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Abst rac t .  We introduce Partitioned Dependency Graphs (PDGs), an 
abstract framework for the specification and evaluation of arbitrarily 
nested alternating fixed points. The generality of PDGs subsumes that 
of similarly proposed models of nested fixed-point computation such as 
Boolean graphs, Boolean equation systems, and the propositional modal 
mu-calculus. Our main result is an efficient local algorithm for evalu- 
ating PDG fized pointa. Our algorithm, which we call LAFP, combines 
the simplicity of previously proposed induction-based algorithms (such 
as Winskel's tableau method for p-calculus mode] checking) with the ef- 
ficiency of semantics-based algorithms (such as the bit-vector method of 
Cleaveland, Klein, and Steffen for the equational D-calculus). In particu- 
lar, LAFP is simply specified, we provide a completely rigorous proof of 
its correctness, and the number of fixed-point iterations required by the 
algorithm is asymptotically the same as that of the best existing global 
algorithms. Moreover, preliminary experimental results demonstrate that 
LAFP performs extremely well in practice. To our knowledge, this makes 
LAFP the first efficient local algorithm for computing fixed points of ar- 
bitrary alternation depth to appear in the literature. 

1 I n t r o d u c t i o n  

Model checking [CE81, QS82, CES86] is a verification technique aimed at de- 
termining whether a system specification possesses a property expressed as a 
temporal  logic formula. Model checking has enjoyed wide success in verifying, or 
finding design errors in, real-life systems. An interesting account of a number of 
these success stories can be found in [CW96]. 

Model checking has spurred interest in evaluating alternating f~ed points as 
these are needed to express system properties of practical import,  such as those 
involving subtle fairness constraints. Probably, the most canonical temporal  logic 
for expressing alternating fixed points is the modal mu-calculus [Pra81, Koz83], 
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which makes explicit use of the dual fixed-point operators # (least fixed point) 
and v (greatest fixed point). Intuitively, the alternation depth of a modal mu- 
calculus formula [EL86] is the level of nontrivial nesting of fixed points in ~b with 
adjacent fixed points being of different type. The term "alternating fixed point," 
then, refers to such adjacent fixed points. 

In this paper, we present a very general framework for specifying and eval- 
uating alternating fixed points. In particular, we introduce Partitioned Depen- 
dency Graphs (PDGs), whose generality subsumes that of similarly proposed 
models of nested fixed-point computation, such as Boolean graphs [And94], 
Boolean equation systems [VL94], the modal mu-calculus, and the equational 
p-calculus [CKS92, BC96b]. A PDG is a directed hypergraph G with hyper- 
edges from vertices to sets of vertices. A PDG vertex z can be viewed as a 
kind of disjunctive normal form (DNF), with each of z's target sets of vertices 
representing a disjunct (conjunctive term) of z. Moreover, the vertices of G are 
partitioned into blocks, each of which is labeled by p or u, and the ith block 
represents the ith-most nested fixed point. A subset A of G's vertices is a proper 
evaluation of G if it respects the semantics of DNF (i.e., z is in A if one of its 
target sets is contained in A), and the semantics of the block labeling (i.e., the 
projection of A onto block i is the least fixed point of an appropriately defined 
function of A if this block is labeled by p, and dually for u). 

Our main result is a new local algorithm for evaluating PDG fixed points. Our 
algorithm, which we call LAFP, combines the simplicity of previously proposed 
induction-based algorithms (such as Winskel's tableau method for u-calculus 
model checking [Win89]), with the efficiency of semantics-based algorithms (such 
as the bit-vector method of Cleaveland, Klein, and Steffen for equational p- 
calculus model checking [CKS92]). LAFP takes as input a PDG G and a vertex 
z0 of G and determines, in a need-driven fashion, whether or not z0 is in the 
solution of G. LAFP thereby avoids the a priori construction of G. In contrast, 
global algorithms by definition require the a priori construction of a system's 
state space, which results in good worst-case performance but poor performance 
in many practical situations. The main features of LAFP are the following: 

- Like the algorithm of [VL94], LAFP constructs a stable and complete search 
space--in the sense that PDG vertices belonging to the search space depend 
only upon vertices inside the search space and does so in a need-driven 
manner. Moreover, it partitions the search space into three blocks I, O, and 
Q: those vertices currently considered to be inside the solution, those vertices 
currently considered to be outside the solution, and those whose status is 
currently unknown, respectively. 

