
Efficient Modeling of Memory Arrays in Symbolic 
Ternary Simulation I 

Miroslav N. Velev* Randal E. Bryant ~' * 
mvelev@ece, cmu. edu randy, bryant@cs, cmu. edu 

�9 Department of Electrical and Computer Engineering 
r of Computer Science 

Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A. 

Abstract. This paper enables symbolic ternary simulation of systems with large 
embedded memories. Each memory array is replaced with a behavioral model, where 
the number of symbolic variables used to characterize the initial state of the memory 
is proportional to the number of distinct symbolic memory locations accessed. The 
behavioral model provides a conservative approximation of the replaced memory 
array, while allowing the address and control inputs of the memory to accept sym- 
bolic ternary values. Memory state is represented by a list of entries encoding the 
sequence of updates of symbolic addresses with symbolic data. The list interacts with 
the rest of the circuit by means of a software interface developed as part of the sym- 
bolic simulation engine. This memory model was incorporated into our verification 
tool based on Symbolic Trajectory Evaluation. Experimental results show that the 
new model significantly outperforms the transistor level memory model when verify- 
ing a simple pipelined data path. 

1 Introduction 
Ternary simulation, where the "unknown" value X is used to indicate that a signal can 
be either 0 or I, has proven to be very powerful for both validation and formal verifica- 
tion of digital circuits [I0]. Given that the simulation algorithm satisfies a monotonic- 
ity property to be described later, any binary values resulting from simulating patterns 
with X's would also result when the X's are replaced by any combination of O's and 
l 's.  Hence, employing X's reduces the number of simulation patterns, often dramati- 
cally. However, ternary simulators will sometimes produce a value X, when an exhaus- 
tive analysis would determine the value to be binary (i.e., 0 or 1). This has been 
resolved by combining ternary modeling with symbolic simulation [1], such that the 
signals can accept symbolic ternary values, instead of the scalar values 0, 1, and X. 
Each symbolic ternary value is represented by a pair of symbolic Boolean expressions, 
defined over a set of symbolic Boolean variables, that encode the cases when the signal 
would evaluate to 0, 1, or X. The advantage of symbolic ternary simulation is that it 
efficiently covers a wide range of circuit operating conditions with a single symbolic 
simulation pattern that involves far fewer variables than would be required for a com- 
plete binary symbolic simulation. 

One of the hurdles in simulation has been the representation of memory arrays. 
These have been traditionally modeled by explicitly representing every memory bit. 

1. This research was supported in part by the SRC under contract 97-DC-068. 



137 

While this is not a problem for conventional simulation, symbolic simulation would 
require a symbolic variable to denote the initial state of every memory bit. Further- 
more, bit-level symbolic model checking [4][5] would need two symbolic variables 
per memory bit, in order to build the transition relation. Therefore, in both methods the 
number of variables is proportional to the size of the memory, and is prohibitive for 
large memory arrays. 

This limitation is overcome in our previous work [11] by replacing each memory 
array with an Efficient Memory Model (EMM). The EMM is a behavioral model, 
which allows the number of symbolic variables used to be proportional to the number 
of distinct symbolic memory locations accessed rather than to the size of the memory. 
It is based on the observation that a typical verification execution sequence usually 
accesses only a limited number of distinct symbolic locations. However, it was 
assumed that the memory address and control inputs can accept only symbolic binary 
values. 

To our knowledge, there has not been previous research on how to define a behav- 
ioral memory model for the cases when any of its address or control inputs has the 
value X in symbolic ternary simulation. Our experiments with Version 2.5 of the 
Cadence Design Systems VERILOG-XL indicated that a Read operation performed 
with an address containing X's returned the contents of the memory location deter- 
mined when the X's are replaced by l's. Also, a Write operation performed with an 
address containing X's did not alter the contents of any memory location. Such behav- 
ior might be sufficient in conventional informal logic simulation, where performance is 
of greater concern than functionality when simulating X values. However, it is not ade- 
quate for ternary simulation combined with formal verification, where such behavior 
might result in false positive verification results. The goal of this work is to enable the 
EMM to accept symbolic ternary values at its address and control inputs, while provid- 
ing a conservative approximation of the replaced memory array. Conservative approxi- 
mation means that false positive verification results are guaranteed not to occur, 
although false negative verification results are possible. 

This paper builds on [11] with the following contributions: 1) an extended EMM 
which can have symbolic ternary values at its control and address inputs, and 2) an 
EMM-circuit interface which guarantees that the EMM would behave as a conserva- 
tive approximation of the replaced memory array. Since symbolic ternary values are a 
superset of symbolic binary values, the extended EMM defined in this paper is a super- 
set of the one from [11]. 

