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A b s t r a c t .  Advances in the design of Boolean functions using heuris- 
tic techniques are reported. A genetic algorithm capable of generating 
highly nonlinear balanced Boolean functions is presented. Hill climb- 
ing techniques are adapted to locate balanced, highly nonlinear Boolean 
functions that also almost satisfy correlation immunity. The definitions 
for some cryptographic properties are generalised, providing a measure 
suitable for use as a fitness function in a genetic algorithm seeking bal- 
anced Boolean functions that satisfy both correlation immunity and the 
strict avalanche criterion. Results are presented demonstrating the effec- 
tiveness of the methods. 

1 I n t r o d u c t i o n  

It is well known that  the resistance of a product  cipher to modern cryptanalytic 
attacks such as linear and differential cryptanalysis [10,1] depends critically upon 
the nonlinearity of the Boolean functions comprising the round function. Typi- 
cally these functions must be balanced, so there is considerable interest in the 
design of highly nonlinear balanced Boolean functions. In addition we would like 
cipher functions to satisfy other cryptographic properties also, such as correla- 
tion immunity [20] and the strict avalanche criterion (SAC) [25]. Previous work 
on the design of balanced functions includes [6,7,17-19,21]. The existing body 
of research concentrates on specific constructions, supported by algebraic proofs 
that  the resulting Boolean functions will be both balanced and satisfy one or 
more other properties. In contrast,  some recent publications [13,12] address the 
issue of applying combinatorial optimisation methods to the design of Boolean 
functions. The methods of gradient descent (or hill climbing (HC)) and the use of 
a genetic algorithm have proven useful in the quasi-random generation of highly 
nonlinear Boolean functions. 

In this paper we present a modification of the genetic algorithm (GA) pre- 
sented in [12] so that  it is confined to balanced Boolean functions. When com- 
bined with the two-step hill climbing algorithm [13] a very effective means of 
generating highly nonlinear balanced Boolean functions is obtained. The results 
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presented in Section 4 show clearly that  our hybrid algorithm is far more effective 
than blind search in finding balanced Boolean functions with a high nonlinearity. 

We observe that  the hill climbing technique can be adapted to find t-resilient 
functions, which are both balanced and correlation immune of order t (CI(t)). 
We describe a new algorithm and give performance results. In particular, the 
nonlinearity of functions obtained by the method is of primary interest. 

Finally a genetic algorithm is presented which seeks functions that  are bal- 
anced, and satisfy both CI(1) and the SAC, which is equivalent to the propa- 
gation criterion of order 1, P C ( l )  [16]. The algorithm is described in Section 3 
and its performance is discussed in Section 4. Now we present a review of some 
cryptographic properties of Boolean functions, and propose a definition for the 
deviation a function has from the strict properties of correlation immunity and 
the propagation criteria. 

2 S o m e  P r o p e r t i e s  o f  B o o l e a n  F u n c t i o n s  

Consider an n variable Boolean function f (x)  : Z~ --+ Z2. The truth table of the 
function is a list of 2 n bits representing the output of the function for each input. 
Let the linear function selected by w be L~(x) = WlXl ~ w2x2 @ ... @ wnxn. It 
is useful to represent a Boolean function in polarity form, replacing the symbols 
{0, 1} with {1, -1}.  We define the polarity t ruth table as ](x) = (-1)  1(=). Simi- 
larly we have L~(x) = ( -1)  L~(x) . With this representation the Walsh-Hadamard 
transform of the function can be defined as/~(w) = ~-~x ](x)L~ (x). The max- 
imum absolute value taken by the Walsh-Hadamard transform over all w has 
been called the spectral radius in [6]. Here we will denote it as WHmax. It is well 
known that  the nonlinearity of f (x)  is given by AT/ = �89 * (2 '~ - WHma=). To 
increase the nonlinearity of a Boolean function, WHmax must decrease. 

The autocorrelation function is defined as ~(s) = ~-~ ] (x ) / ( x  | s). It is 
well known [15] that  the autocorrelation function can be efficiently calculated 
from the square of the Walsh-Hadamard representation by performing an inverse 
Walsh-Hadamard transform. 

T h e o r e m  1 ( W i e n e r - K i n t c h i n e ) .  Let a Boolean function f (x)  have Walsh- 
Hadamard transform F(w) and autocorrelation function f(s). For all w 6 Z~ it 
is true that 

E r(s)(-1)s '~ = (F(w))  2" 
s6z~ 

Proof. Omitted. For example see [2]. 