- Like most fixed-point algorithms, LAFP computes PDG fixed points itera- 
tively. By carefully accounting for the effects of moving a vertex z from Q to 
I or Q to O on vertices transitively dependent on z, LAFP avoids unneces- 
sary recomputation when a fixed point is nested directly within the scope of 
another fixed point of the same type. As a result, the number of iterations 
required by LAFP to evaluate fixed points in a PDG with vertices V and al- 
ternation depth ad is o((IVl- 1) + (v~{~/~)~d). Asymptotically, this matches 



the iteration complexity of the best existing global algorithms. Moreover, a 
prototype implementation of LAFP based on the XMC model checker for 
the alternation-free modal mu-calculus [RRR+97] and the smodeIs stable 
models generator [NS96] demonstrates that LAFP performs extremely well 
in practice. 

- Because of the simplicity/abstractness of the PDG framework, the pseudo- 
code for LAFP is clear and concise, and we provide a completely rigorous 
proof of the algorithm's correctness. 

In terms of related work, LAFP is to our knowledge the first efficient local al- 
gorithm for evaluating structures of arbitrary alternation depth to appear in the 
literature. Tableau-based local algorithms such as [Win89, Cle90, SW91] suffer 
an exponential blowup even when the alternation-depth is fixed. The "semi- 
local" algorithm of [RS97] is demonstratably less "local" than LAFP, exploring 
more vertices than LAFP on certain examples. 

Several efficient local methods for various subsets of the p-calculus have 
been proposed, including lAnd94, VL94, BC96a]. The algorithm of [VL94], which 
deals with Boolean Equation Systems of alternation depth 2, is closest to LAFP 
when their "restore strategy" no. 4 is used. However, we have found a coun- 
terexample to the algorithm's correctness, the details of which can be found in 
Appendix A. It should also be noted that their algorithm, and their proposed 
generalization of their algorithm to higher alternation depths, is for a given 
alternation depth k fixed in advance. We see no obvious way to extend their 
algorithm to handle equational systems of arbitrary alternation depth. 

A number of global algorithms have been devised for the full p-calculus, 
the most efficient of which are [CKS92, LBC+94]. The algorithm of [LBC+94] is 
more efficient time-wise (O(n ~d/2) vs. O(n ~a) fixed-point iterations) but requires 
more space (O(n ~d/2) vs. O(n)). The LAFP algorithm is inspired by a model 
checking algorithm that appeared in [Liu92]. 

The structure of the rest of the paper is as follows. Section 2 defines our 
partitioned dependency graph framework. Section 3 presents LAFP, our local 
algorithm for PDG evaluation, along with an analysis of its correctness and 
computational complexity. The XMC-based implementation of LAFP and ac- 
companying experimental results are the topic of Section 4. Finally, Section 5 
concludes and identifies directions for future work. Because of space limitations, 
only proof outlines are given in this extended abstract. Full proofs can be found 
in h t t p : / / w ~ ,  cs .  sunysb, edu/..~sas/la~p, ps. 

2 P a r t i t i o n e d  D e p e n d e n c y  G r a p h s  

A partitioned dependency graph (PDG) is a tuple (V, E, Vx...Vn,cr), where V 
is a set of vertices, E C V x fJ(V) is a set of hyper-edges, VI...Vn is a finite 
sequence of subsets of V such that {Vx,...,V,~) is a partition of V, and cr : 
{Vt,..., Vn) --~ {p, t,) is a function that assigns p or v to each block of the 
partition. Let O E {/~, v). We shall subsequently write ~(z) : 6 if z E ~ and 

= o. 



Intuitively, a PDG G represents an equational system (in disjunctive normal 
form) having n nested, possibly alternating, blocks of boolean equations. V1 is 
the outermost block and V, is the innermost block. For the reader familiar with 
nested boolean equation system [VL94], a PDG (V, E, V1...  V,~, or) can be viewed 
as a (arbitrarily) nested boolean equation system with equation blocks Vi and 
each z �9 ~ having the equation z = V(~,S)eE A~es Y. Each ~ has the type 
or(l~), and they are nested in the order given by V1,. . . ,  V,. 

