
Fully of Local and Efficient Evaluation
Alternating Fixed Points*

(Extended Abstract)

Xinxin Liu, C. R. Ramakrishnan, and Scott A. Smolka

Department of Computer Science
State University of New York at Stony Brook

Stony Brook, NY 11794 USA

{x inxin , cram, sas}@cs, sunysb, edu
+1 516 632-8334 (fax)

Abst rac t . We introduce Partitioned Dependency Graphs (PDGs), an
abstract framework for the specification and evaluation of arbitrarily
nested alternating fixed points. The generality of PDGs subsumes that
of similarly proposed models of nested fixed-point computation such as
Boolean graphs, Boolean equation systems, and the propositional modal
mu-calculus. Our main result is an efficient local algorithm for evalu-
ating PDG fized pointa. Our algorithm, which we call LAFP, combines
the simplicity of previously proposed induction-based algorithms (such
as Winskel's tableau method for p-calculus mode] checking) with the ef-
ficiency of semantics-based algorithms (such as the bit-vector method of
Cleaveland, Klein, and Steffen for the equational D-calculus). In particu-
lar, LAFP is simply specified, we provide a completely rigorous proof of
its correctness, and the number of fixed-point iterations required by the
algorithm is asymptotically the same as that of the best existing global
algorithms. Moreover, preliminary experimental results demonstrate that
LAFP performs extremely well in practice. To our knowledge, this makes
LAFP the first efficient local algorithm for computing fixed points of ar-
bitrary alternation depth to appear in the literature.

1 I n t r o d u c t i o n

Model checking [CE81, QS82, CES86] is a verification technique aimed at de-
termining whether a system specification possesses a property expressed as a
temporal logic formula. Model checking has enjoyed wide success in verifying, or
finding design errors in, real-life systems. An interesting account of a number of
these success stories can be found in [CW96].

Model checking has spurred interest in evaluating alternating f~ed points as
these are needed to express system properties of practical import, such as those
involving subtle fairness constraints. Probably, the most canonical temporal logic
for expressing alternating fixed points is the modal mu-calculus [Pra81, Koz83],

* Research supported in part by NSF grants CCR-9505562 and CCR-9705998, and
AFOSR grants F49620-95-1-0508 and F49620-96-1-0087.

6

which makes explicit use of the dual fixed-point operators # (least fixed point)
and v (greatest fixed point). Intuitively, the alternation depth of a modal mu-
calculus formula [EL86] is the level of nontrivial nesting of fixed points in ~b with
adjacent fixed points being of different type. The term "alternating fixed point,"
then, refers to such adjacent fixed points.

In this paper, we present a very general framework for specifying and eval-
uating alternating fixed points. In particular, we introduce Partitioned Depen-
dency Graphs (PDGs), whose generality subsumes that of similarly proposed
models of nested fixed-point computation, such as Boolean graphs [And94],
Boolean equation systems [VL94], the modal mu-calculus, and the equational
p-calculus [CKS92, BC96b]. A PDG is a directed hypergraph G with hyper-
edges from vertices to sets of vertices. A PDG vertex z can be viewed as a
kind of disjunctive normal form (DNF), with each of z's target sets of vertices
representing a disjunct (conjunctive term) of z. Moreover, the vertices of G are
partitioned into blocks, each of which is labeled by p or u, and the ith block
represents the ith-most nested fixed point. A subset A of G's vertices is a proper
evaluation of G if it respects the semantics of DNF (i.e., z is in A if one of its
target sets is contained in A), and the semantics of the block labeling (i.e., the
projection of A onto block i is the least fixed point of an appropriately defined
function of A if this block is labeled by p, and dually for u).

Our main result is a new local algorithm for evaluating PDG fixed points. Our
algorithm, which we call LAFP, combines the simplicity of previously proposed
induction-based algorithms (such as Winskel's tableau method for u-calculus
model checking [Win89]), with the efficiency of semantics-based algorithms (such
as the bit-vector method of Cleaveland, Klein, and Steffen for equational p-
calculus model checking [CKS92]). LAFP takes as input a PDG G and a vertex
z0 of G and determines, in a need-driven fashion, whether or not z0 is in the
solution of G. LAFP thereby avoids the a priori construction of G. In contrast,
global algorithms by definition require the a priori construction of a system's
state space, which results in good worst-case performance but poor performance
in many practical situations. The main features of LAFP are the following:

- Like the algorithm of [VL94], LAFP constructs a stable and complete search
space--in the sense that PDG vertices belonging to the search space depend
only upon vertices inside the search space and does so in a need-driven
manner. Moreover, it partitions the search space into three blocks I, O, and
Q: those vertices currently considered to be inside the solution, those vertices
currently considered to be outside the solution, and those whose status is
currently unknown, respectively.

