
Combining Finite Automata, Parallel Programs
and SDL Using Petri Nets

Bernd Grahlmann

Institut fiir Informatik,
Universit~it Hildesheim,
Marienburger Platz 22,

D-31141 Hildesheim,
bernd~informatik.uni-hildesheim.de,

www.informatik.uni-hildesheim.de/~bernd

A b s t r a c t . This paper introduces a method to combine finite automata,
parallel programs and SDL (Specification and Description Language)
specifications. We base our approach on M-nets exploiting the rich set of
composition operators available in this algebra of high-level Petri nets.
In order to be able to combine different modelling techniques, we rely on
compatible interfaces. Therefore,

- we extend an existing semantics, namely the M-net semantics for the
parallel programming language B(PN)2; and

- we present an M-net semantics for finite automata.
Considering the hybrid modelling of an ARQ (Automatic Repeat re-
Quest) protocol, we show how the different formalisms fit together as
well as the resulting verification possibilities. As a side-effect we describe
on-going development of the PEP tool (Programming Environment based
on Petri Nets). As a consequence of our approach we are introducing a
hierarchical 'programming with nets' method which is currently imple-
mented in the high-level Petri net editor of the tool.

K e y w o r d s : B(PN) 2, Finite automata, Hybrid system design, M-nets,
Parallel programs, PEP, Petri nets, SDL, Verification.

1 Introduction

So far, the PEP* tool (Programming Environment based on Petri Nets [7, 18])
supports a variety of (high-level) modelling techniques:

- B(PN) 2 (Basic Petri Net Programming Notation) a parallel programming
language [8, 5, 13],

- M-nets (Modular multilabelled nets) an algebra of high-level Petr i nets [6],
- PFA (Parallel Finite Automata) [16] a collection of FA (Finite Automata) .

* The PEP project is financed by the DFG (German Research Foundation). This
work has been partially supported by the HCM Cooperation Network EXPRESS
(Expressiveness of Languages for Concurrency)

103

Moreover, we have given a compositional M-net semantics to SDL (Specification
Description Language) [9] covering dynamic process creation and termination
as well as procedures [14, 15]. However, a hybrid system design approach which
combines one or more of these techniques has not been presented so far. Address-
ing this problem and proposing a solution is the main purpose of this paper.

In contrast to other (even Petri net) tools, the PEP tool has been designed
in such a way that Petri nets are the central method into which different kind
of systems are translated in order to use Petri net theory for the simulation, the
analysis and the verification. Therefore, it is straightforward to realise also the
combination of different formalisms using (preferably high-level) Petri nets.

First modelling level

Second modelling level
+

Editing, simulation and
composition level

Verification level

Fig. 1. Abstract presentation of the hybrid modelling.

Fig. 1 shows the abstract idea of our approach. We distinguish two different
modelling levels.

1. On the first level, each part (possibly more than one) of the whole system
is designed individually using one of the supported modelling formalisms
(B(PN) 2, FA or SDL).

2. The second level has two purposes:
(a) A hierarchical description of the system specifies how the individual parts

are combined and giving its general functionality.
(b) It serves as an additional editing and simulation level offering interactive

M-net editing, simulation and composition.

The bottom part of the figure shows that the resulting M-nets are unfolded into
a special class of low-level Petri nets called Petri boxes [4] in order to apply
the different verification techniques included in the PEP tool. Currently, PEP
includes partial order based model checking [12, 11, 19] and algorithms based on
linear programming [23] as well as interfaces to other verification packages [18]
such as INA [26], SMV [10, 27] and SPIN [20] providing reduction algorithms
based on BDDs, on the stubborn set or sleep set method, and on symmetries.

104

After choosing a general approach, the next important task is to consider the
interfaces in more detail. The interaction facilities of the different formalisms
have to be analysed to provide compatible interfaces. This should include:

1. accesses to variables,
2. procedure invocations,
3. process creations,
4. synchronous as well as asynchronous communication via B(PN)2-1ike chan-

nels, and
5. SDL-like send and receive operations.

Assuming that our approach is successful there are a lot of benefits. Users then
have the possibility to model each part of a parallel system using the formalism of
his/her choice. This is particularly interesting for teams performing distributed
or cooperative system design. Apart from personal preferences, gaining expres-
siveness is an interesting argument. For instance, SDL provides different com-
munication mechanisms from B(PN) 2. Obviously, it eases the modelling if all of
them may be used. Finally, our approach supports reuse of existing components.