E:eample I. Let G = (V, E, VtV2, O r) be a PDG where V = {z, y, z}, V1 = 

{~, u}, v~ = {~} ,  E = ( (~ ,  (u}) ,  (~, (~}), (u, (~}), (u, (~}), (~, ( ~ , u } ) } ,  or(v~) = 
v, or(V2) = p. The corresponding nested boolean equation system is the following: 

/ z = y V z  
v:  ~ y = z V z  

Let G : (V, E, V1...V,~, or) be a PDG. To give a formal semantics to PDGs, 
first notice that  G induces two functions g, ~ : p(V) --+ o(V) such that  for 
AC_V, 

g(A) = {z �9 V I S(z,S) �9 E. S C_ A}, 
~(A) = {~  �9 V I V(~, S) �9 E.  S n A # 0}. 

For A C_ V we write A for V - A. Clearly from the definition, for A C_ V it 
holds that g(A) = ~ ( ~ ) .  It is also clear from the definition that  both g and 
are monotonic functions with respect to set inclusion. In words, a vertex z is in 
g(A) if z has a target set of vertices contained in A. Dually, z is in ~(A) if each 
of z 's target sets has an element in A. Thus, g (~) allows us to interpret PDG 
vertices as boolean equations of disjunctive (conjunctive) normal forms. 

We write VG for p(Vt) x . . .  x o(V,). Define ~b: VG -+ o(V) to be the flat- 
tening function such that  for v E VG, r = UiLx v(i). Clearly ~ is in one-one 
correspondence with its inverse ~ -  given by ~-(A)  = ( A n  V1,. . . ,  A n V,~) for 
A c_ ~ ( v ) .  

For v �9 Va ,  we will write v[~/k] for the updated version of v in which its 
kth component is replaced by z, and ~e for the componentwise complementation 
of v. We will also write _1_ for (0 , . . . ,  ~). 

With g,.~ defined as above, a PDG further induces the 2n + 2 functions 

g o , . . . ,  g,,, ~ 0 , . . . , ~ ,  : V a  -~ VG 

such t h a t g , , = ~ b - o g o ~ b ,  ~ , , = $ - o 0 o $ , a n d f o r v E V G ,  k � 9  

f Vu.gk(v[u(k)/k]) 
g ~ _ , ( v )  = 

~ .gkC, , [uCk)/k])  

~_~(,,) = vu.gk (V [U(k)/~]) 
~u.~kC~[uCk)/k]) [ 

or(vk) = 
or(vk) = ~ ' 

or(vk) = 
or(vk) = ~ ' 

where ~. .gk(v[u(k) /k])  (~u.gkCv[uC~)/k])) is the maximum (minimum) u �9 
V a  such that  u = gk(v[u(k)/k]). Following the standard argument, 



)m.g~(v[u(k)/k]) is a monotonic function on the complete lattice (p(V1) x . . .  x 
p(V,,), _) ,  with E being the pointwise inclusion relation. Thus, by the Knaster- 
Tarski fixed-point theorem, such u do uniquely exist. The well definedness of ~l, 
is guaranteed in the same way. 

Intuitively, the expression g k - i ( v )  computes the fixed point of the kth block 
in environment v. Moreover, g0(v) gives the solution to the entire equational 
system. Since G is a closed system, the choice of argument to go is irrelevant. 
Given a distinguished vertex z0 in V, the problem then of locally evaluating G 
is the one of determining whether z0 E r 

3 L A F P :  A L o c a l  A l g o r i t h m  f o r  E v a l u a t i n g  P D G s  

The pseudo-code for algorithm LAFP is given in Figure 1. LAFP takes as input 
a PDG G -- (V, E,  V1.. .  V,~, ~) and a distinguished vertex z0 E V, and decides 
whether z0 E r that  is, whether z0 is in the solution to G. Before 
explaining further the algorithm, we need some additional notation. Let Q+ = 
~ E Q Iv E T& and or(H) = v~ be the vertices in Q defined in blocks of type 
v and, similarly, let Q -  -- ( z  E Q Iz E T~ and cr(T~) - p~ be the vertices in Q 
defined in blocks of type p. By default, vertices of Q+ are assumed to be in the 
solution to G while vertices of Q -  are not. Also, we write y > z when the index 
of the block containing vertex y is greater than the index of the block containing 
vertex z; i.e., y is in a block more deeply nested than the block containing ~. 