Experimental results for the EMM were obtained using the Symbolic Trajectory 
Evaluation (STE) [10] technique for formal verification. STE is an extension of sym- 
bolic simulation that has been used to formally verify circuits, including a simple pipe- 
lined data path [3]. Incorporation of the EMM in STE enabled the verification of the 
pipelined data path with a significantly larger register file than previously possible. 

A symbolic representation of memory arrays has been used by Burch and Dill [6]. 
They apply uninterpreted functions with equality, which abstract away the details of 
the data path and allow them to introduce only a single symbolic variable to denote the 
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initial state of the entire memory. Each Write or Read operation results in building a 
formula over the current memory state, so that the latest memory state is a formula 
reflecting the sequence of memory writes. In our method, the memory state is repre- 
sented with a list of  entries encoding the sequence of updates of symbolic addresses 
with symbolic data. Our Write operation modifies this list. However, we perform the 
verification at the circuit level of the implementation and need bit-level data for sym- 
bolic word-level memory locations in order to verify the data path. This requires the 
user to introduce symbolic variables proportional to both the number of distinct sym- 
bolic memory locations accessed and the number of data bits per location. 

This paper advocates a two step approach for the verification of circuits with large 
embedded memories. The first step is to use STE to verify the transistor level memory 
arrays independently from the rest of the circuit. Pandey and Bryant have combined 
symmetry reductions and STE to enable the verification of very large memory arrays at 
the transistor level [9][8]. The second step is to use STE to verify the circuit after the 
memory arrays are replaced by EMMs and is the focus of this work. 

In the remainder of the paper, Sect. 2 describes the symbolic domain used in our 
algorithms. Sect. 3 gives a brief overview of STE. Sect. 4 presents the EMM and Sect. 
5 introduces its underlying algorithms. Sect. 6 explains the way to incorporate the 
EMM into STE. Experimental results and conclusions are presented in Sect. 7. 

2 Symbolic Domain 
We will consider three different domains - control, address, and data - corresponding 
to the three different types of information that can be applied at the inputs of a memory 
array. A control expression c will represent the value of a node in ternary symbolic 
simulation and will have a high encoding c.h and a low encoding c.l, each of which is a 
Boolean expression. The ternary values that can be represented by a control expression 
c are shown in Table I. We would write [c.h, c.l] to denote c. It will be assumed that 
c.h and c.l cannot be simultaneously false. The types BExpr, CExpr  will denote 
respectively Boolean and control expressions in the algorithms to he presented. 

Ternary value c.h c.l 

0 false true 

1 true false 

X true 

Table 1. 2-bit encoding of ternary logic 

true 

The memory address and data inputs, since connected with circuit nodes, will 
receive ternary values represented as control expressions. Hence, addresses and data 
will be represented by vectors of control expressions having width n and w, respec- 
tively, for a memory with N = 2 n locations, each holding a word consisting of w bits. 
Observe that an X at a given bit position represents the "unknown" value, i.e., the bit 
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can be either 0 or 1, so that many distinct addresses or data will be represented. To cap- 
ture this property of ternary simulation, we introduce the type ASExpr (address set 
expression) to denote a set of addresses. Similarly, the type DSExpr (data set expres- 
sion) will denote a set of data. Note that in both cases, a set will be represented by a 
single vector of ternary values. We will use the notation (a I . . . . .  an) to explicitly repre- 
sent the address set expression a, where a i is the control expression for the correspond- 
ing bit position of a. Data set expressions will have a similar explicit representation, 
but with w bits. Symbolic variables will be introduced in each of the domains and will 
be used in expression generation. 

The symbols U A and ~ will designate the universal address and data sets, respec- 
tively. They will represent the most general information about a set of addresses or 
data. Similarly, the symbols O A and ~D will denote the empty address and data sets, 
respectively. In ternary logic, U A and q-/9 can be represented by vectors of control 
expressions consisting entirely of Xs. 

We will use the term context to refer to an assignment of values to the symbolic 
variables. A Boolean expression can be viewed as defining a set of contexts, namely 
those for which the expression evaluates to true. 

A symbolic predicate is a function which takes symbolic arguments and returns a 
symbolic Boolean expression. The following symbolic predicates will be used in our 
algorithms, where c is of type CExpr, and a is of type ASExpr: 

Zero(c) "- ~ c . h  ^ c . l ,  (1) 

Hard(c) - c.h ^ ~ c . l  , (2) 

Soft(c) - c.h ^ c . l ,  (3) 
la 

Unique(a) "- A ~ S~ " (4) 
i=1 

The predicates Zero, Hard, and Soft  define the conditions for their arguments to be the 
ternary 0, 1, and X, respectively. The predicate Unique defines the condition for the 
address set expression a to represent a unique or single address. 