- Like most fixed-point algorithms, LAFP computes PDG fixed points itera-
tively. By carefully accounting for the effects of moving a vertex z from Q to
I or Q to O on vertices transitively dependent on z, LAFP avoids unneces-
sary recomputation when a fixed point is nested directly within the scope of
another fixed point of the same type. As a result, the number of iterations
required by LAFP to evaluate fixed points in a PDG with vertices V and al-
ternation depth ad is o((IVl- 1) + (v~{~/~)~d). Asymptotically, this matches

the iteration complexity of the best existing global algorithms. Moreover, a
prototype implementation of LAFP based on the XMC model checker for
the alternation-free modal mu-calculus [RRR+97] and the smodeIs stable
models generator [NS96] demonstrates that LAFP performs extremely well
in practice.

- Because of the simplicity/abstractness of the PDG framework, the pseudo-
code for LAFP is clear and concise, and we provide a completely rigorous
proof of the algorithm's correctness.

In terms of related work, LAFP is to our knowledge the first efficient local al-
gorithm for evaluating structures of arbitrary alternation depth to appear in the
literature. Tableau-based local algorithms such as [Win89, Cle90, SW91] suffer
an exponential blowup even when the alternation-depth is fixed. The "semi-
local" algorithm of [RS97] is demonstratably less "local" than LAFP, exploring
more vertices than LAFP on certain examples.

Several efficient local methods for various subsets of the p-calculus have
been proposed, including lAnd94, VL94, BC96a]. The algorithm of [VL94], which
deals with Boolean Equation Systems of alternation depth 2, is closest to LAFP
when their "restore strategy" no. 4 is used. However, we have found a coun-
terexample to the algorithm's correctness, the details of which can be found in
Appendix A. It should also be noted that their algorithm, and their proposed
generalization of their algorithm to higher alternation depths, is for a given
alternation depth k fixed in advance. We see no obvious way to extend their
algorithm to handle equational systems of arbitrary alternation depth.

A number of global algorithms have been devised for the full p-calculus,
the most efficient of which are [CKS92, LBC+94]. The algorithm of [LBC+94] is
more efficient time-wise (O(n ~d/2) vs. O(n ~a) fixed-point iterations) but requires
more space (O(n ~d/2) vs. O(n)). The LAFP algorithm is inspired by a model
checking algorithm that appeared in [Liu92].

The structure of the rest of the paper is as follows. Section 2 defines our
partitioned dependency graph framework. Section 3 presents LAFP, our local
algorithm for PDG evaluation, along with an analysis of its correctness and
computational complexity. The XMC-based implementation of LAFP and ac-
companying experimental results are the topic of Section 4. Finally, Section 5
concludes and identifies directions for future work. Because of space limitations,
only proof outlines are given in this extended abstract. Full proofs can be found
in h t t p : / / w ~ , cs . sunysb, edu/..~sas/la~p, ps.

2 P a r t i t i o n e d D e p e n d e n c y G r a p h s

A partitioned dependency graph (PDG) is a tuple (V, E, Vx...Vn,cr), where V
is a set of vertices, E C V x fJ(V) is a set of hyper-edges, VI...Vn is a finite
sequence of subsets of V such that {Vx,...,V,~) is a partition of V, and cr :
{Vt,..., Vn) --~ {p, t,) is a function that assigns p or v to each block of the
partition. Let O E {/~, v). We shall subsequently write ~(z) : 6 if z E ~ and

= o.

Intuitively, a PDG G represents an equational system (in disjunctive normal
form) having n nested, possibly alternating, blocks of boolean equations. V1 is
the outermost block and V, is the innermost block. For the reader familiar with
nested boolean equation system [VL94], a PDG (V, E, V1... V,~, or) can be viewed
as a (arbitrarily) nested boolean equation system with equation blocks Vi and
each z �9 ~ having the equation z = V(~,S)eE A~es Y. Each ~ has the type
or(l~), and they are nested in the order given by V1,. . . , V,.

E:eample I. Let G = (V, E, VtV2, O r) be a PDG where V = {z, y, z}, V1 =

{~, u}, v~ = {~} , E = ((~ , (u}) , (~, (~}), (u, (~}), (u, (~}), (~, (~ , u }) } , or(v~) =
v, or(V2) = p. The corresponding nested boolean equation system is the following:

/ z = y V z
v: ~ y = z V z

Let G : (V, E, V1...V,~, or) be a PDG. To give a formal semantics to PDGs,
first notice that G induces two functions g, ~ : p(V) --+ o(V) such that for
AC_V,

g(A) = {z �9 V I S(z,S) �9 E. S C_ A},
~(A) = {~ �9 V I V(~, S) �9 E. S n A # 0}.

