
Heuristic Design of Cryptographically Strong
Balanced Boolean Functions

William Millan, Andrew Clark and Ed Dawson

Information Security Research Center,
Queensland University of Technology,

GPO Box 2434, Brisbane, Queensland, Australia 4001.
FAX: +61-7-3221 2384

Email: {millan,aclark,dawson} @fit.qut.edu.au

A b s t r a c t . Advances in the design of Boolean functions using heuris-
tic techniques are reported. A genetic algorithm capable of generating
highly nonlinear balanced Boolean functions is presented. Hill climb-
ing techniques are adapted to locate balanced, highly nonlinear Boolean
functions that also almost satisfy correlation immunity. The definitions
for some cryptographic properties are generalised, providing a measure
suitable for use as a fitness function in a genetic algorithm seeking bal-
anced Boolean functions that satisfy both correlation immunity and the
strict avalanche criterion. Results are presented demonstrating the effec-
tiveness of the methods.

1 I n t r o d u c t i o n

It is well known that the resistance of a product cipher to modern cryptanalytic
attacks such as linear and differential cryptanalysis [10,1] depends critically upon
the nonlinearity of the Boolean functions comprising the round function. Typi-
cally these functions must be balanced, so there is considerable interest in the
design of highly nonlinear balanced Boolean functions. In addition we would like
cipher functions to satisfy other cryptographic properties also, such as correla-
tion immunity [20] and the strict avalanche criterion (SAC) [25]. Previous work
on the design of balanced functions includes [6,7,17-19,21]. The existing body
of research concentrates on specific constructions, supported by algebraic proofs
that the resulting Boolean functions will be both balanced and satisfy one or
more other properties. In contrast, some recent publications [13,12] address the
issue of applying combinatorial optimisation methods to the design of Boolean
functions. The methods of gradient descent (or hill climbing (HC)) and the use of
a genetic algorithm have proven useful in the quasi-random generation of highly
nonlinear Boolean functions.

In this paper we present a modification of the genetic algorithm (GA) pre-
sented in [12] so that it is confined to balanced Boolean functions. When com-
bined with the two-step hill climbing algorithm [13] a very effective means of
generating highly nonlinear balanced Boolean functions is obtained. The results

490

presented in Section 4 show clearly that our hybrid algorithm is far more effective
than blind search in finding balanced Boolean functions with a high nonlinearity.

We observe that the hill climbing technique can be adapted to find t-resilient
functions, which are both balanced and correlation immune of order t (CI(t)).
We describe a new algorithm and give performance results. In particular, the
nonlinearity of functions obtained by the method is of primary interest.

Finally a genetic algorithm is presented which seeks functions that are bal-
anced, and satisfy both CI(1) and the SAC, which is equivalent to the propa-
gation criterion of order 1, P C (l) [16]. The algorithm is described in Section 3
and its performance is discussed in Section 4. Now we present a review of some
cryptographic properties of Boolean functions, and propose a definition for the
deviation a function has from the strict properties of correlation immunity and
the propagation criteria.

2 S o m e P r o p e r t i e s o f B o o l e a n F u n c t i o n s

Consider an n variable Boolean function f (x) : Z~ --+ Z2. The truth table of the
function is a list of 2 n bits representing the output of the function for each input.
Let the linear function selected by w be L~(x) = WlXl ~ w2x2 @ ... @ wnxn. It
is useful to represent a Boolean function in polarity form, replacing the symbols
{0, 1} with {1, -1}. We define the polarity t ruth table as](x) = (-1) 1(=). Simi-
larly we have L~(x) = (-1) L~(x) . With this representation the Walsh-Hadamard
transform of the function can be defined as/~(w) = ~-~x](x)L~ (x). The max-
imum absolute value taken by the Walsh-Hadamard transform over all w has
been called the spectral radius in [6]. Here we will denote it as WHmax. It is well
known that the nonlinearity of f (x) is given by AT/ = �89 * (2 '~ - WHma=). To
increase the nonlinearity of a Boolean function, WHmax must decrease.

