
Factotum: Automatic and Systematic Sharing 
Support for Systems Analyzers 

David James Sherman and Nicolas Magnier 

Laboratoire Bordelais de Recherche en Informatique 
CNRS/Universit6 Bordeaux-l, Bordeaux, France 

sherman I magnier@LaBRI �9 U-Bordeaux. FR 

A b s t r a c t .  Tools for systems analysis often combine different memory- 
intensive data structures, such as BDDs, tuple sets, and symbolic expres- 
sions. When separate packages are used to manipulate these structures, 
their conflicting resource needs can reduce overall performance despite 
the individual efficiency of each. Factotum is a software system for im- 
plementing symbolic computing systems on DAG-based structures that 
critically rely on sharing of equivalent subterms. It provides an subterm 
sharing facility that is automatic and systematic, analogously to the way 
that automatic memory management is provided by a garbage collec- 
tor. It also provides a high-level programming interface suitable for use 
in multithreaded applications. We describe both the theoretical under- 
pinnings and practical aspects of Factotum, show some examples, and 
report on some recent experiments. 

1 I n t r o d u c t i o n  

The size of in-core representations of complex systems is one of the important  
performance issues for model-checking and other systems analysis tools. Shar- 
ing of computationally equivalent substructures is a critical need for reasonable 
performance in these applications: not only does it provide compact represen- 
tations, permitting the entire system being analyzed to be loaded into memory 
and processed, it is the key to avoiding unnecessary recomputation of equivalent 
properties. 

While automatic garbage collection[McC60,Wi195] has become an accepted 
practice for managing memory-intensive applications, automatic sharing man- 
agement is significantly less developed. Sharing of equivalent data  structures in 
memory is well-developed from an algorithmic standpoint, just as explicit alloca- 
tion and deallocation is an important  subject of algorithmic considerations. But  
uniformly-applied automatic detection and maintenance of sharing, analogous to 
automatic garbage collection, is rarely studied as a general-purpose technique. 

Two clear cases where automatic sharing is both critical and well-developed, 
especially in the context of systems analysis, are binary decision diagrams[Ake78] 
[Bry86,Rau96] and sharing trees[ZC95a]. Implementations of binary decision di- 
agrams guarantee, either systematically (for ROBDDs) or at regular intervals 



250 

(for QROBDDs), that all equivalent subgraphs are fully shared in a DAG struc- 
ture. The result is a compact and canonical representation of a truth table, that 
permits efficient calculations that would otherwise explode in time and space. 
Sharing trees are efficient DAG representations of Cuple sets, where maximal pre- 
fix and suffix sharing gives a compact and canonical representation that often 
admits efficient operations. 

A third domain in which sharing of equivalent structures has proved impor- 
tant is term rewriting, where sharing induced by the use of congruence closure 
and its variants can result in exponential speedups at modest (quadratic or 
linear) cost[Che80,RV90,She94,Mag94,Ver95]. These techniques have not, how- 
ever, made their way into the mainstream of accepted practice. The same ar- 
gument can be made for memo functions[Mit68] in functional programming 
languages[Hug85]; while memoization (also called tabulation) is well-known, it 
is not systematically applied to all functions. 

Factotum is an attempt to provide the advantages of automatic uniform 
sharing to implementors of systems analyzers in general, where computation is 
performed on labeled tree-like structures with sharing. 1 It grew out of the needs 
of the Clovis project 2, where decision-diagrams, sharing trees, and memoized 
function evaluation are needed simultaneously. Factotum is directly inspired by 
automatic garbage collection, and aims to offer the same kind of freedom from 
implementation details and the same kinds of guarantees about correctness and 
global performance. 

1.1 Key Observations 

The key observation is that the notions of equivalence that permit sharing in the 
systems cited above are congruences. That is, the addresses of nodes in memory 
can be considered as names of equivalence classes, and any two nodes with the 
same label and pairwise equivalent children are also equivalent. Two children are 
known to be equivalent if they have the same equivalence class name, that is, 
if their addresses are equal. BDDs and sharing trees use hash tables to discover 
that an equivalent node already exists and can be shared. While these systems 
guarantee prefix sharing by construction, suffix sharing is introduced by a reduce 
operation that consults this hash table. 