Like the algorithm of [VL94], LAFP seeks to construct a stable and complete 
search space (subset of V) in the sense that  PDG vertices belonging to the 
search space depend only upon vertices inside the search space. Moreover, it 
partitions the search space into three blocks I ,  O, and Q. I contains those 
vertices currently considered to be inside the solution, O contains those vertices 
currently considered to be outside the solution, and Q is the set of vertices that  
have been explored but whose status is undetermined. 

The algorithm starts with z0 in Q, terminates when Q is empty, and each 
iteration of the while-loop is designed to maintain the invariants given in the 
proof sketch of Theorem 1. In particular, a vertex z is chosen from Q from 
among those that  are most deeply nested (in the block with the largest index). 
This is to prevent computat ion in an outer block (relative to z 's  block) from 
proceeding with possibly erroneous default values. 

In case 1, x is a vertex that  belongs in I since one o f z ' s  target sets of vertices 
S is contained in Q+ u I.  In this case, z is moved from Q to I; the fact that  S 
is only required to be contained in Q+ u I rather than in I reflects the intuition 
that  vertices from a ~,-block are assumed to be in the solution set. Subsequently, 
a check is performed to see if z is from a p-block. If so, then all nodes in O 
that  transitively depend on the assumption that  z is not in the solution (since 

is in a p-block) are moved from O to Q, a process we refer to as our restore 
strategy. For this purpose, we associate with each vertex y E I t 3 0  an at tr ibute 
y.T, which is the set of vertices y transitively depends on for being in I or O. 
y.T is computed by the procedure Closure 1 upon adding y into I .  
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procedure LAFP(G, z0) 
initialize I :-- 0, O :=  0, Q :=  {z0} 
while  Q ~ 0 do  

choose z E Q N V~ where k is the largest k such that Q N Vk ~ 0 
c a s e  

1. z E g((2+ u I): 
I := I U { z }  
Q := Q - {=} 
choose (z, S) E E such that S C (2+ U I 
Closure 1 (z, S) 
if  or(z) = / J  t h e n  

(2 := (2 u { y l y  E o ,=  ~ y.T} 
O:= {yEOI~y.T} 

~.. = e # ( ( 2 -  u o ) :  
O:=Ou{=} 
Q := (2 - {= }  
T : = 0  
for  each (z, S) E B do  

choose y E S Cl ((2- U O) 
T := TU{y} 

Closure ~ (z, T) 
i f  ~r(z) = u t h e n  

(2 := QU{y IN e I ,z e y.T} 
I:= {y EII= fLy.T} 

3. otherwise: 
choose y E U { s  I (z, s) E E} such that y ~ Q u I u 0 
(2 := (2 u { y }  

p r o c e d u r e  Closure 1 (z, S) 
z .T  :=  S 
do  the following until z .T stops increasing 

if  y E x.T and (~(x) =/~ or y > z) t h e n  z .T  : -  x.T U y.T 

p r o c e d u r e  Closure ~ (z, S) 
z .T  :=  S 
do  the following until z .T stops increasing 

if  11 E z .T  and (~(x) = v or y > x) t h e n  z .T  := z .T U y.T 

Fig. 1. Pseudo-code for algorithm LAFP. 

Case 2 is dual  to case 1: each of  z ' s  target  sets has an element in Q -  u O. 
In case 3, there is not  enough informat ion  to place z in I or O, so one of  its 
unexplored successors is added to Q. I t  is easy to show tha t  case 3 is always 
executable when bo th  cases 1 and 2 fail to  hold. 