This paper is structured as follows. First, we briefly describe the most relevant
aspects of M-nets in section 2. In section 3 we will introduce our running example,
a hybrid modelling of an ARQ (Automatic Repeat reQuest) protocol. Thereby,
we will give an intuition of the three different modelling formalisms (B(PN) 2, FA
and SDL). In section 4 we will exploit the interfaces in more detail presenting the
different extensions of the semantics. Section 5 illustrates some of the resulting
verification possibilities. Before we conclude in section 7 we will present new
features of the PEP tool which are closely related to the presented approach in
section 6. Finally, a list of references is given. Some of the papers are available
at http://www.informatik.uni-hildesheim.de/~pep.

2 M - n e t s

The class of M-nets forms an algebra of high-level Petri nets. It was introduced
in [6] as an abstract and flexible meta-language for the definition of the seman-
tics of concurrent programming languages. The most distinguishing feature of
the M-nets is given by the rich set of composition operators they provide. These
allow - as composition operators in process algebras usually do - the composi-
tional construction of complex nets from simple ones, thereby satisfying various
algebraic properties.

Two kinds of inscriptions are distinguished. Annotations are responsible for
the unfolding into low-level Petri nets while labels are used for the composition
operations (parallel and sequential composition, choice and iteration as well as
synchronisation and restriction). For our purpose it is interesting that

- Places of M-nets are annotated by a type, describing the set of allowed tokens.
A type may contain natural numbers, the Boolean values, the usual token
*, and the special token t, or tuples of these. The label distinguishes entry,
internal and exit places.

105

- Transitions are annotated with occurrence conditions and labelled with (mul-
ti) sets of action terms. We will give an example how action terms are used
in the synchronisation below.

- For our purpose it is sufficient to annotate arcs with sets of expressions.

We will use Fig. 2 to provide the necessary intuition. Let us first consider the
subnet consisting of two internal places Pd and Pc, one transition Tc and two
arcs. The transition rule for M-nets is explained informally on the example: If
Pd is marked with a pair (3, 2), the variables in the arc inscriptions (pid and rid)
can only be bound to 3 and 2, respectively. Thus, an occurrence of Tc carries
the pair (3, 2) to Pc. However, Tc can occur in infinitely many modes, because
the action term contains variables ('X and X') which are not sufficiently bound.
E.g., X ' = 2 A 'X = 3 is a possible binding.

{0..31x
[3,4] x
[1,21

(X ', idX, g id.f"~-'J..2~
X('X,X',idX,~id)

[3,4}x {L2l ttype acti~ (O..3lx

rid, ~ id) / [3, 4Jx
[1,2~ ('X, pid, gid) 1

~X('X,X',idX,~id) I

Scoping
'(pid,~id) ~ 1

"~[3,41x \ v a l u e term ~J{1,21 v.

Fig. 2. Scoping example: NIlIN2 and [{X}: (NIlIN2)].

~ {3,41x
{1,21

(pid, rcid)

~ X'= 'X-1

(pid, ~id)

~ {3,4Jx
{1,2J

Fig. 2 as a whole depicts how the scoping mechanism (first synchronisation
and then restriction) may restrict these bindings considering a typical example,
namely the access to a local variable within a procedure. Tb is the access tran-
sition within the variable net and Tc corresponds to the access of the variable
within the procedure. The renaming of the variable idX to pid (according to the
i dX E {*,p/d} part of the value term) ensures that the correct instance of X is
accessed. Note that the free variables are bound during the scoping.

3 Hybrid Modelling of the ARQ Example

In this section we will introduce our running example. We will use the descrip-
tion of the hybrid modelling of a simple ARQ communication protocol with
alternating acknowledgement to give an overview of the main characteristics of
the supported modelling formalisms.

The inner part of Fig 3 shows that the whole ARQ system comprises two
different processes (Sender and Receiver) communicating via two SDL signal
routes (a and d). b-hrthermore, the initial number of instances as well as the
maximal number are specified (e.g., Sender(i,2)) and the type of the signals is
given (e.g., signal ack ({0,1})).