It should consequently be possible to generalize the congruence-based tech- 
niques from term rewriting to provide a system of more widespread utility. 

Several other observations, based on experience with the systems described 
above and analysis of their implementation, motivated the design of Factotum. 

1. Efficiency in these systems is due to sharing of equivalent nodes. 

1 We use the slightly odd term "tree-like" to describe structures that are trees from 
a naive algorithmic standpoint but are concretely implemented as directed acyclic 
graphs. Terms (with sharing) axe one example. 
A collaboration between the LaBRI (Universit~ Bordeaux-l) and the LIP-6 (Univer- 
sit~ Paris-6) laboratories, concerning modular model-checking of industrial systems. 



251 

2. Lack of sharing means a loss of efficiency, 3 but not of correction. 
3. Sharing is (re-)established by calls to a reduce operation throughout the 

code. 
4. The algorithms for the basic operations are defined at a low level of abstrac- 

tion. 
5. The necessary top-down and bottom-up traversals of the data structures, 

used to implement basic operations, are defined ad hoc. 

1.2 K e y  claims 

The key claims that we make based on these observations are the following. 
First, every one of the systems we have studied implements sharing discovery 

and maintenance in its own way. There is therefore a lot of reimplemention and 
revalidation, of what is perhaps the least interesting and most fastidious part of 
the system. 

Second, optimal algorithms do not necessarily mean fast implementations, 
unless the measure of optimality considers the sequence of operations that will 
be performed. While one can show that the set operations in [ZC95a] are optimal 
in the sense that each restores maximal sharing when it is done, this requirement 
imposes a systematic overhead, and it is not clear whether overall performance 
might not be improved in some cases by checking for sharing less often. A copying 
garbage collector can improve overall performance when most objects have short 
lifetimes[App87,Wi195], simply because it is less eager reclaiming memory; in the 
same way, a basic sharing service may improve overall performance by checking 
for sharing less frequently. 

Third, and finally, sharing ought to be automatic and systematic. It should 
be available without the need for algorithmic support in the application code, 
and it should be available for all objects manipulated by the system. 

The Factotum system aims to provide just such an automatic and system- 
atic sharing service, validated once and for all, where the sharing policy can 
be fine-tuned for overall performance, and where the structures in memory are 
manipulated using high-level tools. Factotum makes it possible to integrate, in 
the same application, different system representations and analysis techniques 
while guaranteeing overall correctness and performance. 

1.3 Out l ine  of  the  p a p e r  

In the first part of what follows, section 2, we give a brief overview of the Fac- 
totum system and its basic concepts. Section 3 gives the theoretical foundations 
and underlying semantics of the system, using the RWS calculus. Some concrete 
and intuitive examples of Factotum use are shown in section 4, while section 5 
reports on our initial experiments. We conclude in section 6. 

3 Perhaps catastrophically. 



252 

2 Factotum Concepts  

Factotum is conceived as a programmer's toolbox, providing an integrated set of 
operations on tree-like structures with sharing. The tools provided by Factotum 
are normally used by higher-level application code to perform some kind of 
symbolic computation, such as set-based or term-rewriting calculations. 

The applications programmer attaches labels to the tree-like structures pro- 
vided by Factotum, and assigns an application-specific semantics to these labeled 
structures. Factotum does its best to provide an efficient in-core representation, 
including maintaining and introducing sharing of equivalent structures. This ap- 
proach maintains a clear separation between mechanism and policy: Factotum 
provides the means to perform operations and some basic guarantees, while the 
client decides what operations to perform and what the result means. 4 Structures 
with different semantics can be freely mixed in memory. 

The runtime system is automatically initialized at the first use of a Factotum 
object. Memory and sharing management take place automatically during the 
course of the computation. 

