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Abst rac t .  The one-wayness of linear permutations, i.e., invertible linear 
Boolean functions F: {0, 1}"---* {0, 1} n, is investigated. For hnear permu- 
tations with a triangular matrix description (t-linear permutations), we 
prove that one-wayness, C(F-1)/C(F), is non-trivially upperbounded 
by 16x/-~, where C(.) denotes unrestricted circuit complexity. We also 
prove that this upper bound strengthens as the complexity of the inverse 
function increases, limiting the one-wayness of t-linear permutations with 
C(F  -1) = n2/(c logs(n)) to a constant, i.e., a value that is independent 
of n. Direct implications for linear and also non-linear permutations are 
discussed. Moreover, and for the first time ever, a description is given 
about where, in the case of linear permutations, practical one-wayness 
would have to come from, if it exists. 

1 I n t r o d u c t i o n  

One-wayness in a very intuitive sense describes the property that,  for a function 
F(.) ,  it is much easier, given X, to compute Z = F(X)  than it is, given Z, to 
find X such that Z = F(X).  The fundamental importance of the existence of 
one-wayness, both for public-key and secret-key cryptography, has been pointed 
out at numerous occasions; see for example [5] [10] [6]. Menezes et al. [12] give a 
detailed survey of the research in this field, which essentially resumes to: (i) re- 
lating the existence of one-way functions to the existence of other cryptographic 
primitives or to the t ruth of certain well-founded complexity-theoretic assump- 
tions; (ii) adapting the complexity-theoretic definition of a one-way function, to 
make it best captures the real needs of practical cryptography; (iii) searching 
for potential candidate one-way functions that  can be used in practical applica- 
tions. All these investigations largely contributed in clarifying and in satisfying 
our primary needs and in positioning the provability of one-wayness with respect 
to other complexity-theoretic problems of interest. Unfortunately, however, they 
also forged the now widely spread opinion that  the provability of one-wayness is 
a today unsolvable problem. 

The approach in this paper is a completely different one. It primarily aims 
at understanding the mechanisms that  could generate or limit any sort of one- 
wayness that  would be suitable for practical applications. With this objective in 
mind, special atter~tion is paid to the very details, essentially forgetting about 



320 

infinite problems (or infinite families of Boolean functions) and concentrating on 
finite collections of finite subproblems (or Boolean 'vector' functions). The types 
of functions under consideration are restricted (permutations, linear functions), 
and weaker notions [7] of non-uniform one-wayness [2] [15] are investigated. 

Only very few people took this latter approach, which somehow naturally 
leads to Boolean functions and unrestricted circuit complexity (c.f. [8] [6]). Boy- 
ack [3] proved that,  in memoryless circuits, every linear permutation has exactly 
the same complexity as its inverse (memoryless circuits being circuits whose 
width never exceeds their input size). This emphasises the importance of circuit- 
width or 'lasting' redundancy for one-wayness, an implication that  has never 
been pointed out explicitly (see also [11], for a different result supporting this 
same implication). Boyack also constructed the first examples of permutations 
F that  provably satisfy C(F -1) 7s C(F), where C(.) denotes unrestricted circuit 
complexity (for a precise definition of C(.) we refer to the next section). Later, 
Hiltgen el al. [9] determined the smallest example of a permutation that  prov- 
ably satisfies C(F -1) r C(F) and, in [7] [8], constructed the first families {Fn} 
of linear and non-linear permutations that  are feebly one-way of order 2, i.e., 
that  provably satisfy lim,._.o~[C(Fj1)/C(F,)] = 2. Although this feeble one- 
wayness is much too weak to be relevant to practice, Hiltgen defined practical 
one-wayness of order lim,__.~o[log2(C(F-1))/log2(C(F)) ] and pointed out that  
practical one-wayness of a small order (say 4) would suffice for practicM ap- 
plications, that  practical one-wayness of order infinity, however, is what people 
usually look after. Finally, Massey [11] pointed out that,  because virtually all 
permutations have nearly the same complexity, also for practical input sizes n, 
permutations with more than feeble one-wayness must be very rare. 

In this paper we continue research along these lines. In doing so, we focus 
on permutations and more specifically on t-linear permutations, i.e., linear per- 
mutations with a triangular matrix description (for a more precise definition, 
we refer to the next section). T-linear permutations are very easy to handle, 
under various aspects, and give interesting insights into some questions of fun- 
damental importance. In Section 2, unrestricted circuit complexity is defined 
and a direct relation between linear and t-linear permutations is recalled. We 
Mso upperbound the complexity of t-linear permutations which can be almost 
quadratic in the number of input variables. Section 3 addresses the one-wayness 
of t-linear permutations. By a novel approach, we first show that every single 
t-linear permutation can be characterised by a finite-length sequence of t-linear 
permutations. Then, based on this sequence we establish the existence of a par- 
ticular trade-off between the one-wayness and the complexity of these permuta- 
tions. This enables us to prove that C(F-~)/C(F) is upperbounded by 16v/~ 
and that  this upper bound strengthens to a constant, as the complexity of the 
inverse permutation increases. Because of Lemma 4, this actually implies that  
the order of practical one-wayness, for any family of t-linear permutations, is 
upperbounded by ~. In Section 4, direct implications for linear and non-linear 
permutations are discussed. Section 5, comments on the only possible origins 
of one-wayness, in the case of t-linear permutations and in the case of linear 
permutations. This yields necessary and sufficient conditions for the construc- 
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tion of linear permutations with practical one-wayness [7] [8], leaving open the 
satisfiability of these conditions. Section 6 finally concludes by resuming some 
results and open problems and by commenting their relevance to cryptography. 

