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Abstract. Correspondence checking formally verifies that a pipelined micropro- 
cessor realizes the serial semantics of the instruction set model. By representing 
the circuit state symbolically with Ordered Binary Decision Diagrams (OBDDs), 
this correspondence checking can be performed directly on a logic-level represen- 
tation of the circuit. Our ongoing research seeks to make his approach practical 
for real-life microprocessors. 

1 Motivation 

Microprocessors are among the most complex electronic systems created today. High 
performance processors require millions of transistors and employ complex techniques 
such as pipelining, multiple instruction issue, branch prediction, speculative and/or 
out-of-order execution, register renaming, and many forms of caching. When correctly 
implemented, these implementation artifacts should be invisible to the user. The pro- 
cessor should produce the same results as if it had executed the machine code in strict, 
sequential order. 

Design errors can often lead to violations of the sequential semantics. For example, 
an update to a register or memory location by one instruction may not be detected by an 
instruction following too closely in the pipeline. An instruction following a conditional 
branch may be executed prematurely, modifying a register even though the processor 
later determines that the branch is taken. Such hazard possibilities increase dramatically 
as the instruction pipelines increase in both depth and width. 

Historically, microprocessor designs have been validated by extensive simulation. 
Instruction sequences are executed, in simulation, on two different models: a high-level 
model describing the desired effect of each instruction and a low-level model capturing 
the detailed pipeline structure. The results from these simulations are then compared 
for discrepancies. The instruction sequences may be taken from actual programs or 
synthetically generated to exercise different aspects of the pipeline structure [5]. 

Validation by simulation becomes increasingly costly and unreliable as processors 
increase in complexity. The number of tests required to cover all possible pipeline 
interactions becomes overwhelming. Furthermore, simulation test generators suffer from 
a fundamental limitation due to their use of information about the pipeline structure 
in determining the possible interactions in an instruction sequence that need to be 
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simulated. A single conceptual design error can yield both an improperly-designed 
pipeline and a failure to test for a particular instruction combination. 

As an alternative to simulation, a number of researchers have investigated using 
formal verification techniques to prove that a pipelined processor preserves the semantics 
of the instruction set model. Formal verification has the advantage that it demonstrates 
correct execution for all possible instruction sequences. Our interest is in developing 
automated techniques that apply powerful symbolic evaluation techniques to analyze 
the behavior of the processor over all possible operating conditions. We believe that 
high degrees of automation are essential to gaining acceptance by chip designers. 

2 Verification Methodology 

Our task is to verify that a processor will execute all possible instruction sequences 
properly. Since there is an infinite number of possible sequences, this condition cannot 
be proved directly. Instead, we show that each possible individual instruction will be 
executed correctly, regardless of the preceding and following instruction sequences. The 
correct execution of a complete sequence then follows by induction on its length. One 
methodology for proving the correctness of individual instructions is based on proving 
the invariance of an abstraction function between processor and program states by each 
instruction execution. A similar methodology was proposed by Hoare for proving the 
correctness of each operation in the implementation of an abstract data type [4]. 

We model the processor as having states in the set Qpipe, and the behavior of the 
processor for each clock cycle of operation by a next-state function tfpipe: Qpipe --4- Qpipe. 
Similarly, the state visible to the assembly language programmer (typically the main 
memory, integer and floating point registers, program counter, and other status registers) 
is modeled by a state set Qprog and the execution of a single instruction by a next-state 
function t~prog: Qprog -+ Qprog- In our simplified formulation, we we do not consider 
the input or output to the processor, but rather that the action taken on each step is 
determined by the program or pipeline state. 

Our task is to show a correspondence between the transformations on the pipeline 
state by the processor and on the program state by the instruction execution model. 
This correspondence can be described by an abstraction function Abs: Qpipe --4 Qprog 
identifying which program state is represented by a given pipeline state. Typically, this 
corresponds to the effect of completing any instructions in the pipeline without fetching 
any new instructions. For each pipeline state, there must be a value k indicating the 
number of clock cycles required after fetching the most recent instruction until the next 
instruction can be fetched. Our correctness condition states that the effect of fetching and 
executing a single instruction should match the effect of performing the corresponding 
instruction on the program state. That is, for all Qpipe E Qpipe, there must be a k such 
that 

dprog( A bs( Qpipe) ) = A bs(,3~ipe( Opipe) ) (1) 

In addition to the invariance property described in Equation l, we require Abs to be 
surjective to guarantee that all program behaviors can be realized. That is, for every pro- 
gram state Qprog, there must be a state Qpipe such that Abs(Qpil~) = Qprog. Beyond this 
requirement, the abstraction function can be arbitrary, as long as it satisfies Equation 1. 