The sharing subsystem in Factotum works independently from the garbage 
collector to share nodes in memory when possible and convenient. It can, like the 
garbage collector, intervene at any moment during the computation. Sharing is 
transparent: the application cannot detect the presence (or absence) of sharing 
for a given node. Whether it is possible to share two given nodes is determined by 
node equivalencies indicated by the application code, and observed congruence 
between existing nodes. The fact that two nodes can be shared does not mean 
that they are, or will be. The sharing subsystem determines when it is advisable 
to share nodes based on its own internal policies and its own history of sharing. 

2.1 N a m e s  a n d  C u r s o r s  

The basic Factotum objects that the applications programmer manipulates are 
Names, that contain fixed references to nodes in memory, and Cursors, that en- 
capsulate an arbitrary exploration below a fixed reference. Figure 1 summarizes 
the relations between nodes in memory and the objects that refer to them. 

A cursor encapsulates an arbitrary tree-like inspection of a structure in mem- 
ory. A Cursor object always refers to some node in memory, and, like Name ob- 
jects, can inspect or modify the label, arity, and children of the node. A cursor 
can also be moved up, down, right, and left in the tree, relative to its current 
position. A cursor is restricted to the subtree rooted at the node at which the 
cursor was created. 

However, the meaning of cursor movement operations is not clear when nodes 
may be arbitrarily shared. Figure 2 shows the confusion in the definition of the 
parent and sibling relations between nodes that arises in the presence of uniform 
sharing. 

4 This is a longstanding distinction, of which the X Window System remains one of the 
most popular proponents. An interesting recent discussion of the difference between 
strategy, policy, and mechanism can be found in [WJNB95]. 



. . . . . . . . . . . . . . . .  ..---::: 
N a m e  
arity() 
label 0 
child (int) 
etc... 

2 5 3  

Cursor 
down ( in t )  
down (Label*) 
right () 
r i g h t  (Label*) 
l e f t  () 
l e f t  (Label*) 
up() 
etc. . .  

Fig. 1. Name and Cursor objects are the two ways to refer to nodes in memory 

~ J  
right = ? 

Fig. 2. Ambiguity in the right-sibling relation due to sharing 

The  solution is tha t  every cursor remembers the history of its descent in 
the da ta  structure. I t  is in this way tha t  a cursor is said to encapsulate its 
exploration. Since the parent relations between nodes are established relative to 
the unique history of a cursor, there is no ambiguity in the choice of the parent  
and siblings of a node in a given context. 

This solution also has two further practical consequences. First, since these 
relations are defined relative to the stored histories of cursors, the da ta  s tructure 
in memory  has no provision for storing parent and sibling pointers. This greatly 
reduces the physical size of the objects in memory, allowing us to store larger 
structures, and greatly reduces the need for costly pointer update  when nodes are 
added and deleted. Second, the encapsulation of the s tate  of a cursor lends itself 
to mut i threaded applications, where only the global da ta  structure in memory  
is shared between processes. 

2.2 M e m e ~ o s  

The state  of a cursor can be stored and restored at a later t ime by a memento  
object.  The  s tate  encapsulated in such a memento  is defined by the cursor history 
and the node the cursor presently refers to. A memento is stored and discarded 
by the application program, and can be applied an arbi t rary number  of times. 



254 

Among other things, mementos provide an undo facility. When a memento  
is applied, any modifications to the cursor since the creation of the memento  are 
forgotten, and any nonpersistent modifications to the subject da ta  s tructure are 
abandoned.  

2.3 C o u p l e d  Traversals 

An impor tan t  observation is tha t  most interesting analyzer operations are simul- 
taneous, or parallel, traversals of different structures. Consider the case of set 
difference in sharing trees[ZC95a]. The basic algorithm is to t race the paths  in the 
minuend and the subtrahend, and only include in the result those paths  tha t  are 
in the one but not the other. Another example is tree pattern-matching[HO82],  
which compares a pa t te rn  t e rm to a subject term, and responds with a match  
when the two agree. In both cases the intuitively satisfying solution is to define 
traversals with several cursors moving together. Factotum provides specialized 
support  for these kinds of applications: coupled traversals. 