106

Process Sender fpar x {0,1}; ~ SendPackage D I Oc"'O,"; 1

parent # ~ n t = null

y = x ~ ~ y r x

(~ (~ I Sendler (y)

. ~ 1 7 6 1 7 6 1 7 6 ~ 1 7 6 o~176176176176176176

�9 ~ ~"" d [data] I signal data ({0,1}~
Sender (1,2) "~f Receiver (1,1)1 I signal ack ({0'1})/

[ISendPackage /k 4 .~. J ' " ~ ~. a [aCKl " ",,

| �9 o~176 ~176176176176 =.~176 ~176

pror SendPackage _max_ 1
begin

(output x via d)
end

= .

,0z,0,,

r e c e i v e ~ send

(output 1 via a to sender)

Fig. 3. Hybrid modelling of the ARQ system.

The rest of the figure explains how the three components (one for each process
and one for the procedure SendPackage belonging to the Sender process) are
modelled using the editors corresponding to the different formalisms.

The purpose of the ARQ system is to transmit an alternating sequence of 0
and 1 (modelled by a signal type data with parameter type {0, 1}). Each Sender
instance is responsible for the correct transmission of exactly one data package
with the label x (which is the formal parameter) via the signal route d to the
Receiver process. It is intended to introduce failure by letting the Receiver process

107

non-deterministically return random acknowledgements via the signal route a to
sender (the sender of the last received data package).

3.1 SDL Part

The Sender process is modelled in the graphical representation of SDL. SDL
is a quasi-standard language for the specification of distributed systems, espe-
cially in the area of telecommunication. An SDL specification describes a system
consisting of processes which are extended communicating finite state machines.

In SDL variables and procedures are declared within the scope of a process,
but they are local to process instances - i.e., different instances do not interfere.
In addition to the instances which are created automatically at system start,
process instances may be created by any other instance of any process type,
but can be terminated only by itself. Each process instance is equipped with an
input queue. Signals which are transmitted from an instance via signal routes
(without delay) or channels (with delay) to another instance are put in the input
queue of the receiver. In contrast to other languages there is always one receiver.
Neither broadcast nor multiway communication is available. The receiver may
be specified by implicit variables whose values are changed automatically

- self: the instance itself,
- sender: the sender instance of the most recently consumed signal,
- parent: the instance that created this one, and
- offspring: the most recently created instance;

or by the signal route (if this is unique). Furthermore, synchronous communi-
cation is not supported because the input queue already introduces a potential
delay.

Starting from the initial state ((~) the behaviour of the Sender process de-

pends on the implicit parent variable (< ~) . The initial instance (parent=nul l)
sets the value of x to 0 before entering the state send. The Sender instance con-
tinues to invoke the procedure SendPackage ([[SendPackageH) upon receipt ([~&-~)

of the corresponding acknowledgement (y~x). Then it creates (~) the next

Sender instance (passing the next label as parameter) and terminates (X) af-
terwards.

3.2 B (P N) 2 Part

The SendPackage procedure is modelled in the parallel programming language
B(PN) 2 [8]. Atomic actions (enclosed in action brackets 0) offer much more
expressiveness than the corresponding SDL counterparts. For instance, the action
(C1? -- ~x A C2 ! _> x I - y~) is only executable if the current value of the variable
x can be read from the channel C1. Furthermore, an occurrence of the action has
the effect that the values of the variables x and y are set (non-deterministically)
in such a way that the difference is less or equal to a value which can be written
(and actually is written upon occurrence of the action) to a second channel (or

108

stack) C2. This can not be expressed in SDL and it is very difficult to express
it in, for instance, C [22], which is the main language for the implementation of
verification algorithms.

As mentioned above, the communication mechanism is also very different.
The given action may, for instance, synchronise with an action al of a process
1/1 (via C1) and with b2 of a process/ /2 (via C2). But, as well also with an
action Cl of the process//1 (via C1) and with f3 of another process//3 (via C2).

In [13] the original M-net semantics [5] has been extended by (also recur-
sive) procedures covering severall kind of parameters (value, value-result and
reference). In our example, the procedure is declared without any parameter.
The maximal number of concurrent instances is restricted to '1' (_max_ 1). The
procedure only performs an SDL-like send operation ((o u t p u t x via d)) of the
value of the (w.r.t the procedure) global variable x via d (which may be a signal
route or a channel). The details of this SDL-like communication mechanism will
be explained in section 4.2.