2 Def in i t i ons  and P r e l i m i n a r i e s  

Let Bn,m denote the set of Boolean functions F :  {0, 1}"--+ {0, 1} "~. B~ is used 
as shorthand notation for B, m.  We consider realisations of Boolean functions 
by B2-circuits [17, Section 1.3], i.e., by acyclic logical gate circuits, where the 
n Boolean input variables Xi and the two constants 0 and 1 are the only valid 
inputs to the circuit, and where each gate may compute any 1-output operation 
from the basis B2 (operation set). The size or complexity of a B2-circuit is the 
number of its gates and the unrestricted circuit complexity C(F) of a function 
F is the smallest number of gates in a B2-circuit computing F.  It will be called 
simply complexity in what follows. The direct product F • G, where F E B.,,~ 
and G E B~,~ are functions that  depend on disjoint sets of input variables, is 
used also in Section 5 as a shorthand notation for IF(X), G(Y)] E B2~,2~. 

A function F E B~,~ is said now to be hnear if each of its n component 
functions in Bn,1 is defined by an exor-sum of input variables, i.e., an exor- 
sum of linear terms only. There is a one-to-one correspondence between linear 
functions F E B~,~ and binary n • n matrices [F] that  issues from the following 
matrix description for F,  

Z = IF]. X, 

where X and Z denote input and output (column) vectors, respectively, and '.' 
denotes matrix multiplication in the Galois field GF(2).  In what follows, we will 
omit the '-' whenever the context allows it, and we will interchangeably work 
with F and [F], using F when dealing with complexities and IF] when exploiting 
matrix properties. The inverse of F, when it exists, will be denoted by F -1 or 
IF-  1], accordingly. 

It is a fact, that  F is invertible if and only if det[F] = 1 (mod 2), i.e., if 
the determinant of IF] is odd. It is a fact also that  every [F] decomposes, in a 
usually non-unique way, by Gaussian elimination into a product of four binary 
matrices 

[F] = [Pa][L][U][Pb], 

where [L] is a lower triangular matrix, [U] is an upper triangular matrix and 
[Pal, [Pb] are variable-permuting matrices. Obviously, P,  and Pb have zero com- 
plexity. The complexities of F,  L and U are related as follows. 

L e m m a  1. For any F, L and U defined as above, 

(i) C(F) < C(L) + C(U) (ii) C(F -1) <<_ C(L -1) 4- C(U -1) 

Proof. Let D be defined by [D] = [P~I][F][P~-I] = [L][U]. Then obviously, 
C(D) = C(F). (i) now follows from the fact that  cascading circuits for [L] and 
[U] yields a circuit for [D]. The proof for (ii) is analogous, rq 
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Although the explicit characterisation of invertible functions appears to be a 
rather challenging problem in the general case of linear functions F,  it is known 
to be very easy in the particular case of t-linearfunctions T, i.e., in the case of 
linear functions with a triangular matrix description [71]. The determinant of a 
triangular matrix indeed corresponds to the product of its diagonal elements, so 
that  a binary triangular matrix is invertible if and only if its diagonal elements 
are all equal to 1. The functions corresponding to such invertible triangular 
matrices will be called t-hnear permutations in what follows. 

Every 'lower' triangular matrix maps to an 'upper' triangular matrix by re- 
versing the order of its rows and columns. As this does not affect the complexity 
of the associated t-linear function, we restrict our further complexity investiga- 
tions to (upper) t-linear permutations only. The following upper bound on the 
complexity of a t-linear permutation is also of interest. 

L e m m a  2. For any t-linear permutation T E B,,n, n > 4, 

n 2 
C(T) < 

[ log2(n)-  lJ 

A proof for this result is given in the appendix. From a standard counting argu- 
ment, it follows that  the bound is asymptotically optimal up to constant factor 2. 
T-linear as well as linear permutations therefore bear the potential for practical 
one-wayness, as introduced in [7] [8]. 