In a coupled traversal, a vector of cursors is moved in parallel. The first 
component,  the independent cursor, is moved by the traversal as it would be 
normally. The other components,  the dependent cursors, t ry  to follow the in- 
dependent cursor to nodes in their own da ta  structure with the same labels. 
The  traversal  also maintains a vector of s tatus registers; dependent cursors that  
were not able to follow the independent cursor are marked invalid, and remain 
so until the traversal  brings them back up to a point where they agree with the 
independent cursor again. 

Oftentimes we want to detect the disagreement of a dependent cursor, make 
some change to the da ta  structure, and retry the move to bring the cursor back 
to a valid state. The r e t r y  operation of the traversal does exactly that .  

Cursor Cl status 

down 1 valid 
up valid 
down 2 valid 

Cursor c2 status 

down (a) valid 
up valid 
down (b) invalid 
add_child invalid 
set_label (b) invalid 
retry valid 

Fig. 3. Coupled traversal of two structures 

Figure 3 shows an example of two coupled cursors cl and c2, where the second 
lacks a child labeled b. The figure shows the sequence of operations emit ted by 
the traversal,  intermixed with the client operations that  add the necessary child 
when the dependent  cursor becomes invalid. 



255 

3 Underlying Semantics 

Factotum is more than a simple memory manager, since it constantly improves 
the representation in memory of the data  it manages. Three natural questions 
immediately impose themselves: What  improvements to the data  structure in 
memory are permitted? Who can perform them? What  justifies tha t  they are 
correct? 

In short, we need to characterize the permissible transformations of the data  
structures in memory, and define an underlying semantics that  justifies the im- 
provements. This underlying semantics must admit sharing from congruence, so 
that  we can respond to the requirements evoked in sections 1.1 and 1.2. 

3.1 T h e  R W S  Ca lcu lus  

Let Name be a primitive domain of variables, and Sig be a domain of shal- 
low terms of depth at most two over some alphabet s with rank function 
p and the variables in Name. We write, for example, X , Y ,  Z E Name and 
a, g(X),  f ( X x ,  X2) E Sig. The RWS calculus[She90,She94] uses three tables to 
define the state of a rewriting system: 

bind : Name --~. Sig U {Nil} 
reduce : Name ~ Name U {Nil} 
index : Sig --+ Name U {Nil} 

Formally, congruence is defined by the following. 

Definition 1. Let E be a binary relation on elements of Name. Two variables 
X , Y  E Name are congruent under E if bind X = f (X1 , . . . ,Xp i ) ;  bind Y = 
f(Y1, ..., Ypl); and Xi  E Yi for all i from 1 to p f  . 

For any binary relation E on elements of Name, we can define congruence under 
E. 

Let reduce* be the closure of reduce. Of the different interpretations of these 
tables, the useful one in this context is given by the function rterm: 

D e f i n i t i o n  2. Function rterm : Name -+ E terms produces the term given by 
following reduce entries as far as possible for each subterm: 

f (r term X 1 , . . . ,  r term XpI ) 
r term X= where bind reduce* X = f ( X 1 , . . . , X p f ) "  

It is useful to consider an example of how we can use these tables. Suppose 
we want to represent all of the pertinent information about the state of an ordi- 
nary term-rewriting system, with labeled terms and the usual sort of rewriting 
rules. Consider an initial term f (d,  h(b)) subject to the rules {b --+ a, h(a) -~ 
c,d -+ g(h(a))}. The left half of figure 4 on page 9 shows the contents of the 
three tables after rewriting this term, and the right half gives a schematic inter- 
pretat ion of the table contents. Note that  X2 = c, X2 = h(a), and X2 = h(b) are 
logical consequences of the table contents. The three tables represent a state of 



256 

knowledge about a rewriting system. The RWS calculus allows transformations 
between such states by means of a set of logically permissible transformations, 
the rules shown in figure 5 on page 9. In the figure, by a slight abuse of notation, 
only the change to the tables is shown under the bar. The calculus guarantees 
that any sequence of applications of these rules gives a state that is a logical 
consequence of the initial state and the axioms used by the Reduction (2) rule. 