3.3 F A P a r t

The Receiver process is modelled as an FA [21]. In [16] a special class of B(PN) 2
specific FA has been introduced. These FA may consist of

1. a start node (representing the initial state of a process),
2. a set of local nodes,
3. a set of exit nodes (representing that the process has terminated),
4. a set of edges between these nodes, and
5. a labelling function that annotates each edge with a B(PN) 2 action.

So far, the PEP tool includes a structure preserving compiler which translates a
collection of FA into a B(PN) 2 program. This offers an additional nice graphical
interface, but it implies a restriction, because not every control structure of an
FA may be compiled into a control structure of a B(PN) 2 program. In [24] an
extension of B(PN) 2 (mainly by GOTOs) has been proposed which overcomes
this restriction. Its implementation would extend the existing possibilities to
combine B(PN) 2 with FA. In this paper we propose to translate FA directly into
M-nets which allows us to use arbitrary control structures without extending
other formalisms and without introducing any B(PN) 2 specific overhead. Thus,
in addition to the nice graphical appearance of FA we may benefit from the
extended possibilities to specify control structures.

In our example the FA is very simple. It only consists of one start node,

two internal nodes, four arcs and an SDL-like variable declaration (~) .
Starting from the initial state the process first enters the state receive. Then,
the process may infinitely often receive ((i n p u t z')) a signal (writing the value
to the variable z) and afterwards send (e.g., (o u t p u t 0 v ia a to sender))
randomly either a '1' or a '0' via a (which may be from the point of view of
the FA a signal route or a channel) to the sender of the last received signal.
This obviously implies that the FA has to be translated in such a way that the

109

handling of the implicit variables (such as sender) as well as of the input queue
is done in the same way as in SDL.

4 E x t e n s i o n s o f t h e S e m a n t i c s

In this section we will first analyse the potential interfaces between the differ-
ent formalisms in detail. Afterwards, we will give the main ideas for successful
extensions. In particular, we will describe different ways to translate an FA or
a B(PN) 2 program into an M-net and we will extend the language B(PN) 2 (as
well as its semantics) by the introduction of a new communication mechanism.

It is straightforward to compare the existing semantics

1. the original M-net semantics for B(PN) 2 without procedures [5],
2. the M-net semantics for B(PN) 2 with procedures [13], and
3. the M-net semantics for SDL covering dynamic creation and termination of

processes as well as procedures [14, 15]

in order to analyse the problems related to interfaces between different for-
malisms. The most striking difference is the kind of control flow tokens which
directly implies differences concerning the types of the places as well as the
number of parameters (arity) of the action terms.

In the first semantics it is sufficient to use black tokens (0). As a consequence,
nearly all places have the type {0}. Only those places holding the value of a
variable have the corresponding type of that variable (e.g., set1) as a type. To
be precise, this is an abbreviation for a type set1 x {�9 Furthermore, action
terms have small arities. For instance, the access to a variable x is performed
using an action term x('x,x') containing only two parameters, namely for the
pre- and the post-value to the variable x.

In the second semantics it is necessary to distinguish different instances of a
procedure. As a consequence, everything is extended in order to handle procedure
instance identifiers (pids):

- pids (which may be bound to �9 in the global parts) rather than black tokens
are passed in the control flow.

- The types of places have one component for the pids which may either be {�9
for global parts or a set of pids (pid_set) for parts belonging to a procedure.

- Every action term is extended by one parameter for a pid. For instance,
x('x,x',idx) is involved in the access to a variable x.

In the third semantics, an additional extension enables the handling of pro-
cess instance identifiers (rids):

- Tuples (pid, rid) are passed in the control flow. Once more, each of them
(pid and rid) may be bound to �9 in the global parts (outside of a procedure
or outside of a process).

- The types of places are extended by one component for the ~rids (Trid_set).

110

- Every action term is extended by one parameter for a 7rid. For instance,
x('x,x',iclx, Trid) is involved in the access to a variable x.

In summary, this means that:

- As long as we only want to combine FA and B(PN) 2 programs without
procedures we can choose the first approach.

- If B(PN) 2 programs with procedures are involved, we have to translate each
component in such a way that it is (at least) compatible with the second
approach.

- As soon as SDL is involved we have to switch to the third approach.