3 L i m i t s  o n  O n e - W a y n e s s  

We start by extending our notation for linear functions from F and [F] to F~ and 
[F~], respectively, so that  an additional index p >_ 1 refers to F u being a linear 
function in B2, ,~ .  This is not a real restriction, as any function F E B.,n, n >_ 2, 
can be mapped to a function F~ E B2,,2,, with # = [log2(n)], C(F~,) = C(F) 
and C(F~ 1) = C(F-1) ,  by adding only futile component functions, i.e., compo- 
nent functions that  are equal to an input variable not occurring in the definition 
of any other component function. The one-wayness owE, of a permutation F~ 
is defined then by 

f C(Fzl)/C(F~,) if C(F.) > O, 
OWF. 1 if C ( F . )  = 0 (::r C ( F ;  1) = 0). 

Observe now that  the matrix corresponding to an (upper) t-linear permuta- 
tion T, decomposes as follows 

= [ a , _ l ] ]  [TA [%-1] f t ._l]  J ' (1) 

where v~.-1 and r . -1  are (upper) t-linear permutations, .~.-1 is a linear func- 
tion and 0.-1 is the zero function. The matrix corresponding to the inverse 
permutation therefore allows for the following description 

[ [fl;!  1] [fl;!l][.'~.- 1][7"221] ] 
[T;1] = L[0.-1] [7";-h] J" 
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Two preliminary results about t-linear permutations are resumed in the fol- 
lowing lemmas. They will be helpful for what follows. 

L e m m a  3. Let T u be any t-linear permutation, with a decomposztion as defined 
in (1). Then 

C(Tu) > max[C(~9~,_l), C(Vu_l), C(A,_:)] ,  

C(T~ -1) <: 6(t9;_11) q- 6(7";11) q- C ( ~ , - 1 )  -J- 2 'u-: �9 

Proof. Any circuit for Tu can be used as a circuit for ~u_:, v~_: or ~u-1 simply 
by discarding extra outputs and by fixing extra input variables to zero. This can 
only reduce complexity and therefore yields the first inequality. 

The second inequality follows from the fact that  the combination of the next 
four circuits always yields a circuit for Z = [T~-:] �9 X: 

z 2  = x 2 ,  I2  = x :  n ,  

I1 = [~u- : ] '  Z2, Z l  -= [tg;_::]. I2, 

X1, X2 and Z1, Z2 denoting the upper and lower halves of X and Z, respectively, 
11, 12 denoting intermediate results and '@~_ 1' denoting component wise exor- 
addition of two length 2u-:  vectors, so that C(@u_: ) = 2u- : .  [] 

L e m m a 4 .  From every t-linear permutatzon Tu, with C(Tu) < 2u-2, it zs possz- 
hie to obtatn a unique t-linear permutation Tu_:, with 

C(T~-I )  = C(Tu) and C(T~.:a) = C(T~I), 

by discarding the first 2 ~-: of its futile component functions. 

Proof. Eliminating a futile component function does not change the complexities 
of Tu and T~- i. We therefore only need to prove that  there are sufficiently many 
of these component functions. From the upper bound C(Tu) <<_ 2u-2 it follows 
that at most half of the 2u input variables can be an input to one of the at most 
2 ~-2 2- input / i -output  gates in the circuit. Moreover, from the invertibility of 
Tu, every input variable has to affect at least one output.  Therefore, at least 
2 u - :  input variables only affect the single output  to which they are directly fed 
through. [] 

The next definition is at the very origin of our new approach. It allows us to 
convert a single permutat ion into a finite sequence of permutations,  from which 
surprising limits and observations on the one-wayness of these permutations can 
be deduced. 

D e f i n i t i o n  5. Let T~ be any t-linear permutation,  with a decomposition as de- 
fined in (1). We define the most-complex-inverse decomposztion sequence of Tu, 
MCIDST,, to be the unique finite-length sequence {T~, T ~ _ : , . . . ,  T1} of t-linear 
permutations Tv satisfying: For u = # . . .  2, 

if C(Tv) < 2 ~-2, then T~_: is obtained according to Lemma 4, 

if C(T~) > 2 ~-2, then, if C(~-_:1) > C(rZ-_I:), then T~_: = ~9,_:, 
else T~_: = rv-  1. 
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This essentially corresponds to recursively defining Tv-i  to be the t-linear 
component, 0v-1 or ~'v-l, of T~ that  has the most complex inverse. Two imme- 
diate implications from that  definition, that  will be used in the following, are 
C(Tv-k) < C(Tv), for 0 < k < v, and max[C(0~-_11), C(Tv-._li)] ---- C(T~._ll). 

L e m m a 6 .  Let T u be any t-linear permutation, wzth C(Tu) > 2 I'-2 and with a 
decomposition as defined in (1). Then, 

C(A,-1) _> max[C(0;!1) ,  C(r~-21)] ::~ OWT. < 5. 