For A C_ V we write A for V - A. Clearly from the definition, for A C_ V it
holds that g(A) = ~ (~) . It is also clear from the definition that both g and
are monotonic functions with respect to set inclusion. In words, a vertex z is in
g(A) if z has a target set of vertices contained in A. Dually, z is in ~(A) if each
of z 's target sets has an element in A. Thus, g (~) allows us to interpret PDG
vertices as boolean equations of disjunctive (conjunctive) normal forms.

We write VG for p(Vt) x . . . x o(V,). Define ~b: VG -+ o(V) to be the flat-
tening function such that for v E VG, r = UiLx v(i). Clearly ~ is in one-one
correspondence with its inverse ~ - given by ~-(A) = (A n V1,. . . , A n V,~) for
A c_ ~ (v) .

For v �9 Va , we will write v[~/k] for the updated version of v in which its
kth component is replaced by z, and ~e for the componentwise complementation
of v. We will also write _1_ for (0 , . . . , ~).

With g,.~ defined as above, a PDG further induces the 2n + 2 functions

g o , . . . , g,,, ~ 0 , . . . , ~ , : V a -~ VG

such t h a t g , , = ~ b - o g o ~ b , ~ , , = $ - o 0 o $, a n d f o r v E V G , k � 9

f Vu.gk(v[u(k)/k])
g ~ _ , (v) =

~ .gkC, , [uCk)/k])

~_~(,,) = vu.gk (V [U(k)/~])
~u.~kC~[uCk)/k]) [

or(vk) =
or(vk) = ~ '

or(vk) =
or(vk) = ~ '

where ~. .gk(v[u(k) /k]) (~u.gkCv[uC~)/k])) is the maximum (minimum) u �9
V a such that u = gk(v[u(k)/k]). Following the standard argument,

)m.g~(v[u(k)/k]) is a monotonic function on the complete lattice (p(V1) x . . . x
p(V,,), _) , with E being the pointwise inclusion relation. Thus, by the Knaster-
Tarski fixed-point theorem, such u do uniquely exist. The well definedness of ~l,
is guaranteed in the same way.

Intuitively, the expression g k - i (v) computes the fixed point of the kth block
in environment v. Moreover, g0(v) gives the solution to the entire equational
system. Since G is a closed system, the choice of argument to go is irrelevant.
Given a distinguished vertex z0 in V, the problem then of locally evaluating G
is the one of determining whether z0 E r

3 L A F P : A L o c a l A l g o r i t h m f o r E v a l u a t i n g P D G s

The pseudo-code for algorithm LAFP is given in Figure 1. LAFP takes as input
a PDG G -- (V, E, V1.. . V,~, ~) and a distinguished vertex z0 E V, and decides
whether z0 E r that is, whether z0 is in the solution to G. Before
explaining further the algorithm, we need some additional notation. Let Q+ =
~ E Q Iv E T& and or(H) = v~ be the vertices in Q defined in blocks of type
v and, similarly, let Q - -- (z E Q Iz E T~ and cr(T~) - p~ be the vertices in Q
defined in blocks of type p. By default, vertices of Q+ are assumed to be in the
solution to G while vertices of Q - are not. Also, we write y > z when the index
of the block containing vertex y is greater than the index of the block containing
vertex z; i.e., y is in a block more deeply nested than the block containing ~.

Like the algorithm of [VL94], LAFP seeks to construct a stable and complete
search space (subset of V) in the sense that PDG vertices belonging to the
search space depend only upon vertices inside the search space. Moreover, it
partitions the search space into three blocks I , O, and Q. I contains those
vertices currently considered to be inside the solution, O contains those vertices
currently considered to be outside the solution, and Q is the set of vertices that
have been explored but whose status is undetermined.

The algorithm starts with z0 in Q, terminates when Q is empty, and each
iteration of the while-loop is designed to maintain the invariants given in the
proof sketch of Theorem 1. In particular, a vertex z is chosen from Q from
among those that are most deeply nested (in the block with the largest index).
This is to prevent computat ion in an outer block (relative to z 's block) from
proceeding with possibly erroneous default values.

In case 1, x is a vertex that belongs in I since one o f z ' s target sets of vertices
S is contained in Q+ u I. In this case, z is moved from Q to I; the fact that S
is only required to be contained in Q+ u I rather than in I reflects the intuition
that vertices from a ~,-block are assumed to be in the solution set. Subsequently,
a check is performed to see if z is from a p-block. If so, then all nodes in O
that transitively depend on the assumption that z is not in the solution (since

is in a p-block) are moved from O to Q, a process we refer to as our restore
strategy. For this purpose, we associate with each vertex y E I t 3 0 an at tr ibute
y.T, which is the set of vertices y transitively depends on for being in I or O.
y.T is computed by the procedure Closure 1 upon adding y into I .