The selection operator ITE  (for "If-Then-Else"), when applied on three Boolean 
expressions, is defined as: 

ITE(b, t, e) - (b ^ t) v ( ~ b  ^ e) . (5) 

Address set comparison with another address set is implemented as: 
n 

al  = a2 - "-1 V [(al'hi ~ a2"hi) v (al . l  i ~ a2.li)], (6) 
i=1 

where al .h  i and a 1. I i represent the high and low encodings of the control expression for 
bit i of address set expression a 1. Address set comparison with the universal address 
set is implemented as: 

n 

a = U A "-" A S~ (7) 
i=1 

Address set selection a 1 ~-- ITE(b, a 2, a 3) is implemented by selecting the corre- 
sponding bits: 
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al .h  i ~-- ITE(b, a2.h i, a3.hi), al . l  i <-- ITE(b, a2.l i, a3.1i), i = 1 . . . . .  n . (8) 

Checking whether address set a 1 is a subset of  address set a 2 is done by: 
n 

a l c - - a 2 - - ~  V (a l . h iA- 'a2 .h i  v a l . l i ^ -~a2.1i ) ,  (9) 
i=1  

and checking address sets a 1 and a 2 for overlap is implemented by: 
n 

Overlap(al ,  a2) - A (al.li ^ a2"li v al .h i ^ a2.h. ) . (10) 
i=1  

Computing l ~ a, where a is an address set expression and l is a vector of  Boolean 
expressions, is implemented by: 

n 

l ~  a - A ITE(li, a.h i, a. l i) .  (11) 
i = 1  

The definition of symbolic predicates over data set expressions is similar, but over vec- 
tors of  width w. 

Note that all of the above predicates are symbolic, i.e., they return a symbolic 
Boolean expression and will be true in some contexts and false in others. Therefore, a 
symbolic predicate cannot be used as a control decision in algorithms. The function 
Valid(), when applied to a symbolic Boolean expression, will return t rue  if the expres- 
sion is valid or equal to t rue  (i.e., true for all contexts), and will return false otherwise. 
We can make control decisions based on whether or not an expression is valid. 

We will also need to form a data set expression that is the union of two data set 
expressions, d 1 and d 2. I f  these differ in exactly one bit position, i.e., one of them has a 
0 and the other a 1, then the ternary result will have an X in that bit position and will be 
an exact computation. However, if d 1 and d 2 differ in many bit positions, these will be 
represented as Xs in the ternary result and that will not always yield an exact computa- 
tion. For example, i f d  1 = (0, 1) and d 2 = (1, 0), the result will be (X, X) and will not be 
exact, as it will also contain the data set expressions (0, 0) and (1, 1), which are not 
subset.~ of  dl or de. We define the nneration annroxim~ta union dl u dr nf twn  data ~et 
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described as assertions, of the form A LE~Sro C. The antecedent A specifies con- 
straints on the inputs and the internal state of the circuit, and the consequent C speci- 
fies the set of expected outputs and state transitions. Both A and C are formulas that 
can be defined recursively as: 

1) a simple predicate: (node n = b), or (node_vector N = a), or (node__vector N = 
d), where b, a, and d are of types BExpr, ASExpr, and DSExpr, respectively, 
and in the last two cases each node of the node vector N gets associated with its 
corresponding bit-level control expression of the given address-set or data-set 
expression; 

2) a conjunction o f  two formulas: F 1 ̂  F 2 is a formula i f F  1 and F 2 are formulas; 

3) a domain restriction: (b ---> F), where b is of type BExpr, is a formula if F is a 
formula, meaning that F should hold for the contexts in which b is true; 

4) a next time operator: N F  is a formula if F is a formula, meaning that F should 
hold in the next time period; 

5) a memory array indexing predicate: (mem[a] = d), where mem is a memory 
name, a is of type ASExpr, and d is of type DSExpr. 

A shorthand notation for k nested next time operators is N k. A formula is said to 
be instantaneous if  it does not contain any next time operators. Any formula F can be 
rewritten into the form F 0 ^ NF 1 ^ N2F2 ^ �9 . �9 ̂  NkFk, where each formula F i is 
instantaneous. For simplicity in the current presentation, we will assume that the ante- 
cedent is free of self inconsistencies, i.e., it cannot have a node asserted to two comple- 
mentary logic values simultaneously. 

STE maintains two global Boolean expressions OK a and OK C, which are initial- 
ized to be true. The STE algorithm updates the circuit node values and the global 
Boolean expressions at every simulation time step. The antecedent defines the stimuli 
and the consequent defines the set of acceptable responses for the circuit. The expres- 
sion OK A maintains the condition under which the circuit node values are compatible 
with the values specified by the antecedent. The expression OK c maintains the condi- 
tion under which the circuit node values belong to the set of acceptable values speci- 
fied by the consequent. The Boolean expression --,OK A v OK c defines the condition 
under which the assertion holds for the circuit. 