Proof. For C(T,)  > 2~-2, the above assumption, together with Lemma 3, yields 
C(T~ -1) < 3C(A~-I) + 2C(T~). From Lemma 3, we further know that  C(T~) > 
C(A,-1),  so that  ow n = C(T~I)/C(T~) < 5. [] 

The case of real interest therefore only occurs when C(Au_ 1) < max[C(tgS-11), 

C(r~-_~)]. Note that  Lemma 6 holds independently of the possible one-wayness of 
any of the component permutations 0~_ 1, r~_ 1 of Tu. This clearly demonstrates 
how easily one-wayness can be destroyed. It also indicates that  any t-linear 
permutation T,,  whose i n v e r s e  T~ -1 has near maximum complexity, cannot be 
very one-way, as  T~ -1 can only have near maximum complexity if A, - I  has near 
maximum complexity as well. A proof for this and other implications follows 
from the next theorem and corollary which state our main result. 

T h e o r e m  7. Let T~ and T~-k be two t-linear permutations from any MCIDST,, 
with l < v <_ p, O < k < v and C(T~) > O. Then, 

C(T~~I) > ~'C(T-I~, ,, , - 3C(T,,) = (�89 -- 3).2 C(T,,), 

C(T,-Jk ) > ~C(T~- ' )  - 3C(T,) = (~owT.  -- 3)-C(T,,). 

Proof. If C(T~) < 2 ~- 2, it follows from Lemma 4 and Definition 5 that  C(T~.J 1)= 
C(T71). On the other hand, if C(T~) > 2 "-2, it follows from Lemma 3 and 
Definition 5 that  

C(T~ 1) < 2 C(T~._ll) --I- C()lv-1) --~ 2 C(Tv) 

< 2 C ( T j J ~ )  + 3 C(T,) .  

It is true therefore, in general, that  

I ~ ( T - 1 )  _ 3 C ( T v )  C(T2.21) > ~ v ,  , , 

= ( �89 - -3)'2 C(T,) .  

From the recursive nature of Definition 5, we further deduce that  

_ C(T,,_,,+,) + . . .  + C(T~)) C(T~.lk) > 21-~C(T~ -1) - 3 (C<T.~k.,) -t- 4 2k 

> )-~k C ( T ;  1) - 3C(Tv) 

= (~OWT~ -- 3). C(T,). [] 
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Note that ,  because C(T~-k) <_ C(T~), for 0 < k < u (c.f. Definition 5), 
the inequalities of Theorem 7 remain valid also if we divide their right sides by 
C(T~) and their left sides by C(T~-I)  and C(T~-k),  respectively. This yields the 
following corollary. 

C o r o l l a r y  8. Let Tv and Tv-k be two t-linear permutations from any MCIDST,, 
with l < v <_ #, O< k < u and C(T~) > O. Then, 

OWT,,_ ~ > _IowT, " 3 
2 2 

OWT~_ k > ~];OWT~ - - 3 .  

Two fundamental restrictions, both with regard to most-complex-inverse de- 
composition sequences MCIDST,, therefore hold: firstly, one-wayness can de- 
crease at most linearly with the number of input variables; secondly, the com- 
plexity of the inverse permutations can decrease at most linearly with the number 
of input variables, as long as one-wayness is larger than or equal to 5. The next 
two theorems are direct consequences of these restrictions and Lemma 2. 

T h e o r e m  9. Let T u be any t-linear permutation and let n = 2 u denote the 
number of input vamables on which zt depends. Then, 

OWT, < 16 v ~ / A , ,  

= max[l ,  ~/�89 log2(n ) -- 2 1. with A ,  

Proof. Let OWT. be described by 2 ~u+3. For # = 1, only c~ < 0 is possible (all 
t-linear permutations T1 being involutions), and for a < 0, /t > 1, the theorem 
holds trivially. We may therefore assume in the following that  # > 2 and a >_ 0. 

Suppose now first that  C(Tu) > 2 "-2.  It follows then from Corollary 8, that  
ko = [(~#+ lJ < (~#41 steps in MCIDST, are insufficient to completely eliminate 
one-wayness, so that  p - ko > 2; all T1 being involutions. From Theorem 7 and 
the lower bound on C(Tu) , we further deduce that 

C(Ty~ko ) > C(T , )  > 2 u-2, 

while the monotonicity, for p - k o  >_ 2, of the upper bound obtained from Lemma 
2, together with the fact that  ko > ~p, implies that  

22~---2ko 
C(T~l_ko) < ~ < 22u-2'~u-l~ 

Both inequalities together yield 

2a# < # + 2 - log2( p - c~/~ - 1) 

< ju + 2 - log2(max[1 , a - 2 ] ) ,  

where the max[.]-expression results from either directly substituting # - a #  > 
1 # - ko >_ 2, or first using this bound to obtain a;u < ~/~ + 1 from the next to 

last inequality and then substituting this latter bound. This proves that  

oq~ < 1 + �89 - log2(max[1 , 1 - 2 ] ) ) ,  
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and consequently, that  