The properties of correlation immunity and the propagation characteristics 
can be most easily defined in terms of F(w) and ~(s). These properties have 
received considerable attention in the literature, and are well known. A Boolean 
function f (x)  is said to satisfy correlation immunity of order m if and only if 
/~(w) = 0 for all those w with 1 <_ [w[ < m [26]. Similarly a Boolean function 
f (x)  is said to satisfy the propagation criterion order k if and only if § -- 0, 
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for all those s with 1 _< Isl ~ k [16]. We note tha t  balanced CI(t) functions are 
also called t-resilient [24]. Balanced PC(k) functions have no special name. 

We now present the definitions of deviation from these properties. The reason 
for this approach is twofold: firstly to provide a quanti tat ive means of assessing 
functions tha t  almost satisfy the conditions for CI(m) and PC(k) and secondly, 
to provide a suitable measure of fitness for a genetic algori thm seeking these 
functions. 

Definit ion 2. The correlation immunity deviation of a Boolean function f(x) 
is defined as 

cidevi(m) = max(l~(w)l; 1 < I~1 -< m). 

We note tha t  cidev(n) = WHmax for all Boolean functions. Any function 
with cidev(m) = 0 satisfies CI(m). 

Definit ion 3. The propagat ion characteristic deviation of a Boolean function 
f(x) is defined as 

pcdevi(k ) = max(l~(s)l; 1 < Isl < k). 

Any function with pcdev(k) = 0 satisfies PC(k). 
The deviation measures provide a meaningful way to describe functions tha t  

do not quite satisfy the strict properties. We can also consider the extent to 
which functions approach CI and PC simultaneously. 

Definit ion 4. The normalised deviation of a Boolean function f(x) is defined 
a s  

cidevf(m) pcdevi(k ) I normdev f (m, k) -- max  ~ ~- , 4 

The normalised deviation has been used as the fitness function in genetic 
algorithms seeking Boolean functions tha t  are balanced, CI (1 )  and P C ( l ) .  The 
performance results of this approach are presented in Section 4. We now briefly 
discuss the known bounds on the nonlinearity of balanced functions before turn- 
ing to descriptions of the GA and HC algorithms. 

2.1 Nonlinearity  of  Balanced Functions 

It  is known that  the maximum nonlinearity of Boolean functions corresponds to 
the covering radius problem for Reed-Muller Codes [9]. Thus it is known that  
for n even, the maximum nonlinearity at tainable is Nmax(n) = 2 ~-1 - 2 ~-1,  
but such functions (bent functions) are not balanced. For odd n, the situation 
is less certain. It  is known tha t  for n = 3, 5 and 7 the max imum nonlinearity is 
2, 12 and 56, respectively [14]. For odd n _> 9 no tight bounds are known. An 
upper  bound, which is known to be wide [18], states tha t  the nonlinearity of a 
balanced Boolean function satisfies N ~ 2 n-1 - 2~ -1 - 2 for n even. A recent 
paper  [8] gave a slightly improved upper  bound for the nonlinearity when n is 
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odd: N _ 212 n-2 - 2~-2J .  However this bound is known to be not tight for 
n = 7 and n = 15. For odd n > 9 it is an open problem to find the t rue upper  
bound. 

Some Boolean function constructions axe known to generate examples ap- 
proaching these bounds. For example, it is well known that ,  by concatenating 
bent functions, for n odd it is possible to construct a balanced function satis- 

- 2--~--, and for even n a balanced function with nonlinearity fying N = 2 n-1 ,-1 

N = 2 n-1 - 2~ can be constructed. However, in general, the maximum nonlin- 
earity a t ta inable  by balanced functions is not known. The work presented in [18] 
and [6] has shown tha t  the at tainable bound for nonlinearity of balanced Boolean 
functions can exceed the value attained by concatenation of bent functions. It  
was shown in [18] tha t  by slightly modifying the functions being concatenated 
tha t  higher values of nonlinearity for balanced functions could be achieved. The 
values are tabula ted  for various n. We note tha t  achieved values correspond ex- 
actly to the upper  bounds implied by Conjecture A in [6], for the listed n. A 
summary  of these results is shown in Table 1. The highest nonlinearity found by 
our hybrid genetic/hill  climbing algorithm (in experiments so fax) is presented 
for comparison with the lowest known upper  bounds given by theory, and the 
best known examples.  Where the lowest theoretical bound exceeds the best  ex- 
ample known, it remains an open problem to determine the value of the true 
upper  bound. 