The autocorrelation function is defined as ~(s) = ~-~] (x) / (x | s). It is
well known [15] that the autocorrelation function can be efficiently calculated
from the square of the Walsh-Hadamard representation by performing an inverse
Walsh-Hadamard transform.

T h e o r e m 1 (W i e n e r - K i n t c h i n e) . Let a Boolean function f (x) have Walsh-
Hadamard transform F(w) and autocorrelation function f(s). For all w 6 Z~ it
is true that

E r(s)(-1)s '~ = (F(w)) 2"
s6z~

Proof. Omitted. For example see [2].

The properties of correlation immunity and the propagation characteristics
can be most easily defined in terms of F(w) and ~(s). These properties have
received considerable attention in the literature, and are well known. A Boolean
function f (x) is said to satisfy correlation immunity of order m if and only if
/~(w) = 0 for all those w with 1 <_ [w[< m [26]. Similarly a Boolean function
f (x) is said to satisfy the propagation criterion order k if and only if § -- 0,

491

for all those s with 1 _< Isl ~ k [16]. We note tha t balanced CI(t) functions are
also called t-resilient [24]. Balanced PC(k) functions have no special name.

We now present the definitions of deviation from these properties. The reason
for this approach is twofold: firstly to provide a quanti tat ive means of assessing
functions tha t almost satisfy the conditions for CI(m) and PC(k) and secondly,
to provide a suitable measure of fitness for a genetic algori thm seeking these
functions.

Definit ion 2. The correlation immunity deviation of a Boolean function f(x)
is defined as

cidevi(m) = max(l~(w)l; 1 < I~1 -< m).

We note tha t cidev(n) = WHmax for all Boolean functions. Any function
with cidev(m) = 0 satisfies CI(m).

Definit ion 3. The propagat ion characteristic deviation of a Boolean function
f(x) is defined as

pcdevi(k) = max(l~(s)l; 1 < Isl < k).

Any function with pcdev(k) = 0 satisfies PC(k).
The deviation measures provide a meaningful way to describe functions tha t

do not quite satisfy the strict properties. We can also consider the extent to
which functions approach CI and PC simultaneously.

Definit ion 4. The normalised deviation of a Boolean function f(x) is defined
a s

cidevf(m) pcdevi(k) I normdev f (m, k) -- max ~ ~- , 4

The normalised deviation has been used as the fitness function in genetic
algorithms seeking Boolean functions tha t are balanced, CI (1) and P C (l) . The
performance results of this approach are presented in Section 4. We now briefly
discuss the known bounds on the nonlinearity of balanced functions before turn-
ing to descriptions of the GA and HC algorithms.

2.1 Nonlinearity of Balanced Functions

It is known that the maximum nonlinearity of Boolean functions corresponds to
the covering radius problem for Reed-Muller Codes [9]. Thus it is known that
for n even, the maximum nonlinearity at tainable is Nmax(n) = 2 ~-1 - 2 ~-1,
but such functions (bent functions) are not balanced. For odd n, the situation
is less certain. It is known tha t for n = 3, 5 and 7 the max imum nonlinearity is
2, 12 and 56, respectively [14]. For odd n _> 9 no tight bounds are known. An
upper bound, which is known to be wide [18], states tha t the nonlinearity of a
balanced Boolean function satisfies N ~ 2 n-1 - 2~ -1 - 2 for n even. A recent
paper [8] gave a slightly improved upper bound for the nonlinearity when n is

492

odd: N _ 212 n-2 - 2~-2J . However this bound is known to be not tight for
n = 7 and n = 15. For odd n > 9 it is an open problem to find the t rue upper
bound.