4 Efficient Modeling of Memory Arrays 
The main assumption of our approach is that every memory array can be represented, 
possibly after the introduction of some extra logic, as a memory with only write and 
read ports, all of which have the same numbers of address and data bits, as shown in 
Fig. 1. 

The interaction of the memory array with the rest of the circuit is assumed to take 
~place when a port E n a b l e  signal is not 0. In case of multiple port E n a b l e s  not being 
0 simultaneously, the resulting accesses to the memory array will be ordered according 
to the priority of the ports. 
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w ,  

t l  

Fig. 1. View of a memory array, according to our model 

During symbolic simulation, the memory state is represented by a list containing 
entries of the form (h, s, a, d), where h and s are Boolean expressions denoting the set 
of contexts for which the entry is defined, a is an address expression denoting a mem- 
ory location, and d is a data expression representing the contents of this location. The 
context information is included for modeling memory systems where the Write opera- 
tion may be performed conditionally on the value of a control signal c. The Boolean 
expression h represents the contexts Hard(c) ^ Unique(a), when the control signal 
was 1 and the address a was unique. Under contexts h the location a is definitely over- 
written with data d. The Boolean expression s represents the contexts Soft(c) v 
Hard(c) ^ ~Unique(a), when the control signal was an X, or it was a 1 and the address 
was not unique. Under contexts s the location a is uncertainly overwritten with data d. 
Initially the list is empty. The type List will be used to denote such memory lists. 

The list interacts with the rest of the circuit by means of a software interface 
developed as part of the symbolic simulation engine. The interface monitors the mem- 
ory input lines. Should a memory input value change, given that its corresponding port 
E n a b l e  value c is not 0, a Write or a Read operation will result, as determined by the 
type of the port. The Address and Data lines of the port will be scanned in order to 
form the address set expression a and the data set expression d, respectively. A Write 
operation takes as arguments both a and d, while a Read operation takes only a. Both 
of these operations will be presented in the next section. 

After completing a Write operation, the software interface checks every read port 
of the same memory for a possible on-going read (as determined by the port E n a b l e  
value being different from 0) from an address that overlaps the one of the recent write. 
For any such port, a Read operation is invoked immediately. This guarantees that the 
EMM will behave as a conservative approximation of the replaced memory array. 

A Read operation retrieves from the list a data set expression rd that represents 
the data contents of address a. The software interface completes the read by scheduling 
the D a t a  lines of the port to be updated with the data set expression ITE(Hard(c), rd, 
ITE(Sofl(c), (rd C_) d), d)). The data set expression d is the one that the D a t a  lines will 
otherwise have. 
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5 Implementation of Memory Operations 
5.1 Support  Operations 

The list entries are kept in order from head (low priority) to tail (high priority). The 
initial state of every memory location is assumed to contain arbitrary data and is repre- 
sented with the universal data set ~ Entries in the list from low to high priority 
model the sequence of memory writes with the tail entry being the result of the latest 
memory update. Entries may be inserted at the tail end only, using procedure 
InsertTailO, and may be deleted using procedure Delete(). 

5,2 Implementation of Memory Read and Write Operations 

The Write operation, shown as a procedure in Fig. 2, takes as arguments a memory list, 
a control expression denoting the contexts for which the write should be performed, 
and address set and data set expressions denoting the memory location and its desired 
contents, respectively. As the code shows, the write is implemented by simply insert- 
ing an element into the tail (high priority) end of the list, indicating that this entry 
should overwrite any other entries for this address. An optimized implementation of 
the Write operation will be presented after introducing the Read operation. 

procedure Write(List mem, CExpr  c, ASExpr a, DSExpr d) 

/* Write data d to location a under control c */ 

h e-- Hard(c) ^ Unique(a) 

s e-- Soft(c) v Hard(c) ^ ~Unique(a) 

lnsertTail(mem, (h, s, a, d)) 

Fig. 2. Implementation of the Write operation 

Two implementations of the Read operation are shown in Figures 3 and 4 as func- 
tions which, given a memory list and an address set expression, return a data set 
expression indicating the contents of this location. The purpose of both implementa- 
tions is to construct a data set expression giving the contents of the memory location 
denoted by its argument address set expression. They do this by scanning through the 
list from lowest to highest priority. For each list entry, a Boolean expression 
hard_match is built that indicates the contexts for which the entry is hard (definite) and 
its (unique) address equals the read address a. Under these contexts, that element's 
data ed is selected. Else, under the contexts expressed by the Boolean expression 
soft_match, the approximate union of the element's data and the previously formed 
data is selected. Finally, under the contexts when both hard_match and soft_match are 
false, the previously formed data is kept. 

