 
densities of atone shape will be outlined, then these densities will be computed 
and the special case of affine shape of four planar points will be treated in detail. 
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4.1 T h e o r y  

Let us start  with a parametrisation of C~m as in (1) in Definition 2, when m > n + 2  
and G is the group of a n n e  transformations. 

P r o p o s i t i o n  1. Let r E L 1 (C~) be a density function for C~n , where m > n + 2, 
and let G be the group of nonsingular aJ:fine transformations ~n -4 ~,~ with the 
parametrisation 

g:  A ~ a = ({Yij} ,  {tk}) -+ g~(.) = {y/j} (') + {tk} C G, det {Yij} 5 ~ 0 , 

where {Yiy} is an n x n matrix, {tk} is an n x 1 matrix and A C I~ ~ x I~ ~. 
Furthermore, let 

C: R~(m--n--1) ~ {bij} -4 ( I  0 {b/j}) �9 C~ 

be a parametrisation of aJfine shape, where I is the (n x n) identity matrix and 
{b/j} is a (n x (m - n - 1)) matrix. Then the density of a]fine shape is given by 

and 
~(~b, ~) = ~(Idet  C] m r o f ,  ~) 

for every nonsingular affine transformation f(b) = Cb + d. 

It is easily seen that  7r fulfills the conditions in Definition 2. All that  has to 
been done then is to compute the functional determinant of 7~- The details are 
left to the reader. 

4.2 D e n s i t y  o f  aft]ne s h a p e  for  four  n o r m a l l y  d i s t r i b u t e d  p l a n a r  
p o i n t s  

In this subsection, we compute the density of affine shape for four points in a 
plane, when the points are distributed normally and independent. The densities 
will provide a useful tool for determining search areas in shape space, when 
comparing an objects shape with some shapes in a data  base. 

When the four points are distributed with the same mean, it is possible to 
obtain a closed form solution, and when the means are different, the density of 
shape is given as a one dimensional integral, which generally has to be evaluated 
numerically. 

Let 
4 

r y) = I I  r162  , 
/=1 

where r  = 7r-1/2e-Z:, is the density for four points in a plane, i.e. r C LI(C~) 
and f r dxdy = 1. Let 

A 2 a  = ({y/j}, { tk})-4  g ~ ( . ) :  ( y l l  y12~ ( . )+  ( t l )  det g :  {y j} r  
\Y21 Y 2 2 ]  . ' 

(2) 
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be a parametr isat ion of the group G of nonsingular affine t ransformations ~2 __+ 
~2, where A C ~6 is open and dense. Choose 

~ : ~2 S (Xl,X2)--+ (100 0 x l )  
1 0 x 2  ' 

as a parametr isa t ion of shape. Set 

7 r 2 1 5  ~ ( a , x ) ~ g ~ o ~ ( x ) ~ C ~  . 

Then the density of shape is 

~ ( r  r = /AIdet {Yij)l (P o ",/r . (3) 

After tedious symbolic computations,  we obtain 

�9 , - - 3 / 2  l (1--X1--X2+X2-4-X2+XlX2) ~(r ~)(x)  - 2 ~  

Observe that  the level curves of this density function are ellipses. A simulation 
was performed, where a sequence of point configurations were drawn, each with 
the density function r From the map 7~, a unique x = (x~,x2) was obtained 
and the plot for tha t  variable is shown to the right. ~ ( r  ~)(x) is shown to the 
left. The results are shown in Figure 3, where the simulated da ta  are shown to 
the right. 

=2 

- 3  

~3 -2  

, . . . - ,  .~..- ~ '~ ,~ .  ~ , r  ,~,...~.-..~ .......-. 

.... :.......:. ~ ~.-~.~,.~ ,..:. 
. . . .  ~ : : J ~ h ~ = '  z,~'5r . . . ' . "  

2 * 1 

Fig. 3. Computed density function and simulated. 

Now assume tha t  the points are normally distributed and independent, with 
respective means rrtj E R 2 , j = 1, 2, 3, 4 but with the same standard deviation, 
i.e. 

4 

r  v) = H r  - . ~ ) r  - - ~ )  , (4) 
j = l  
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where r = (21ra 2) 1/2e-x2/(2a2). By Theorem 1, with 

gao :]I{2 ~ v ~-+ a R v  - m , 

where R is a rotation matrix and m C ~2 is a vector, it is no restriction to 
assume that  r = 7r -1 /2e -~  and that  mjl  = (0, 0), mj~ = (0, mvj~), for some 

j l  # j2. 
It is possible to write the density of shape (3) as an integral in one dimension, 

which generally has to be evaluated numerically. As an example, assume that  
ml = (0,0), rn2 = (0,1) m3 = (1,1) and m4 = (1,0). The density of shape is 
then given by 

1 f o ~  U(Xl ' X2, CO) dad 

~(r  r = ~ Jo -~ ' 

where 

~ ( x l , x 2 , ~ )  = 

and 

4w(3a + CO2 _ b) c o s ( - - ~ )  + 2c(a - w 2 ) sin(~---~2 ) ~+~ 
e - ~ z j  

(a 3 + 3a2w + 3aw 4 + w 6) 

a (x l ,  x2, co) = (xl  + xe) 2 + (xl - 1) 2 + (x2 - 1) 2 , 

b(~l ,  ~2, co) = (x l  + x2) 2 + (x l  - 1) 2 , 

C(Xl,X2,CO) = 2(1 - x2) �9 

The density function is illustrated in Figure 4. Note that  the level curves are not 
ellipses in this case, indicating a deviation from the first order approximation. 