In  procedure Closure 1, the a t t r ibu te  set z . T  is constructed.  Assume,  for the 
purposes of  discussion, tha t  we are comput ing  z . T  for some z which has jus t  
been added  into I (the explanat ion of  Closure ~ is dual  if z has just  been added  
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to O). Then z . T  should contain vertices in I and Q+ on which ~'s membership 
in I depends. (Later, we will see that  an invariant property of LAFP is that ,  in 
this case, z . T  C I U Q+.) Thus if y E z .T  and y is from a p-block then y must 
be in I.  Also, if y E z .T  and y is from a block more deeply nested than the 
block containing z, then also y must be in I (otherwise z would not have been 
evaluated in the first place). In these cases, since z E I depends on y E I which 
in turn depends on all the vertices in y.T, y .T  must be a subset of z .T.  

Ezample ~. Consider PDG G of  Example 1. I f  we want to determine whether 
z E go(•  we run L A F P  with Q = {$} initially. There are many  possible runs 
o f  the algorithm on this instance. One o f  these is as follows: y is added into Q 
(case 3 on z); x is moved from Q to I (case I on ~); y is moved from Q to I 
(case 1 on y); terminate with I = {~, y}, 0 = O, Q = 0. 

Another  possible run is as follows: z is added into Q (case 3 on z); y is added 
into Q (case 3 on z); z is moved from O to I (case I on z); y is moved from 
Q to I (case I on y); �9 is moved from Q to I (case I on z); terminate with 
I =  { z , y , z } , O - ~ , Q = O .  

The above example shows that in some cases LAFP may terminate without 
exploring all the vertices, a characteristic of local algorithms. The next example 
illustrates LAFP's restore strategy. 

Ezample3.  Let G = (V, E,  V1V2, a) be a PDG where V = { z , y , z } ,  V1 = 
{-, y),  v2 = { z ) ,  E = {(y, { , } ) ,  (y, {z)), {,)),  (Vl) =  (V2) = 
The corresponding nested boolean equation system is the following: 

u : {  z = O  
y = z V z  

p : i z = z V y  

I f  we want to determine whether z E go(•  we run the algorithm with 
Q = {z} initially, and the following is a possible execution: z is added into Q 
(case 3 on z); z is moved from Q to I with z .T  = {z} (case i on z); z is moved 
from Q to 0 with z . T  - O, and z is moved from I back to Q since z E z .T  
(case 2 on z); y is added into Q (case 3 on z); z is moved from Q to I with 
z.T -- {9} (case I on z); y is moved from Q to I with y.T = {y, z} (case I on 
y); terminate with I = {z, y}, 0 = {z}, Q = O. 

The (partial) correctness of LAFP is guaranteed by the following theorem. 

T h e o r e m  1. When algorithm L A F P  terminates, whenever z E I then �9 E 
r177 and whenever �9 e o then e r177 

Proof sketch The proof depends on the following key invariants of the while- 
loop: 

1. if z E I then �9 E g(z .T)  and z . T  C I U  Q+, 
2. if z E O then z E ~(z.T) and z .T  C_ O U Q-,  
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3. if~ x n  and {r(Vk) = I., then z G gk(#b-(z.T))(k), 
4. ifz E I n T/'~ and cr(Vk) = p then ~ G gk_1(r 
5. if z E O O Vk and {r(Vk) = p then z E ~k(r 
6. if z E O M V~ and ~r(I~) = u then z G gk- l ( r  

Now suppose after LAFP terminates z E I. Clearly z E g(z.T) C_ g(I U Q+) 
by the above invariants. When LAFP terminates Q = ~, thus z E g(I),  that  is 
z E r  Note that  go(e - ( I ) )  - go ( l ) .  To conclude z E g o ( l )  we will 
show that  at termination it holds that  gk (r  (I)) _ g~_ x (~-  (I)) for k -- 1 , . . . ,  n. 
To see this we need to consider two cases. The first is that  rr is a p-block. In this 
case for all y E r  it holds that  y G gk-l(~b-(y.T))(k) C gk-l(~b-(I))(k), 
by invariants4 and 1. Now g~(~b-(1)) _ gk(f~-(1)[gk-1(r = 
gk-l(r The second case is that Vk is a u-block. In this case for all 
y E r it holds that y G gk(r C gk(r by in- 
variants 3 and 1. So gk(~b-(1)) _E gk(~-(1)[gk(~-(I))(k)/k]). This inequal- 
ity shows that gk(~b-(1)) is a pre-fixed point of Au.gk(q~-(I)[u(k)/k]), thus 
g~(}-  (I)) _ uu .gk(}-  (I)[u(k)/k]) = g k - l ( } -  (I)). 