4 . 1 T r a n s l a t i n g F A

Intuitively, the translation (which is similar to the construction of the semantics
of a B(PN) 2 program [13]) of an FA into an M-net involves several steps:

1. The FA itself (without any local variable declarations) is compiled into an
M-net. This translation is parameterised with the chosen approach as well
as with (depending on the chosen approach) a pid_set and a ~rid_set.

2. All the local declarations are translated (in the same parameterised way)
into special variable nets. At the same time initialisation and termination
parts are added to the net for the FA itself.

3. The parallel composition of the net for the FA and the variable nets is scoped
w.r.t, initialisation, termination and access actions.

4. Depending on the chosen approach the result is integrated into
(a) the control flow of another net,
(b) a B(PN) 2 or SDL procedure net, or
(c) an SDL process net.

Let us now consider the first and the last step in some more detail. In principal,
the first step translates:

- each node into a place and
- each arc into a transition which is connected via arcs to the places corre-

sponding to the input and the output node, respectively.

All resulting places have the same type which is determined by the parameters of
the translation. The inscription of the transition (as well as the arc inscriptions)
are constructed in the same way as described in [5, 13,14], respectively.

Fig. 4 gives two simple examples. In the left part the second approach with
a parameter pid_set is chosen. In the right part nearly the same FA is translated
using the third approach with parameters pid_set and 7rid_set. We additionally
allowed SDL specific node inscriptions specifying the corresponding states which
are compiled into an action term (q(statel,state2,e,Trid)) dealing with the change
of the implicit state variable (q).

The application of the steps two and three results in nets which may be
characterised by Fig. 5. Two things are important for the subsequent integration
into another surrounding net:

111

1. all input and output places have the same type (pid_set or pid_set x rid_set ,
respectively) and

2. all remaining action terms (in our example only q(statel,state2,o,Trid)) are
compatible with the surrounding net.

(

(

1

<x,=o> > E
second ~ approach ~

I• pid_set

pid

1-~ x('x,x',idx) I
x'=O A idx E [@,pid]

r pid

~.~ pid_set

) state1

(x'=O)
third approach ()stato

Fig. 4. FA translation example.

~ "N pid_set x
.) g id._.x et

1 (pid, nid)
7 x('x,x',idx, ~id)

~ | q(statel, state2,e,~id) I
-J x'=O A idx E{e,pid]

l ' (pid, nid)
~ pid_set x

J g id. set

Thus, the left net may be inserted in the semantics of a B(PN) 2 program
(which has been constructed using the second approach) instead of a block.
Therefore, it may, for instance, act as the body of a procedure or just as an
arbi t rary part of the control flow.

 i setx id_set pid__s ~ pid_set x ~ i d set
. , . = . 1

f ~ r

(•pid x 0
(x',pid) | pid

T

(' x, pid, nid) ~_pid, ~id)
~ q(state', :tateo~ @, ~ id)

(x',pid,~id) J '=
(pid, ~ id)

J

Fig. 5. Simplified representation of the results after the third step.

Due to the fact that an SDL specific FA also performs changes of the implicit
state variable (specified by the kind of node and its inscription) the integration
of such a net (like the right one) has to obey some further restrictions. Otherwise
the surrounding net may, for instance, produce a state state2 while the FA is
specified in such a way that it starts in the initial state. This would cause a

112

deadlock. Nevertheless, if the FA starts in the initial state (expressed by an
initial node) and ends in a termination state (expressed by an exit node which
may be omitted with the effect that an isolated exit place is added to the net),
then the resulting net may be inserted as the body of an SDL process net (as
in our running example). An abstract representation of the result of this simple
transition substitution (cf. [14]) is shown in Fig. 6.

Fig. 6. Abstract view of the FA semantics integration into an SDL process net.

4.2 B (P N) 2 Extens ions

So far, we have only dealt with the first (variable accesses) of the five possible
interfaces between the different formalisms mentioned in the introduction. And
in addition we will only consider the fifth interface (SDL-like send and receive
operations) in more detail because the other three do not demand as sophisti-
cated extensions of the already described semantics as the fifth one. They can
be handled in the same way as described in [5, 13,14], respectively.

As described above, the communication mechanisms provided in SDL and
in B(PN) 2 are completely different. Regarding the fact that SDL is a widely
used and standardised [9] language we have chosen to extend B(PN) 2 (and thus
also our FA) by the introduction of SDL-like communication mechanisms rather
than extending SDL. To be precise, we basically allow the (standardised) phrase
representation of the SDL input and output construct with some additional pos-
sibilities.