OWT, = 2 "u+3 < 16 yrn/max[1,  ~/�89 log2(n ) -- 2 ]. (2) 

The case C(Tu) <_ 2 u-~ is dealt with analogously. From Lemma 4, we know 
that  we can reduce # until, for some v < #, either C(T~) > 2 "-2 and v > 2, so 
that  

OWT =OWT =2~u+3 < 1 6 v ~ / m a x [ 1 ,  v / ~ l o g 2 ( n ' ) - 2 ] ,  n ' = 2 U < n ,  

or v = 1, in which case OWT, = OWT1 = 1. The monotonicity, with regard to n, 
of the upper bound in (2) finally implies that  the result holds in general. [] 

T h e o r e m  10. Let Tu be any t-linear permutation, and let n = 2 u denote the 
number of input variables on whzch it depends. Then, for any possible c~, 

n2_2 a 

C(Tu) < log2(n 1-~) - 1 
OWT. :> 8n  c~ ~ 8 n 2 - a  

C(T;1) < [Og2(l~, 1-~ --  1 

with An ---- max[l ,  V/�89 log2(n ) - 2 ]. 

< 

< 

Proof. Let OWT, be described by 2 ~u+3. For / t  = 1, only a < 0 is possible (all 
t-linear permutations T1 being involutions), and for a < 0, p > 1, the theorem 
holds trivially. We may therefore assume in the following t h a t / t  > 2 and a > 0. 

Suppose now first that C(Tu) > 2u-2. Then, by exactly the same derivations 
as in the proof of the previous theorem, we get that  

C(T,)  < C(T~I_ko) < u-,~,-1 - log~(. ,--)- ," (3) 

Theorem 7, the previous upper bounds on C(T,)  and C(T~Jko), and the fact 
that  ko _< ~/~ + 1 further yield 

C ( T ;  1) < 2 k* . (C(TfJko) + 3C(T,) )  

< 2 C(TI k.) 
n2--2~ 

< 8n~ �9 log2(,l_~)_f. (4) 

The weaker bounds finally result from the fact that  the derivations in the proof 
2 1 + ~], so that  of Theorem 9 showed that ~ < mini1 u, 2 

1 log (n - 1 > m a x [ l ,  l o g s ( - )  - 2] = 

with A,~ defined as in Theorem 9. 
The case C(Tu) <_ 2u-2 is dealt with analogously, yielding either the same 

upper bounds, for some n t = 2 v < n, u _> 2, or OWT, = OWT1 = 1, i.e., a < 0. 
The monotonicity, with regard to n, of the upper bounds in (3) and (4) finally 
implies that  the result holds in general. [] 
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Here we observe that,  for any t-linear permutation Tu, not only its one- 
wayness OWT. is non-trivially upper bounded, but, for any lower bound on that  
one-wayness, its complexity and the complexity of its inverse are non-trivially 
upper bounded as well. This shows, in particular, that any potential candidate 
for a t-linear permutation Tu with near maximum one-wayness OWT. > 8v~/A,~ 
would have to satisfy C(Tu) < n and C(T~ 1) < 8 n a / 2 / Z ~ n  . The following con- 
verse is therefore of interest as well. 

Converse to Theorem 9 and Theorem 10. Let T u be any t-linearpermuta- 
tion and let n = 2 u denote the number of input variables on which zt depends. 
Then, for any possible/3, 

C(Tu) >_ n ~ =~ OWT. < min[8n'-~/~/A. ,  16nl/~/A.], 

C(T~ -1) ~ n/3 ~ OWT~ < min[64n2-P/A2, 16n1/2/An], 

with An ----- max[i,  ~/1 log2(n)_ 2 ]. 

This essentially follows from the weaker bounds in Theorem 10, by using 
/3 = 2 - 2 a - 2  log2(An)/log2(n ) and/3 = 2 - a + ( 3 - 2  log2(A,)) / log2(n), respec- 
tively. It shows, in particular, that  any t-linear permutation Tu, n = 2u, whose 
inverse has near maximum complexity C(T71 ) = n2/(e log2(n)), e a constant, 
is forced to have one-wayness owT, < 64c log2(n)/A ~ < 384c, i.e., one-wayness 
upperbounded by an expression that  does not dependent on n. 

We conclude this section by pointing out that,  although linear permutations 
with C(F) r C(F -1) have been demonstrated to exist [7], the existence of 
t-linear permutations with C(T) r C(T -1) is still an open problem. 