In order to compute (3), with r y) given by (4), we use the Fourier trans- 

formation It[ of t ~-+ It[, where the Fourier transformation is taken in distribution 
sense according to Schwartz. It can be shown, c.f. [Ber97], that  

where 

1 f0~176 r wr  dco, ~(r  ~) = (5) 

I "  
r (Xl, X2, CO, m) = ]A r o 7~ eiw det{ylj } da. 

For general means mj ,  j = 1 , . . .  ,4, is straight forward, to compute g) from the 
formula 

f e-(zlt2+z~t)dt = e Z ~ / ( 4 z l ) ~ 1  ' ~ ( z l )  > O, 

which is obtained by changing the path of integration to the complex plane. 
As the left hand side is continuous in Zl, the principal branch is chosen for the 
square root. 

Since lim~0{r -r -1 is bounded, it follows, by partial integra- 
tion of (5), that  

1 f0 ~ r + r  - 2r 
~(r  = - ~  co2 
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0 

i 

-1 

_21 

-3 

-43 -2 -1 0 1 2 3 4 

Fig. 4. Computed density function. 

We will use this formula to compute a number of densities of shape below in 
Section 6. For general means, it is possible to obtain a closed form solution of 
the integrand, but  the solution is very complicated. Instead we compute the 
integrand for each mean m = (ml, m2, rn3, m4), mj E ~2. 

4.3 D e n s i t y  o f  affine s h a p e  for  fou r  u n i f o r m l y  d i s t r i b u t e d  p l a n a r  
p o i n t s  

An interesting situation is when we have four points in plane, which are uniformly 
and independently distributed in [0, 1] • [0, 1]. This case corresponds to four 
randomly chosen points in an image. The density is important  to know, when 
calculating false alarm rates, i.e. the possibility that  four randomly chosen points 
2C have shape s(X) inside the confidence area for some of the model points. 

Let 
4 

r y) = I I  r162 
i = 1  

where r is defined as 

r = {01 I~- 1/21 > 1/2, 
I z -  1/21 < 1/2 , 
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be the uniform joint density in C 2 With the parametrisation of G in (2) and 

~:K2~(xl 'x2)-~( lo  Oxll 0 x20) CC~ 

as a parametrisation of shape, it is possible to compute the density of shape in 
closed form, though some effort is needed. 

That  ~ is in fact a parametrisation of shape can be seen if, given a point 
configuration X = (PI,P2,P3,P4) C C24, we let t T = (tl, t2) be the intersection of 
the lines obtained by adjoining the points Pl with P3 and P2 with P4. Thus 

and 

( Yn Y12~ = ( p l - t p 2 - t )  
Y21 Y22/ 

(01 -- 1 

This computation is possible for almost all 2d E C~. 
The density of alfine shape, given as an integral, is 

= [1 - xl[ I1 - x2] f [det(A)l r  7r ~(r  ~)(xl,x2) 

and when computed, it turns out to be a piecewise rational function in R 2 . 
By Theorem 1, the density ~( r  ~) is independent of any non-singular alfine 
transformation of r 

5 A p p l i c a t i o n  o f  a f f i n e  s h a p e  t o  r e c o g n i t i o n  

The densities ~ ( r  ~) in Section 4.2 can be used to limit the search area in a 
data  base, that  is used for recognition. The problem is to identify an unknown 
object with some object in a reference set, by using affine shape of extracted 
feature points. 

For a set of planar objects, four feature points are extracted from each to 
n give a set of point configurations {Xj}j= 1. The alfine shape s(Xj) = (Xlj, x2j) E 

N2 is computed and stored in a data  base {s(Xj)}2=l. If we assume that  the 
feature points 2dj have a normal independent density function Cj, it is possible 
to compute the density of shape ~(qbj, ~), by the method described in Section 
4.2. 

Set 

where 0 _< b _< 1 is set by a human operator. In the example illustrated in 
Figure 4, ~?b is the set, such that  when integrating ~ ( r  ~) over the set, which 
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is bounded by a level curve, the integral should be equal to b. b gives the level 
of significance. 

For an unknown object, four feature points are extracted, forming a point 
configuration y ,  and the shape s (y)  is computed. We identify y as object j in 
the data  base if y E J2b(j). 