Both implementations of the Read operation use ~/~9 as the default data set 
expression. The contexts for which Read does not find a matching address in the list 
are those for which the addressed memory location has never been accessed by a write. 
The data set expression ~ is then returned to indicate that the location may contain 
arbitrary data. 
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function Read(List  mem, ASExpr a) : DSExpr 
/* Attempt to read from location a */ 

l ~-  GenVectorBoolVarsO 

address_containment ~-- l ~ a 

rd ~ CZD 

for each (eh, es, ea, ed) in mem from head to tail do 

match ~-- l ~ ea ^ address_containment 

hard_match ~ match ^ eh 

soft_match #-- match ^ es 

rd ~-- ITE(hard_match, ed, ITE(soft_match, (ed u rd), rd)) 

rd ~ l~a rd 
return rd 

Fig. 3. First implementation of the Read operation 

The difference between the two implementations is in the precision of the data 
retrieved from non-unique addresses. While the second implementation will return 
for the contexts when the read address a is non-unique, the first implementation will 
try to extract finer data for the contents of the locations contained in a. It does so by 
building a table of data set expressions at each unique address which is a subset of the 
read address a. This is done by introducing a vector of new Boolean variables l, which 
are used for indexing all the unique addresses that are contained in the read address set 
expression a. After scanning the list, these index address variables are existentially 
quantified from the bit-level low and high encodings of the retrieved data set expres- 
sion rd. This merges the data set expressions corresponding to the contents of every 
unique address within a. 

A useful optimization of the indexing is to introduce as many new variables in l as 
there are non-unique bits (i.e., whose low and high encodings are not complements) in 
the read address set expression a. Then, in forming the Boolean expression match, the 
unique bits of a will be required to be equal to the corresponding bits of ea. Finally, the 
existential quantification in l~a rd is done only over the index variables used. 

The second implementation of Read is designed to be precise only in the contexts 
when the argument address is unique, and to return ~/D otherwise. However, because 
of its fewer calculations, it requires less memory and CPU time. The expression 
soft_match is defined so that for any list entry, whose address overlaps the read address 
a, the approximate union of the entry's data set expression and the previously formed 
data set expression is selected. Note that in the contexts when the currently examined 
list element is hard, as determined by eh, we require that the element's address does 
not equal the read address (so that it is a proper subset of it). This ensures that the 
Boolean expressions for hard_match and soft_match will not be true simultaneously. 



145 

function Read(List mem, ASExpr a) : DSExpr 
/* Attempt to read from location a */ 

rd <- U B 

if ~Valid(~Unique( a) ) then 
for each (eh, es, ea, ecO in mere from head to tail do 

hard_match ~-- eh ^ (ea = a) 

soft_match ~-- (es v eh ^ ~(ea = a)) A Overlap(ea, a) 

rd <--- ITE(hard_match, ed, ITE(soft_match, (ed ~ rd), rd)) 

return rd 

Fig. 4. Second implementation of the Read operation 

The difference between the two implementations of Read() can be illustrated with 
the following example. Suppose that the list for memory mere was initially empty and 
then updated with Write(mere, 1, (0, 0), (1, 1)) and Write(mere, 1, (0, 1), (1, 0)). Then 
Read(mere, (0, X)), will return (1, X) when using the first implementation of the func- 
tion, but (X, X) when using the second one. The work of the first implementation can 
be viewed as building a table that maps unique addresses contained in the read address 
to data set expressions, and then finally merging these data set expressions. In the 
example, the table will associate address (0, 0) with data (1, 1), and the address (0, 1) 
with data (1, 0), so that merging the data will give (1, X) as the final result. 

procedure Write(List mere, CExpr c, ASExpr a, DSExpr d) 

/* Write data d to location a under control c */ 

h <--- Hard(c) A Unique(a) 

s ~-- Soft(c) v Hard(c) ^ ~Unique(a) 

/* Optional optimization */ 

overlap r false 

for each (eh, es, ea, ecO in mem do 

if Valid((eh ves )  

( e a ~ a ) ^ [ h  v s ^ e h ^ ( d = U D )  v s ^ e s ^ ( e d c _ d ) ] ) t h e n  

Delete(mere, (eh, es, ea, ed)) 

else 
if --,Valid(--,( d = U~)) then 

overlap ~-- overlap v (eh v es) ^ Overlap(ea, a) 

if  ~Valid((h v s) ~ --~verlap ^ (d = qLD)) then 
/* Perform Write */ 

InsertTail(mem, (h, s, a, d)) 

Fig. 5. Optimized implementation of the Write operation 

Based on the definition of the Read operation, an optimized version of the Write 
operation can be constructed as shown in Fig. 5. It removes any list elements that for 
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all contexts are either not selected, as determined by both eh and es being false simul- 
taneously, or are overwritten by the new entry. The latter category can be subdivided 
into several classes: 

1) Entries with a unique address, that are overwritten by a hard write (i.e., h is 
true, which implies that a is unique, so that (ea c_ a) will evaluate to true only for the 
contexts when ea is unique). 