3.2 P r a c t i c a l  c o n s e q u e n c e s  

The data structures in memory manipulated by Factotum are a concrete repre- 
sentation of the bind, reduce, and index tables: bind is the memory, reduce is the 
set of indirection pointers, and index is the hash table used by the Sharer. We 
now describe the practical consequences of this choice of underlying semantics 
for the Factotum system. 

The client code can build and replace nodes, thanks to the Construction and 
Reduction rules. These operations are performed using the higher-level interface 
described in section 2. Replacement is either explicit, following an indication 
by the client that two nodes are equivalent; or implicit, that is, induced by the 
modification of the label or the children associated with a node. 

Factotum systematically uses the Collapsing, Rebinding, and Sharing I rules, 
to provide the most up-to-date information to the client code. By using these 
rules it thus makes improvements to the memory contents that persist after the 
client request. 

The sharing subsystem can use the Add Index, Sharing II, and Indexing rules 
to improve sharing in the heap. Its strategy for applying these rules is completely 
internal, and transparent for the client. 

Factotum therefore guarantees to the client that the result of its actions is 
correct for the equational semantics of the client operations. 

4 Examples 

To illustrate the ease with which the client programmer manipulates Factotum 
structures, we include in this section a short example of an operation on shared 
structures and the C++ code used to perform it. Other examples can be found 
in [She97a] and [She97b]. 

Consider the calculation of set difference in sharing trees[ZC95a]. Figure 6 
shows an example of such a calculation. The intuition behind the algorithm is: 
traverse the first set, and try to follow in the second; as long as they agree, do 
not include anything in the result; at any point where they differ, copy the un- 
subtracted subtree from the minuend to the result, and go on to the next branch. 
(The "copy" should of course be shared with the original.) Using Factotum, we 
write the following code for set difference. 



257 

bind 

Xo = f(x1, x2) 
X1 = d  
Xz = h(X3) 
X3 = b  
X4 = a  
X s = c  
X6 ---- h(X, )  
x r  = g(Xs) 

reduce 

X2 = X5 
X3 = X4 
X1 = X7 

index Xo : f 

a = X 4  ~ J 
h(X3) X2 X1 : h"*'X5 : c 

h(x,) = x~ xo:[ h [ "~" 
X3: b 

.4. ." 
X4:a  �9 

bind and reduce 

h(X3) 

h(X4) 

a0 
index 

Fig.  4. Table contents representing f(d, h(b)) under rewriting. Solid lines are pointers, 
dotted lines are indirection pointers. 

Construction X is not reachable from X0, nor from c~ 
bind[X +-- a] (1) 

Reduction rterm X = a, rterm Y =/3, F ~ a --~/3 
reduce[X ~-- Y] (2) 

reduce (reduce X)  # Nil 
Collapsing reduce[X +-- reduce (reduce X)] (3) 

Rebinding bind X = a, reduce X = Y, bind Y =/3 # Nil 
bind[X +--/3] (4) 

Sharing I bind X = f ( X l , . . . ,  X i , . . . ,  XM), reduce Xi = Y ~ Nil 
bind[X ~- I ( X , , . . . ,  Y , . . . ,  XM) ] 

(5) 

bind X = a 
Add Index index[c~ +- X] (6) 

Sharing II bind X = bind Y # Nil 
reduce[X +- Y] (7) 

Indexing Y = index (bind X)  # Nil 
reduce[X +-- Y] (8) 

Fig.  5. Permissible transformations in the RWS calculus, where X, Y E Name, <~ and 
/3 are terms, and F is a set of axioms (rewriting rules). 