The receive action (for instance, (i n p u t z')) reads the first value from the
input queue into the variable z. Furthermore, the input may be restricted either
by a constant (for instance, (i n p u t 0 /) or by an additional side condition (for
instance, ((i npu t z') A (z' < 'z))).

113

There are three variants of the send operation specifying the receiver either
by its r i d (for instance, (o u t p u t x to sender)), or by a channel or signal route
(for instance, (o u t p u t 0 via a)), or by both (for instance, (o u t p u t 0 v ia a
to sender)). Furthermore, the output may also be restricted or have side effects
(for instance, ((o u t p u t z' to sender) A (z' < 'z))).

The M-net semantics of these new constructs has to take the effects on the
implicit variables and the input queue into account which also implies that the
resulting M-net has to be combined with an SDL process net. Fig. 7 gives the
semantics of the FA part of our running example after the first translation step
(the B(PN) 2 action is compiled analogously). Without going too much into the
details, we would like to mention that

- T3 corresponds to the receive arc,
- T4 and T5 correspond to the send arcs,
- P4 is the isolated exit place mentioned above,
- in.~(sig, sender',Trid) accesses the input queue (the first parameter is the sig-

nal, the second the sender and the third the receiver),
- a.t(O, Trid, sender ') accesses the signal route a (with the same parameters).

a!(O, 1Cid, sender')
sender('sender, sender', O, l~id)

. . . . q(send, receive, @, '/r I
e I pta_se~ x 'sender=sender'

l~ id_set

d,~id) (p i d , ~ , . n ? (s i g ~ , ~ i ~ ~

~ g id je t

Fig. 7. M-net semantics of the FA part.

5 V e r i f i c a t i o n R e s u l t s

In [15] we have verified the ARQ protocol applying all kinds of verification
techniques which are available in the PEP tool as well as compositional and
interactive methods. In contrast to this paper in [15] the whole ARQ system has

114

been modelled in SDL. In order to see the influences of a hybrid modelling using
also B(PN) ~ and FA parts we have performed the same verifications.

It turned out tha t we were able to make the same verifications which was
our minimal aim. Moreover, the different verifications have been speeded up by
10-30 % which is a nice secondary benefit. It is very likely that this is a result
of the reduction of SDL specific overhead. For instance, the semantics of the
Receiver process modelled as an FA is smaller than its semantics using SDL. In
the rest of this section we will briefly summarise some of the results.

After unfolding the M-net semantics of the whole ARQ system into a low-
level net, we have been able to apply a variety of (not only state space based)
verification techniques:

1. Partial order based model checking [12, 11, 19],
2. Sleep set and bitstate techniques [20],
3. Reachability graph based model checking (using 'stubborn set' and 'sym-

metric ' reduction) [26],
4. BDD based model checking [10,27], and
5. Linear programming based analysis [23].

Using these techniques, we verified

- the deadlock-freeness of the resulting net,
- reachability properties (such as reachability of all the SDL states),
- safety properties (such as none of the input queues ever contains more than

one signal),
- liveness properties (such as it is always possible to reach a certain state) ,
- progress properties (such as a send mus t not be eventually acknowledged).

Note that we have been able to specify these properties without referring directly
to the Petri net, by using an extension of the reference scheme introduced in [17].

Although the main purpose was to show that in general (i.e., also for more
complex** systems) such a wide variety of verification techniques may be applied
using our approach, we want to provide an intuition of the efficiency. Therefore,
we mention that most of the tests took less than one second (using the most
appropriate verification method) on a relatively slow 40 MHz SUN SPARC 10,
tha t 32 MB main memory had always been sufficient, and that the resulting
low-level net had approximately 3.500 states.

6 N e w F e a t u r e s o f t h e P E P Too l

The integration of the presented hybrid modelling approach into the P E P tool
has been planned for a long time. A couple of steps towards a smooth integration
have already been implemented.

** For the time being, this means systems with a complex control flow but without
complex data types. The development of high-level net verification methods may
solve this restriction.

115

1. The compiler from B(PN) 2 into M-nets optionally uses the first or the second
approach for the generation of the semantics. Furthermore, a flexible macro
concept has been introduced which allows to choose, for instance, variable
or procedure nets from a library of parameterised macro nets [1].