Method 4 5 6 7 8 9 10 11 12 
Lowest Upper Bound [14,8] 4 12 26 56 118 244 494 1000 2014 
Best Known Example [18] 4 12 26 56 116!240 492 992 2010 
Bent Concatenation 14 12 24 56 112 240 480 992 1984 
Our Genetic Algorithm ,4 12 26 56 116 236 484 980 1976 

Table  1. Comparing the Nonlinearity of Balanced Functions 

The main open problems surrounding the nonlinearity of balanced Boolean 
functions are 
(1) for n = 8, is 116 or 118 the maximum balanced nonlinearity? 
(2) for n -- 9 can 240 be exceeded? In principle our heuristic algorithms, given 
large enough pool sizes and sufficiently many  iterations, could provide examples 
of balanced Boolean functions at the true upper  bound. Several of the known 
bounds have been achieved during our experimenmts.  However, no new bounds 
have yet been obtained by these methods. 

3 The Genetic Algorithm 

Genetic algorithms (GAs) have been successfully applied to numerous applica- 
tions in the field of optimisation. They have also been used as a tool for crypt-  
analysis - with varying degrees of success. The classical ciphers are typically 
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vulnerable to attacks from GAs, for example [23,11,5,3]. However, an attack 
presented in [22] on knapsack-type ciphers was found to be flawed [4]. 

The genetic algorithm borrows concepts from the evolutionary process (such 
as "survival of the fittest" and "genetic mutation") to breed a pool of solutions 
which are considered most ]it. Traditionally binary solution structures are used 
however, evolutionary programming encompasses arbitrary solution structures. 
The t ru th  table representation of a Boolean function provides a suitable bi- 
nary solution structure which has been utilised throughout all the experiments 
reported here. 

A typical GA combines processes of selection, breeding and mutation. There 
must exist a mechanism for evaluating arbitrary solutions - called the fitness 
]unction. In this paper the three main evaluation criteria used are the nonlin- 
earity, which is maximized, the deviation from correlation immunity (cidev(1)) 
and the normalised deviation from CI(1)/PC(1) (normdev(1, 1)) both of which 
are minimized. In addition to these criteria we impose the restriction that  the 
Boolean function must be balanced since this is desirable in most cryptographic 
applications. In GAs seeking to find a good compromise between high nonlinear- 
ity and low CI(m) deviation, we have found that  maximizing nonlin - cider(m) 
is more effective than using either criteria alone. 

Initially, a pool of P solutions is chosen and the fitness of each solution in 
the pool is calculated. Here, the pool consists of t ruth tables corresponding to 
(initially random) balanced Boolean functions. From this pool pairs of parents 
are chosen to act as the parents of the next generation. Parents may be cho- 
sen randomly, based on their fitness or (as in this case) exhaustively (all possible 
pairings are tried). The breeding process requires some mating function for com- 
bining parent solutions. Here we use a merging operation which combines two 
parents to produce a single offspring. The offspring will be a balanced function 
which is similar to each of its parents (the merge operation is described in detail 
below). Typically, each of the offspring undergo some mutation. As will be seen 
below, the merging operation used incorporates a random mutation so a sepa- 
rate mutat ion operation is not required. At this stage the survivors for the next 
iteration are chosen. This involves combining the parent and offspring pools and 
selecting the most fit as the new solution pool for the next  iteration. 

The merging (or mating) operation is now described. This operation takes 
two balanced Boolean functions as input and produces a single balanced Boolean 
function as the offspring. Consider two Boolean functions of n inputs. The t ruth 
tables corresponding to these functions will contain 2 n bits. Call the two parent 
functions Pl and P2, and let pk[i] denote the i 'h bit in the t ru th  table of parent 
k. Also, nl  denotes the number of l ' s  which have been placed in the child in 
positions where the parents differ, and dist(pl,p2) is the Hamming distance 
between the two t ru th  tables, Pl and P2. The objective of the algorithm is to 
ensure that  a child is produced that  satisfies n l = �89 (Pl, p2), since this ensures 
that  the child is balanced. The offspring c is determined as follows: 

1. L e t n l  = 0 a n d k = 0 .  
2. If dist(pl,p2) > 2n/2 complement Pl or P2. 
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3. F o r i - - l t o 2  '~do: 
(a) If pl[i] -- p2[i] then c[i] = pl[i] (-- P2[i]); 
(b) Otherwise (if pl[i] ~ p2[i]) 

i. If n l  = d i s t ( p l , p 2 ) / 2  then c[i] = 0; 
ii. Else if nl + dist(pl ,/)2) - k --  d i s t ( p l , P 2 ) / 2  then c[i] = 1; 

iii. Else c[i] = a random bit. 
iv. Increment k (k = k + 1). 
v. If c[i] = 1 then nl = nl + 1. 