10

procedure LAFP(G, z0)
initialize I :-- 0, O := 0, Q := {z0}
while Q ~ 0 do

choose z E Q N V~ where k is the largest k such that Q N Vk ~ 0
c a s e

1. z E g((2+ u I):
I := I U { z }
Q := Q - {=}
choose (z, S) E E such that S C (2+ U I
Closure 1 (z, S)
if or(z) = / J t h e n

(2 := (2 u { y l y E o ,= ~ y.T}
O:= {yEOI~y.T}

~.. = e # ((2 - u o) :
O:=Ou{=}
Q := (2 - {= }
T : = 0
for each (z, S) E B do

choose y E S Cl ((2- U O)
T := TU{y}

Closure ~ (z, T)
i f ~r(z) = u t h e n

(2 := QU{y IN e I ,z e y.T}
I:= {y EII= fLy.T}

3. otherwise:
choose y E U { s I (z, s) E E} such that y ~ Q u I u 0
(2 := (2 u { y }

p r o c e d u r e Closure 1 (z, S)
z .T := S
do the following until z .T stops increasing

if y E x.T and (~(x) =/~ or y > z) t h e n z .T : - x.T U y.T

p r o c e d u r e Closure ~ (z, S)
z .T := S
do the following until z .T stops increasing

if 11 E z .T and (~(x) = v or y > x) t h e n z .T := z .T U y.T

Fig. 1. Pseudo-code for algorithm LAFP.

Case 2 is dual to case 1: each of z ' s target sets has an element in Q - u O.
In case 3, there is not enough informat ion to place z in I or O, so one of its
unexplored successors is added to Q. I t is easy to show tha t case 3 is always
executable when bo th cases 1 and 2 fail to hold.

In procedure Closure 1, the a t t r ibu te set z . T is constructed. Assume, for the
purposes of discussion, tha t we are comput ing z . T for some z which has jus t
been added into I (the explanat ion of Closure ~ is dual if z has just been added

11

to O). Then z . T should contain vertices in I and Q+ on which ~'s membership
in I depends. (Later, we will see that an invariant property of LAFP is that , in
this case, z . T C I U Q+.) Thus if y E z .T and y is from a p-block then y must
be in I. Also, if y E z .T and y is from a block more deeply nested than the
block containing z, then also y must be in I (otherwise z would not have been
evaluated in the first place). In these cases, since z E I depends on y E I which
in turn depends on all the vertices in y.T, y .T must be a subset of z .T.

Ezample ~. Consider PDG G of Example 1. I f we want to determine whether
z E go(• we run L A F P with Q = {$} initially. There are many possible runs
o f the algorithm on this instance. One o f these is as follows: y is added into Q
(case 3 on z); x is moved from Q to I (case I on ~); y is moved from Q to I
(case 1 on y); terminate with I = {~, y}, 0 = O, Q = 0.

Another possible run is as follows: z is added into Q (case 3 on z); y is added
into Q (case 3 on z); z is moved from O to I (case I on z); y is moved from
Q to I (case I on y); �9 is moved from Q to I (case I on z); terminate with
I = { z , y , z } , O - ~ , Q = O .

The above example shows that in some cases LAFP may terminate without
exploring all the vertices, a characteristic of local algorithms. The next example
illustrates LAFP's restore strategy.

Ezample3. Let G = (V, E, V1V2, a) be a PDG where V = { z , y , z } , V1 =
{-, y), v2 = { z) , E = {(y, { , }) , (y, {z)), {,)), (Vl) = (V2) =
The corresponding nested boolean equation system is the following:

u : { z = O
y = z V z

p : i z = z V y

I f we want to determine whether z E go(• we run the algorithm with
Q = {z} initially, and the following is a possible execution: z is added into Q
(case 3 on z); z is moved from Q to I with z .T = {z} (case i on z); z is moved
from Q to 0 with z . T - O, and z is moved from I back to Q since z E z .T
(case 2 on z); y is added into Q (case 3 on z); z is moved from Q to I with
z.T -- {9} (case I on z); y is moved from Q to I with y.T = {y, z} (case I on
y); terminate with I = {z, y}, 0 = {z}, Q = O.

The (partial) correctness of LAFP is guaranteed by the following theorem.