For z ~ O, we can similarly show that  after termination z E }(~o(J-)). Thus 
in this case z e r since ~o(-k) = go(S).  [] 

In analyzing the computational complexity of LAFP, the concept of alterna- 
tion depth plays an important role. Let G = (V, E, Vx.. .  V,~,~r) be a PDG. For 
z ~ V, let succ(z) be the set of vertices that are related to z by the transitive 
closure of G's hyper-edge relation. More precisely succ(z) is the smallest set 
such that  if (z, S) E S then S C succ(z) and i f y  ~ succ(z) and (y,T) G E then 
T C succ(z). For z E V~, its alternation depth, ad(z), is defined by 

k--I 

adCz) = 1 + max{adCY) ]y E U ~ '  y E succ(z), {z(z) :~ {zCy)}- 
i=1 

We adopt the convention that max0 = 0. Thus clearly for z E VI, ad(z) = I. 
Then for the PDG G its alternation depth is the maximum alternation depth of 
the vertices. 

The following theorem gives the fixed-point iteration complexity of LAFP. 

T h e o r e m  2. Let G = (V, E, V1...  Vn, ~) be a PDG with zo a distinguished vet- 
fez in V. Then the number of iterations taken by the while-loop of LAFP to 
decide if zo 6 r is bounded by 

s + ad) ad (IVl-1)+k jj 

where ad is the alternation depth of G. 

Proof sketch Elements of the set I U O can be partitioned into the following 
two subsets: 

B = f z  I ~ E I Ao'(z) = u} U{:s I z E OAo'(z)  =/~}, 
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and elements of A and of B are said to be alternating and straight, respectively. 
A can be further partit ioned into A1,. . . ,  Aad, where Ad = {z E A [ ad(z)  = d}. 
The key to the complexity analysis is the pattern by which vertices move among 
these sets during the execution of LAFP. The pattern is characterized by the 
following observations: 

1. if case 1 or 2 is executed, the size of the set I U O U Q does not change, 
whereas if case 3 is executed it increases by 1; 

2. if case 3 is executed all A 1 , . . . ,  Aad, B remain unchanged; 
3. if case 1 or 2 is executed, then a new element z is added into I U O either as 

an alternating or as a straight element. If z becomes a straight element of 
/ U  O then IBI increases by 1 and all A 1 , . . . ,  A~d remain unchanged, and if 
z becomes an alternating element of I U O then lAd[ increases by 1 and Ai 
remains unchanged for i < d, where d = ad(z).  

With these observations, the lexicon order of the array (IA~I,..., IAad_l[, II U 
O U Q] + I B u A ~d f) increases at least by 1 after each it eration. Routine calculation 
shows that  this order is bounded by 

('V' - l) + (]V' + ad) 

[] 

A careful amortized analysis of the total execution time of LAFP (in which 
the time taken during iterations of the while-loop is taken into account) in- 
troduces a factor of IV] z into the bound of Theorem 2. This additional factor 
is mainly due to the computation performed by procedure Closure, and is the 
price we pay for being able to perform local model checking on structures of 
arbi t rary alternation depth. However, the complexity of LAFP does not appear 
to be an issue in practice, as the algorithm performs extremely well on published 
benchmarks, in particular, those involving formulas of alternation depth 2 (see 
Section 4). 

It is not difficult to see that  in the worst case LAFP requires space quadratic 
in the size of the explored state space; this is due to the maintenance of the y.T 
attr ibute sets, each of which can potentially grow to size O(IVI) after performing 
the Closure operation. In contrast, most existing model checking algorithms for 
the modal mu-calculus need only linear space. However, we strongly conjecture 
that  there exists a version of LAFP in which the Closure operation is avoided and 
PDG fixed-points are still computed correctly. Moreover, it should be possible 
to do so without affecting LAFP's  iteration complexity. This would yield the 
desired linear space complexity bound. 