4 Implications for Linear and Non-l inear Permutat ions  

�9 The implications for linear permutations directly follow from the decomposi- 
tion 

[F] = [Pa][L][U][Pb], (5) 

described in Section 2 (P~ and Pb being variable-permuting matrices), and the 
complexity relations derived in Lemma 1. We here only introduce, for C(Lo U) 7s 
0, 

C( L )+C(V) c~ r-~ )+c(u -1) 
6LU -= C(LoU) and 6 L U -  ~-- C( (LoU)_I )  , 

which we call the decomposztion-loss factors of LU and LU- (%' denoting func- 
tional composition). These factors characterise the circuit inefficiencies that  re- 
sult when realising the linear permutations L o U and (L o U) -1 by cascading 
circuits for their t-linear components. Note that  such realisations, once in be- 
tween, force circuit-width to equal input size and redundancy to vanish. 
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L e m m a  11. Let F be any hnear permutatzon, with C(F) > O. Then, for every 
decomposilzon (5) of F, 

~c_~ c _ ~ .  owu) /~rU- OWF ~--" \ C(F) " O W L  -[- C(F) 

with 6LU- >_ 1. 

Proof. Obviously, for [D] = [P:'][F][P~ -1] = [L][U], the complexities of F and 
F -1 satisfy C(F) = C(D) and C(F -1) = C(D- I ) ,  respectively. The result then 
follows from the definitions of OWE and 6LU-, yielding 

c ( r - ' )  ( ~  c j (g_~  
O W F  ---- C(F) : ~ C(F) "~- C(F) / /~LU-" 

We only additionally substitute C(L) .ow L and C(U) �9 owu for C(L -~) and 
C(U-1),  respectively. The lower bound on 5LU- follows from Lemma 1 (it). [] 

L e m m a  12. Let F be any linear permutation, with C(F) > O. Then, for every 
decomposition (5) of F, 

RLU .min[owL, owu] _< OWE _< RLU .max[owL, owu], 

where I~L~y = 5LU / SLU- , with ~LU ~ 1 and ~LU- ~ 1. 

Proof. This follows directly from the previous lemma. The lower bound on ~LU 
is a consequence of Lemma 1 (i). [] 

The decomposition-loss factors thus play a fundamental role in relating the 
maximum one-wayness of linear permutations to the maximum one-wayness of t- 
linear permutations. Note that  the one-wayness of a linear permutation can only 
become significantly larger than the one-wayness of a t-linear permutation, if the 
decomposition-loss ratio, RLU = 6LU /6LU- , can become significantly larger than 
1, and that  a necessary condition for this to happen is that  the decomposition- 
loss factor 6LU can become significantly larger than 1. An example where RLU 
and 6LU differ from 1 is given in the appendix. Whether they can be much larger 
than 3 -~, however, remains an open problem. 
�9 The implications for non-linear permutations follow from a different obser- 
vation, namely, that  the existence of a most-complex-inverse decomposition se- 
quence in fact does not require the permutation T. to be linear. As long as 
Z = T. (X)  recursively decomposes as follows: 

Z l  = 0 u - l ( X l )  Ou-1 )~,-1(x2) 
z2 = ~_~(x2) ,  

with X1 ,X2  and Z1,Z2 denoting the upper and lower halves of X and Z, 
respectively, the MCIDST. exists and neither A,-I  (X2) nor r , _ l  (X2) (assuming 
C(Oul_l) > C(r~)I) in this particular step) needs to satisfy any linearity or 
dependence requirements. Thus, if these functions were to be both non-linear 
(or non-t-linear) this would not affect the validity of Theorem 7, nor would it 
affect that  of Corollary 8. The decomposition in itself limits one-wayness to 
n/2 + 3, whereby the complexity of Tu~ can be exponential in n (through A,_ 1). 
More involved generalisations to non-linear permutations are possible as well. 
They will be discussed in a separate paper. 
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5 Origins of One-Wayness 

We know already from Section 3 that,  within a most-complex-inverse decomposi- 
tion sequence, one-wayness can decrease at most by a factor of 2, when the num- 
ber of input variables decreases by a factor of 2. No evidence has been given, how- 
ever, that  any decrease at all can occur. The next discussion therefore emphasises 
the eventually unusual conditions that  would have to be satisfied, for a decrease 
by a factor of 2 to occur. For simplicity reasons, we will assume that  the compo- 
nent function $ . -1 ,  which needs to satisfy C(A.-1)  < 2 max[C(~. -1) ,  C( r . -1 ) ]  
in order to allow for any decrease at all, equals the zero function 0 . -1 .  Under 
this still rather general setting, the first inequality in Corollary 8 simplifies to 

1 w OWT~-I ~ 3 O T~, 

with equality if and only if C(T;7 I) = 2 C(T~._11) and C(T,) = C(T,-I). This 
shows that one-wayness can only decrease by a factor of 2, if 

C(~;!1  x rZJ~) = 2 max[C(~ ; ! l ) ,  C(r;J1)], 

C(vg._l x v . -1 )  -- max[C( tg ._ l ) ,  C(v . -1 ) ]  = C ( T . - 1 ) ,  

which implicitly requires C(~-_11) = C(r~2l) and C(~ , -1 )  = C ( r , - l ) .  The case 
min[C(O,-1),  C(T,_I)] < max[C(@_1),  C(r,_~)] is indeed of no real interest, 
as it implies oww. < max[ow~._l, owr._,]. We therefore observe that  a one- 
wayness decrease of inleresi (or increase of znterest, from a constructive point 
of view) can only occur: if '},-1 and r , - 1  have almost the same complexity 
and almost the same one-wayness, and if their common realisation on disjoint 
sets of variables allows for extensive savings, while the common realisation of 
their inverses, also on disjoint sets of variables, does not allow for any significant 
savings at all. Whether  this can be satisfied, simultaneously (and repeatedly), 
remains an open problem, although it suggests a negative conjecture. 