Some Boolean function constructions axe known to generate examples ap-
proaching these bounds. For example, it is well known that , by concatenating
bent functions, for n odd it is possible to construct a balanced function satis-

- 2--~--, and for even n a balanced function with nonlinearity fying N = 2 n-1 ,-1

N = 2 n-1 - 2~ can be constructed. However, in general, the maximum nonlin-
earity a t ta inable by balanced functions is not known. The work presented in [18]
and [6] has shown tha t the at tainable bound for nonlinearity of balanced Boolean
functions can exceed the value attained by concatenation of bent functions. It
was shown in [18] tha t by slightly modifying the functions being concatenated
tha t higher values of nonlinearity for balanced functions could be achieved. The
values are tabula ted for various n. We note tha t achieved values correspond ex-
actly to the upper bounds implied by Conjecture A in [6], for the listed n. A
summary of these results is shown in Table 1. The highest nonlinearity found by
our hybrid genetic/hill climbing algorithm (in experiments so fax) is presented
for comparison with the lowest known upper bounds given by theory, and the
best known examples. Where the lowest theoretical bound exceeds the best ex-
ample known, it remains an open problem to determine the value of the true
upper bound.

Method 4 5 6 7 8 9 10 11 12
Lowest Upper Bound [14,8] 4 12 26 56 118 244 494 1000 2014
Best Known Example [18] 4 12 26 56 116!240 492 992 2010
Bent Concatenation 14 12 24 56 112 240 480 992 1984
Our Genetic Algorithm ,4 12 26 56 116 236 484 980 1976

Table 1. Comparing the Nonlinearity of Balanced Functions

The main open problems surrounding the nonlinearity of balanced Boolean
functions are
(1) for n = 8, is 116 or 118 the maximum balanced nonlinearity?
(2) for n -- 9 can 240 be exceeded? In principle our heuristic algorithms, given
large enough pool sizes and sufficiently many iterations, could provide examples
of balanced Boolean functions at the true upper bound. Several of the known
bounds have been achieved during our experimenmts. However, no new bounds
have yet been obtained by these methods.

3 The Genetic Algorithm

Genetic algorithms (GAs) have been successfully applied to numerous applica-
tions in the field of optimisation. They have also been used as a tool for crypt-
analysis - with varying degrees of success. The classical ciphers are typically

493

vulnerable to attacks from GAs, for example [23,11,5,3]. However, an attack
presented in [22] on knapsack-type ciphers was found to be flawed [4].

The genetic algorithm borrows concepts from the evolutionary process (such
as "survival of the fittest" and "genetic mutation") to breed a pool of solutions
which are considered most]it. Traditionally binary solution structures are used
however, evolutionary programming encompasses arbitrary solution structures.
The t ru th table representation of a Boolean function provides a suitable bi-
nary solution structure which has been utilised throughout all the experiments
reported here.

A typical GA combines processes of selection, breeding and mutation. There
must exist a mechanism for evaluating arbitrary solutions - called the fitness
]unction. In this paper the three main evaluation criteria used are the nonlin-
earity, which is maximized, the deviation from correlation immunity (cidev(1))
and the normalised deviation from CI(1)/PC(1) (normdev(1, 1)) both of which
are minimized. In addition to these criteria we impose the restriction that the
Boolean function must be balanced since this is desirable in most cryptographic
applications. In GAs seeking to find a good compromise between high nonlinear-
ity and low CI(m) deviation, we have found that maximizing nonlin - cider(m)
is more effective than using either criteria alone.

Initially, a pool of P solutions is chosen and the fitness of each solution in
the pool is calculated. Here, the pool consists of t ruth tables corresponding to
(initially random) balanced Boolean functions. From this pool pairs of parents
are chosen to act as the parents of the next generation. Parents may be cho-
sen randomly, based on their fitness or (as in this case) exhaustively (all possible
pairings are tried). The breeding process requires some mating function for com-
bining parent solutions. Here we use a merging operation which combines two
parents to produce a single offspring. The offspring will be a balanced function
which is similar to each of its parents (the merge operation is described in detail
below). Typically, each of the offspring undergo some mutation. As will be seen
below, the merging operation used incorporates a random mutation so a sepa-
rate mutat ion operation is not required. At this stage the survivors for the next
iteration are chosen. This involves combining the parent and offspring pools and
selecting the most fit as the new solution pool for the next iteration.