T h e o r e m 1. When algorithm L A F P terminates, whenever z E I then �9 E
r177 and whenever �9 e o then e r177

Proof sketch The proof depends on the following key invariants of the while-
loop:

1. if z E I then �9 E g(z .T) and z . T C I U Q+,
2. if z E O then z E ~(z.T) and z .T C_ O U Q-,

12

3. if~ x n and {r(Vk) = I., then z G gk(#b-(z.T))(k),
4. ifz E I n T/'~ and cr(Vk) = p then ~ G gk_1(r
5. if z E O O Vk and {r(Vk) = p then z E ~k(r
6. if z E O M V~ and ~r(I~) = u then z G gk- l (r

Now suppose after LAFP terminates z E I. Clearly z E g(z.T) C_ g(I U Q+)
by the above invariants. When LAFP terminates Q = ~, thus z E g(I), that is
z E r Note that go(e - (I)) - go (l) . To conclude z E g o (l) we will
show that at termination it holds that gk (r (I)) _ g~_ x (~- (I)) for k -- 1 , . . . , n.
To see this we need to consider two cases. The first is that rr is a p-block. In this
case for all y E r it holds that y G gk-l(~b-(y.T))(k) C gk-l(~b-(I))(k),
by invariants4 and 1. Now g~(~b-(1)) _ gk(f~-(1)[gk-1(r =
gk-l(r The second case is that Vk is a u-block. In this case for all
y E r it holds that y G gk(r C gk(r by in-
variants 3 and 1. So gk(~b-(1)) _E gk(~-(1)[gk(~-(I))(k)/k]). This inequal-
ity shows that gk(~b-(1)) is a pre-fixed point of Au.gk(q~-(I)[u(k)/k]), thus
g~(}- (I)) _ uu .gk(}- (I)[u(k)/k]) = g k - l (} - (I)).

For z ~ O, we can similarly show that after termination z E }(~o(J-)). Thus
in this case z e r since ~o(-k) = go(S). []

In analyzing the computational complexity of LAFP, the concept of alterna-
tion depth plays an important role. Let G = (V, E, Vx.. . V,~,~r) be a PDG. For
z ~ V, let succ(z) be the set of vertices that are related to z by the transitive
closure of G's hyper-edge relation. More precisely succ(z) is the smallest set
such that if (z, S) E S then S C succ(z) and i f y ~ succ(z) and (y,T) G E then
T C succ(z). For z E V~, its alternation depth, ad(z), is defined by

k--I

adCz) = 1 + max{adCY)]y E U ~ ' y E succ(z), {z(z) :~ {zCy)}-
i=1

We adopt the convention that max0 = 0. Thus clearly for z E VI, ad(z) = I.
Then for the PDG G its alternation depth is the maximum alternation depth of
the vertices.

The following theorem gives the fixed-point iteration complexity of LAFP.

T h e o r e m 2. Let G = (V, E, V1... Vn, ~) be a PDG with zo a distinguished vet-
fez in V. Then the number of iterations taken by the while-loop of LAFP to
decide if zo 6 r is bounded by

s + ad) ad (IVl-1)+k jj

where ad is the alternation depth of G.

Proof sketch Elements of the set I U O can be partitioned into the following
two subsets:

B = f z I ~ E I Ao'(z) = u} U{:s I z E OAo'(z) =/~},

13

and elements of A and of B are said to be alternating and straight, respectively.
A can be further partit ioned into A1,. . . , Aad, where Ad = {z E A [ad(z) = d}.
The key to the complexity analysis is the pattern by which vertices move among
these sets during the execution of LAFP. The pattern is characterized by the
following observations:

1. if case 1 or 2 is executed, the size of the set I U O U Q does not change,
whereas if case 3 is executed it increases by 1;

2. if case 3 is executed all A 1 , . . . , Aad, B remain unchanged;
3. if case 1 or 2 is executed, then a new element z is added into I U O either as

an alternating or as a straight element. If z becomes a straight element of
/ U O then IBI increases by 1 and all A 1 , . . . , A~d remain unchanged, and if
z becomes an alternating element of I U O then lAd[increases by 1 and Ai
remains unchanged for i < d, where d = ad(z).

With these observations, the lexicon order of the array (IA~I,..., IAad_l[, II U
O U Q] + I B u A ~d f) increases at least by 1 after each it eration. Routine calculation
shows that this order is bounded by

('V' - l) + (]V' + ad)

[]

A careful amortized analysis of the total execution time of LAFP (in which
the time taken during iterations of the while-loop is taken into account) in-
troduces a factor of IV] z into the bound of Theorem 2. This additional factor
is mainly due to the computation performed by procedure Closure, and is the
price we pay for being able to perform local model checking on structures of
arbi t rary alternation depth. However, the complexity of LAFP does not appear
to be an issue in practice, as the algorithm performs extremely well on published
benchmarks, in particular, those involving formulas of alternation depth 2 (see
Section 4).

It is not difficult to see that in the worst case LAFP requires space quadratic
in the size of the explored state space; this is due to the maintenance of the y.T
attr ibute sets, each of which can potentially grow to size O(IVI) after performing
the Closure operation. In contrast, most existing model checking algorithms for
the modal mu-calculus need only linear space. However, we strongly conjecture
that there exists a version of LAFP in which the Closure operation is avoided and
PDG fixed-points are still computed correctly. Moreover, it should be possible
to do so without affecting LAFP's iteration complexity. This would yield the
desired linear space complexity bound.