2) Entries with a unique address, as determined by eh being true, which are over- 
written by a soft write (s is true) with data equal to ~ In this case, reading from the 
current element's address ea will select the element's data ed, but will later also form 
the approximate union of the previously formed data with the new element's data U D. 
Hence, ~ will be returned, so that the current element's data will not affect the result. 

3) Entries created by a soft write (es is true), whose address and data set expres- 
sions are subsets of those of the new entry, which is also the result of a soft write (s is 
true). Then, reading from an address, which is a subset of the current element's address 
ea, will select the approximate union of the previously formed data with the current 
element's data ed. However, since (ea c_ a) and s is true, when later scanning the new 
list element, the approximate union of its data d with the previosly formed data will 
obscure the effect of ed. 

Another optimization is to form the Boolean expression overlap that will express 
the condition for the new element's address a overlapping any other element's address. 
In the case of no overlap, there is no point in inserting the new element when its data is 

as that will be identical with the initial state of location a. Finally, when both h and 
s are false simultaneously, there is no point in inserting the new entry, as it will never 
be selected. 

Note that these optimizations need not be performed, as they are based on the way 
that the Read operation works. We could safely leave any overwritten element in the 
list and always insert the new one. 

6 Incorporation into STE 
Efficient modeling of memory arrays in STE requires that formulas of the form 
(b ~ (mem[a] = d)), where b is a Boolean expression, a is an address set expression, d 
is a data set expression, and mem is a memory array, be incorporated into the STE 
algorithm. When such formulas occur in the antecedent, they should result in treating d 
as the data of memory location a, given contexts b, and are processed by procedure 
AssertMemO, presented in Fig. 6. OK A, the Boolean expression indicating the absence 
of an antecedent failure, is updated with the condition that either b is false, or else the 
asserted data d is neither more general, nor incompatible with the data currently at a. 

Similarly, when such formulas occur in the consequent, they should result in 
checking that the data at location a is neither more general, nor incompatible with the 
given data d under contexts b. These formulas are processed by procedure 
CheckMemO - see Fig. 7. 
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procedure AssertMem(List  mem, BExpr b, ASExpr a, DSExpr d) 

/* Determine conditions under which location a was asserted to data d given 

contexts b, and reflect them on OK A, the Boolean expression indicating 

the absence of an antecedent failure */ 

rd *-- Read(mere, a) 

OK A ~--OK A ^ (b ~ (d c_ rd)) 

i f  --,Valid(b ~ (d = rd)) then 

c.h~--b 

c.l ~- -~b 

Write(mem, c, a, d) 

Fig. 6. Implementation of the STE procedure AssertMem 

procedure CheckMem(List  mem, BExpr b, ASExpr a, DSExpr d) 
/* Determine conditions under which location a was checked to have data d 

given contexts b, and reflect them on OK o the Boolean expression 

indicating the absence of a consequent failure */ 

rd ~-- Read(mem, a) 

OK c ~-- OK c ^ (b ~ (rd c_ d)) 

Fig. 7. Implementation of the STE procedure CheckMem 

7 Experimental Results 

Experiments were performed on the pipelined addressable accumulator shown in Fig. 
8. The pipeline register H o l d  separates the execution and the write back stages of the 
pipeline. The control logic stores the previous address and compares it with the present 
one at the Addr  input. In case of equality, the control signal of the multiplexor is set so 
as to select the output of the H o l d  register. Hence, data forwarding takes effect. For a 
more detailed description of the circuit and its specifications, the reader is referred to 
[7][11]. 

For the experiments with the EMM, the dual-ported register file is removed from 
the circuit. The software interface ensures that a Read operation takes place relative to 
p h i  2 and a Write operation takes place relative to p h i 2 ,  according to the register file 
connections shown in Fig. 8.(b). 