One possible way of achieving this space complexity is by storing S and T in 
z .T instead of their "closure," in cases 1 and 2 of procedure LAFP, respectively. 
If these changes are made, then care must be taken to ensure that  the restore 
strategy properly propagates the effect of moving a node from O to Q or from 
I to Q. To clarify, consider an example. Suppose z is a node in a # block and 
y, z E O with y.T = {z}, z.T = {y}. Then, if z turns out to be in I,  the restore 
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strategy should not only move y from O back to Q (since z E y.T), but also z 
since z .T -- ~y} implies that z E O depends on y E O. 

4 Experimental Results 

We describe a prototype implementation of LAFP based on the XMC model 
checker [RRR+97] and the smodels stable models generator [NS96]. XMC is an 
efficient model checker for value-passing CCS and the alternation-free fragment 
of the modal mu-calculus, implemented using the XSB logic programming sys- 
tem [XSB97]. XSB implements tabled (SLG) resolution which effectively com- 
putes minimal models of bounded term-depth programs (which include Datalog 
programs). Furthermore, XSB's evaluation strategy is goal-directed, which en- 
ables us to directly implement local model checking algorithms. For normal logic 
programs (i.e., programs with negated literals on the right-hand side of clauses), 
XSB computes the zveU-founded model: a three-valued model where each literal 
is given one of the three truth assignments true, false or unknown. For instance, 
consider the program: 

p :-q, s. 

q:-~r. 

r :-~q. 

S. 

The well-founded model for the above program is such that p, q and r are 
unknown and s is true. While evaluating the well-founded model XSB computes a 
residual program that represents the dependencies between literals with unknown 
values. For the above program, XSB computes the dependencies as 

p :-q. 

q :--~ r. 

r :- -~ q. 

XMC was constructed starting with a straightforward encoding in Horn 
clauses of the structural operational semantics of value-passing CCS and the 
natural semantics of the modal mu-calculus. These rules were then subjected 
to a series of optimizing transformations, yielding a logic program. The XSB 
system is then used to efficiently evaluate the resulting logic program, over a 
database of facts representing the process and formula definitions for the given 
model-checking instance. 

In XMC, the ability of XSB to compute minimal models is exploited di- 
rectly to compute least fixed-point formulas. Formulas with greatest fixed- 
point operators are transformed using the well known equivalence ~,X.F(X) -- 
~pX.~F(-~X).  For an alternation-free formula, the resultant XSB program is 
dynamically stratified (i.e., there are no loops through negation in the dynamic 
call graph), and the well-founded model computed by XSB has no unknown val- 
ues [SSW96]. The literals encountered while evaluating the XSB program cor- 
respond directly to the vertices of the PDG representing the model-checking 
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problem. For formulas without alternation, XSB assigns unique truth values to 
the vertices of the PDG as and when the PDG is constructed. 

For formulas with alternation, however, the resultant evaluation is not dy- 
namically stratified, and hence the well-founded model contains literals with 
unknown values. That is, while XSB-based evaluation constructs the PDG, it 
does not label every vertex in the PDG as true or false. For such formulas, the 
residual program produced by XSB's evaluation captures the subgraph of the 
PDG induced by vertices that do not have assigned truth values. 

We compute the truth values of these remaining vertices by invoking the 
stable model generator smode]s [NS96] on the residual program. The algorithm 
used in smodels recursively assigns truth values to literals until all literals have 
been assigned values, or an assignment is inconsistent with the program rules. 
When an inconsistency is detected, it backtracks and tries alternate truth assign- 
ments for previously encountered literals. By appropriately choosing the order in 
which literals are assigned values, and the default values, we obtain an algorithm 
that corresponds to the LAFP algorithm with a naive restore operation. A full 
implementation of the LAFP algorithm in this framework is currently underway. 