The merging (or mating) operation is now described. This operation takes
two balanced Boolean functions as input and produces a single balanced Boolean
function as the offspring. Consider two Boolean functions of n inputs. The t ruth
tables corresponding to these functions will contain 2 n bits. Call the two parent
functions Pl and P2, and let pk[i] denote the i 'h bit in the t ru th table of parent
k. Also, nl denotes the number of l ' s which have been placed in the child in
positions where the parents differ, and dist(pl,p2) is the Hamming distance
between the two t ru th tables, Pl and P2. The objective of the algorithm is to
ensure that a child is produced that satisfies n l = �89 (Pl, p2), since this ensures
that the child is balanced. The offspring c is determined as follows:

1. L e t n l = 0 a n d k = 0 .
2. If dist(pl,p2) > 2n/2 complement Pl or P2.

494

3. F o r i - - l t o 2 '~do:
(a) If pl[i] -- p2[i] then c[i] = pl[i] (-- P2[i]);
(b) Otherwise (if pl[i] ~ p2[i])

i. If n l = d i s t (p l , p 2) / 2 then c[i] = 0;
ii. Else if nl + dist(pl ,/)2) - k -- d i s t (p l , P 2) / 2 then c[i] = 1;

iii. Else c[i] = a random bit.
iv. Increment k (k = k + 1).
v. If c[i] = 1 then nl = nl + 1.

The check in Step 2 is to ensure that only parents which are close to each other
are allowed to breed. It should be noted that complementing a Boolean function's
t ruth table does not alter its nonlinearity. The checks in Steps 3(b)i and 3(b)ii
are used to force the offspring to be balanced.

The overall genetic algorithm could then be described as follows:

1. Generate a pool of P random, balanced Boolean functions (represented by
their t ruth table) and calculate the fitness of each. Call this pool So.

2. For i -- 1 to MAXITER do:
(a) For all P (P - 1)/2 pairings of the pool S i - 1 perform the merging oper-

ation (as described above) to produce P (P - 1)/2 offspring.
(b) (Optional hill climbing.) Apply the hill climbing procedure to each of

the offspring.
(c) Determine the fitness of each of the offspring.
(d) Combine the pool of offspring with the current pool, S i - 1 , and select

the P best as the new pool, Si . Give precedence to offspring with fitness
equal to solutions already in the pool. Duplicate solutions should be
removed.

(e) (Optional re se t t i ng step.) If there has been no improvement in the fitness
of the best solution for a number of iterations, then keep the best solution
and generate P - 1 random, balanced functions as the remainder of the
pool.

3. Output the best solution from the current pool.

The hill climbing procedure referred to above was described in [13]. The optional
resetting step was found to enhance the algorithm when hill climbing is not used.
The resetting step essentially randomises the pool after it has converged, but
retains the best solution. Figure 1 gives a comparison of the performance of GAs
with and without resetting and hill climbing. It can be seen that for algorithms
without hill climbing the resetting technique provides improvement. It is noted
that the resetting process is not effective (no improvement was gained in our
experiments) for genetic algorithms which incorporate hill climbing.

The hill climbing procedure in [13] provides a method of determining which
bits in a function's t ruth table can be complemented in order to improve the non-
linearity while maintaining the function's balance. We now introduce a modifica-
tion of that hill climbing procedure which attempts to improve the nonlinearity
and maintain balance while at the same time pushing the function towards cor-
relation immunity. Firstly we briely review the original hill climbing algorithm.