258 

. [=] 

] 

] 

Fig. 6. Set difference in sharing trees 

DFTraversal t(~minuend, &subtrahend, &resul t ) ;  
t . s t a r t ( )  ; 
w h i l e ( ! t . a t _ e n d ( ) )  

{ 
i f  ( t . s t a tu s (~sub t r ahend)  == va l id )  

{ / /  both agree so f a r ;  include nothing ye t .  
t . n e x t ( ) ;  

} 
else 

{ // disagreement; copy out unsubtracted part. 
if (t.status(~result) == invalid) 

{ // result needs a path to here. 
add_spine(minuend, result); 

} 
r e s u l t . r e p l a c e ( m i n u e n d . g e t ( ) ) ;  
t.validate(&result); 
t.next branch(); 

The auxiliary function add_spine copies the path from the root; once the spine 
is copied, we simply share the rest of the subtree from the minuend, and go on 
to the next branch of the subtrahend. 

We claim that this code sufficiently high-level to be intuitive, and straight- 
forward to validate. No explicit treatment of suffix sharing is necessary; it is 
handled by Factotum. 



259 

5 Experiments 

The initial motivation for Factotum was the need to seamlessly integrate different 
representations of complex systems--n-avy decision diagrams, 5 sharing trees, 
functional evaluation--as part of the Clovis project. In this section we present 
some preliminary results of the associated implementation effort. 

Our first experiments with Factotum have chiefly concerned the testing and 
validation of the higher-level programming interface. This approach permitted us 
to establish that the system as defined was useful, before investing in its in-depth 
optimization. Our experimental implementation uses the cgc lightweight gener- 
ational garbage collector[cgc97] for memory management, and the fast dynamic 
hash tables of Larson[Lav88] as implemented by Strandh[Str92]. 

MEc[ABC94] is a model-checking program that computes the synchroniza- 
tion product of automata. These synchronization products can be computed by 
operations on explicit representations of automata, or using tuple-set operations 
[ZC95b]. In our first experiment we implemented a collection of tuple set op- 
erations inspired by Paquay's sharing trees implementation of MEC[Paq96]. An 
example of this experiment is the set difference example from section 4. A use- 
ful observation is that the systematic and transparent nature of shaving can be 
assumed in the application code, leading to more efficient algorithms. This can 
be seen in the example, where a difference between the two sets requires a copy 
of the unsubtracted subtree. Instead of a copy of this subtree, the line 

result.replace(minuend.getO); 

shares the current node in r e s u l t  with the current subtree in minuend, taking 
constant time. 

Toupie[RC93] is an interpreter of the propositional #-calculus extended to 
finite symbolic domains, used to solve constraints and to describe properties of 
finite-state machines. In addition to the usual features of constraint languages, 
Toupie provides universal quantification and permits the definition of relations 
as fixpoints of equations. Its interest for this study is that its execution motor 
is based on n-ary decision diagrams, which critically need subtree sharing for 
efficiency, and memoization of function results. 

The data structures and operations used for the Clovis project are directly 
inspired by Toupie. An important complication is that our variable domains 
ave extended to arbitrary-precision integers and character strings. The former 
are necessary to adequately deal with nonbounded counters that arise in the 
modeling of systems described by VHDL specifications. The latter are simply 
convenient. In both cases, the liberty with which Factotum lets application pro- 
grams define the labels on nodes greatly simplifies their coding. Rather than 
forcing us to inject the variable domains onto integer intervals, Factotum per- 
mits us to attach arbitrary labels, while retaining the performance advantages 
of direct access when such an injection is possible. 

s Intuitively, BDDs extended to finite domains. 



260 

Clovis requires both decision diagrams for representing relations, and sym- 
bolic expressions extracted from VHDL programs or used for representing con- 
straints. Both types of data structures are implemented using Factotum. The 
key challenges for a high-performance implementation of Clovis are, first, defin- 
ing Toupie-like operators so that sharing is efficiently maintained; and second, 
making sure that the effects of memoization are obtained by proper sharing of 
common subexpressions. 

A correct response to the first challenge is not a problem: using coupled 
traversals, we define standard operations for set union, intersection, and differ- 
ence; constraint operations for join and selection (or cofactoring); and a parallel 
assignment used for stepwise simulation. Of particular practical interest is the 
tuning of the sharing strategy for overall efficient operation, a problem which is 
still under investigation. 