It seems important  here to briefly point out that  a related problem, namely, 
whether for any function F it is possible to have C(F  x F)  < 2 C(F) ,  has been 
addressed by Paul [13] and also Uhlig [16], many years ago. Paul, in particular, 
describes how a result like the next one easily follows by contradiction. 

T h e o r e m  13. For any e > O, there are values of n, such that there exist t-linear 
permutations T E Bn,n that satisfy 

C(T  x T) < (1 + e) 2 ~-2-  C(T),  

where w is the smallest exponent such thai multiplication of two N x N matrices 
can be performed with N w+~ gates. 

From a paper by Coppersmith et al. [4], we know that  w < 2.376. Strassen [14] 
even expects much smaller w > 2 to be possible. 

We conclude this section by recalling that,  even if t-linear permutations could 
not be practically one-way, the decomposition-loss ratio introduced in the pre- 
vious section remains another potential independent source of one-wayness for 
linear permutations.  The example in the appendix, in particular, illustrates that  
this ratio can be greater than 1, even if owu = OWL = 1. 
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6 C o n c l u s i o n s  a n d  O p e n  P r o b l e m s  

The unrestricted-circuit-complexity approach to provable practical one-wayness 
bears certain advantages that should have become clear form the results achieved 
in [3] [7] [8] [11] and in this paper. It has enabled us to realise the importance 
of circuit-width or 'lasting' redundancy for one-wayness, as it has enabled us 
to construct the first examples of linear and non-linear permutations F, with 
C(F -~) ~ 2 C(F). More specifically in this paper, it has allowed us to demon- 
strate the first non-trivial upper bounds on one-wayness and to describe neces- 
sary and sufficient conditions for the construction of linear permutations with 
practical one-wayness. Nevertheless, many open problems remain: 

Open  Prob lem 1. Is there any t-linear permutation T wzth C(T -1) r C(T) ? 

Open P rob l em2 .  Is there any t-linear permutations T u with OWT,/OWT,_l 
2, or can this upper bound be strengthened in general? 

Open P rob l em3 .  Are there any t-linear permutatzons L, U G Bn,n for whzch 
RLU .~ 4n/log2(n), or can this upper bound be strengthened zn general? 

Open P rob lem 4. What influence do permanent or temporary circuit-width (or 
redundancy) restmctions have on complexity and on one-wayness? 

Today, we perfectly understand to what extend cryptography relies on the 
existence of one-wayness. The relevance of the above questions to cryptography 
therefore should be clear. But, what about the relevance of the above approach? 
Despite our full recognition for the contributions of the classical Turing-Machine- 
complexity approach to the field, we are seriously concerned by the fact that this 
classical approach so far failed to produce concrete structural insight into the 
possible origins of one-wayness, and thus also failed to motivate research in this 
topic. 

This yields the justification for the non-classical unrestricted-circuit-complex- 
ity approach taken in this paper. Unrestricted circuit complexity allows for the 
stronger (less restricted) type of cryptanalytic adversary. More important, its 
natural dealing with Boolean functions considerably facilitates structural inves- 
tigations by means of subfunctions and/or component functions, an interesting 
technique that, to our opinion, bears the potential for significan.tly improving 
our understanding of one-wayness. We believe that our results and those in the 
referenced papers do support these reflections. Hopefully, they can also motivate 
further research. 
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Appendix 

P r o o f  for Lemma 2 

In order to prove that  every t-linear permutat ion T E Bn,~, n _> 4 can be realised 
by using no more then n2/Llog2(n) - lJ gates, we proceed as follows. 

First, we divide the n input variables into [~] < ~ + 1 disjoint sets of size k 
(a positive integer), so that  the first set contains the first k input variables, the 
second set contMns the second k input variables, ... and the last set contains the 
remaining input variables and possibly also some dummy variables. Then, for 
each of these sets, we precompute all possible 2 k linear functions in the respective 
k variables. Note that  there exists a circuit that  does this with complexity Ck < 
2 k - k - 1, as the k + 1 weight-0 and weight-1 functions require no gates to be 
synthesised, and each weight-k function (k > 1) can be synthesised from a single 
addition of an input variable and a weight-(k - 1) function. Finally, for the n 
component functions, only precomputed functions have to be added. Due to the 
triangular form of the corresponding matrix, it follows that,  there are at most k 
component functions whose synthesis requires at most [~] - 1 additional gates, 
k component functions whose synthesis requires at most [~] - 2  additional gates, 
... and k component functions whose synthesis requires at most 1 additional gate. 