495

Z

484

482

480

478

476

,,'"

i i

GA
GA - Resetting -~---

GA - Hill Climbing - G -

JE} . 0
z ' "

/ z

-4-

.4, - /

1 -

/ I I I

4 , ' " o o

I

Pool size

Fig. 1. Comparison (based on nonlinearity) of the different GAs for different pool sizes.

Theorem 2 in [13] defines the following five conditions which must be satisfied
for the nonlinearity to increase when the t ru th table positions corresponding to
functions inputs Xl and x2 are complemented:

1. f (x l) ~ f(x2);
2. f (x i) : Lo:(x~), i E {1,2} for all w E W+;
3. f (x i) ~ i ~ (x i) , i E {1,2} for all a: E W1;
4. for all w E W2+,3, if i ~ (x l) ~ / o : (x 2) then f (x i) = io:(xi), i E {1,2}; and

5. for all w E W~3, if Lo:(xl) ~ L~(x2) then f (x i) ~ L, ,(xi) , i E {1,2}.

The sets W are defined to be the sets of w that specify linear functions that
have minimum or near minimum Hamming distance to the Boolean function
/(z):

1. W1 + = {w: F(w) = WHm,~=};
2. W 1- = {w:/~(w) = -WHma:r};
3. W + = {w: F(w) : WHmaz - 2};

4. W 2- = {w: ~'(w) --- - (W H m a x - 2)};

5. W3 + = {w: F(w) = WHmax - 4};

6. W 3- = {w:/~(w) = - (W H m a z - 4)};
7. W2+,,3 = w + u w + ; and

s ws = w ; O

496

By making a simple modification the hill climbing procedure will also tend
towards CI(m) functions. The modified algorithm assigns w with weight less
than or equal to m to the W sets in a slightly different way: the reference value
is eider(m) rather than WHm~x. This has the effect of requiring that [/~(w)[is
reduced for [w] _< m, thus causing the algorithm to reduce cider(m) as well as
increasing the nonlinearity.

This modification was found to be quite effective in finding Boolean func-
tions which are highly nonlinear, balanced and satisfy CI(1) . The method has
also produced balanced functions with high nonlinearity and low deviation from
CI(2).

4 E x p e r i m e n t a l R e s u l t s

In this section we present some of the experimental results obtained. These
results were obtained for small pool sizes (typically a maximum of 30). Our
experiments with larger pool sizes (50, 75 and 100) did not obtain examples
of functions with higher nonlinearity. The Genetic Algorithm is clearly most
efficient for pools of size 30 or less.

In Table 2 the best nonlinearities obtained by some GAs seeking balanced
functions are compared. The four results columns in this table represent different
configurations of the genetic algorithm described above with and without reset-
ting and hill climbing. It seems that resetting improves the performance of a GA
without hill climbing. It can also be seen that the algorithms which incorporate
hill climbing perform bet ter than those which do not. Resetting was found to
provide no improvement in algorithms which incorporate hill climbing.

Table 3 shows the results of a GA seeking balanced correlation immune func-
tions. The table shows the nonlinearity and the deviation from CI(1) for some of
the best functions so far obtained by the hybrid genetic/hill climbing algorithm.
In this case all of the best functions found were first order correlation immune.
For each n the best nonlinearity obtained is close to the upper bound for bal-
anced functions and hence must also be close to the upper bound for balanced
correlation immune functions.

Similar results are presented in Table 4 for a hybrid GA seeking functions
with low deviation to CI(2). These functions, although not second order correla-
tion immune, have only a small deviation from CI(2) as well as high nonlinearity.