Moreover, let r be the uniform and independent joint density for four points 
in a rectangular subset of I~ 2 . If the density of shape ~( r  ~) is integrated over 
the union of all J2b(j), j = 1, 2 , . . . ,  this will give the false alarm rate. The false 
alarm rate measures the probability that  four randomly chosen points is decided 
to be an object in the database. Letting PFAR denote the false alarm rate, we 
have 

PFAR = f ~( r  ~)dxdy . (6) 
Ju &(J) 

6 E x p e r i m e n t s  

In order to simulate objects arriving at a conveyor belt, five different quadrangles 
were cut out of a piece of black paper. These five quadrangles were then put  on a 
larger piece of white paper in six different positions. One image for each position 
were captured, with image plane parallel to the papers, see Figure 5. 

Fig. 5. Two of the images of quadrangles with detected corners. 

The images were taken using a standard S-VHS video camera, giving images 
of size 500 • 700 pixels approximately. The sizes of the quadrangles were about 
100 pixels. Each of these images were then subsampled giving images of half the 
size, with quadrangles of size about 50 pixels. Some of the images were then 
subsampled once more, giving quadrangles of size about 25 pixels. 

The corners in the images were detected using Harris' corner detector, see 
Figure 5 again. The correspondence problem was solved by hand, but could easily 



85 

be solved automatical ly,  by identifying the corners belonging to each object  and 
then walking a round  the contour.  Since this is outside the scope of the present  
paper  we chose to solve this problem manually. 

The  shape of each configurat ion in each image are p lo t ted  in Figure 6, where 
an asterisk is used for the original resolution, a circle for the  subsampled resolu- 
t ion and a plus for the subsubsampled resolution. The  90% confidence areas for 
the five corresponding different densities of shape are shown in the  same figure, 
when the points  are assumed to  be distr ibuted as in Section 4.2 with ~ = 1/1.96 
and means  

(20000),0 (,:eel0) 
m l  = 20 0 20 ' m2 = 20 0 20 ' m3 ---- 20 0 24 ' 

0 0 24~ 0 0 
m 4  = 20 0 20// ' m5 = 20 0 16 ' 

respectively. The  reason for using a = 1/1.96 is t ha t  we assume tha t  the errors 
in the measurements  of the corners are normal ly  distr ibuted,  with 95% of the 
measurements  giving an error smaller than  one pixel. The  90% confidence areas 
corresponds to an uncer ta in ty  of the measured points  tha t  is about  1/20 of the 
side length of the quadrangle.  

1.3 

1.2 

0"9 f 0.8 
0.7 

Fig.  6. 90% confidence areas for the shape of four point configurations with different 
means but with the same standard deviation, together with measured values. 
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In Figure 7, the points from the middle of Figure 6 are shown together with 
90% confidence areas, when the means of the points are given by 

( 2 0 0 0 0 2 0 1  ( 4 0 : 0 0 4 0  } and ( 8 : 0  0 8 0 )  
2 0 0 2 0  ' 040 8 0 0 8 0  ' 

and the standard deviation is a = 1/1.96 for all points. This corresponds to an 
uncertainty of about 1/20, 1/40 and 1/80 of the side length of the quadrangle 
respectively, which is in appliance with the actual sizes of the objects. 

0.9 0.95 1 1.05 1.1 

Fig. 7. 90% confidence areas for shape of four point configurations with different stan- 
dard deviation but with the same mean. 

Figure 7 indicates that  the measured shapes are more accurate than the 
predicted, since all points lie well inside the 90% confidence area. There can 
be several reasons for this. Firstly, the measured corner positions, from Harris' 
corner detector, may be more accurate than one pixel. Secondly, the errors in 
the different corner positions may not be independent. It is well known that  the 
position of a corner tends to move towards the interior of an object when the 
resolution diminishes. This bias in the measurements, gives highly correlated 
errors, when they are not modeled as a bias but  rather as an error. Moreover, 
moving all points a little towards the center of the object does not affect the 
affine shape significantly. The false alarm rate given by (6), can be computed 
from results in [Ber97]. A computation gives that  P F A R  ~- 0.0420. 
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In order to show that  the confidence areas need not always be ellipses, Figure 
8 shows the density of shape when 

( 0 0 1 0 - 7 - 2 1 6 )  
= 0 - 2  (7) 

and a = 1/x/~. 

1 

0 

-1 

-2  

-3  

- 4  
-8  - 6  - 4  - 2  0 2 4 6 

Fig. S. Contour plot of ~(r when a = 1/x/~ and m is given by (7). 

7 C o n c l u s i o n s  

In this paper we have presented a theoretical framework for computing the den- 
sity of different types of invariants, given the density of the underlying points. 
This framework is applied to affine invariants for planar four point configurations, 
especially for the case of normally distributed points and uniformly distributed 
points. From the density of shape, different kinds of levels of significance, can be 
calculated, as well as false alarm rates. The results are verified on real images of 
five different quadrangles, showing the applicability of the theory. 
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