One possible way of achieving this space complexity is by storing S and T in
z .T instead of their "closure," in cases 1 and 2 of procedure LAFP, respectively.
If these changes are made, then care must be taken to ensure that the restore
strategy properly propagates the effect of moving a node from O to Q or from
I to Q. To clarify, consider an example. Suppose z is a node in a # block and
y, z E O with y.T = {z}, z.T = {y}. Then, if z turns out to be in I, the restore

14

strategy should not only move y from O back to Q (since z E y.T), but also z
since z .T -- ~y} implies that z E O depends on y E O.

4 Experimental Results

We describe a prototype implementation of LAFP based on the XMC model
checker [RRR+97] and the smodels stable models generator [NS96]. XMC is an
efficient model checker for value-passing CCS and the alternation-free fragment
of the modal mu-calculus, implemented using the XSB logic programming sys-
tem [XSB97]. XSB implements tabled (SLG) resolution which effectively com-
putes minimal models of bounded term-depth programs (which include Datalog
programs). Furthermore, XSB's evaluation strategy is goal-directed, which en-
ables us to directly implement local model checking algorithms. For normal logic
programs (i.e., programs with negated literals on the right-hand side of clauses),
XSB computes the zveU-founded model: a three-valued model where each literal
is given one of the three truth assignments true, false or unknown. For instance,
consider the program:

p :-q, s.

q:-~r.

r :-~q.

S.

The well-founded model for the above program is such that p, q and r are
unknown and s is true. While evaluating the well-founded model XSB computes a
residual program that represents the dependencies between literals with unknown
values. For the above program, XSB computes the dependencies as

p :-q.

q :--~ r.

r :- -~ q.

XMC was constructed starting with a straightforward encoding in Horn
clauses of the structural operational semantics of value-passing CCS and the
natural semantics of the modal mu-calculus. These rules were then subjected
to a series of optimizing transformations, yielding a logic program. The XSB
system is then used to efficiently evaluate the resulting logic program, over a
database of facts representing the process and formula definitions for the given
model-checking instance.

In XMC, the ability of XSB to compute minimal models is exploited di-
rectly to compute least fixed-point formulas. Formulas with greatest fixed-
point operators are transformed using the well known equivalence ~,X.F(X) --
~pX.~F(-~X). For an alternation-free formula, the resultant XSB program is
dynamically stratified (i.e., there are no loops through negation in the dynamic
call graph), and the well-founded model computed by XSB has no unknown val-
ues [SSW96]. The literals encountered while evaluating the XSB program cor-
respond directly to the vertices of the PDG representing the model-checking

15

problem. For formulas without alternation, XSB assigns unique truth values to
the vertices of the PDG as and when the PDG is constructed.

For formulas with alternation, however, the resultant evaluation is not dy-
namically stratified, and hence the well-founded model contains literals with
unknown values. That is, while XSB-based evaluation constructs the PDG, it
does not label every vertex in the PDG as true or false. For such formulas, the
residual program produced by XSB's evaluation captures the subgraph of the
PDG induced by vertices that do not have assigned truth values.

We compute the truth values of these remaining vertices by invoking the
stable model generator smode]s [NS96] on the residual program. The algorithm
used in smodels recursively assigns truth values to literals until all literals have
been assigned values, or an assignment is inconsistent with the program rules.
When an inconsistency is detected, it backtracks and tries alternate truth assign-
ments for previously encountered literals. By appropriately choosing the order in
which literals are assigned values, and the default values, we obtain an algorithm
that corresponds to the LAFP algorithm with a naive restore operation. A full
implementation of the LAFP algorithm in this framework is currently underway.

~ a

b

(a) Process Mk

~x.~r.C[-].C(a)~ ^ x) v Y)

(b) Formula F

B e n c h m a r k Tool T i m e (sec)
Ms0o, F CMC 33.84

FAM 2.88
LAFP 1.61

MIooo, F CMC 138.51
FAM 11.64
LAFP 2.76

Ml.~00, F CMC 312.10
FAM 26.61
LAFP 4.08

(c) Summary of Execution Times

Fig. 2. Experimental evaluation of LAFP.

16

In order to gauge the performance of our implementation of LAFP, we
compared it to the Fixpoint Analysis Machine (FAM) [SCK+95] and a "con-
ventional model checker" (CIVIC) on a benchmark described in [SCK+95]. The
conventional model checker in question is an implementation of the [CKS92]
model checking algorithm. The processes and formula comprising the bench-
mark are shown in Figure 2, along with the corresponding execution times of
the three model checking systems. Performance figures for CIVIC and FAM are
from [SCK+95]; these results as well as those for LAFP were obtained on a SUN
Sparc-20.