The second challenge, concerning subterm sharing in symbolic expressions, 
resembles the use of sharing in term-rewriting to obtain the result of memoization 
that we described in chapter 6 of [She94]. The key idea seems to be that each 
projection of a relation on a set of variables be represented by an expression 
(subtree) that can be shared each time it appears, so the effect of its evaluation 
is available whenever the same projection appears in another expression. Work 
on these aspects continues. 

6 C o n c l u s i o n s  

The Factotum system provides an automatic and systematic sharing service 
for systems analysis applications that critically rely on sharing for good perfor- 
mance. It integrates congruence-based sharing techniques and high-level tools for 
manipulating structures in memory, and makes it possible to fine-tune sharing 
policy for overall efficiency. Existing sharing-aware applications, such as BDDs 
and tuple set operations using sharing trees, can clearly benefit from Factotum. 
But Factotum specifically aims at symbolic applications in general where vali- 
dated automatic and systematic sharing provides a real advantage compared to 
explicit ad hoc hashing and memoization techniques. 

The theoretical foundations of Factotum are provided by the RWS calculus, 
that gives an underlying equational semantics to the data structures in memory. 
This semantics is able, by design, to take into account shallow term equivalency 
and tabulation information stored in the data structures. Use of the RWS cal- 
culus lets Factotum guarantee that the results of its transformations, including 
persistent sharing improvements to the representation in memory, respect the 
equational semantics of the client operations. 

Factotum provides a practical high-level programming interface for system 
implementors. Name are Cursor objects encapsulate fixed references (or roots) 
and arbitrary explorations below a fixed node, respectively. These objects protect 
the application code from address modifications induced by garbage collection 
and sharing, and provide a sophisticated programming interface suitable for mul- 



261 

tithreaded applications. Factotum also provides support for coupled traversals, 
which generalize a great many application-level operations. 

Our experiments to-date have concentrated on validating the semantic model 
and programming interface, by reimplementation of the key parts of the existing 
tools MEC and Toupie. Further experiments are under way as part of the Clovis 
project. 

A good deal of future work can already be foreseen. The next clear step is 
in-depth optimization of the Factotum code, based on back-to-back tests with 
existing systems. Experiments in related systems, such as the different approx- 
imations to congruence closure used in the eqc equational programming sys- 
tem, have shown that good results can be obtained with low-order constant 
overhead[She94,Mag94]; consequently we expect positive results from this en- 
gineering effort. A further step is the definition of adaptive strategies for the 
sharing subsystem, based on static or dynamic analysis of a given application, 
that evolve good performance without the hard-coding of application-specific 
strategies. This study must necessarily wait for the development of a body of 
Factotum examples. 

Exploitation of the Factotum model in multithreaded and distributed ap- 
plications is a further topic for research. The latter is of particular importance 
for analysis of industrial systems, where problem sizes are already beyond the 
capacity of monoprocessor machines. 

References 

[ABC94] 

lAke78] 

[App8?] 

[Bry86] 

[cgc97] 

[CheS0] 

[HO82] 

[aug85] 

[Lar88] 

[Mag94] 

[McC60] 