The validity of the verification is not compromised by an incorrect abstraction function. 
That is, an invalid abstraction function will not cause the verifier yield a "false positive" 
resulf, declaring a faulty pipeline to be correct. We can let user provide us with the 
abstraction function [1, 6], but this becomes very cumbersome with increased pipeline 
complexity. Alternatively, we can attempt to derive the abstraction function directly 
from the pipeline structure [3]. Unlike simulation test generation, using information 
about the pipeline structure does not diminish the integrity of the verification. 

3 Automated Correspondence Checking 

Burch and Dill [3] first proposed using the pipeline description to automatically derive its 
abstraction function. They do this by exploiting two properties found in many pipeline 
designs. First, the programmer-visible state is usually embedded within the overall 
processor state. That is, there are specific register and memory arrays for the program 
registers, the main memory, and the program counter. Second, the hardware has some 
mechanism for "flushing" the pipeline, i.e., to complete all instructions in the pipeline 
without fetching any new ones. For example, this would occur when the instruction cache 
misses and hence no new instructions could be fetched. A symbolic simulator, which can 
model the behavior of the circuit over symbolically-represented states, can automatically 
derive the abstraction function. First, we initialize the circuit to an arbitrary, symbolic 
state, covering all the states in Qpipe. We then symbolically simulate behavior of a 
processor flush. We then examine the state in the program visible register and memory 
elements and declare these symbolic values to represent the mapping Abs. Using similar 
symbolic simulation techniques, we can also compute the effect of the processor on an 
arbitrary pipeline state t~pipe and the effect of executing an arbitrary program instruction 
~prog. Thus, a symbolic simulator can solve the key problems related to verifying pipeline 
processors. 

Burch and Dill use symbolic simulation tools based on a logic of uninterpreted 
functions with equality, a weakened form of first order predicate calculus. Using this 
weak form, they can guarantee a complete decision procedure. Using their approach 
requires having a model of the circuit that abstracts away many details, including the 
sizes of the memory and register arrays, the bit widths of the data paths, and even the 
functionality of the data operations. This abstract model allows them to concentrate on 
the key issues of pipeline structure and control. Unfortunately, it can be difficult and 
time-consuming to derive such a model from the circuit description and to maintain it 
as the circuit design evolves. In addition, determining the correctness of some aspects 
of the circuit behavior require more detailed information about the data operations. 

4 Verifying at the Bit-Level 

Our recent research has focussed on adapting Burch and Dill's verification methodology 
to operate directly on a low-level model of the circuit, in which state is explicitly 
represented by sets of Boolean values and the state transformations are described by 
Boolean functions over this state. Such a model can be derived directly from a logic-level 



description of the circuit, avoiding the need to manually create a more abstract model. 
Instead of manipulating symbolic variables representing abstract state and uninterpreted 
functions, we use Ordered Binary Decision Diagrams (OBDDs) [2] to represent the 
symbolic circuit state. OBDDs have the advantage over other approaches to symbolic 
Boolean manipulation of being canonical as well as reasonably compact for many of 
the functions encountered in modeling digital circuits. 

Many difficult hurdles must be overcome to make bit-level correspondence checking 
practical. One problem is to find an efficient representation of the initial, but arbitrary 
pipeline state, given the large number of memory elements found in a processor. A 
naive approach would be to introduce a distinct Boolean variable for each bit in each 
register or memory array, but this could require thousands, or even millions of variables. 
Instead, we have developed techniques to introduce only as many variables as are needed 
to represent the states of the symbolic locations that are actually accessed during the 
execution of the instruction sequence [7]. Since the sequences we symbolically simulate 
are relatively short, this leads to a greatly reduced number of variables. Other problems 
are related to the OBDD complexities caused when modeling the interactions between 
successive instructions, such as when the value generated by one instruction becomes 
the target address by a later jump instruction. We have made some progress in this area, 
but much more is required before we will be able to handle full scale microprocessors. 
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