The formula F is a modal mu-calculus formula of alternation depth 2 ex-
pressing the property that an a-transition is enabled infinitely often along all
infinite paths. It is true for state ~ of process Mk and false for all other states
of Mk. Although the example is fairly simple in structure, it is essentially the
only published benchmark for the alternation-depth-n fragment of the modal
mu-calculus, n ~ 2, of which we are aware.

Note that the CIVIC and FAM figures reflect the performance of global algo-
rithms. Hence, for purposes of comparison, the LAFP results were obtained as
the sum of run times for verifying the given formula on each state in the pro-
cess. For the above examples, the residual programs created by the first phase of
XMC-based model checker are relatively small. Therefore, the more expensive
(potentially exponential) computation is performed on a very small portion of
the state space. This is reflected in the performance of LAFP, which exhibits
much slower growth in run times with increase in the size of the system verified,
compared to those of the other implementations. We are currently performing a
more comprehensive evaluation of the performance of the LAFP algorithm and
its implementation.

5 C o n c l u s i o n s

We have presented an abstract model of nested, alternating fixed-point com-
putation, and an algorithm for evaluating PDG fixed points. Careful design of
LAFP has resulted in a local algorithm whose asymptotic fixed-point iteration
complexity matches that of the best existing global algorithms. Moreover, LAFP
has a simple correctness proof and performs extremely well in practice.

It is interesting to note that algorithm LAFP correctly evaluates the input
PDO for any I, O, and Q satisfying the invariants of given in the proof sketch
of Theorem 1. This suggests an incremental approach, along the lines of [SS94],
for the local computation of alternating fixed points. The incremental version
of LAFP would be invoked after LAFP is run on a PDG that subsequently
undergoes a set A of changes, where a change is an inserted or deleted PDG
edge. After accounting for the immediate effects of A on I, O, and Q, the lo-
cal fixed-point computation would be restarted. The benefit of this approach
is that, in certain cases, the incremental algorithm will terminate much more
quickly compared to restarting LAFP from scratch, thereby avoiding significant
redundant recomputation. Working out the details of such an incremental al-

17

gorithm is an important direction for future work, especially in the context of
interactive design environments for concurrent systems.

A Counterexample to the Correctness of [VL94] Restore
Strategy No. 4

As mentioned in the Introduction, we have found a counterexample to the cor-
rectness of the local model checking algorithm of [VL94], when their "restore
strategy" no. 4 is used. The details of the counterexample are as follows; please
refer to [VL94] for a description of the algorithm. When procedure AltSolve is
used in conjunction with Restore strategy no. 4, it may give an incorrect answer
for the following boolean equation system:

~ : 'u, V v
p :

y = l
u = v A y
v = u A y

This is an alternating equation system with a minimum outer block and a max-
imum inner block, and it is not difficult to see that the solution should be 1 for
every variable. If AltSolve is run with Restore (4) on this example starting with
z, the following computation sequence may occur:

- z is set to 0 (default value for a min variable)
- u is set to 1 (as a result of Ezpandl, default value for a max variable)
- v is set to 1 (Ezpanda, default value for a max variable)
- y xs set to 0 (Ezpand~, default value for a rain variable)
- u is set to 0 (Update~)
- v is set to 0 (Update2)
- y is set to i (Update1, here Restore (4) does not change u, v since the right-

hand sides of their equations still give value 0 even with y being 1).

AltSolve now terminates with y = 1, z = u = v = 0.

References

[And94]

[BC96a]

[BC96b]

H. R. Andersen. Model checking and boolean graphs. Theoretical Computer
Science, 126(1), 1994.
G. S. Bhat and R. Cleaveland. Efficient local model checking for fragments
of the modal #-calculus. In T. Margaria and B. Steffen, editors, Proceedings
of the Second International Workshop on Tools and Algorithms/or the Con-
struction and Analysis o/ Syatems (TA CAS '96), Vol. 1055 of Lecture]Votes
in Computer Science, pages 107-126. Springer-Verlag, March 1996.
G. S. Bhat and R. Cleaveland. Efficient model checking via the equational
/~-ealculus. In E. M. Clarke, editor, llth Annual Symposium on Logic in
Computer Science (LICS '96), pages 304-312, New Brunswick, NJ, July
1996. Computer Society Press.