2. The scoping mechanism has been realised as an external program allowing
the different necessary scoping operations.

3. A compiler from FA into M-nets supporting the different approaches has
been implemented.

4. The high-level net editor has been extended in several ways:
(a) The concept of hierarchies has been extended towards the additional

handling of special purpose parameterised macro nets.
(b) The editor allows different views of the whole net or of its parts.
(c) A component for the interactive composition of nets has been added.

The main task which still remains is the implementation of a convenient
graphical top-level modelling support which allows the user to specify the inter-
play of the different components. This includes specifications such as 'B(PN) 2
program Pl is inserted as a procedure for the SDL process//1 ' as well as the
automatic calculation of the parameters for the corresponding translations and
the automatic generation of a net for the global control flow dealing, e.g., with
the initialisation, termination and creation of initial process instances.

Moreover, the support for the 'programming with nets' approach will be
improved. The user will have the possibility to construct a system in a compo-
sitional way using parameterised macro nets for B(PN) 2 as well as SDL parts.
In order to insert an SDL process net, (s)he will only have to specify some pa-
rameters (such as the number of initial instances or the names and types of the
formal parameters). Afterwards (s)he may specify the body of the SDL process
as well as global variables, for instance. Furthermore, the level of abstraction
(whether the real M-net or just an abstract Icon is displayed) may be chosen by
the user as well. We will adapt ideas from the COOs [25] and the METAFrame
[2] approach.

7 C o n c l u s i o n

We have presented a new approach to combine different modelling techniques
(finite automata, parallel programs and SDL specifications) which allow the user
to profit at the same time from the advantages of all these formalisms. These
are in particular,

1. powerful and efficient modelling of the control flow using finite automata,
2. high expressiveness (including, for instance, non-determinism, multiway syn-

chronous as well as asynchronous communication and change of multiple
variables at a time) of atomic actions in B(PN) 2,

3. and nice graphical appearance as well as a complementary communication
mechanism in SDL.

116

Considering an ARQ protocol, we have shown tha t our approach enables the
hybrid modelling of parallel systems and the subsequent application of the rich
set of verification methods included in the P E P tool [3, 7, 18]. The fact tha t our
approach is based on M-nets (an algebra of high-level Petri nets) at the one hand
enabled the composition operations as well as the verification, but on the other
hand does not imply that the user has to be familiar with the technicalities of
M-nets because they may be hidden using an extension of the reference scheme
presented in [17].

As a side effect we have described on-going development of the P E P tool
which will not only result in a smooth integration of the presented approach,
but also support a new 'programming with nets ' technique.

A c k n o w l e d g e m e n t :

I would like to thank Eike Best and anonymous referees for their comments;
Mart in Ackermann, Ulf Fildebrandt, Michael Kater, and Stefan Schwoon for
their implementations; and Hans Fleischhack for his suggestion to work on the
hybrid modelling approach.

R e f e r e n c e s

1. M. Ackermann. Konzeption eines Compilers f~ir eine parallele Programmierspraehe
mit Prozeduren. Diploma thesis, Universit~it Hildesheim, 1997.

2. M. v. d. Beeck, V. Braun, A. Claflen, A. Dannecker, C. Friedrich, D. Koschiitzki,
T. Margaria, F. Schreiber, and B. Steffen. Graphs in METAFrame: The Unifying
Power of Polymorphism, In E. Brinksma, editor, Proc. of TACAS'97, Enschede,
LNCS 1217, 112-129, Springer, 1997.

3. E. Best. Partial Order Verification with PEP. In G. Holzmann, D. Peled, and V.
Pratt, editors, Proc. of POMIV'96, Princeton, 305-328. Am. Math. Soc., 1996.

4. E. Best, R. Devillers, and J. G. Hall. The Box Calculus: a New Causal Algebra
with Multi-Label Communication. In G. Rozenberg, editor, Advances in Petri Nets
92, LNCS 609, 21-69. Springer, 1992.

5. E. Best, H. Fleischhack, W. Fr~czak, R. P. Hopkins, H. Klandel, and E. Pelz. An
M-Net Semantics of B(PN) 2. In J. Desel, editor, Proc. of STRICT, Workshops in
Computing, 85-100, Springer, 1995.