The check in Step 2 is to ensure that  only parents which are close to each other 
are allowed to breed. It should be noted that  complementing a Boolean function's 
t ruth table does not alter its nonlinearity. The checks in Steps 3(b)i and 3(b)ii 
are used to force the offspring to be balanced. 

The overall genetic algorithm could then be described as follows: 

1. Generate a pool of P random, balanced Boolean functions (represented by 
their t ruth  table) and calculate the fitness of each. Call this pool So. 

2. For i -- 1 to MAXITER do: 
(a) For all P ( P  - 1)/2 pairings of the pool S i - 1  perform the merging oper- 

ation (as described above) to produce P ( P  - 1)/2 offspring. 
(b) (Optional hill climbing.) Apply the hill climbing procedure to each of 

the offspring. 
(c) Determine the fitness of each of the offspring. 
(d) Combine the pool of offspring with the current pool, S i - 1 ,  and select 

the P best as the new pool, Si .  Give precedence to offspring with fitness 
equal to solutions already in the pool. Duplicate solutions should be 
removed. 

(e) (Optional re se t t i ng  step.) If there has been no improvement in the fitness 
of the best solution for a number of iterations, then keep the best solution 
and generate P - 1 random, balanced functions as the remainder of the 
pool. 

3. Output the best solution from the current pool. 

The hill climbing procedure referred to above was described in [13]. The optional 
resetting step was found to enhance the algorithm when hill climbing is not used. 
The resetting step essentially randomises the pool after it has converged, but 
retains the best solution. Figure 1 gives a comparison of the performance of GAs 
with and without resetting and hill climbing. It can be seen that  for algorithms 
without hill climbing the resetting technique provides improvement. It is noted 
that  the resetting process is not effective (no improvement was gained in our 
experiments) for genetic algorithms which incorporate hill climbing. 

The hill climbing procedure in [13] provides a method of determining which 
bits in a function's t ruth table can be complemented in order to improve the non- 
linearity while maintaining the function's balance. We now introduce a modifica- 
tion of that  hill climbing procedure which attempts to improve the nonlinearity 
and maintain balance while at the same time pushing the function towards cor- 
relation immunity. Firstly we briely review the original hill climbing algorithm. 
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Fig. 1. Comparison (based on nonlinearity) of the different GAs for different pool sizes. 

Theorem 2 in [13] defines the following five conditions which must be satisfied 
for the nonlinearity to increase when the t ru th  table positions corresponding to 
functions inputs Xl and x2 are complemented: 

1. f ( x l )  ~ f(x2);  
2. f ( x i )  : Lo:(x~), i E {1,2} for all w E W+; 
3. f ( x i )  ~ i ~ ( x i ) ,  i E {1,2} for all a: E W1;  
4. for all w E W2+,3, if i ~ ( x l )  ~ / o : ( x 2 )  then f ( x i )  = io:(xi),  i E {1,2}; and 

5. for all w E W~3, if Lo:(xl) ~ L~(x2) then f ( x i )  ~ L, ,(xi) ,  i E {1,2}. 

The sets W are defined to be the sets of w that  specify linear functions that  
have minimum or near minimum Hamming distance to the Boolean function 
/(z): 

1. W1 + = {w: F(w) = WHm,~=}; 
2. W 1- = {w:/~(w) = -WHma:r};  
3. W + = {w: F(w) : WHmaz  - 2}; 

4. W 2- = {w: ~'(w) --- - ( W H m a x  - 2)}; 

5. W3 + = {w: F(w) = WHmax - 4}; 

6. W 3- = {w:/~(w) = - ( W H m a z  - 4)}; 
7. W2+,,3 = w +  u w +  ; and 

s ws = w ;  O 
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By making a simple modification the hill climbing procedure will also tend 
towards CI(m) functions. The modified algorithm assigns w with weight less 
than or equal to m to the W sets in a slightly different way: the reference value 
is eider(m) rather than WHm~x. This has the effect of requiring that  [/~(w)[ is 
reduced for [w] _< m, thus causing the algorithm to reduce cider(m) as well as 
increasing the nonlinearity. 