18

ICE81]

[CES86]

[CKS92]

[Cle90]

[CW96]

[EL86]

[Koz83]

[LBC+94]

[Liu92]

[NS96]

[Pra81]

[q582]

[11RR + 97]

[RS97]

E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization
skeletons using branchlng-time temporal logic. In D. Kozen, editor, Pro-
ceedings of the Workshop on Logic of Programs, Yorktown Heights, volume
131 of Lecture Notes in Computer Science, pages 52-71. Springer-Ver]ag,
1981.
E. M. Clarke, E. A. Emerson, and A. P. Sist]a. Automatic verification of
finlte-state concurrent systems using temporal logic specifications. AC~/"
TOPLAS, 8(2), 1986.
11. Cleaveland, M. Klein, and B. Steffen. Faster model checking for the
modal mu-calculus. In G.v. Bochmann and D.K. Probst, editors, Proceed-
ings of the Fourth International Conference on Computer Aided Verification
(CA V '9~), Vol. 663 of Lecture Notes in Computer Science, pages 410-422.
Springer-VerIag, 1992.
11. Cleaveland. Tableau-based model checking in the propositional mu-
calculus. Acta Informatica, 27(8):725-747, September 1990.
E. M. Clarke and J. M. Wing. Formal methods: State of the art and future
directions. ACM Computing Surveys, 28(4), December 1996.
E. A. Emerson and C.-L. Lei. Efficient model checking in fragments of the
propositional mu-calculus. In Proceedings of the First Annual Symposium
on Logic in Computer Science, pages 267-278, 1986.
D. Kozen. Results on the propositional /J-calculus. Theoretical Computer
Science, 27:333-354, 1983.
D. E. Long, A. Browne, E. M. Clarke, S. Jha, and W. 11. Marrero. An im-
proved algorithm for the evaluation offixpoint expressions. In D. Dill, editor,
Proceedings of the $izth International Conference on Computer Aided Verifi-
cation (CA V '9~), Vol. 818 of Lecture Notes in Computer Science. Springer-
Verlag, 1994.
X. Lin. Specification and Decomposition in Concurrency, Technical Report
No. 11 92-2005. PhD thesis, Department of Computer Science, Aalborg
University, 1992.
I. Niemeia and P. Simous. Efficient implementation of the well-founded and
stable model semantics. In Joint International Conference and Symposium
on Logic Programming, pages 289-303, 1996.
V.11. Pratt. A decidable mu-calculus. In Proceedings of the ~2nd IEEE Ann.
Syrup. on Foundations of Computer Science, Nashville, Tennessee, pages
421-427, 1981.
J. P. Queille and J. Sifakis. Specification and verification of concurrent
systems in Cesar. In Proceedings of the International Symposium in Pro-
gramming, volume 137 of Lecture Notes in Computer Science, Berlin, 1982.
Springer-Verlag.
Y.S. Ramakrishna, C. 1t. Ramakrishnan, I .V. 11amakrishnan, S.A.
Smo]ka, T. W. Swift, and D. S. Warren. Ei~cient model checking using
tabled resolution. In Proceedings of the 9th International Conference on
Computer-Aided Verification (CAV '97), Haifa, Israel, July 1997'. Springer-
Verlag.
Y. S. Ramakrishna and S. A. Smolka. Partial-order reduction in the weak
modal mu-calculus. In A. Mazurkiewicz and J. Winkowski, editors, Proceed-
ings of the Eighth International Conference on Concurrency Theory (CON-
CUR '97), volume 1243 of Lecture Notes in Computer Science, Warsaw,
Poland, July 1997. Springer-Verlag.

19

[SCK+95]

[ss94]

[ssw96]

[SW91]

[VL94]

[Win89]

[XSB9~]

B. Steffen, A. Classen, M. Klein, J. Knoop, and T. Margarla. The fixpoint-
analysis machine. In I. Lee and S. A. Smolka, editors, Proceedings of the
Sizth International Conference on Concurrency Theory (CONCUR '95),
Vol. 962 of Lecture Notes in Computer Science, pages 72-87. Springer-
Verlag, 1995.
O. Sokolsky and S. A. Smolka. Incremental model checking in the modal
mu-calculus. In D. Dill, editor, Proceedings of the Sizth International
Conference on Computer Aided Verification (CA V '9~), Vol. 818 of Lecture
Notes in Computer Science. Sprlnger-Verlag, 1994.
K. Sagonas, T. Swift, and D.S. Warren. An abstract machine to compute
fixed-order dynamically stratified programs. In International Conference on
Automated Deduction (CADE), 1996.
C. Stirllng and D. Walker. Local model checking in the modal mu-calculus.
Theoretical Computer Science, 89(1), 1991.
B. Vergauwen and J. Lewi. Efficient local correctness checking for single and
alternating boolean equation systems. In Proceedings of ICALP'9J, pages
304-315. LNCS 820, 1994.
G. Winskel. A note on model checking the modal v-calculus. In Proceedings
of ICALP '89, Vol. 372 of Lecture Notes in Computer Science, 1989.
XSB. The XSB logic programming system vl.?, 1997. Available by anony-
mous ftp from f t p . ca . sunysb, edu.