Table 5 shows typical values for the number of functions that were required
to be tested in a basic GA, for n = 8, with various pool sizes and per bit muta-
tion rates, in order to obtain a function with normdev(1, 1) value 4 or less. This
value, which we call the benchmark, is the lowest normalised deviation found
in the search of one million randomly generated balanced Boolean functions.
Three runs for each combination of parameters was performed from which the
central value was chosen for the table data. A - indicates that the GA did not
usually generate a benchmark function before converging. Some remarks can be
made from the table data. Firstly small pools are more efficient in finding good
functions, however if the pool is too small the GA may converge too quickly. A

497

Best Nonlinearity
n GA GA-Reset GA-HC GA-HC-Reset
8 112 114 116 116
9 234 234 236 236
10 476 480 484 484
11 970 974 980 980
12 1970 1970 1976 1976

Table 2. Comparisons of best nonlinearities for GA's with and without hill climbing
and resetting.

n Nonlinearity cidev(1)
8 112 0
9 232 0
10 476 0
11 976 0
12 1972 0

Table 3. Best nonlinearity of balanced correlation immune - CI(1) functions.

n Nonlinearity cider(2)
8 112 4
9 232 8
10 480 8
11 976 8
12 1972 8

Table 4. Best nonlinearity of balanced Boolean functions and their deviation from
CI(2).

small amount of mutation appears to be useful in avoiding premature conver-
gence when the pool is small, however the benefit for large pools is less clear. It
is clear that too much mutation reduces the effectiveness of the algorithm. The
mutation values chosen correspond roughly to none, occasional, one truth table
place, and 10 places, when n -- 8. From the table we infer that a pool size of 5
or 10, with occasional mutation, offers a near optimum compromise in the quest
for benchmark functions.

498

n=8 Mutation Rate
Pool Zero 0.0004 0.004 0.04

5 129 146 602
10 463 292 419 828
20 987 1802 1762 1542
30 3949 2153 2487 5393

Table 5. Finding low CI(1)/PC(1) deviation functions by GA, number of functions
tested to get benchmark quality, typical results.

5 C o n c l u s i o n

Several heuristic approaches to the design of cryptographically strong Boolean
functions have been presented. These quasi-random techniques provide a suit-
able alternative to systematic methods for the construction of cryptographically
strong Boolean functions. The concept of deviation from strict properties has
been introduced and been used as a fitness function in a genetic algorithm.

Although the basic genetic algorithm is able to produce highly nonlinear
balanced Boolean functions satisfying other selective properties, it is clear that
several modifications improve the performance. Resetting, hill climbing and occa-
sional mutat ion have proven to be effective means of improving the performance
of the genetic algorithm.

R e f e r e n c e s

1. E. Biham and A. Shamir. Differential cryptanalysis of DES-like cryptosystems. In
Advances in Cryptology - Crypto '90, Proceedings, LNCS, volume 537, pages 2-21.
Springer-Verlag, 1991.

2. C. Carlet. Partially-Bent Functions. In Advances in Cryptology - Crypto '92,
Proceedings, LNCS, volume 740, pages 280-291. Springer-Verlag, 1993.

3. A. Clark and E. Dawson. A Parallel Genetic Algorithm for Cryptanalysis of the
Polyalphabetic Substitution Cipher. Cryptologia, 21(2):129-138, April 1997.

4. A. Clark, E. Dawson, and H. Bergen. Combinatorial Optimisation and the Knap-
sack Cipher. Cryptologia, 20(1):85-93, January 1996.

5. E. Dawson and A. Clark. Discrete Optimisation: A Powerful Tool for Cryptanal-
ysis? In Proceedings of Pragocrypt '96, pages 425 451, 1996.

6. H. Dobbertin. Construction of Bent Functions and Balanced Boolean Functions
with High Nonlinearity. In Fast Software Encryption, 1994 Leuven Workshop,
LNCS, volume 1008, pages 61-74. Springer-Verlag, 1994.

7. T. Honda, T. Satoh, T. Iwata, and K. Kurosawa. Balanced Boolean functions sat-
isfying PC(2) and very large degree. In Workshop on Selected Areas in Cryptology
1997, Workshop Record, pages 64-72, 1997.

8. X.-D. Hou. On the Norm and Covering Radius of the First-Order Reed-Muller
Codes. IEEE Transactions on Information Theory, 43(3):1025-1027, May 1997.