~ a  ..... 

b 

(a) Process Mk 

~x.~r.C[-].C(a)~ ^ x )  v Y) 

(b) Formula F 

B e n c h m a r k  Tool  T i m e  (sec) 
Ms0o, F CMC 33.84 

FAM 2.88 
LAFP 1.61 

MIooo, F CMC 138.51 
FAM 11.64 
LAFP 2.76 

Ml.~00, F CMC 312.10 
FAM 26.61 
LAFP 4.08 

(c) Summary of Execution Times 

Fig. 2. Experimental evaluation of LAFP. 
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In order to gauge the performance of our implementation of LAFP, we 
compared it to the Fixpoint Analysis Machine (FAM) [SCK+95] and a "con- 
ventional model checker" (CIVIC) on a benchmark described in [SCK+95]. The 
conventional model checker in question is an implementation of the [CKS92] 
model checking algorithm. The processes and formula comprising the bench- 
mark are shown in Figure 2, along with the corresponding execution times of 
the three model checking systems. Performance figures for CIVIC and FAM are 
from [SCK+95]; these results as well as those for LAFP were obtained on a SUN 
Sparc-20. 

The formula F is a modal mu-calculus formula of alternation depth 2 ex- 
pressing the property that an a-transition is enabled infinitely often along all 
infinite paths. It is true for state ~ of process Mk and false for all other states 
of Mk. Although the example is fairly simple in structure, it is essentially the 
only published benchmark for the alternation-depth-n fragment of the modal 
mu-calculus, n ~ 2, of which we are aware. 

Note that the CIVIC and FAM figures reflect the performance of global algo- 
rithms. Hence, for purposes of comparison, the LAFP results were obtained as 
the sum of run times for verifying the given formula on each state in the pro- 
cess. For the above examples, the residual programs created by the first phase of 
XMC-based model checker are relatively small. Therefore, the more expensive 
(potentially exponential) computation is performed on a very small portion of 
the state space. This is reflected in the performance of LAFP, which exhibits 
much slower growth in run times with increase in the size of the system verified, 
compared to those of the other implementations. We are currently performing a 
more comprehensive evaluation of the performance of the LAFP algorithm and 
its implementation. 

5 C o n c l u s i o n s  

We have presented an abstract model of nested, alternating fixed-point com- 
putation, and an algorithm for evaluating PDG fixed points. Careful design of 
LAFP has resulted in a local algorithm whose asymptotic fixed-point iteration 
complexity matches that of the best existing global algorithms. Moreover, LAFP 
has a simple correctness proof and performs extremely well in practice. 

It is interesting to note that algorithm LAFP correctly evaluates the input 
PDO for any I, O, and Q satisfying the invariants of given in the proof sketch 
of Theorem 1. This suggests an incremental approach, along the lines of [SS94], 
for the local computation of alternating fixed points. The incremental version 
of LAFP would be invoked after LAFP is run on a PDG that subsequently 
undergoes a set A of changes, where a change is an inserted or deleted PDG 
edge. After accounting for the immediate effects of A on I, O, and Q, the lo- 
cal fixed-point computation would be restarted. The benefit of this approach 
is that, in certain cases, the incremental algorithm will terminate much more 
quickly compared to restarting LAFP from scratch, thereby avoiding significant 
redundant recomputation. Working out the details of such an incremental al- 
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gorithm is an important  direction for future work, especially in the context of 
interactive design environments for concurrent systems. 

A Counterexample to the Correctness of [VL94] Restore 
Strategy No. 4 

As mentioned in the Introduction, we have found a counterexample to the cor- 
rectness of the local model checking algorithm of [VL94], when their "restore 
strategy" no. 4 is used. The details of the counterexample are as follows; please 
refer to [VL94] for a description of the algorithm. When procedure AltSolve is 
used in conjunction with Restore strategy no. 4, it may give an incorrect answer 
for the following boolean equation system: 

~ : 'u, V v  
p :  

y = l  
u = v A y  
v = u A y  

This is an alternating equation system with a minimum outer block and a max- 
imum inner block, and it is not difficult to see that the solution should be 1 for 
every variable. If AltSolve is run with Restore (4) on this example starting with 
z, the following computation sequence may occur: 

- z is set to 0 (default value for a min variable) 
- u is set to 1 (as a result of Ezpandl, default value for a max variable) 
- v is set to 1 (Ezpanda,  default value for a max variable) 
- y xs set to 0 (Ezpand~, default value for a rain variable) 
- u is set to 0 (Update~) 
- v is set to 0 (Update2) 
- y is set to i (Update1, here Restore (4) does not change u, v since the right- 

hand sides of their equations still give value 0 even with y being 1). 

AltSolve now terminates with y = 1, z = u = v = 0. 
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