Andr4 Arnold, Didier B~gay, and Paul Crubill~. Construction and Analysis 
of Transition Systems with MEC. Number 3 in AMAST Series in Comput- 
ing. World Scientific Publishers, 1994. 
B. Akers. Binary decision diagrams. IEEE Transactions on Computers, 
27(6):509-516, 1978. 
Andrew Appel. Garbage collection can be faster than stack allocation. 
Information Processing Letters, 25(4), 1987. 
R. Bryant. Graph based algorithms for boolean fonction manipulation. 
IEEE Transactions on Computers, 35(8):677-691, 1986. 
The CGC copying garbage collector. At ftp://ftp.labri.u-bordeaux.fr/, Sep- 
tember 1997. Part of the eqe equational programming project. 
Leslie Paul Chew. An improved algorithm for computing with equations. 
In 21st Annual Symposium on Foundations of Computer Science, 1980. 
Christoph Hoffmann and Michael J. O'Donnell. Pattern matching in trees. 
Journal o] the ACM, pages 68-95, 1982. 
John Hughes. Lazy memo functions. In Functional Programming Languages 
and Computer Architectures. Springer-Verlag, 1985. 
Per-Ake Larson. Dynamic hash tables. Communications of the ACM, 
31(4):446-457, April 1988. 
Nicolas Magnier. Recalculs dans les syst~mes de r~criture et program- 
mation ~quationnelle. Technical Report 974-94, Laboratoire Bordelais de 
Recherche en Informatique, 1994. 
J. McCarthy. Recursive functions of symbolic expressions and their compu- 
tation by machine. Communications of the ACM, 3(4):185-195, 1960. 



262 

[Mit68] 

[Paq96] 

[Rau96] 

[RC93] 

[RV90] 

[She90] 

[She94] 

[She97a] 

[She97b] 

[Str92] 

[Ver95] 

[Wil95] 

[WJNB95] 

[zc95a] 

[ZC95b] 

D. Mitchie. 'Memo' functions and machine learning. Nature, pages 19-22, 
1968. 
Renaud Paquay. Impl6mentation du logiciel de v6rification de module MEC 
avec les arbr6s partag6s. Master's Thesis, University Notre-Dame de la Paix, 
Namur, Belgium, 1996. 
A. Rauzy. An introduction to binary decision diagrams and some of their 
applications to risk assessment. In O. Roux, editor, Acres de l'dcole d'gtd, 
Moddlisation et Vdrification de Processus Parall~les, MO VEP'96, 1996. Also 
Technical Report 1121-96, Laboratoire Bordelals de Recherche en Informa- 
tique. 
Antoine Rauzy and Marc-Michel Corsini. First experiments with Toupie. 
Technical Report 581-93, Laboratoire Bordelais de Recherche en Informa- 
tique, 1993. 
I. V. P~makrishnan and R. Verma. Nonoblivious normalization algorithms 
for nonlinear systems. In Proceedings of the International Conference on 
Automata, Languages, and Programming, 1990. 
David J. Sherman. Lazy directed congruence closure. Technical Report 
90-028, University of Chicago Department of Computer Science, 1990. 
David J. Sherman. Run-time and Compile-time Improvements to Equational 
Programs. PhD thesis, University of Chicago, Chicago, Illinois, 1994. 
David J. Sherman. Factotum: Automatic and systematic sharing support 
for symbolic computation. Technical Report 1174-97, Laboratoire Bordelais 
de Recherche en Informatique, September 1997. 
David J. Sherman. On referential transparency in the presence of uniform 
sharing. Technical Report 1179-97, Laboratoire Bordelals de Recherche en 
Informatique, October 1997. 
Robert Strandh. A dynamic hash library. Available at ftp://ftp.labri.u-bor- 
deaux.fr/, March 1992. Based on Larson, CACM 31(4). 
l~kesh M. Verma. A theory of using history for equational systems with 
applications. Journal of the ACM, 42(5):984-1020, 1995. 
Paul R. Wilson. Garbage collection. ACM Computing Surveys, 1995. Avail- 
able at file://ftp.cs.utexas.edu/pub/garbage/bigsurv.ps. 
Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles. Dy- 

namic storage allocation: A survey and critical review. Technical report, 
University of Texas, 1995. Available at file:/fftp.cs.utexas.edu/pub/gar- 
bage/allocsurv.ps. 
D. Zampunieris and B. Le Charlier. Efficient handling of large sets of tu- 
pies with sharing trees. In Proceedings of Data Compression Conference, 
DCC'95, October 1995. Also Research Paper RP-94-004, Facult~s Univer- 
sitaires Notre-Dame de la Paix, Namur, Belgium. 
Didier Zampuni~ris and Bandouin Le Charlier. An efficient algorithm to 
compute the synchronized product. In Int'l Workshop MASCOTS, 1995. 