9. F.J. MacWilliams and N.J.A. Sloane. The Theory of Error Correcting Codes.
North-Holland Publishing Company, Amsterdam, 1978.

499

10. M. Matsui. Linear Cryptanalysis Method for DES Cipher. In Advances in Cryp-
tology - Eurocrypt '93, Proceedings, LNCS, volume 765, pages 386-397. Springer-
Verlag, 1994.

11. Robert A. J. Matthews. The use of genetic algorithms in cryptanalysis. Cryptolog~a,
17(2):187-201, April 1993.

12. W. Millan, A. Clark, and E. Dawson. An Effective Genetic Algorithm for Finding
Highly Nonlinear Boolean Functions. In First International Conference on Infor-
mation and Communications Security, volume 1334 of Lecture Notes in Computer
Science, pages 149-158. Springer-Verlag, 1997.

13. W. Millan, A. Clark, and E. Dawson. Smart Hill Climbing Finds Better Boolean
Functions. In Workshop on Selected Areas in Cryptology 1997, Workshop Record,
pages 50-63, 1997.

14. N.J. Patterson and D.H. Wiedemann. The Covering Radius of the (215, 16)
Reed-Muller Code is at least 16276. IEEE Transactions on Information Theory,
29(3):354-356, May 1983.

15. B. Preneel. Analysis and Design of Cryptographic Hash Functions. PhD thesis,
Cathoic University of Leuven, 1994.

16. B. Preneel, W. Van Leekwijck, L. Van Linden, R. Govaerts, and J. Vandewalle.
Propagation Characteristics of Boolean Functions. In Advances m Cryptology -
Eurocrypt '90, Proceedings, LNCS, volume 473, pages 161-173. Springer-Verlag,
1991.

17. M. Schneider. On the Construction and Upper Bounds of Balanced and
Correlation-immune Functions. In Workshop on Selected Areas in Cryptology 1997,
Workshop Record, pages 73-87, 1997.

18. J. Seberry, X.-M. Zhang, and Y. Zheng. Nonlinearly balanced boolean functions
and their propagation characteristics. In Advances in Cryptology - Crypto '93,
Proceedings, LNCS, volume 773, pages 49-60. Springer-Verlag, 1994.

19. J. Seberry, X.-M. Zhang, and Y. Zheng. On Constructions and Nonlinearity of
Correlation Immune Functions. In Advances in Cryptology - Eurocrypt '93, Pro-
ceedings, LNCS, pages 181-199. Springer-Verlag, 1994.

20. T. Siegenthaler. Correlation-Immunity of Nonlinear Combining Functions
for Cryptographic Applications. IEEE Transactions on Information Theory,
30(5):776-780, September 1984.

21. J.J. Son, J.I. Lira, S. Chee, and S.H. Sung. Global Avalanche Characteristics
and Nonlinearity of Balanced Boolean Functions, 1997. Submtted to Information
Processing Letters.

22. R. Spillman. Cryptanalysis of Knapsack Ciphers using Genetic Algorithms. Cryp-
tologia, 17(4):367-377, October 1993.

23. R. Spillman, M. Janssen, B. Nelson, and M. Kepner. Use of a Genetic Algorithm
in the Cryptanalysis of Simple Substitution Ciphers. Cryptologia, 17(1):31-44,
January 1993.

24. D.R. Stinson. Resilient functions and large sets of orthogonal arrays. Congressus
Numerantium~ 92:105-110, 1993.

25. A.F. Webster and S.E. Tavares. On the Design of S-Boxes. In Advances in Cryptol-
ogy - Crypto '85, Proceedings, LNCg, volume 218, pages 523-534. Springer-Verlag,
1986.

26. G-Z. Xiao and J.L. Massey. A Spectral Characterization of Correlation-Immune
Combining Functions. IEEE Transactions on Informatwn Theory, 34(3):569-571,
May 1988.