The specifications necessary for verifying the pipelined addressable accumulator, 
are presented in (14), (15), and (16). Note that Reg [i] and Reg [j] in (15) and (16), 
respectively, are instances of symbolic indexing [1]. We construct the antecedents by 
first defining the operation of the two phase clocks. Shorthand notation for the possible 
value combinations of the clocks is presented next: 

ClkO1 "- ( p h i l  = 0) ^ (ph i2  = 1), 
ClkO0 "- ( p h i l  = 0) ^ (ph i2  =0), 
ClklO - ( p h i l  = 1) ^ (ph i2  = 0). 
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/ 

\ 
\ 

&ddr previous Addr 
(from Control) 

I READ I I WRITEI 
I PoRT I M~MORY I PORT I 

(to MUX) (from ]E[oZd) I 

(a) (b) 

Fig. 8. (a) The pipelined addressable accumulator; (b) the connections of its register 
file when replaced by an EMM. The thick lines indicate buses, while the thin ones are 
of a single bit 

The clocking behavior of the entire circuit over 4, 8, and 12 time periods, respec- 
tively, is described by: 

Clocks_4 - Clk01 ^ N(ClkO0) ^ N2(ClklO) A N3(ClkO0), 

Clocks_8 - Clocks_4 ^ N4( Clocks_4), 

Clocks_12 - Clocks_4 ^ N4(Clocks_4) A N8(Clocks_4). 

The first assertion (14) verifies that the H o l d  register can be initialized with data 
from the input I n  of the pipelined addressable accumulator. The next time operator N 
positions the constraints on the circuit and the desired responses that should follow rel- 
ative to the phase clocks, given the timing details of the implementation. 

Clocks_8 A N 2 ( ( C l e a r =  1) ^ ( A d d r = / )  ^ ( I n = a ) )  
LEADSTO 

N4(Out = a) ^ N5(Hold = a) (14) 

The second assertion (15) verifies the adder in the pipelined addressable accumu- 
lator. The H o l d  register and location i of the register file are initialized in such a way, 
that if the circuit is correct, the second input to the adder will have the symbolic data 
set expression b, while its external input has data set expression a. The expected 
response is that the output Out  of the adder will get the data set expression a + b, and 
so will the H o l d  register. 

Clocks_12 ^ N2(Addr = k) ^ N5(i ==k ~ H o l d  = b) ^ 

N6((Clear=0) ^ (Addr=i) ^ (In=a) ^ (i !=k -~ Reg[i] =b)) 

LK4DSTO 

N8(Out = a + b) ^ N9(Hold = a + b) (15) 

The last assertion (16) verifies that the register file can maintain its state in the 
pipelined addressable accumulator. 
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Clocks._12 A N2(i [ = j  ---> A d d r =  k) A N5((i l=j  A j  == k) --.-> H o l d  = b) A 

N6((i  ! = j  --4 A d d r  = i) A ((i ! = j  A j  l= k) --~ R e g  [j] = b)) 

12..ADSTO 

:=> NI~  ! = j  ---> R e g  [j] = b) (16) 

The  exper iments  were  pe r fo rmed  on an I B M  RS/6000  43P-140 with  a 2 3 3 M H z  

P o w e r P C  604e microprocessor ,  hav ing  512 MB of  physical  memory ,  and running A I X  

4.1.5. Table  2 shows our  exper imenta l  results for the p ipe l ined  data path when  ver i f ied  

wi th  two m e m o r y  models :  the t ransis tor- level  mode l  (TLM)  and the E M M .  The  latter 

uses the first (EMM1)  or  the second (EMM2) implementa t ion  o f  the Read operat ion,  

presented  in Sect ion  5. The  last three co lumns  o f  each category conta in  the ratios o f  

the cor responding  quantit ies.  

C P U  T i m e  (s) M e m o r y  ( M B )  