6. E. Best, H. Fleischhack, W. Fr!}czak, R. P. Hopkins, H. Klandel, and E. Pelz. A
Class of Composable High Level Petri Nets. G. De Michelis and M. Diaz, editors,
Proc. of ATPN'95, Torino, LNCS 935, 103-118. Springer, 1995.

7. E. Best and B. Grahlmann. PEP: Documentation and User Guide. Universit~t
Hildesheim. Available together with the tool via:
http://www.informatik.uni-hildesheim.de/,-,pep.

8. E. Best and R. P. Hopkins. B(PN) 2 - a Basic Petri Net Programming Notation.
A. Bode, M. Reeve, and G. Wolf, editors, Proc. of PARLE, LNCS 694, 379-390,
Springer, 1993.

9. CCITT. Specification and Description Language, CCITT Z.100, Geneva, 1992.
10. E. Clarke, K. McMillan, S. Campos, and V. Hartonas-Garmhausen. Symbolic

Model Checking. In R. Alur and T. A. Henzinger, editors, Proc. of CAV'96, New
Brunswick, LNCS 1102, 419-422, Springer, 1996.

117

11. J. Esparza, S. RSmer, and W. Vogler. An Improvement of McMillan's Unfolding
Algorithm. In T. Margaria and B. Steffen, editors, Proc. of TACAS'96, Passau,
LNCS 1055, 87-106, Springer, 1996.

12. J. Esparza. Model Checking Using Net Unfoldings. In Number 23 in Science of
Computer Programming, 151-195, Elsevier, 1994.

13. H. Fleischhack and B. Grahlmann. A Petri Net Semantics for B (PN) 2 with Pro-
cedures. Proc. of PDSE'97, 15-27, Boston, IEEE Comp. Soc. Press, 1997.

14. H. Fleischhack and B. Grahlmann. A Compositional Petri Net Semantics for SDL,
Technical report, HIB 18/97, Universit~it Hildesheim, 1997.

15. H. Fleischhack and B. Grahlmann. Towards Compositional Verification of SDL
Systems. Proc. of 31st HICSS - Software Technology Track, 404-414, IEEE Com-
puter Society Press. 1998.

16. B. Grahlmann, M. Moeller, and U. Anhalt. A New Interface for the PEP Tool -
Parallel Finite Automata. Proc. of 2. Workshop Algorithmen und Werkzeuge fiir
Petrinetze, AIS 22, 21-26. FB Informatik Universit/it Oldenburg, 1995.

17. B. Grahlmann. The Reference Component of PEP. In E. Brinksma, editor, Proc.
of TACAS'97, Enschede, LNCS 1217, 65-80, Springer, 1997.

18. B. Grahlmann. The PEP Tool. In O. Grumberg, editor, Proc. of CAV'97, Hails,
LNCS 1254, 440-443, Springer, 1997.

19. B. Graves. Computing Reachability Properties Hidden in Finite Net Unfoldings.
Proc. of FST~TCS'97. LNCS, Springer. 1997.

20. G. Holzmann and D. Peled. The State of SPIN. In R. Alur and T. A. Henzinger,
editors, Proc. of CAV'96, New Brunswick, LNCS 1102, 385-389. Springer, 1996.

21. J. E. Hopcraft and J. D. Ullmann. Introduction to Automata Theory, and Lan-
guages, and Computation. Addison Wesley, 1994.

22. B. W. Kernighan and D. M. Ritchie. The C Programming Language Prentice Hall,
1988.

23. S. Melzer and J. Esparza. Checking System Properties via Integer Programming.
In H. R. Nielson, editor, Proc. of ESOP'96, LNCS 1058, 250-264, Springer, 1996.

24. S. Melzer and S. RSmer. Synchronisierende Automaten in PEP. Proc. of 3. Work-
shop Algorithmen und Werkzeuge fiir Petrinetze, Technical Report 341, 52-59.
AIFB Universit/it Karlsruhe, 1996.

25. C. Sibertin-Blanc. Cooperative Nets. In R. Valette, editor, Proc. of ATPN'94,
LNCS 815, 471-490, Springer, 1994.

26. P. H. Starke. INA: Integrated Net Analyzer. Handbuch, cf.
http://www.informatik.hu-berlin.de/~starke/ina.html.

27. G. Wimmel. A BDD-based Model Checker for the PEP Tool. Technical Report,
University of Newcastle upon Tyne, 1997.