This modification was found to be quite effective in finding Boolean func- 
tions which are highly nonlinear, balanced and satisfy CI(1) .  The method has 
also produced balanced functions with high nonlinearity and low deviation from 
CI(2).  

4 E x p e r i m e n t a l  R e s u l t s  

In this section we present some of the experimental results obtained. These 
results were obtained for small pool sizes (typically a maximum of 30). Our 
experiments with larger pool sizes (50, 75 and 100) did not obtain examples 
of functions with higher nonlinearity. The Genetic Algorithm is clearly most 
efficient for pools of size 30 or less. 

In Table 2 the best nonlinearities obtained by some GAs seeking balanced 
functions are compared. The four results columns in this table represent different 
configurations of the genetic algorithm described above with and without reset- 
ting and hill climbing. It seems that  resetting improves the performance of a GA 
without hill climbing. It can also be seen that  the algorithms which incorporate 
hill climbing perform bet ter  than those which do not. Resetting was found to 
provide no improvement in algorithms which incorporate hill climbing. 

Table 3 shows the results of a GA seeking balanced correlation immune func- 
tions. The table shows the nonlinearity and the deviation from CI(1)  for some of 
the best functions so far obtained by the hybrid genetic/hill climbing algorithm. 
In this case all of the best functions found were first order correlation immune. 
For each n the best nonlinearity obtained is close to the upper bound for bal- 
anced functions and hence must also be close to the upper bound for balanced 
correlation immune functions. 

Similar results are presented in Table 4 for a hybrid GA seeking functions 
with low deviation to CI(2).  These functions, although not second order correla- 
tion immune, have only a small deviation from CI(2)  as well as high nonlinearity. 

Table 5 shows typical values for the number of functions that  were required 
to be tested in a basic GA, for n = 8, with various pool sizes and per bit muta- 
tion rates, in order to obtain a function with normdev(1, 1) value 4 or less. This 
value, which we call the benchmark, is the lowest normalised deviation found 
in the search of one million randomly generated balanced Boolean functions. 
Three runs for each combination of parameters was performed from which the 
central value was chosen for the table data. A - indicates that  the GA did not 
usually generate a benchmark function before converging. Some remarks can be 
made from the table data. Firstly small pools are more efficient in finding good 
functions, however if the pool is too small the GA may converge too quickly. A 
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Best Nonlinearity 
n GA GA-Reset GA-HC GA-HC-Reset 
8 112 114 116 116 
9 234 234 236 236 
10 476 480 484 484 
11 970 974 980 980 
12 1970 1970 1976 1976 

Table 2. Comparisons of best nonlinearities for GA's with and without hill climbing 
and resetting. 

n Nonlinearity cidev(1) 
8 112 0 
9 232 0 
10 476 0 
11 976 0 
12 1972 0 

Table 3. Best nonlinearity of balanced correlation immune - CI(1) functions. 

n Nonlinearity cider(2) 
8 112 4 
9 232 8 
10 480 8 
11 976 8 
12 1972 8 

Table 4. Best nonlinearity of balanced Boolean functions and their deviation from 
CI(2). 

small amount of mutation appears to be useful in avoiding premature conver- 
gence when the pool is small, however the benefit for large pools is less clear. It 
is clear that  too much mutation reduces the effectiveness of the algorithm. The 
mutation values chosen correspond roughly to none, occasional, one truth table 
place, and 10 places, when n -- 8. From the table we infer that  a pool size of 5 
or 10, with occasional mutation, offers a near optimum compromise in the quest 
for benchmark functions. 
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n=8 Mutation Rate 
Pool Zero 0.0004 0.004 0.04 

5 129 146 602 
10 463 292 419 828 
20 987 1802 1762 1542 
30 3949 2153 2487 5393 

Table  5. Finding low CI(1)/PC(1) deviation functions by GA, number of functions 
tested to get benchmark quality, typical results. 

5 C o n c l u s i o n  

Several heuristic approaches to the design of cryptographically strong Boolean 
functions have been presented. These quasi-random techniques provide a suit- 
able alternative to systematic methods for the construction of cryptographically 
strong Boolean functions. The concept of deviation from strict properties has 
been introduced and been used as a fitness function in a genetic algorithm. 

Although the basic genetic algorithm is able to produce highly nonlinear 
balanced Boolean functions satisfying other selective properties,  it is clear that  
several modifications improve the performance. Resetting, hill climbing and occa- 
sional mutat ion have proven to be effective means of improving the performance 
of the genetic algorithm. 
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