N s, TLM TLM EMM TLM TLM EMM 1 
TLM EMM EMM 2 TLM EMM 1 EMM 2 

EMM 1 EMM 2 EMM 2 EMM1 EMM 2 EMM 2 

16 16 337 45 44 7.5 7.7 1.0 4.2 2.3 1.7 1,8 2.5 1.4 

32 676 88 86 7.7 7.9 1.0 7.3 3.3 2.1 2.2 3.5 1.6 

64 1353 173 169 7.8 8.0 1.0 13.6 5.4 2.9 2.5 4.7 1.9 

128 2716 343 337 7.9 8.1 1.0 26.3 9.5 4.7 2.8 5.6 2.0 

32 16 635 51 49 12.5 13.0 1.0 8.2 3.1 1.9 2.6 4.3 1.6 

32 1265 98 93 12.9 13.6 1.1 15.3 4.9 2.5 3.1 6.1 2.0 

64 2538 196 184 12.9 13.8 1.1 29.5 8.6 3.7 3.4 8.0 2.3 

128 5077 392 374 13.0 13.6 1.0 57.7 15.8 6.2 3.7 9.3 2.5 

64 16 1227 65 59 18.8 20.8 1.1 16.0 4.7 1.9 3.4 8.4 2.5 

32 2460 126 114 19.5 21.6 1.1 30.7 8.1 2.6 3.8 11.8 3.1 

64 4905 253 224 19.4 21.9 1.1 59.8 14.9 3.8 4.0 15.7 3.9 

128 9853 509 455 19.4 21.7 1.1 118.0 28.6 6.4 4.1 18.4 4.5 

128 16 2423 101 87 24.0 27.9 1.2 31.6 7,9 2.3 4.0 13.7 3.4 

32 4867 203 170 24.0 28.6 1.2 61.6 14.5 2.6 4.2 23.7 5.6 

64 9659 405 337 23.8 28.7 1.2 121.1 27.7 4.0 4.4 30.3 6.9 

128 18990 830 691 22.9 27.5 1.2 241.7 54.0 6.6 4.5 36.6 8.2 

T a b l e  2. Exper imenta l  results for m e m o r i e s  wi th  N addresses o f  w bits each  

As  can be seen, both the E M M  1 and the E M M  2 outper form the TLM.  In the case  

o f  E M M  2, a 8-29x speedup and a 3-37x reduct ion in m e m o r y  were  obtained,  wi th  the 

E M M  2 advantage  increas ing with  both d imens ions  o f  the m e m o r y  array. E M M  1 has a 

comparab le  pe r fo rmance  in terms of  C P U  time, but  requires up to 8x more  memory .  

The  advantage  o f  E M M  2 over  E M M  1 increases wi th  both d imens ions  o f  the m e m o r y  
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array - the more precise calculations of EMM 1 come at a premium. The asymptotic 
growth of time and memory is summarized in Table 3. 

Criterion TLM EMM 1 EMM 2 

Time(N) linear sublinear sublinear 

Time(w) linear linear linear 

Memory(N) linear sublinear sublinear 

Memory(w) linear linear sublinear 

Table 3. Asymptotic growth comparison of the CPU time and memory as a function 
of the number of addresses N and data bits w for the three memory models 

Hence, the new method for efficient modeling of memory arrays has proven to be 
extremely promising. It will enable the symbolic ternary simulation of memory arrays 
far larger than previously possible. 

References 
1. D.L. Beatty, R. E. Bryant, and C.-J. H. Seger, "Synchronous Circuit Verification by Symbolic Simula- 

tion: An Illustration" Sixth MIT Conference on Advanced Research in VLSI, 1990, pp. 98-112. 
2. R.E. Bryant, "Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams" ACM Com- 

puting Serveys, Vol. 24, No. 3 (September 1992), pp. 293-318. 
3. R.E. Bryant, D. E. Beatty, and C.-J. H. Seger, "Formal Hardware Verification by Symbolic Ternary 

Trajectory Evaluation," 28th Design Automation Conference, June 1991, pp. 297-402. 
4. J.R. Butch, E. M. Clarke, K. L. McMillan, and D. L. Dill, "Sequential Circuit Verification Using 

Symbolic Model Checking" 27th Design Automation Conference, June 1990, pp. 46-51. 
5. J .R. Burch, E. M. Clarke, and D. E. Long, "Representing Circuits More Efficiently in Symbolic 

Model Checking," 28th Design Automation Conference, June 1991, pp. 403-407. 
6. J.R. Butch, and D. L. Dill, "Automated Verification of Pipelined Microprocessor Control" CAV '94, 

D. L. Dill, ed., LNCS 818, Springer-Verlag, June 1994, pp. 68-80. 
7. A. Jain, "Formal Hardware Verification by Symbolic Trajectory Evaluation," Ph.D. thesis, Department 

of Electrical and Computer Engineering, Carnegie Mellon University, August 1997. 
8. M. Pandey, "Formal Verification of Memory Arrays" Ph.D. thesis, School of Computer Science, Car- 

negie Mellon University, May 1997. 
9. M. Pandey, and R. E. Bryant, "Exploiting Symmetry When Verifying Transistor-Level Circuits by 

Symbolic Trajectory Evaluation;" CAV '97, O. Grumberg, ed., LNCS 1254, Springer-Veflag, June 
1997, pp. 244-255. 

10. C.-J. H. Seger, and R. E. Bryant, "Formal Verification by Symbolic Evaluation of Partially-Ordered 
Trajectories," Formal Methods in System Design, Vol. 6, No. 2 (March 1995), pp. 147-190. 

1 I. M. Velev, R. E. Bryant, and A. Jain, "Efficient Modeling of Memory Arrays in Symbolic Simula- 
tion "'2 CAV '97, O. Grnmberg, ed., LNCS 1254, Springer-Verlag, June 1997, pp. 388-399. 

2. Available from: http://www.ece.cmu.edu/afs/ece/usr/mvelev/.home-page.html 