Altogether, this describes a general realisation that  needs no more than CT 
gates, where 

r~ ] - i  

Z;  i < ( }+ l ) . (2k-k - l+  ~) 
i = 1  

The result follows from substituting k = Llog2(n ) - lJ > 1, for n _> 4. This 
general realisation for t-linear functions derives from a general realisation for 
linear functions, also known as the 'Four Russians' algorithm [1]. [] 

L i n e a r  P e r m u t a t i o n  T = L o U with  RLU ~ 1 a n d  ~LU ~t 1 

As an example, we consider the function F with matrix description 

[El = 

- 1 1 0 0 0 0 0 0 0 0 0 "  
0 1 1 0 0 0 0 0 0 0 0  
0 0 1 1 0 0 0 0 0 0 0  
0 0 0 1 1 0 0 0 0 0 0  
00001100000 
lO000010000 
O0000011000 
O0000001100 
O0000000110 
O0000000011 
I0000100001 

[F -1] = 

" 1 1 1 1 1 1 1 1 1 1 1  
0 1 1 1 1 1 1 1 1 1 1  
0 0 1 1 1 1 1 1 1 1 1  
0 0 0 1 1 1 1 1 1 1 1  
0 0 0 0 1 1 1 1 1 1 1  
0 0 0 0 0 1 1 1 1 1 1  
1 1 1 1 1 0 1 1 1 1 1  
1 1 1 1 1 0 0 1 1 1 1  
1 1 1 1 1 0 0 0 1 1 1  
1 1 1 1 1 0 0 0 0 1 1  
1 1 1 1 1 0 0 0 0 0 1  

This function F,  for which it has been proved in [7] that  C(F) = 12 and 
C(F -1) = 15, decomposes into a product of triangular matrices L and U, defined 
by 



333 

[L] = 

" 1 0 0 0 0 0 0 0 0 0 0 "  
0 1 0 0 0 0 0 0 0 0 0  
0 0 1 0 0 0 0 0 0 0 0  
0 0 0 1 0 0 0 0 0 0 0  
0 0 0 0 1 0 0 0 0 0 0  
1 1 1 1 1 1 0 0 0 0 0  
0 0 0 0 0 0 1 0 0 0 0  
0 0 0 0 0 0 0 1 0 0 0  
0 0 0 0 0 0 0 0 1 0 0  
0 0 0 0 0 0 0 0 0 1 0  
1 1 1 1 1 0 0 0 0 0 1  

[L -1] = 

" 1 0 0 0 0 0 0 0 0 0 0 "  
0 1 0 0 0 0 0 0 0 0 0  
0 0 1 0 0 0 0 0 0 0 0  
0 0 0 1 0 0 0 0 0 0 0  
0 0 0 0 1 0 0 0 0 0 0  
1 1 1 1 1 1 0 0 0 0 0  
0 0 0 0 0 0 1 0 0 0 0  
0 0 0 0 0 0 0 1 0 0 0  
0 0 0 0 0 0 0 0 1 0 0  
0 0 0 0 0 0 0 0 0 1 0  
1 1 1 1 1 0 0 0 0 0 1  

[U] = 

" 1 1 0 0 0 0 0 0 0 0 0  ~ 
0 1 1 0 0 0 0 0 0 0 0  
0 0 1 1 0 0 0 0 0 0 0  
0 0 0 1 1 0 0 0 0 0 0  
0 0 0 0 1 1 0 0 0 0 0  
0 0 0 0 0 1 1 0 0 0 0  
0 0 0 0 0 0 1 1 0 0 0  
0 0 0 0 0 0 0 1 1 0 0  
0 0 0 0 0 0 0 0 1 1 0  
0 0 0 0 0 0 0 0 0 1 1  
0 0 0 0 0 0 0 0 0 0 1  

[U -I] = 

~ I i i 1 1 1 1 1 1 1 1 "  
01111111111  
00111111111  
00011111111  
00001111111  
00000111111  
00000011111  
00000001111  
00000000111  
00000000011  
00000000001  

It is s traight-forward here to verify that  C ( L )  = C ( L  -1 )  = 6 and C ( U )  = 

C ( U  - 1 )  = 10, so that  OWL = o w v  = 1. Consequent ly ,  by L e m m a  12, owF = 
RLU --: 15 _ 5 with  decompos i t ion- loss  factors (~LU = 16 and ~LU- -- 16 

By let t ing n grow, this yields a family  of  linear permutat ions ,  also invest i-  
gated in [7], for which OWL = owu = 1 and owR = RLU ---+ 3; the respect ive  

3 and ~LU- ""+ 1. [] decompos i t ion- loss  factors satisfying ~nv ---+ 


